JP4987649B2 - 軸流燃焼タービンエンジン用燃焼器の移行ダクト - Google Patents

軸流燃焼タービンエンジン用燃焼器の移行ダクト Download PDF

Info

Publication number
JP4987649B2
JP4987649B2 JP2007244786A JP2007244786A JP4987649B2 JP 4987649 B2 JP4987649 B2 JP 4987649B2 JP 2007244786 A JP2007244786 A JP 2007244786A JP 2007244786 A JP2007244786 A JP 2007244786A JP 4987649 B2 JP4987649 B2 JP 4987649B2
Authority
JP
Japan
Prior art keywords
transition duct
section
stage
combustor
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007244786A
Other languages
English (en)
Other versions
JP2008111652A (ja
Inventor
イー バンカラリ エジュアルド
キーソウ ハンス・ジャーゲン
ジェイ フーバー デービッド
アール ラトリフ フィリップ
オー デービーズ ダニエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Power Generations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Power Generations Inc filed Critical Siemens Power Generations Inc
Publication of JP2008111652A publication Critical patent/JP2008111652A/ja
Application granted granted Critical
Publication of JP4987649B2 publication Critical patent/JP4987649B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/15Two-dimensional spiral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

関連出願との相互参照 発明分野
本発明は広義では軸流燃焼タービンエンジンに係わり、より具体的には燃焼器からのガス流を燃焼タービンエンジンのタービンセクションへ誘導する移行ダクトに係わる。
添付図面の図1は軸流燃焼タービン10の部分断面図である。タービンの主構成要素は圧縮機セクション12、燃焼セクション14及びタービンセクション16である。ロータ集合体18が中心に配置され、上記3つの主要セクションを貫通している。圧縮機セクション12は交互に配置された固定静翼24列と回転動翼26列を囲むシリンダ20、22を含む。固定静翼24はシリンダ20に固定され、回転動翼26はロータ集合体18と一体に回転するようにロータ集合体18に取り付ける。
燃焼セクション14はチェンバ30を形成するシェル28を含む。燃焼セクションチェンバ30は、複数の、例えば、16基の燃焼器(図にはそのうちの1基の燃焼器32だけを示す)を内蔵し、これらの燃焼器32を、円を囲むように環状パターンに配置される。液状またはガス状の燃料―例えば、オイルまたはガス―がそれぞれの燃焼器32に流入し、燃焼器32を囲む参照番号の無い矢印で示すようにチェンバ30から燃焼器32に導入される圧縮空気と混合する。この燃料/空気混合物を燃焼器32内で燃焼させ、その結果、得られる高温圧ガス流36を、タービンセクション16へ誘導させるために燃焼器32に取り付けられた移行ダクト38へ排出する。
タービンセクション16は内部シリンダを含む円筒状ハウジング40を含み、それぞれが静翼44及び動翼46を含む固定静翼列及び回転動翼列を取り囲んでいる。固定静翼44は内部シリンダ42に固定され、回転動翼46はロータ集合体18の、タービンセクション16の領域に位置する部分を形成するディスクに固定される。一般的に、タービン16の入口に近い第1静翼列44及び第1動翼列46はそれぞれ第1段静翼及び第1段動翼を呼称される。
タービンセクション16において、一連の静翼プラットホーム48がロータ集合体18を囲み、ロータディスク50と協働してタービンセクション16の第1段を通過するガス流路52の内側境界を画定する。燃焼セクション14の各移行ダクト38をタービンセクションのハウジング40及び静翼プラットホーム48を取り付けることによってガス流30を第1段静翼44及び第1段動翼46に向かって放出することができる。
動作について説明すると、圧縮機セクション12は(図示しない)吸気口を介して空気を取り入れ、これを圧縮する。圧縮空気は燃焼セクション14におけるチェンバ30に流入し、それぞれの燃焼器32へ配分する。それぞれの燃焼器32において、燃料34と圧縮空気が混合され、燃焼される。次いで、高温圧縮ガス流30は移行ダクト38を介してタービンセクション16へ誘導される。タービンセクション16において、高温圧縮ガス流は静翼、例えば、第1段静翼44によって方向変換させられ、動翼、例えば、第1段動翼52を回転させ、第1段動翼52はロータ集合体18を駆動する。次いで、ガス流はタービンセクション16から排出される。タービンシステム10はタービンセクション16の下流に(図示しない)別設の排出構造を含むことができる。このようにロータ集合体18に作用する力を利用することによって、圧縮機セクション動翼を回転させるだけでなく、その他のマシーン、例えば、(図示しない)外部発電機または航空機推進用ファンを回転させることもできる。
本発明を説明する便宜上、タービンシステムにおける構成要素の相対位置及びシステム内における運動に関する記述を容易にするため、このようなタービンシステムに座標系を適用することができる。ロータ集合体18の回転軸は長手方向に圧縮機セクション12、燃焼セクション14及びタービンセクション16を貫通して長手方向を画定する。種々の機能セクションを通過する一般的なオぺレーショナル・フロー・パターンで見ると、タービン構成要素を、長手方向に互いに上流に位置するか下流に位置するかで説明することができる。例えば、圧縮機セクション12は長手方向に見て燃焼セクション14の上流側に位置し、タービンセクション16は長手方向に見て燃焼セクション14の下流側に位置する。
中心ロータ軸またはその他の長手方向軸からずれている種々の構成要素の位置は半径方向で記述することができる。例えば、動翼46はロータ・ディスク50から半径方向に広がっている。長手方向軸、例えば、ロータ・ディスク50の中心軸からさらに離れた位置は半径方向内方近い位置と比較して半径方向にさらに外方に位置すると記述することができる。
