JP4986822B2 - Chemical dry processing method of gas - Google Patents

Chemical dry processing method of gas Download PDF

Info

Publication number
JP4986822B2
JP4986822B2 JP2007299509A JP2007299509A JP4986822B2 JP 4986822 B2 JP4986822 B2 JP 4986822B2 JP 2007299509 A JP2007299509 A JP 2007299509A JP 2007299509 A JP2007299509 A JP 2007299509A JP 4986822 B2 JP4986822 B2 JP 4986822B2
Authority
JP
Japan
Prior art keywords
sorbent
gas
regenerated
reaction
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007299509A
Other languages
Japanese (ja)
Other versions
JP2009119443A (en
Inventor
章浩 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2007299509A priority Critical patent/JP4986822B2/en
Publication of JP2009119443A publication Critical patent/JP2009119443A/en
Application granted granted Critical
Publication of JP4986822B2 publication Critical patent/JP4986822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、塩基性収着剤(以下「収着剤」という。)からなる充填層で反応帯が形成された反応管に、被処理ガスを連続的に導入・導出させて、被処理ガスを収着剤と接触させて化学的乾式処理をする方法に関する。   In the present invention, a gas to be treated is continuously introduced and led out into a reaction tube in which a reaction zone is formed by a packed bed made of a basic sorbent (hereinafter referred to as “sorbent”). It is related with the method of carrying out chemical dry processing by making it contact with a sorbent.

ここで、「収着」とは、「気体が固体の表面に収着されるとき、その気体が固溶体又は化合物を作る現象を同時に伴う場合」(波理化学辞典第5版)を意味する。   Here, “sorption” means “when gas is sorbed on the surface of a solid, accompanied by the phenomenon that the gas simultaneously forms a solid solution or a compound” (Hariken Dictionary 5th edition).

特に、フロン類等の有機ハロゲン化合物や六フッ化硫黄の如く、化学的に安定(結合エネルギーが大きい。)で分解(解離:dissociation)し難く、通常の燃焼処理が困難な場合(分解率が低い。)に好適なガスの化学的乾式処理方法に係る発明である。   In particular, like organic halogen compounds such as chlorofluorocarbons and sulfur hexafluoride, it is chemically stable (high binding energy) and is difficult to decompose (dissociation) and difficult to perform normal combustion treatment (decomposition rate is low). It is an invention related to a chemical dry processing method of a gas suitable for low).

以下に、ここで本発明に好適な反応熱(発熱量)の大きな有機ハロゲン化合物(フロン類、ハロン類)及び六フッ化硫黄の発熱反応式を下記する。参照として、余り反応熱の大きくないハロゲン化水素類についても発熱反応式を下記する。   The exothermic reaction formulas of organic halogen compounds (fluorocarbons and halons) having a large reaction heat (heat generation amount) suitable for the present invention and sulfur hexafluoride are shown below. As a reference, the exothermic reaction formula is also shown below for hydrogen halides that do not have a large reaction heat.

・フロン12:CCl22+ 3CaO→
CaF2+CaCl2+CaCO3+820kJ
・フロン22:CHClF2+3CaO+1/2O2
CaF2+1/2CaCl2+CaCO3+1/2Ca(OH)2+869kJ
・フロン134a:C224+5CaO+3/2O2
2CaF2+2CaCO3+Ca(OH)2+1644kJ
・六フッ化硫黄:SF6+4CaO→3CaF2+CaSO4+1344kJ
・塩化水素:HCl+CaO→
1/2CaCl2+1/2Ca(OH)2+163.2kJ
・ Freon 12: CCl 2 F 2 + 3CaO →
CaF 2 + CaCl 2 + CaCO 3 +820 kJ
・ Freon 22: CHClF 2 + 3CaO + 1 / 2O 2
CaF 2 + 1 / 2CaCl 2 + CaCO 3 + 1 / 2Ca (OH) 2 +869 kJ
・ Freon 134a: C 2 H 2 F 4 + 5CaO + 3 / 2O 2
2CaF 2 + 2CaCO 3 + Ca (OH) 2 + 1644kJ
・ Sulfur hexafluoride: SF 6 + 4CaO → 3CaF 2 + CaSO 4 + 1344kJ
・ Hydrogen chloride: HCl + CaO →
1 / 2CaCl 2 + 1 / 2Ca (OH) 2 + 163.2kJ

昨今、オゾン層破壊低減の見地からフロン類の生産・使用規制が始まる前に生産された冷蔵庫や冷房装置(エアコン)が廃棄されつつある。また、フロン類、ハロン類(フロンのうち臭素を含むもの)は、工業製品等の洗浄に、六フッ化硫黄は電気絶縁用気体として電気機器にそれぞれ多用されている。これらの含ハロゲン化合物は、高い温暖化係数を示す温室効果ガスとして(フロン類、ハロン類はさらにオゾン層破壊ガスとしても)知られている。   Recently, refrigerators and air conditioners (air conditioners) produced before the start of regulations on the production and use of chlorofluorocarbons from the viewpoint of reducing ozone layer destruction are being discarded. In addition, chlorofluorocarbons and halocarbons (containing chlorofluorocarbons containing bromine) are frequently used for cleaning industrial products, and sulfur hexafluoride is used as an electrical insulating gas in electrical equipment. These halogen-containing compounds are known as greenhouse gases exhibiting a high global warming potential (Freons and halons are further used as ozone-depleting gases).

このため、使用済みの回収した廃棄含ハロゲン化合物を、効率的に分解処理する方法及び装置が要望されている。   Therefore, there is a demand for a method and apparatus for efficiently decomposing used recovered halogen-containing compounds.