第3座標方向である周方向は長手方向軸、例えば、ロータ集合体18の中心軸を中心とする仮想円における特定構成要素の位置を記述することができる。例えば、タービンエンジンにおけるタービン動翼列において長手方向下に向かって見ると、動翼のそれぞれが半径方向外方へ、時針のように幾つかの半径方向へ延びているのが見える。それぞれの動翼の「クロック」位置―角度位置とも呼称される―によってその周方向位置が記述される。即ち、この例においては、ロータ・ディスクから垂直に延びている動翼は周方向「12時」位置にあると記述することができ、ロータ・ディスクから右へ延びている動翼は周方向「3時」位置にある記述することができ、これら2枚の動翼は周方向に離間していると記述することができる。従って、半径方向は基準円のサイズを記述することができ、周方向は基
準円における角位置を記述することができる。
一般に、長手方向、半径方向及び周方向は互いに直交関係にある。また、方向は必ずしも正または負を示唆しない。例えば、長手方向は上流であることも下流であることも可能であり、ロータの中心軸と一致する必要はない。半径方向は内向きの場合と外向きの場合があり、また、その使用は円形オブジェクトまたは円形列の記述だけに制限されることはない。
状況によっては2つの構成要素の相対位置を上記座標方向の1つだけに関して記述することができる。例えば、燃焼器32を動翼46の半径方向外側に位置すると記述することができる。燃焼器32が動翼46と同じ長手方向平面内に存在せず、実際には動翼46よりも長手方向上流側に位置し、特定の動翼と周方向に整列することはなくても、燃焼器32はロータ集合体18の中心軸からの半径方向距離が動翼46よりも大きいから、燃焼器32は動翼46の半径方向外側に位置する、と記述することができる。
運動も座標系を参照して記述することができる。例えば、移行ダクト38内を流動するガス流36を、矢印36の方向に流動するように図示されている。ガス流36は燃焼器32から長手方向に下流へタービンセクション16に向かって移動するとともに、燃焼器32から半径方向に内方へ第1段の静翼44及び動翼46に向かって移動する。
ガスの流れのような移動記述と関連して、周方向を接線方向と呼称することができる。ガスが接線方向に流動する時、流れ方向の1成分は円形流路上の1点に対して接線方向である。円形流路上のどの点においても、周方向の流れは比較的大きい接線方向成分と比較的小さい半径方向成分を有することができる。特にタービンエンジンにおける静翼列や動翼列の周りの流路のように半径の大きい流路の場合、接線方向成分が優勢であるから、周方向及び接線方向はほぼ同じと見做すことができる。
この座標系を念頭において図2には、移行ダクト54だけを長手方向下流から見た状態で示した。図示の移行ダクト54は周方向で12時位置にあるが、タービンエンジンはほかにも移行ダクトを有し、例えば、環状に順次間隔を置いて配列された合計16本の移行ダクトを有する。
移行ダクト54は連携の燃焼器(図示しないが、図1参照)から排出されるガス流を取り入れる吸気口58を有する移行ダクト本体56を含む。移行ダクト本体56は吸気口58から排気口62にいたる内側流路60を含み、排気口62から(図示しない)タービンセクションに向かってガス流が放出される。燃焼器はタービンセクションの第1段よりも半径方向に外側に位置するから、移行ダクト54はその吸気口58からその排気口62まで半径方向内方へ延びている。図2には、この半径方向を軸64によって示してある。移行ダクト54はガス流の大部分を長手方向へ放出するように排気口62の近傍において長手方向に湾曲している。移行ダクト54中のガス流は再び半径方向内方へ、次いで長方向へ方向を変えるから、移行ダクト54に半径方向64に実質的な曲げ推力が作用する。この半径方向推力は移行ダクト54の排気口付近を半径方向外方へ(即ち、図の紙面から上方へ)押す。この曲げ推力に対して移行ダクト54を支持するため、公知のように(図示しない)種々の支持部材によって移行ダクト54の端部を半径方向に支持すればよい。
図示のように、排気口62と吸気口58は軸68で示す周方向または接線方向に沿って整列関係にある。従って、移行ダクト54がガス流を長手方向下流へ、及び半径方向内方へ誘導する間、周方向または接線方向を辿るガス流は殆どない。
次いで軸流タービンエンジンを示す図3を参照しながら、燃焼器72、移行ダクト74、第1段静翼76及び第1段動翼78を含むタービンサブセクション70を中心に説明する。図3は簡略化して示す燃焼器72、移行ダクト74、幾つかの第1段静翼76及び第1段動翼78の俯瞰図で
ある。但し、実際のタービンには、さらに多くの第1段静翼が順次間隔を置いて周方向に配列されて環状の列を形成している。同様に、さらに多くの第1段動翼が順次間隔を置いて周方向に配列されて環状の列を形成している。図面を簡略化するため、図3ではこれらの追加静翼及び動翼を省略した。また、この略図は縮尺を度外視した説明図である。タービンシステムはまた多くの場合、さらに多くの燃焼器及び移行ダクトを含むが、説明の便宜上、燃焼器72及び移行ダクト74をそれぞれ1つだけ図示した。
この俯瞰図では、長手方向を軸80で示す。周方向または接線方向は軸82で示す。半径方向は図の紙面を貫通する方向であるから図示しないが、長手方向及び周方向とほぼ直交する方向である。
恐らくは限られた程度の液体を含む高温圧縮ガスのようなガス流が燃焼器72から排出され、移行ダクト74によって第1段の静翼76及び動翼78へ誘導される。移行ダクト74の出口または排気口86から放出されるガス流はその大部分が矢印84で示すように長手方向下流に向かって移動する。排気口におけるエッジ状態86及びその他の要因により、放出ガス流にたまたま小規模の半径方向及び周方向流れ成分が伴うことがある。しかし、このような副次的な流れは、特にエッジから遠い流れの中央領域において主として長手方向を辿る全体的な流れ方向と比較すればごく僅かであると考えられる。
この長手方向ガス流84が移行ダクト74の排気口86から出て第1段静翼76を通過する。この第1段静翼76の機能はほぼ長手方向の流れを加速し、周方向82へ方向変換させ、その結果、静翼76の後縁を後にしたガス流の優勢な流れ方向が図示の、例えば、矢印88で示す方向に対して周方向または接線方向に曲げられる。このように方向変換した流れは長手方向成分と周方向成分を有する。流れの湾曲角度は長手方向軸80から測定して約40°乃至85°の範囲である。ガス流を加速し、長手方向80から周方向へ曲げることによって、結果として得られるガス流88は第1段動翼78に対してそのエネルギーをより効果的に作用させ、第1段動翼78は連携する(図示しない)ロータ集合体を回転させる。
長手方向ガス流を加速し、周方向へ方向変換させるために第1段静翼を利用することには幾つかの難題がある。静翼及び連携の静翼支持構造(図1参照)が比較的短い距離に亘って極めて高温、高圧のガス流を大きい角度で方向変換させる際に発生する力に抵抗するには、高い強度を要求される。この方向変換に伴うガス流に発生する高温の熱は必然的に静翼冷却システムを必要とする。このような力と熱は静翼及び連携の支持構造に亀裂を生じさせるか、さもなければ何らかの損傷を与えかねない。これらの様々な必要条件と運転条件に対応するため、種々の第1段静翼、これと連携する支持構造及び冷却システムが開発されているが、結果的には製造、設置、損傷の際の修理及び取替えに要するコストの増大を招く可能性がある。
従って、複雑化とこれに伴うコスト及び第1段静翼に関連する損傷リスクを招くことなく第1段動翼に向けられるガス流を加速し且つ接線方向に方向変換させる必要がある。
発明の概要
そこで、本発明の目的はタービンセクションの第1段静翼を不要にする軸流燃焼タービンサブシステムを提供することにある。