そして、フロン類、ハロン類に代表される有機ハロゲン化合物の処理方法及び/又は処理装置として、例えば、特許文献1〜3等に、それぞれ下記のような化学的乾式処理方法が提案されている。   And as a processing method and / or processing apparatus for organic halogen compounds typified by chlorofluorocarbons and halons, for example, the following chemical dry processing methods have been proposed in Patent Documents 1 to 3, for example.

特許文献1:「収着剤からなる充填層を備えた反応管に、含ハロゲン化学物質(被処理ガス)を連続的に導入・導出して、被処理ガスを分解させながら前記収着剤に反応収着させて前記含ハロゲン化学物質を分解処理する方法において、前記充填層に、ガスの流れ方向に沿ってガス拡散帯および反応帯を連続的に形成し、該反応帯を分解反応温度に維持しながら、前記ガス拡散帯を前記分解反応温度未満に制御し、該ガス拡散帯を介して前記反応帯に前記被処理ガスを導入する、ことを特徴とする含ハロゲン化学物質の分解処理方法。」(請求項1)
特許文献2:「酸化マグネシウムと酸化カルシウムとを含有し、その含有量が合わせて50重量%以上であるとともに、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)](モル比)が0.67以下である分解処理剤と、フロン類、ハロン類及び六フッ化硫黄から選ばれた少なくとも一種とを、800〜1400℃の温度で接触させて反応させることを特徴とする有機ハロゲン化合物の分解処理方法。」(請求項1、請求項5)
特許文献3:「有機ハロゲン化合物と分解処理剤の反応の場となる反応部を備え、その反応部に有機ハロゲン化合物と分解処理剤が連続的に導入されるとともに、反応後の有機ハロゲン化合物と分解処理剤が反応部から連続的に排出されるように構成した有機ハロゲン化合物の分解処理装置であって、前記分解処理剤が下記の(a)又は(b)であることを特徴とする有機ハロゲン化合物の分解処理装置。
Patent Document 1: “A halogen-containing chemical substance (treated gas) is continuously introduced into and led out from a reaction tube having a packed bed made of a sorbent, and the sorbent is decomposed while the treated gas is decomposed. In the method of decomposing the halogen-containing chemical substance by reaction sorption, a gas diffusion zone and a reaction zone are continuously formed in the packed bed along the gas flow direction, and the reaction zone is set to a decomposition reaction temperature. Maintaining the gas diffusion zone below the decomposition reaction temperature while maintaining, and introducing the gas to be treated into the reaction zone through the gas diffusion zone (Claim 1)
Patent Document 2: “Contains magnesium oxide and calcium oxide, the total content is 50% by weight or more, and [calcium oxide / (magnesium oxide + calcium oxide)] (molar ratio) is 0.67 or less. An organic halogen compound decomposition treatment method comprising reacting a decomposition treatment agent with at least one selected from chlorofluorocarbons, halons, and sulfur hexafluoride at a temperature of 800 to 1400 ° C. (Claim 1, Claim 5)
Patent Document 3: “A reaction part serving as a reaction site between an organic halogen compound and a decomposition treatment agent is provided, and the organic halogen compound and the decomposition treatment agent are continuously introduced into the reaction part. An organic halogen compound decomposition treatment apparatus configured to continuously discharge a decomposition treatment agent from a reaction section, wherein the decomposition treatment agent is the following (a) or (b): Halogen decomposition equipment.

(a)酸化マグネシウムを50重量%以上含有する分解処理剤。    (a) A decomposition treatment agent containing 50% by weight or more of magnesium oxide.

(b)酸化マグネシウムと酸化カルシウムとを含有し、その含有量が合わせて50重量%以上であるとともに、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)](モル比)が0.67以下である分解処理剤。」(請求項1等)。   (B) Decomposition treatment containing magnesium oxide and calcium oxide, the total content being 50% by weight or more, and [calcium oxide / (magnesium oxide + calcium oxide)] (molar ratio) being 0.67 or less Agent. (Claim 1 etc.).

さらに、酸性ガスの処理方法として、特許文献4に下記構成の酸性ガスを塩基性酸化物との接触により無害化する有害ガスの化学的乾式処理方法(乾式処理方法)が提案されている。   Furthermore, as a method for treating acid gas, Patent Document 4 proposes a chemical dry treatment method (dry treatment method) of harmful gas in which an acid gas having the following constitution is rendered harmless by contact with a basic oxide.

「塩化水素(HCl)を含む酸性ガスを、カルシウム成分(Ca成分)からなる又はCa成分を主体とする反応吸収剤(以下単に「吸収剤」という。)で形成された充填層で形成された反応帯38と接触させて、酸性ガス中の塩化水素その他酸性成分の除去を行う乾式処理方法であって、前記反応帯38の常態温度を、水蒸気雰囲気下で吸収剤相互の溶着現象が発生しない温度以上にするとともに、酸性ガス接触時温度を融着現象の発生しない温度以下に制御することを特徴とする酸性ガスの乾式処理方法。」(請求項1)
特開2004−261726号公報 特許第3827892号公報 特開2002−165898号公報 特開2004−167403号公報
“An acidic gas containing hydrogen chloride (HCl) is formed of a packed layer formed of a calcium-based component (Ca component) or a reaction absorbent mainly composed of a Ca component (hereinafter simply referred to as“ absorbent ”). It is a dry treatment method in which hydrogen chloride and other acidic components in an acidic gas are removed by contacting with the reaction zone 38, and the normal temperature of the reaction zone 38 is not affected by the welding phenomenon between the absorbents in a steam atmosphere. A method for dry treatment of acidic gas, characterized by controlling the temperature at the time of contact with the acidic gas to a temperature at which the fusing phenomenon does not occur while the temperature is made higher than the temperature. (Claim 1)
JP 2004-261726 A Japanese Patent No. 3382922 JP 2002-165898 A JP 2004-167403 A

そして、上記各化学的乾式処理方法乃至化学的乾式処理装置における、反応管に充填され、反応帯により収着処理に供する収着剤(固体塩基性化合物)の反応寄与度(使用効率)が極めて低かった。   In each of the above chemical dry processing methods or chemical dry processing apparatuses, the reaction contribution (use efficiency) of the sorbent (solid basic compound) filled in the reaction tube and subjected to the sorption treatment by the reaction zone is extremely high. It was low.

例えば、特許文献3段落0005は、「有機ハロゲン化合物がフロン12の場合、nモルの酸化カルシウムに対して約0.1nモルを超えるフロン12が反応すると分解処理剤(収着剤)が塊状になることが確かめられている。尚、分解処理剤がドロマイトからなる場合には、・・・この酸化マグネシウムも上記したハロゲン化カルシウムと同様比較的融点が低く、分解処理剤の塊状化の原因となる。」と記載されている。   For example, Patent Document 3, paragraph 0005 states, “When the organic halogen compound is Freon 12, the decomposition treatment agent (sorbent) becomes agglomerated when more than about 0.1 nmol of Freon 12 reacts with respect to n mol of calcium oxide. In addition, when the decomposition treatment agent is made of dolomite, this magnesium oxide has a relatively low melting point like the above-mentioned calcium halide and causes the decomposition treatment agent to be agglomerated. . "

このため、上記塊状化を発生させないために、被処理ガスであるフロン類処理量に比して大量の収着剤を準備する必要があった。例えば、約1kgに対して約9kgの収着剤(CaO含有物)を準備する必要があった。特に、反応帯38を収着剤の移動層で形成する場合、この傾向は顕著となった。   For this reason, in order not to generate the said agglomeration, it was necessary to prepare a large amount of sorbent compared with the amount of fluorocarbons which are to-be-processed gas. For example, it was necessary to prepare about 9 kg of sorbent (containing CaO) for about 1 kg. In particular, when the reaction zone 38 is formed of a sorbent moving layer, this tendency becomes significant.

この結果、使用後収着剤が廃棄物として大量に発生した。   As a result, a large amount of sorbent was generated as waste after use.

本発明は、上記にかんがみて、収着剤からなる充填層で反応帯が形成された反応管に、被処理ガスを連続的に導入・導出させて、被処理ガスと収着剤との接触反応によりさせて乾式処理をする方法において、収着剤の使用効率を向上させることを目的とする。   In view of the above, the present invention allows the gas to be treated to be continuously introduced into and led out from the reaction tube in which the reaction zone is formed by the packed bed made of the sorbent, so that the contact between the gas to be treated and the sorbent. An object of the present invention is to improve the use efficiency of a sorbent in a method of dry treatment by reaction.

本発明者らは、上記課題を、解決するために鋭意開発に努力をする過程で、ねじコンベヤ62等で排出された粒状の使用後収着剤は、分級して所定粒径以下のものを除去した場合、使用後収着剤と収着剤新品との混合比(質量比)を1:1以下としても、収着剤新品と同等のフロン類除去率(反応効率:収着効率)が得られることを知見して、下記構成のガスの化学的乾式処理方法及び化学的乾式処理装置に想到した。   In the process of diligently developing to solve the above-mentioned problems, the present inventors have classified the granular post-use sorbent discharged by the screw conveyor 62 or the like into particles having a predetermined particle size or less. When removed, even if the mixing ratio (mass ratio) of the sorbent after use and the new sorbent is 1: 1 or less, the chlorofluorocarbon removal rate (reaction efficiency: sorption efficiency) is the same as that of the new sorbent. Knowing that it is obtained, the inventors have conceived of a chemical dry treatment method and a chemical dry treatment apparatus for gas having the following constitution.

1)塩基性収着剤(以下「収着剤」という。)からなる充填層で、加熱手段を備えた反応帯が形成された反応管に、有機ハロゲン化合物又は六フッ化硫黄を被処理ガスとして連続的に導入・導出させて、前記被処理ガスと前記収着剤との接触反応により乾式処理をする方法において、
該乾式処理に使用した使用後収着剤を、摩耗及び/又は破砕を発生させて、粒状の再生処理品とし、
該再生処理品を、分級して所定粒径以下のものが除去された再生収着剤とし、
該再生収着剤を、同一系統又は別系統の前記反応管に充填して再利用する構成として、前記反応帯を前記収着剤の移動充填層で形成するとともに、前記再生収着剤を前記反応管に還流させ、さらに、
前記収着剤をCaO系焼成品として、前記再生収着品と収着剤新品とを、所定の混合比で混合するとともに、前記使用後収着剤の、摩耗及び破砕による再生処理を、コンベヤ出口側へ向かって傾斜している冷却手段を備えた傾斜ねじコンベヤで行うことを特徴とする。
1) Gas to be treated with an organic halogen compound or sulfur hexafluoride in a reaction tube in which a reaction zone having a heating means is formed in a packed bed made of a basic sorbent (hereinafter referred to as “sorbent”). In a method of continuously introducing and deriving as a dry treatment by contact reaction between the gas to be treated and the sorbent,
The post-use sorbent used in the dry process generates abrasion and / or crushing into a granular recycled product,
The regenerated product is classified into a regenerated sorbent from which particles having a predetermined particle size or less have been removed,
The regenerated sorbent is filled in the reaction tube of the same system or another system and reused , and the reaction zone is formed by a moving packed bed of the sorbent, and the regenerated sorbent is Reflux to the reaction tube, and
The sorbent is a CaO-based fired product, the regenerated sorbent and a new sorbent are mixed at a predetermined mixing ratio, and the used sorbent is recycled by abrasion and crushing. It is characterized by carrying out by an inclined screw conveyor provided with a cooling means inclined toward the outlet side .