本発明の他の目的はガス流を燃焼器からタービンセクションの第1段へ誘導するだけでなく、第1段静翼列によって方向変換させることなく第1段動翼に直接誘導するのに好適な接線方向または周方向角度でガス流を放出する燃焼器移行ダクトを提供することにある。
上記及び他の目的は、長手方向の軸を有するロータ集合体から半径方向に延びる複数の動翼を有する第1段動翼列と、第1段動翼列の長手方向上流に且つ第1段動翼列の半径方向外方に位置する少なくとも1つの燃焼器とを含む軸流燃焼タービンエンジンにおいて燃焼器からのガス流を第1段動翼列に誘導するための移行ダクトであって、前記移行ダクトは、吸気口 から下流へ延びるほぼ真直ぐの吸気口セクションと、吸気口からのガス流を方向変換させる湾曲した排ガス・ダイバータセクションと、排ガス・ダイバータセクションからのガス流を第1段動翼列に向かって放出する排気口と、長手方向の軸とを有するほぼ真直ぐの排気口セクションとを有し、排気口は吸気口に関してロータ集合体の長手方向、半径方向及び周方向にオフセットしており、排ガス・ダイバータセクションは下流の排気口セクションの長手方向軸がロータ集合体の長手方向軸と40°乃至85°の角度を成すように湾曲しているため、排気口からのガス流がロータ集合体の長手方向軸に関して40°乃至85°の角度で第1段動翼列に向かって放出されることを特徴とする移行ダクトによって提供される
本発明の好ましい実施例では、排気口を囲む移行ダクト本体の排気口領域を接線方向に細長くすることができる。具体的には、接線方向に矩形を呈するか、または接線方向に弓形を呈することになる。同様に、吸気口を囲む移行ダクトの吸気口領域はほぼ円形を呈し、吸気口におけるほぼ円形の断面プロフィールから排気口におけるほぼ接線方向に細長い断面プロフィールへと移行する。また、内側流路の接線方向幅は吸気口から排気口に向かって狭くなるようにし、必要に応じて、内側流路の半径方向高さも吸気口から排気口に向かって低くなるように形成することができる。
本発明の移行ダクトは少なくともその一部をセラミックまたはセラミック母材の複合材
料で形成することができる。移行ダクトは衝撃冷却、滲み出し冷却、蒸気冷却またはその他の冷却技術で冷却することができる。
本発明では、上記移行ダクトを利用する燃焼タービンサブシステムを燃焼タービンエンジンに組み込むことができる。サブシステムはロータ集合体の軸を中心に周方向に回転するようにロータ集合体から半径方向に延びる複数の動翼を有する第1段動翼列を含むことができる。ロータ集合体の軸は長手方向を画定し、周方向は接線方向成分を含むことができる。タービンサブシステムは第1段動翼列の長手方向上流に複数の燃焼器を含むことができ、それぞれの燃焼器は第1段動翼列の半径方向外方に位置して、少なくとも下流側でガス流を第1段動翼列に向かって排出する。
サブシステムは複数の移行ダクト本体をも含む。サブシステムにおけるそれぞれの移行ダクト本体は吸気口と排気口の間に延びる内側流路を有し、それぞれの移行ダクト本体は連携の燃焼器と第1段動翼列との間に配置されて、燃焼器から排出され、吸気口を介して内側流路に流入するガス流を受ける。それぞれの移行ダクトの排気口は内側流路からのガス流を第1段動翼列に向かって放出する。既に述べたように、それぞれの移行ダクトの排気口は長手方向、接線方向及び半径方向に吸気口からオフセットさせることができ、内側流路をこのオフセットしている排気口に向かって湾曲させて、ガス流が排気口から、長手方向と接線方向との間の放出角度で放出させる。放出角度は長手方向に対して約40°乃至約85°であることが好ましく、必要に応じて、ガス流が排気口から、長手方向と接線方向によって画定される平面内に、即ち、殆どまたは全く半径方向成分を含まないように放出されるように構成することもできる。
サブシステムは移行ダクト本体の排気口と第1段動翼列との間に流れ方向変換静翼を含まない環状流路を画定する第1段ハウジングをも含むことができる。即ち、それぞれの移行ダクトの排気口から放出されるガス流が流れ方向変換静翼を通過することなく第1段動翼列へ流入することができる。
それぞれの移行ダクト本体の排気口を囲む排気口領域は少なくともその一部を第1段ハウジングによって支持される。また、それぞれの移行ダクト本体は対応する燃焼器の放出部に連結することができる。第1段ハウジングは第1段動翼列を囲む動翼・リングを含むことができ、それぞれの排気口領域は少なくともその一部を動翼・リングによって支持することができる。
移行ダクト本体の排気口を順次周方向に間隔を保って配置することによって全体として環状パターンを形成させることが好ましい。また、それぞれの排気口の長手方向の面は第1段動翼列の回転面とほぼ平行であることが好ましい。
排気口領域は第1段ハウジングに連結された支持リングによって支持することができる。支持リングは周方向に間隔を保って全体として支持リングを画定する複数の支持リングセグメントで構成することができる。それぞれの支持リングセグメントは中央支柱によって互いに接続される内外縁を有し、中央支柱はその両側に外側口を画定する。それぞれの移行ダクト本体の一部を外側口に挿入し、2つの隣接するリングセグメントを共通の移行ダクト本体に取り付けることにより、共通の移行ダクト本体の挿入された部分を実質的に包囲され、共通の移行ダクトの排気口を横切る仮想線に沿って隣接リングセグメントが接合されるようにする。これにより、隣接する移行ダクト本体間の漏れを少なくとも部分的に防止することができる。それぞれの支持リングセグメントは外縁から延び、タービンセクション・ハウジングと接続する支持脚を含むことができる。また、内外縁及び支柱はそれぞれの外側口に沿って延び、挿入された移行ダクト本体部分を密封するシール・システムとしても作用する。
これに代わる実施例では、移行ダクト本体の吸気口から下流側へ延びるほぼ直線状の吸気口領域と排気口を有するほぼ直線状の排気口領域との間に位置する排出ガス・ダイバータセクションによって移行を形成する。排出ガス・ダイバータセクションは吸気口領域の長手方向軸がロータ集合体軸によって画定される長手方向に対して約40°乃至約85°の角度を形成するように湾曲している。排出ガス・ダイバータセクションを湾曲させることにより、ガス流が排出ガス・ダイバータセクション及びその下流側の排気口領域から、長手方向と接線方向との間の角度に相当する方向に放出される。
本発明の幾つかの実施例の詳細を添付の図面を参照して以下に説明する。
本発明の実施例は第1段静翼によって接線方向に方向変換させる代わりに、移行ダクトから放出されるガス流に接線方向成分を付与する燃焼タービン移行ダクトに係わる。即ち、本発明の移行ダクトを使用すれば、連携のタービンエンジンにおける第1段静翼を省くことができ、第1段静翼の使用に伴う種々の難題を回避することができる。本発明の実施例では、第1段動翼列及び第1段動翼列の長手方向上流且つ半径方向外方に位置する1基または2基以上の燃焼器を有するタービンサブシステムに移行ダクトを使用することができる。このサブシステムは圧縮機セクション、燃焼セクション、発電など種々の用途において中央ロータを駆動するための適当な吸気及びタービン排気構造を有するタービンセクションを有する燃焼タービンシステムに使用される。本発明の移行ダクト及びこのような移行ダクトを含むタービンサブシステムは特定のタービンエンジンまたはその細部に制限されるものではない。本発明の実施例を図4−14に示すが、本発明は図示の構造または用途に制限されない。