2)加熱手段を有する反応管を備えた化学的乾式処理装置本体と、該反応管に収着剤を供給する前記収着剤供給手段と、前記反応管から排出される使用後収着剤を強制排出する収着剤排出手段とを備え連続運転又は間欠運転可能とされた有機ハロゲン化合物又は六フッ化硫黄を被処理ガスとするガスの化学的乾式処理装置であって、
前記収着剤排出手段と前記収着剤供給手段との間に収着剤循環路が配され、
前記収着剤循環路が、再生化処理手段を備え、該再生化処理手段の下流側に収着剤新品混合手段を備え、
前記再生化処理手段が、使用後収着剤の構成粒子に摩耗及び/又は破砕を発生させる構成のガスの化学的乾式処理装置において、
前記再生化処理手段の下流側に分級手段を備えて、所定粒径以下のものを排除して再生収着剤を回収可能とされるとともに、該再生収着剤を前記収着剤供給手段に供給可能とされ、また、
前記再生化処理手段が、コンベヤ出口側に向かって上方へ傾斜している冷却手段を備えた円筒型の傾斜ねじコンベヤであることを特徴とする。
2) A chemical dry processing apparatus main body provided with a reaction tube having a heating means, the sorbent supply means for supplying a sorbent to the reaction tube, and a post-use sorbent discharged from the reaction tube. A chemical dry treatment apparatus for gas having a treated gas of an organic halogen compound or sulfur hexafluoride, which is provided with a sorbent discharging means forcibly discharging and is capable of continuous operation or intermittent operation ,
A sorbent circuit is disposed between the sorbent discharge means and the sorbent supply means,
The sorbent circulation path includes a regeneration treatment means, and a sorbent new article mixing means is provided downstream of the regeneration treatment means,
In the chemical dry treatment apparatus for gas, wherein the regeneration treatment means is configured to generate wear and / or crushing on the constituent particles of the sorbent after use ,
A classification means is provided on the downstream side of the regeneration treatment means so that the regenerated sorbent can be recovered by excluding those having a predetermined particle diameter or less, and the regenerated sorbent is supplied to the sorbent supply means. Available, and
The regeneration treatment means is a cylindrical inclined screw conveyor provided with cooling means inclined upward toward the conveyor outlet side .

本実施形態のガスの化学的乾式処理方法に使用する化学的乾式処理装置プラントの一例を下記する。   An example of a chemical dry processing apparatus plant used in the gas chemical dry processing method of this embodiment will be described below.

化学的処理装置本体12と、該化学的処理装置本体12に付設される収着剤供給コンベヤ(収着剤供給手段)14と、排気装置(排気手段)16と、使用後収着剤排出装置(収着剤排出手段)18とを備えている。   Chemical treatment device main body 12, sorbent supply conveyor (sorbent supply means) 14 attached to the chemical treatment device main body 12, exhaust device (exhaust means) 16, and sorbent discharge device after use (Sorbent discharging means) 18.

化学的処理装置本体12は、反応管22を備え、該反応管22の上方には上第一ホッパ24が下側には上第二ホッパ26が配されている。上第一ホッパ24、上第二ホッパ26は、それぞれ、収着剤を一次・二次貯留して、反応管22に収着剤を安定供給するためのものである。   The chemical processing apparatus main body 12 includes a reaction tube 22. An upper first hopper 24 is disposed above the reaction tube 22, and an upper second hopper 26 is disposed below the reaction tube 22. The upper first hopper 24 and the upper second hopper 26 are used for primary and secondary storage of the sorbent and stably supplying the sorbent to the reaction tube 22, respectively.

さらに、反応管22上端と下ホッパ44との間には、テーパ接続管28及び蛇腹接続管30が配され、テーパ接続管28にはガス導入口(パイプ)32を備えている。テーパ接続管28は供給ガスを拡散させて拡散帯37を形成するものである。蛇腹接続管30は、反応管22の軸方向の熱膨張を吸収するとともに、反応管22で発生した反応熱の影響がガス拡散帯37が受けて早すぎる反応開始を抑制するための中間移行帯39を形成するものである。   Further, between the upper end of the reaction tube 22 and the lower hopper 44, a taper connection tube 28 and a bellows connection tube 30 are disposed, and the taper connection tube 28 is provided with a gas inlet (pipe) 32. The taper connecting pipe 28 diffuses supply gas to form a diffusion zone 37. The bellows connection pipe 30 absorbs the thermal expansion in the axial direction of the reaction tube 22 and is an intermediate transition zone for suppressing the start of the reaction that is too early due to the influence of the reaction heat generated in the reaction tube 22. 39 is formed.

反応管22の内側には内ヒータ34が、外側に外ヒータ36が配されて、反応帯38が形成されている。なお、外ヒータ36は断熱材が内蔵された断熱ケースで被覆されている。   An inner heater 34 is arranged inside the reaction tube 22 and an outer heater 36 is arranged outside, so that a reaction zone 38 is formed. The outer heater 36 is covered with a heat insulating case containing a heat insulating material.

なお、必然的ではないが、外ヒータ36及び内ヒータ34を上・下に分割して、反応帯38の温度制御(PID制御)可能としてもよい。   Although not necessary, the outer heater 36 and the inner heater 34 may be divided into upper and lower parts so that the temperature of the reaction zone 38 (PID control) can be controlled.