図4には本発明の移行ダクト92,94の環状列90を、周りのタービン構成要素を省いて示すタービンの長手方向下流側から見た正面図である。それぞれの移行ダクト、例えば、移行ダクト92は吸気口98、排気口100、及び吸気口98と排気口100の間に位置して、移行ダクト92を流動するガス流を吸気口98から排気口100へ誘導する内側流路102を有する移行ダクト本体96を含む。図示の環状列90は(図示しない)16基の燃焼器を有する燃焼タービンエンジンに使用されるものである。但し、移行ダクトの数と環状配列は燃焼器の数に応じて変更することができる。
図5には、特に典型的な移行ダクトを(図示しない)タービンエンジン内に配置された場合に想定される動作状態を示す。図5では、排気口100が公知のタービンエンジン(図1参照)における移行ダクト38の排気口の位置と同様に、タービンセクションにおける環状流路の12時位置にほぼ対応する周方向位置に示されている。図2に示す公知の移行ダクト54も同様の位置を占める。但し、図1及び2に示す公知の移行ダクト38、54とは異なり、本発明の移行ダクト92の移行ダクト本体96における排気口100は3つの座標方向すべて―長手方向、半径方向及び接線方向において吸気口98からシフトしており、半径方向と接線方向はそれぞれ軸104、106で示されている。長手方向は軸104、106と直交し、図の平面を貫通しているから、図示されていない。
ここに、及び請求の範囲において使用する語「シフト」は、同一の座標方向に沿って測定して排気口が吸気口から乖離していることを意味する。例えば、排気口が吸気口から(または吸気口に対して)接線方向にオフセットしていると記述されている場合、排気口は接線方向に測定して吸気口から乖離している。このような乖離は排気口及び吸気口が(この例では接線方向である)基準の方向または軸と直交する同一平面に存在しないことをも意味する。幾何学的には、吸気口及び排気口はいずれも単一の点ではなく、2次元の領域である。特定の座表方向におけるオフセットの大きさによっては、これら2つの領域が直交平面と交差するか、部分的にオーバーラップする可能性がある。従って、吸気口及び排気口のそれぞれによって画定される領域の中心点は基準としての方向または軸と直交する平面に関して共面関係にはないから、吸気口及び排気口はオフセット関係にあると見做される。
長手方向オフセットに関しては、移行ダクト92を既存のタービンシステムに代わるものとして配置することができ、従って、長手方向上流側の燃焼器と下流側のタービンセクション第1段入口の間にまたがることになる。長手方向オフセットは既存タービンエンジンの寸法に相当するとは限らず、吸気口98と排気口100の間の任意の長さ寸法であればよい。例えば、もし吸気口98が燃焼器における排気構造、例えば、ヘッド‐オンユニット、ライナーまたはその他の排気構造と連結しているか、または吸気口98が燃焼器集合体から離間してはいてもその排気を受けるように配置されているなら、長手方向オフセットは比較的短くなる。燃焼器は半径方向または周方向に、またはこれら両方向に傾斜していてもよく、結果として、燃焼器とタービンセクションへの第1段入口との間の有効長手方向間隔がより短くなるか、またはより長くなる。
半径方向オフセットに関しては、吸気口98を連結(または近傍に配置)できる燃焼器集合体の種々の部分及びこれらの部分の半径方向位置や傾斜は吸気口98と排気口100の間の半径方向オフセット量に影響を及ぼす可能性がある。但し、詳しくは後述する接線方向オフセットのため、半径方向オフセットの範囲は公知の移行ダクトにおける半径方向オフセットよりも(即ち、図2及び図3の場合よりも)小さくなる可能性がある。図4及び図5に示す移行ダクト92の実施例では、半径方向オフセットの範囲が比較的小さい。従って、ダクト内の方向変換したガス流によって移行ダクト92に加えられる半径方向曲げ推力も小さくすることができる。
吸気口98と排気口100の間の周方向または接線方向オフセットから明らかなように、移行ダクト92は排気口100と周方向に整列しない(図示しない)燃焼器と接続する。図5では、環状列における他の燃焼器位置108を破線で示す。燃焼器位置108は周方向に排気口100と整列する。もし図2に示す公知の移行ダクトを使用すれば、吸気口はほぼ位置108を占めることになる。但し、移行ダクト92の吸気口98は、例えば、周方向に燃焼器位置を1つだけずれた燃焼器位置110を占めることになる。タービンセクションのだい1段の入口に対する長手方向、半径方向及び周方向位置に応じて、本発明の移行ダクトが連結される燃焼器及びその排気口位置が異なる。
図6及び図7には内側流路の断面プロフィールで表される複数の長手方向位置における移行ダクト112を例示した。吸気口114は好ましいプロフィールとして円形に近い、特に楕円形として示してあるが、真円形であってもよく、円形以外のプロフィールであってもよい。排気口116は軸106で表される周方向に長い矩形として示してある。排気口116は弓形、即ち、順次間隔を置いて配列された移行ダクト(図4参照)によって形成される環状パターンの曲率半径とほぼ対応する湾曲を有する弓形であることが好ましい。排気口116は図示のプロフィールとは異なる断面形状を呈してもよい。排気口そのものはその他の断面形状、例えば、円形または正方形を呈しても、排気口116を囲み、画定する移行ダクト本体112の排気口領域は細長くても、矩形でも弓形でも、あるいはこれらを複合した形状であってもよい。
内側流路118は排気口116に向かって湾曲している。任意の点における曲率半径として測定した曲率は内側流路118の全長に沿って変化してもよく、内側流路118の幾つかの領域が直線に近い状態であってもよい。内側流路118の頂部、底部及び両側部における曲率は互いに異なっていても同じであってもよい。ダクトの複数位置が示すように、内側流路118の断面プロフィールは吸気口114における好ましくは円形に近いプロフィールから排気口116における好ましくは細長い、矩形の弓形プロフィールへと変化する。移行ダクト112においては、内側流路の半径方向104高さも吸気口114から排気口116に向かって次第に低くすることができる。これに加えて、またはこれに代わる態様として、内側流路の周方向106の幅を吸気口114から排気口116に向かって、図7に示すように狭くすることができる。
内側流路118の曲率については、排気口116に達する前に頂部及び底部に沿った半径方向内方への曲率が縮小しても、完全に途切れることもあり得る。このような構成では、排気口116から放出されたガス流はその流れ方向に殆どまたは目立った半径方向成分を含まない。排気口周縁に沿った境界条件及びタービンセクションの第1段領域と排気口との界面におけるエッジ条件のため、長手方向、半径方向及び接線方向のいずれか、またはすべての成分がたまたまガス流に含まれる場合がある。このような2次流れは極めて微々たるものである。特にエッジから遠い流れの中心領域で測定される全体的な流れパターンは殆どが所定の方向を有するからである。好ましくは、この全体的な流れパターンは殆どまたは全く半径方向成分を含まない。移行ダクト112の曲率と、吸気口114に対する排気口116の半径方向、長手方向及び接線方向オフセットはその結果として、ガス流は長手方向に対して接線方向へ角度を形成して排気口116から放出される。
内側流路118は上記のような曲率を有することができるが、移行ダクト本体112の外面は必ずしも同じ曲率または形状プロフィールを呈するとは限らない。外面は種々の形状及び表面特徴を有する場合も考えられる。例えば、隣接する移行ダクトと嵌合して指示部レースなどと連結するための取付け面として機能するように形成することができる。
図8は本発明の移行ダクト122を使用するタービンサブシステム120の実施例の簡略化された俯瞰図である。タービンサブシステム120は燃焼器124と、燃焼器124の長手方向下流側に配置された第1段タービン動翼列126を含むことができる。燃焼器124はロータ・ディスクなどを介して第1段タービン・動翼列126が固定される(図示しない)ロータの中心軸から半径方向に第1段タービン・動翼列126よりも外側に位置するように示されている。第1段動翼列126はロータ集合体から半径方向に延び、周方向に間隔を置いて円形列を形成する複数の動翼128を含む。図8では、煩雑化を避けるため、このような動翼128を3枚だけ略示してあるが、列126はほかにももっと多くの動翼を含む。タービンエンジン・サブシステム120は第1段動翼列126を囲む第1段ハウジングをも含むことができる。第1段ハウジングは動翼128の内側が見えるように一部切り欠いて略示する動翼リング130を含むことができる。動翼リング130の上流側134は移行ダクト排気口142と連結されるように構成することが好ましい。移行ダクト122の排気口142と動翼128の前縁との間隔は公知システムに使用される第1段静翼後縁と第1段動翼前縁との間の間隔とほぼ同じであることが好ましい。これに代わる態様として、排気口142と動翼128の前縁との間の間隔は公知の静翼動翼間隔よりも長くても短くてもよい。図8に示す間隔は縮尺に忠実ではなく、詳しくは後述する放出流150の説明を容易にするため、好ましい間隔よりも大きく図示してある。
本発明のタービンエンジン・サブシステム120は燃焼器124と第1段動翼列126の間に配置された移行ダクト122を含む。移行ダクト122は燃焼器124から排出されるガス流を受けるように配置された吸気口140と、上記したような内側流路144が介在する第1段動翼列126に向かってガス流を放出する排気口142と有する移行ダクト本体138を含む。図8には移行ダクト122を一本だけ略示したが、タービンエンジン・サブシステム120は複数の移行ダクトを含むことができ、それぞれの移行ダクトはタービンエンジンにおけるそれぞれの燃焼器に対応する。吸気口140は燃焼器集合体または燃焼器集合体または燃焼器と連携する支持構造、例えば、(図示しない)燃焼器・ライナーと連結することができる。これに代わる実施態様として、移行ダクト122を燃焼チェンバ構造、例えば、(図示しない)燃焼シェルに取付け、燃焼器124から離れてはいるが吸気口140への燃焼排ガス流を受けるように配置することができる。
排気口142は3つの座標方向―長手方向、半径方向及び接線方向に吸気口140からオフセットしている。内側流路144は吸気口140と排気口142の間で少なくともその長さの一部に沿って湾曲している。移行ダクト本体138の排気口領域は排気口142を囲んでこれを画定し、第1段ハウジング、例えば、動翼リング130に連結可能である。これに代わる実施態様として、排気口領域を燃焼チェンバ内の他の支持構造に連結し、これによって支持することができ、排気口142を動翼・リング130から間隔を保ちつつも、ガス流を第1段動翼列126へ放出できるように配置する。
排気口142から放出されたガス流は長手方向148に対して、矢印150で示すように、接線方向146に傾斜している。このガス流方向150は特に構造の側部及びエッジから遠い比較的均一な中央領域におけるガス流の優勢な流れ方向を意味する。図面から明らかなように、このガス流方向150は長手方向成分及び接線方向成分を有する。上述したように、僅かながら(図の紙面を貫通する)半径方向成分をも含む可能性があるが、サブシステム構成要素と内側流路144の曲率とを相対配置することによってこの半径方向成分を最小限に、または完全に無くすることが好ましい。
ガス流は接線方向に角度150を形成して移行ダクト排気口142から放出されるから、第1段静翼を省くことができる。第1段静翼及びこれと連携する支持構造及び冷却システムに伴う複雑さ及びコストをも回避することができる。これに代わる態様として、移行ダクト122の排気口142を、湾曲した内側流路を挟んで長手方向、半径方向及び接線方向にシフトさせることによって、直接第1段動翼列128に向くように適当な放出角度150でガス流を方向変換させることができる。放出角度150は約40°乃至約85°の範囲であることが好ましい。
本発明の移行ダクトは燃焼器からタービンセクション第1段へのガス流を圧倒的に接線方向へ方向変換させ、半径方向や長手方向への方向変換は比較的小さい。従って、移行ダクトに作用する推力負荷は接線方向に高く、半径方向及び長手方向に低い。また、本発明の移行ダクトは従来なら第1段静翼が果した方向変換機能を果すから、機械的及び熱的負荷が高くなる。従って、移行ダクトは高温状態において高い強度性能を発揮する材料で形成することが好ましい。即ち、移行ダクトは少なくともその一部がセラミック母材の複合(CMC)、金属、複合材料、及びその他の好適な材料から成ることが好ましい。また、衝撃冷却、滲み出し冷却、蒸気冷却、強制対流冷却のような公知の冷却技術を利用することができる。
移行ダクトの排気口領域と吸気口領域に軸受け支えを設けることができる。吸気口領域は従来のように燃焼器集合体またはこれに関連する支持構造、例えば、燃焼器・ライナーに固定することができる。排気口領域は詳しくは後述するブレース・リング支持手段によって支持することが好ましい。さらに、移行ダクト列(図4参照)は隣接する移行ダクト間でバッフル、ストラットなどによって、または取り囲む支持構造、例えば、燃焼チェンバシェルまたはこれから延びるフレーム構造に固定された別設のリングサポートによって支持することができる。
図9乃至11に示すように、それぞれの移行ダクトの排気口領域154a、154b、154cは順次間隔を隔てて円形に配列され、全体で支持リングを形成するリング・セグメント156a、156b、156cによって支持することができる。それぞれの支持リング・セグメント156は好ましくは弓形の、但し、直線状でもよい外縁158及び内縁160を有する。内外縁160、158は両側に外側口を画定する中央支柱162を介してつながり、それぞれの移行ダクト本体の一部が開口164に挿入される。2つの隣接するリング・セグメント156a、156bが共通の移行ダクト本体154aを囲むことによって共通の移行ダクト本体154aの挿入された部分が実質的に包囲される。
それぞれの移行ダクト本体の排気口領域154a、154b、154cには、リングセグメント156の対応のアパーチャー170に取り付けられるネジ付きボルト168のような調整自在なファスナを提供するファスナ・ポスト166を設けることができる。アパーチャー170は好ましくは支持脚、例えば、内外縁の一方、好ましくは外縁158から延びるブレース172に設ける。ブレース172には(図示しない)タービンセクションの動翼・リングまたはその他の第1段ハウジングのような周囲の支持構造との連結用の別設アパーチャー174を設けることができる。ブレース172は半径方向に外方へ延び、第1段ハウジングの半径方向外側の構造と連結する。ブレースは内縁から半径方向外方及び/または内方へ延び、第1段ハウジングの半径方向内方の指示構造に固定される。ブレース172またはその他の支持脚は主として周方向に作用する負荷に対する軸受支えとして機能できるように寸法設定するとともに高強度の材料で形成することが好ましい。