本実施形態では、反応管22は、反応帯38の下端(終端)近傍で終わる(特許文献1図1参照)のではなく、反応帯38まで延設され、該延設部22aは下ホッパ44で囲繞されている。下ホッパ44は、その直線筒部44aに冷却ジャケット(図例では水冷)46を備え、排気冷却帯48を形成するとともに、排気冷却帯48の上側に排気口50を備えている。この構成とした場合、反応帯38の生成ガスの流れが、収着剤排出口44b近傍まで案内された後、反応管22外周に沿って上方に排気されることとなる。この結果、充填層(収着剤)20と排気口50との間に十分な空間距離をとることができ、収着剤の移動中に生成した微紛を排気中への混入を抑制できる。   In the present embodiment, the reaction tube 22 does not end near the lower end (end) of the reaction zone 38 (see FIG. 1 of Patent Document 1), but extends to the reaction zone 38, and the extended portion 22 a extends to the lower hopper 44. It is surrounded by. The lower hopper 44 includes a cooling jacket (water cooling in the illustrated example) 46 in the straight cylindrical portion 44 a, forms an exhaust cooling zone 48, and includes an exhaust port 50 on the upper side of the exhaust cooling zone 48. In this configuration, the flow of the product gas in the reaction zone 38 is guided to the vicinity of the sorbent discharge port 44b and then exhausted upward along the outer periphery of the reaction tube 22. As a result, a sufficient spatial distance can be secured between the packed bed (sorbent) 20 and the exhaust port 50, and mixing of fine particles generated during movement of the sorbent into the exhaust can be suppressed.

そして、排気装置16は、下ホッパ44の排気口50が、吸引機(ブロア)54の吸引口56と、バッグフィルタ型の集塵装置58を途中に配した排気配管60で接続されて構成されている。   The exhaust device 16 is configured such that the exhaust port 50 of the lower hopper 44 is connected to a suction port 56 of a suction machine (blower) 54 and an exhaust pipe 60 in which a bag filter type dust collector 58 is disposed in the middle. ing.

また、使用後収着剤排出装置(収着剤排出手段)18は、本実施形態では、下ホッパ44の収着剤排出口44bに接続されるねじコンベヤ(排出コンベヤ)62と、該ねじコンベヤ62の出口側に落下シュート68を介して接続され、後述の収着剤混合装置72へ戻す戻しコンベヤ70とから構成されている。   Further, the used sorbent discharging device (sorbent discharging means) 18 includes, in this embodiment, a screw conveyor (discharge conveyor) 62 connected to the sorbent discharge port 44b of the lower hopper 44, and the screw conveyor. A return conveyor 70 is connected to the outlet side of 62 via a drop chute 68 and returned to a sorbent mixing device 72 described later.

この排出コンベヤ62は、速度可変の駆動モータで連続的乃至間欠的に駆動され、冷却ジャケット64で使用済処理剤を冷却しながら排出可能とされている。そして、本実施形態では、再生処理化を促進させるために、ねじコンベヤ62は、コンベヤ出口側へ向かって上方へ傾斜した傾斜ねじコンベヤである。重力作用により、ねじコンベヤを水平とした場合(特許文献1図1参照)に比して、使用後収着剤の摩耗及び/又は破砕の発生が促進されることが期待できる。上記傾斜角度は、通常、15〜60°、望ましくは20〜45°とする。   The discharge conveyor 62 is continuously or intermittently driven by a variable speed drive motor, and can be discharged while cooling the used processing agent by the cooling jacket 64. In this embodiment, the screw conveyor 62 is an inclined screw conveyor that is inclined upward toward the conveyor outlet side in order to promote the regeneration process. It can be expected that wear and / or crushing of the sorbent after use is promoted due to the gravitational action as compared with the case where the screw conveyor is horizontal (see FIG. 1 of Patent Document 1). The inclination angle is usually 15 to 60 °, preferably 20 to 45 °.

該ねじコンベヤ62内を使用後収着剤が移動することにより、収着剤粒子相互が摩擦乃至衝突接触して、各表層部が部分剥離乃至破砕することにより、使用後収着剤の粒子の未反応部ないし低反応部が露出する結果となる。こうして使用後収着剤が再生化(活性化)される。   As the sorbent moves after use in the screw conveyor 62, the sorbent particles are brought into frictional or collisional contact with each other, and each surface layer part is partially peeled or crushed. As a result, an unreacted portion or a low-reacted portion is exposed. Thus, the sorbent after use is regenerated (activated).

そして、本実施形態の化学的処理装置本体12は、さらに、収着剤分級装置(収着剤分級手段)88、94と収着剤混合装置(収着剤混合手段:混合槽)72を備えている。   The chemical processing apparatus main body 12 of the present embodiment further includes sorbent classifiers (sorbent classifying means) 88 and 94 and a sorbent mixing apparatus (sorbent mixing means: mixing tank) 72. ing.

図例では、収着剤分級装置94は、収着剤混合装置72に組み付けられている。   In the illustrated example, the sorbent classification device 94 is assembled to the sorbent mixing device 72.

すなわち、収着剤混合装置72は、再生処理品用ホッパ76と新品用ホッパ78と、混合槽80とを備えている。そして各ホッパ76、78の出口に定量供給コンベヤ82、84が接続され、定量供給フィーダ(ねじコンベヤ)82、84の各出口が、混合槽80の上端に形成された受けホッパ86に臨むようになっている。   In other words, the sorbent mixing device 72 includes a recycled product hopper 76, a new hopper 78, and a mixing tank 80. The fixed amount supply conveyors 82 and 84 are connected to the outlets of the hoppers 76 and 78 so that the outlets of the fixed amount supply feeders (screw conveyors) 82 and 84 face the receiving hopper 86 formed at the upper end of the mixing tank 80. It has become.