リングセグメントを使用することで、隣接する移行ダクトどうしの間からの長手方向に漏れを軽減することにもなる。図9に示すように、隣接するリングセグメント、例えば、セグメント165b、156cが共通の移行ダクト本体154bの排気口を横切る仮想線178に沿った接合部176によって隣接する移行ダクト本体間の漏れが少なくとも部分的に防止される。接合部176に隙間があれば、適当な架橋材によって密封すればよい。さらにまた、図10に示すように、内外縁160、158及びリングセグメント156の支柱162は外側口164のそれぞれに沿ったロープ・シール180として作用することによって、挿入された移行ダクト本体部分をシールする。好ましくは、2つのロープ・シールを使用するが、ロープ・シールは1条でも3条以上でもよい。
図12乃至図14に示す実施例では、移行ダクト200は吸気口204から下流に向かって延びる吸気口セクション202、吸気口セクション202から下流に向かって延びる排ガス・ダイバータセクション206、及び排ガス・ダイバータセクション206から排気口210まで延びる排気口セクション208から形成されている。図14に示すように、吸気口セクション202及び排気口セクション208はほぼ真直ぐである。排ガス・ダイバータセクション206は移行ダクト200を流動するガス流が排ガス・ダイバータセクション206において方向変換するように湾曲している。具体的には、吸気口セクション202の長手方向軸212が排気口セクション208の長手方向軸214と非平行となるように排ガス・ダイバータセクション206を湾曲させる。
少なくとも1つの実施例では、吸気口セクション202の長手方向軸212をタービン・動翼・ロータ集合体の長手方向軸218に対して約40°乃至約85°の角度で配置する。1つの実施例では、移行ダク度200の吸気口セクション202が燃焼器からタービン・動翼集合体の長手方向軸218とほぼ平行に延びる。この実施例では、排気口セクション208の長手方向軸214を吸気口セクション202の長手方向軸212に対して約40°乃至約85°の角度に配置する。実施例によっては、移行ダクト200の吸気口セクション202がタービン・動翼集合体の長手方向軸218に対して角度を形成しながら燃焼器から延びる。このような構成では、排ガス・ダイバータセクション208を、排気口セクション208の長手方向軸214がタービン・動翼集合体の長手方向軸218に対して約40°乃至約85°の角度に位置するように吸気口セクション202の長手方向軸212に対して配置する。即ち、いずれの実施例においても、排気口セクション208の長手方向軸214がタービン動翼集合体の長手方向軸218に対して約40°乃至約85°の位置に来るように排ガス・ダイバータセクション206を湾曲させる。従って、タービ
ン・動翼集合体の長手方向軸218に対してほぼ約40°乃至約85°の角度で排気口210からガスを排出するように移行ダクト200を構成する。ガス流はほぼ長手方向及び接線方向によって画定される平面内を流動するように排出口210から放出されるから、ガス流の方向は半径方向成分を殆ど含まない。
図12に示すように、吸気口セクション202はほぼ円筒状、または円筒状の吸気口204を有する。円筒状の吸気口240は排ガス・ダイバータセクション206と交差するまでに、その断面形状がほぼ台形に移行する。少なくとも1つの実施例では、排ガス・ダイバータセクション206と排気口セクション208がほぼ台形の断面形状を呈することができる。台形断面形状は角の丸みが一定または可変である。
即ち、本発明は燃焼器からタービンシステムの第1段セクションへガス流を誘導するだけでなく、長手方向から接線方向接へガス流を方向変換させることによって直接第1段動翼列へ向け、第1段静翼列を設ける必要をなくする。
本発明の移行ダクト及び関連のタービンサブシステムの幾つかの実施例を以上に説明した。即ち、本発明は飽くまでも例として説明した特定の細部に制限されるものではなく、後記する請求項によって定義される本発明の範囲内で種々の変更が可能であることはいうまでもない。
公知のタービンエンジンの部分断面図である。 公知の移行ダクトの上流側を長手方向から見た図である。 公知のタービンエンジンにおける燃焼器、移行ダクト及び第1段の静翼と動翼を放射方向から見た簡略図である。 本発明を採用した移行ダクト円形列を長手方向上流側から見た図である。 図4に示した移行ダクトの1つを長手方向上流側から見た図である。 本発明の移行ダクトの長手方向複数位置を長手方向上流側から見た図である。 図6に示した移行ダクトの長手方向複数位置を半径方向に見た図である。 本発明の燃焼器、移行ダクト及び第1段動翼の実施例を半径方向に見た簡略図である。 本発明の移行ダクト出口支持システムの実施例を上流側から見た斜視図である。 図9に示した移行ダクト出口支持システムの実施例を上流側から見た斜視図である。 本発明の支持リングファスナを装備した移行ダクト列の部分を上流側か見た斜視図である。 移行ダクトの他の実施例を長手方向複数位置で示す斜視頂面図である。 図12に示した移行ダクトの上記他の実施例を長手方向複数位置で示す斜視端面図である。 図12に示した移行ダクトの上記他の実施例を長手方向複数位置で示す俯瞰図である。

Claims (7)

  1. 長手方向の軸(218)をするロータ集合体から半径方向に延びる複数の動翼を有する第1段動翼列(126)と、第1段動翼列の長手方向上流に且つ第1段動翼列の半径方向外方に位置する少なくとも1つの燃焼器(220)とを含む軸流燃焼タービンエンジンにおいて燃焼器からのガス流を第1段動翼列に誘導するための移行ダクト(200)であって、
    前記移行ダクト(200)は、
    吸気口(204) から下流へ延びるほぼ真直ぐの吸気口セクション(202)と
    吸気口(204)からのガス流を方向変換させる湾曲した排ガス・ダイバータセクション(206)と、
    排ガス・ダイバータセクション(206)からのガス流を第1段動翼列(126)に向かって放出する排気口(210)と、長手方向の軸(214)とを有するほぼ真直ぐの排気口セクション(208)とを有し
    排気口(210)吸気口(204)に関してロータ集合体の長手方向、半径方向及び方向にオフセットしており
    排ガス・ダイバータセクション(206)は下流の排気口セクション(208)の長手方向軸(214)がロータ集合体の長手方向軸(218)と40°乃至85°の角度を成すように湾曲しているため、排気口(210)からのガス流がロータ集合体の長手方向軸(218)に関して40°乃至85°の角度で第1段動翼列(126)に向かって放出されることを特徴とする移行ダクト。
  2. 排気口(210)はロータ集合体の周方向にほぼ矩形である請求項1に記載の移行ダクト。
  3. 排気口(210)はロータ集合体の周方向に弓形である請求項1に記載の移行ダクト。
  4. 吸気口セクション(202)吸気口(204)におけるほぼ円形の断面から排ガス・ダイバータセクション(206)との交差部におけるほぼ台形の断面に移行する請求項1に記載の移行ダクト。
  5. 吸気口セクション(202)の内側流路の方向の幅吸気口(204)から排ガス・ダイバータセクション(206) との交差部に向かって狭くなる請求項1に記載の移行ダクト。
  6. 吸気口セクション(202)の内側流路の半径方向の高さ吸気口(204)から排ガス・ダイバータセクション(206) との交差部に向かって低くなる請求項に記載の移行ダクト。
  7. 移行ダクト(200)少なくとも一部がセラミック母材の複合材から成る請求項1に記載の移行ダクト。
JP2007244786A 2006-09-21 2007-09-21 軸流燃焼タービンエンジン用燃焼器の移行ダクト Expired - Fee Related JP4987649B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52473906A 2006-09-21 2006-09-21
US11/524739 2006-09-21

Publications (2)

Publication Number Publication Date
JP2008111652A JP2008111652A (ja) 2008-05-15
JP4987649B2 true JP4987649B2 (ja) 2012-07-25

Family

ID=38537833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244786A Expired - Fee Related JP4987649B2 (ja) 2006-09-21 2007-09-21 軸流燃焼タービンエンジン用燃焼器の移行ダクト

Country Status (3)

Country Link
EP (1) EP1903184B1 (ja)
JP (1) JP4987649B2 (ja)
CA (1) CA2603130C (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113003B2 (en) * 2008-08-12 2012-02-14 Siemens Energy, Inc. Transition with a linear flow path for use in a gas turbine engine
US8065881B2 (en) * 2008-08-12 2011-11-29 Siemens Energy, Inc. Transition with a linear flow path with exhaust mouths for use in a gas turbine engine
US8091365B2 (en) * 2008-08-12 2012-01-10 Siemens Energy, Inc. Canted outlet for transition in a gas turbine engine
US8230688B2 (en) * 2008-09-29 2012-07-31 Siemens Energy, Inc. Modular transvane assembly
US9822649B2 (en) * 2008-11-12 2017-11-21 General Electric Company Integrated combustor and stage 1 nozzle in a gas turbine and method
US8382436B2 (en) 2009-01-06 2013-02-26 General Electric Company Non-integral turbine blade platforms and systems
US8262345B2 (en) 2009-02-06 2012-09-11 General Electric Company Ceramic matrix composite turbine engine
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
KR101230264B1 (ko) * 2010-11-30 2013-02-06 두산중공업 주식회사 원주방향 유동각을 갖는 가스터빈 연소기
CA2801479C (en) 2011-03-07 2015-07-07 Sumitomo Electric Hardmetal Corp. Material for decorative parts
US8978388B2 (en) * 2011-06-03 2015-03-17 General Electric Company Load member for transition duct in turbine system
US20120304665A1 (en) * 2011-06-03 2012-12-06 General Electric Company Mount device for transition duct in turbine system
US8966910B2 (en) * 2011-06-21 2015-03-03 General Electric Company Methods and systems for cooling a transition nozzle
JP5848074B2 (ja) * 2011-09-16 2016-01-27 三菱日立パワーシステムズ株式会社 ガスタービン、尾筒及び燃焼器
US9328623B2 (en) * 2011-10-05 2016-05-03 General Electric Company Turbine system
US8915706B2 (en) * 2011-10-18 2014-12-23 General Electric Company Transition nozzle
US8974179B2 (en) 2011-11-09 2015-03-10 General Electric Company Convolution seal for transition duct in turbine system
US8459041B2 (en) * 2011-11-09 2013-06-11 General Electric Company Leaf seal for transition duct in turbine system
US20130239585A1 (en) * 2012-03-14 2013-09-19 Jay A. Morrison Tangential flow duct with full annular exit component
US9038394B2 (en) * 2012-04-30 2015-05-26 General Electric Company Convolution seal for transition duct in turbine system
US9133722B2 (en) * 2012-04-30 2015-09-15 General Electric Company Transition duct with late injection in turbine system
US20130283817A1 (en) * 2012-04-30 2013-10-31 General Electric Company Flexible seal for transition duct in turbine system
US9551492B2 (en) * 2012-11-30 2017-01-24 General Electric Company Gas turbine engine system and an associated method thereof