そして、再生処理品用ホッパ76の中間高さ位置に収着剤分級装置としての粗目篩(例えば、目開き10mm)88が設けられ、大径側品が系から除かれて、廃材コンベヤ90の入口側に落下ダクト92を介して落下するようになっている。   A coarse sieve (for example, opening 10 mm) 88 as a sorbent classifier is provided at the intermediate height position of the recycled product hopper 76, the large diameter side product is removed from the system, and the waste conveyor 90 It falls to the entrance side via a fall duct 92.

また、混合槽80の中間高さ位置に収着剤分級装置としての細目篩(例えば、目開き5mm)94が設けられ、細目篩94上の混合収着剤を、前記収着剤供給コンベヤ14の入口に移動可能とされ、過小粒径品が廃材コンベヤ90の入口に、落下ダクト95を介して落下可能とされている。   Further, a fine sieve (for example, opening 5 mm) 94 as a sorbent classifier is provided at an intermediate height position of the mixing tank 80, and the mixed sorbent on the fine sieve 94 is transferred to the sorbent supply conveyor 14. It is possible to move the small particle size product to the entrance of the waste material conveyor 90 through the fall duct 95.

該粗目篩88を振動篩とした場合は、該振動篩によっても使用後収着剤の再生処理が期待できる。   When the coarse sieve 88 is a vibrating sieve, the used sorbent can be regenerated by using the vibrating sieve.

そして、廃材コンベヤ90の出口は廃材コンテナ96の投入口96aに臨むようになっている。   The outlet of the waste material conveyor 90 faces the input port 96a of the waste material container 96.

また、細目篩94も、通常、振動篩とする。振動篩とすることにより、混合槽80においては、混合と分級を兼ねることができる。   The fine sieve 94 is also usually a vibrating sieve. By using a vibrating sieve, the mixing tank 80 can be used for both mixing and classification.

上記戻しコンベヤ70は、汎用のベルトコンベヤでもよいが、上記における再生化度が低い場合は、収着剤粒子相互が摩擦乃至衝突接触が促進されるねじコンベヤ乃至振動コンベヤが望ましい。   The return conveyor 70 may be a general-purpose belt conveyor, but if the degree of regeneration is low, a screw conveyor or a vibrating conveyor in which frictional or collisional contact between sorbent particles is promoted is desirable.

また、廃材コンベヤ90は、特に廃材には何ら要求される特性がない場合は、コンベヤの種類は限定されない。通常、汎用のベルトコンベヤとする。   Further, the waste material conveyor 90 is not limited in the type of the conveyor, particularly when the waste material does not have any required characteristics. Usually, a general-purpose belt conveyor is used.

次に、上記ガスの化学的乾式処理プラントを使用しての化学的処理方法を説明する。   Next, a chemical treatment method using the above-described chemical dry treatment plant for gas will be described.

ここで、処理対象である被処理ガスは、前述の如く、固体塩基性化合物と発熱反応してF、Cl、Br、S等の目的元素が、固体塩基性化合物に収着(反応分解・収着)されるものであれば、特に限定されない。例えば、上記以外に、ハロン類、六フッ化硫黄やハロゲン化水素類等のハロゲンを含む有機・無機化合物やハロゲンガス(以下、これらを総称して「含ハロゲン化合物」という。)さらには、硫黄化合物(六フッ化硫黄、SOX、硫化水素)や窒素化合物(NOX)、等を挙げることができる。   Here, the target gas to be treated is exothermicly reacted with the solid basic compound as described above, and the target elements such as F, Cl, Br, and S are sorbed onto the solid basic compound (reaction decomposition / sorption). If it is worn, it will not be specifically limited. For example, in addition to the above, organic / inorganic compounds containing halogens such as halons, sulfur hexafluoride and hydrogen halides, and halogen gases (hereinafter collectively referred to as “halogen-containing compounds”), and sulfur Examples thereof include compounds (sulfur hexafluoride, SOX, hydrogen sulfide), nitrogen compounds (NOX), and the like.

また、塩基性収着剤(固体塩基性化合物)としては、通常、カルシウム系のものを使用し、石灰石やドロマイトを焼成して得られる生石灰(CaO)や焼成ドロマイト(CaO・MgO)を使用する。被処理ガスによっては、消石灰(Ca(OH)2)石灰石(炭酸カルシウム(CaCO3))、けい酸カルシウム(CaSiO3)等も使用可能である。 In addition, as a basic sorbent (solid basic compound), a calcium-based one is usually used, and quick lime (CaO) or calcined dolomite (CaO · MgO) obtained by calcining limestone or dolomite is used. . Depending on the gas to be treated, slaked lime (Ca (OH) 2 ) limestone (calcium carbonate (CaCO 3 )), calcium silicate (CaSiO 3 ) and the like can also be used.

また、収着剤の粒径は、粒子形状により異なるが、通常2〜50mm、望ましくは5〜20mm、さらに望ましくは5〜10mm(至適粒径品)とする。粒径が小さすぎては、充填層20(反応帯38等)の空隙率が低くてガス流れが阻害されて、また、粒径が大きすぎては、粒子内へのガス拡散が不充分であるため、それぞれ、最適な処理効率(拡散効率及び収着反応効率)を得難い。   The particle size of the sorbent is usually 2 to 50 mm, preferably 5 to 20 mm, more preferably 5 to 10 mm (optimum particle size product), although it varies depending on the particle shape. If the particle size is too small, the porosity of the packed bed 20 (such as the reaction zone 38) is low and the gas flow is hindered. If the particle size is too large, gas diffusion into the particles is insufficient. Therefore, it is difficult to obtain optimum processing efficiency (diffusion efficiency and sorption reaction efficiency).

当初は、収着剤新品を新品用ホッパ78から定量供給フィーダ84、混合槽80を経て収着剤供給コンベヤ14に供給する。該収着剤供給コンベヤ14から新材は、化学的乾式処理装置の上第一ホッパ24、上第二ホッパ26を経て反応管22内へ充填される。このとき、排出コンベヤも稼動させて排出コンベヤ内も収着剤新品で充満させておく。こうして、化学的処理装置本体12の、上第一ホッパ24、上第二ホッパ26、テ―パ接続管28、蛇腹接続管30、反応管22及び下ホッパ44にわたり充填層20が形成される。そして、該充填層20で、テーパ接続管28内にガス拡散帯37が、蛇腹接続管30内に中間移行帯39が、反応管38内にそれぞれ形成される結果となる。   Initially, a new sorbent is supplied from the new hopper 78 to the sorbent supply conveyor 14 via the quantitative supply feeder 84 and the mixing tank 80. The new material is filled from the sorbent supply conveyor 14 into the reaction tube 22 through the upper first hopper 24 and the upper second hopper 26 of the chemical dry processing apparatus. At this time, the discharge conveyor is also operated and the discharge conveyor is filled with new sorbent. In this way, the packed bed 20 is formed across the upper first hopper 24, the upper second hopper 26, the taper connection tube 28, the bellows connection tube 30, the reaction tube 22, and the lower hopper 44 of the chemical treatment apparatus main body 12. The packed bed 20 results in the gas diffusion zone 37 being formed in the taper connection tube 28, and the intermediate transition zone 39 being formed in the bellows connection tube 30 in the reaction tube 38.

次に、内・外ヒータ36をオン(ON)として、反応帯22の内部雰囲気温を、処理温度下限値(下限設定温度)以上となるまで昇温させ維持する。ここで、設定処理温度(収着反応温度)は、被処理ガス及び/又は収着剤の種類により異なるが、分解反応(効率)の見地から、通常、250℃以上、望ましくは、700℃以上とする。そして、上限は、熱効率及び化学平衡の見地から、さらには、収着剤の融着塊状化防止の見地から、約1400℃以下、望ましくは800℃以下とする。   Next, the inner / outer heater 36 is turned on (ON), and the internal atmosphere temperature of the reaction zone 22 is raised and maintained until it reaches a processing temperature lower limit (lower limit set temperature) or higher. Here, the set processing temperature (sorption reaction temperature) varies depending on the type of gas to be processed and / or the sorbent, but from the viewpoint of decomposition reaction (efficiency), it is usually 250 ° C or higher, preferably 700 ° C or higher. And The upper limit is about 1400 ° C. or less, preferably 800 ° C. or less, from the viewpoints of thermal efficiency and chemical equilibrium, and further from the viewpoint of preventing fusion of the sorbent.

ここで、当該設定温度は、反応帯38の略中央部位置、例えば、図1のD点ないしE点におけるものとする。そして、図示しないが、各位置に熱電対の測温点を設けて、温度制御を行う。   Here, the set temperature is assumed to be at a substantially central position of the reaction zone 38, for example, at point D to point E in FIG. And although not shown in figure, the temperature measurement point of a thermocouple is provided in each position, and temperature control is performed.

そして、通常、ガス導入口32を設けたテーパ接続管28内のガス拡散帯37は、分解反応温度未満である。ここで、ガス拡散帯37は、通常、分解反応温度より格段に低い温度、高くて200℃以下、通常100℃以下の温度雰囲気になっている(例えば、図1のA点)。これは、ガス拡散帯37を構成する収着剤(処理剤)の熱伝導率が非常に低く、反応帯38の温度影響を受け難いためである。本実施形態では蛇腹接続管30内に形成される中間移行帯39でさらに反応帯38の温度影響を受け難くなっている。   In general, the gas diffusion zone 37 in the tapered connecting pipe 28 provided with the gas inlet 32 is lower than the decomposition reaction temperature. Here, the gas diffusion zone 37 is usually at a temperature much lower than the decomposition reaction temperature, which is at most 200 ° C. and usually 100 ° C. (for example, point A in FIG. 1). This is because the sorbent (treatment agent) constituting the gas diffusion zone 37 has a very low thermal conductivity and is hardly affected by the temperature of the reaction zone 38. In the present embodiment, the intermediate transition zone 39 formed in the bellows connection pipe 30 is further less susceptible to the temperature effect of the reaction zone 38.

この状態で、排気装置のブロア(吸引手段)54を運転(稼動)させると、被処理ガス(例えばフロン類:以下単に「ガス」と称することがある。)は、ガス導入口32から、テーパ接続管28内に導入されたガスはガス拡散帯37を拡散しながら蛇腹接続管30で形成される中間移行帯39を経て反応管22で形成される反応帯38へ導入される。   When the blower (suction means) 54 of the exhaust device is operated (operated) in this state, the gas to be treated (for example, chlorofluorocarbons: hereinafter may be simply referred to as “gas”) is tapered from the gas inlet 32. The gas introduced into the connection pipe 28 is introduced into the reaction zone 38 formed by the reaction tube 22 through the intermediate transition zone 39 formed by the bellows connection pipe 30 while diffusing in the gas diffusion zone 37.

このとき、テーパ接続管28における収着剤雰囲気温度は、被処理ガスの収着反応温度未満である。このため、被処理ガスは、ガス拡散帯37における収着剤充填隙間で拡散されながら反応帯38に移動する。   At this time, the sorbent atmosphere temperature in the tapered connecting pipe 28 is lower than the sorption reaction temperature of the gas to be processed. For this reason, the gas to be treated moves to the reaction zone 38 while being diffused in the sorbent filling gap in the gas diffusion zone 37.

反応帯38に到達したガスは、反応帯38で、収着材との反応により生成したハロゲン化合物等は収着剤に収着固定されるとともに、生成ガス(炭酸ガス、水蒸気等)は、ハロゲン等を含まない排ガスとして排気口50から排出される。   The gas that has reached the reaction zone 38 is the reaction zone 38. Halogen compounds and the like generated by the reaction with the sorbent are sorbed and fixed to the sorbent, and the generated gas (carbon dioxide gas, water vapor, etc.) is halogenated. It is discharged from the exhaust port 50 as exhaust gas that does not contain etc.

なお、ガス拡散帯37の反応帯38との境界部には、温度傾斜ゾーン(例えば、100℃以上600℃未満)であるガス移行帯(中間帯)39が存在する。   A gas transition zone (intermediate zone) 39 that is a temperature gradient zone (for example, 100 ° C. or higher and lower than 600 ° C.) exists at the boundary between the gas diffusion zone 37 and the reaction zone 38.

そして、傾斜ねじコンベヤ62を駆動させると、反応管22内の収着剤は重力により、下方へ徐々に移動して、収着処理に使用された使用後収着剤は、下ホッパ44を介してねじコンベヤ62の入口に到達し、さらに、ねじコンベヤ62で、前述の如く、再生処理化されて戻しコンベヤ70を経て、収着剤混合装置72へ搬送される。   When the inclined screw conveyor 62 is driven, the sorbent in the reaction tube 22 gradually moves downward due to gravity, and the used sorbent used for the sorption process passes through the lower hopper 44. Then, it reaches the inlet of the screw conveyor 62 and is further regenerated and transferred to the sorbent mixing device 72 via the return conveyor 70 as described above.

そして、収着剤の再生処理品は、再生処理品用ホッパ76に導入され、粗粒品は粗目篩88で除去され、さらに、収着剤混合装置72で、収着剤新品と、定量供給フィーダ82、84を用いて所定比で混合し、該混合収着剤の過小粒径品を細目篩94で除去して、再生収着剤とする。   Then, the sorbent regenerated product is introduced into the reprocessed product hopper 76, the coarse particles are removed by the coarse sieve 88, and the sorbent mixing device 72 is used to supply a new sorbent and quantitative supply. Mixing at a predetermined ratio using the feeders 82 and 84, and removing the small particle size product of the mixed sorbent with a fine sieve 94, a regenerated sorbent is obtained.

このとき収着剤処理品と収着剤新品と混合比率は、再生収着剤の種類および再生化度により異なる。例えば、収着剤がCaO系焼成品である場合において、前者/後者(質量比)=1/9〜9/1、望ましくは、2/8〜8/2、さらに望ましくは4/6〜6/4とする。収着剤処理品の比率が高い方が、収着剤の有効利用(使用効率)が向上するが、比率が高すぎると、再生収着剤の収着能が不安定となるおそれがある。   At this time, the mixing ratio of the treated sorbent and the new sorbent varies depending on the type of regenerated sorbent and the degree of regeneration. For example, when the sorbent is a CaO-based fired product, the former / the latter (mass ratio) = 1/9 to 9/1, preferably 2/8 to 8/2, and more preferably 4/6 to 6 / 4. When the ratio of the sorbent-treated product is higher, the effective use (use efficiency) of the sorbent is improved. However, when the ratio is too high, the sorption ability of the regenerated sorbent may be unstable.

こうして調製された再生収着剤は、収着剤供給コンベヤ14を介して反応管22に、連続的に又は間欠的に戻してガス処理を行う。   The regenerated sorbent thus prepared is returned to the reaction tube 22 via the sorbent supply conveyor 14 continuously or intermittently for gas treatment.

このとき、再生収着剤は、実施例で示す如く、新品混入量が1/4近くであっても、新品100%の場合と同等のガス収着能を示す。さらに、本発明者らは、使用後収着剤を新品との1:1混合を繰り返しても(4回)、同様に、新品100%の場合と同等のガス収着能を示すことを確認している。   At this time, as shown in the examples, the regenerated sorbent exhibits a gas sorption ability equivalent to that of a 100% new product even when the amount of new product mixed is close to 1/4. Furthermore, the present inventors have confirmed that the same sorption ability as in the case of 100% new product is exhibited even if the sorbent after use is repeatedly mixed 1: 1 with the new product (4 times). is doing.

なお、上記実施形態では、化学的処理装置本体12として、特許文献1図1に示す構成のものと基本的に同一のものを例に採り説明したが、本発明を適用可能な化学的処理装置本体の態様は、特許文献1図1に示すものに限られない。   In the above embodiment, the chemical treatment apparatus main body 12 has been described with reference to the example basically the same as the structure shown in FIG. 1 of Patent Document 1, but the chemical treatment apparatus to which the present invention is applicable is described. The form of the main body is not limited to that shown in FIG.

例えば、特許文献1図2に示したガスを導入反応管の下側から導入し、反応管の上方へ排気する方式、また、図2に示すように、排気を第一ねじコンベヤ62Aを介して行う方式、さらには、特許文献1に記載の各種態様のものに及ぶ。なお、図2には図1の対応部分を同一図符号の接尾符号「A」を付してそれらの説明を省略する。   