US9593585B2 (en) 2013-10-15 2017-03-14 Siemens Aktiengesellschaft Seal assembly for a gap between outlet portions of adjacent transition ducts in a gas turbine engine
CN106460532A (zh) * 2014-06-17 2017-02-22 西门子能源公司 燃气涡轮发动机中的具有在相邻收敛过渡管道之间的交接部处的接合部的过渡管道系统
KR101891449B1 (ko) * 2014-08-19 2018-08-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 가스 터빈
EP3124749B1 (en) 2015-07-28 2018-12-19 Ansaldo Energia Switzerland AG First stage turbine vane arrangement
WO2017039567A1 (en) * 2015-08-28 2017-03-09 Siemens Aktiengesellschaft Non-axially symmetric transition ducts for combustors
US9650904B1 (en) * 2016-01-21 2017-05-16 Siemens Energy, Inc. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB626044A (en) * 1945-06-21 1949-07-08 Bristol Aeroplane Co Ltd Improvements in or relating to gas turbine power plants
JPS5812442B2 (ja) * 1977-09-24 1983-03-08 三菱重工業株式会社 可変容量ノズルレスタ−ビン
JPS6048603B2 (ja) * 1978-08-24 1985-10-28 株式会社東芝 タ−ビン用ノズル
JPH08303779A (ja) * 1995-05-12 1996-11-22 Hitachi Ltd ガスタービン燃焼器
US5946902A (en) * 1997-10-01 1999-09-07 Siemens Aktiengesellschaft Gas turbine engine with tilted burners
GB2361302A (en) * 2000-04-13 2001-10-17 Rolls Royce Plc Discharge nozzle for a gas turbine engine combustion chamber
JP2001349544A (ja) * 2000-06-06 2001-12-21 Hitachi Ltd ガスタービン設備及びその燃焼器におけるトランジションピースの額縁構造
JP3631982B2 (ja) * 2000-06-16 2005-03-23 三菱重工業株式会社 遮熱コーティング材の製造方法
US6589015B1 (en) * 2002-05-08 2003-07-08 Pratt & Whitney Canada Corp. Discrete passage diffuser
DE60306879T2 (de) * 2002-12-30 2007-02-15 United Technologies Corp., Hartford Pulsierender Verbrennungsmotor
FR2871847B1 (fr) * 2004-06-17 2006-09-29 Snecma Moteurs Sa Montage d'un distributeur de turbine sur une chambre de combustion a parois en cmc dans une turbine a gaz
US7721547B2 (en) * 2005-06-27 2010-05-25 Siemens Energy, Inc. Combustion transition duct providing stage 1 tangential turning for turbine engines

Also Published As

Publication number Publication date
CA2603130A1 (en) 2008-03-21
EP1903184B1 (en) 2019-05-01
JP2008111652A (ja) 2008-05-15
EP1903184A3 (en) 2017-05-31
CA2603130C (en) 2014-07-15
EP1903184A2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4987649B2 (ja) 軸流燃焼タービンエンジン用燃焼器の移行ダクト
EP1896775B1 (en) Gas turbine combustion transition duct providing tangential turning of the flow
EP2324292B1 (en) Canted outlet for a transition duct in a gas turbine engine
EP2324206B1 (en) Gas turbine transition duct with a canted outlet
EP2324224B1 (en) Transition with a linear flow path with exhaust mouths for use in a gas turbine engine
EP2430297B1 (en) Turbine engine with a structural attachment system for transition duct outlet
US20110179794A1 (en) Production process
EP3862539B1 (en) Flow diverter for mid-turbine frame cooling air delivery
EP3141698A1 (en) Arrangement for a gas turbine
EP3273002A1 (en) Impingement cooling of a blade platform
US10502068B2 (en) Engine with chevron pin bank
JP2019031973A (ja) 不均一なシェブロンピンを備えたエンジン構成要素
EP3640542B1 (en) Combustor panel for a gas turbine engine with a cooling hole arrangement
US11131212B2 (en) Gas turbine engine cooling component
US10774661B2 (en) Shroud for a turbine engine
JP6790582B2 (ja) 軸流圧縮機の静翼構造
US10655496B2 (en) Platform flow turning elements for gas turbine engine components
JP2017141815A (ja) ディフューザ性能を向上させるためのフローアライメント装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees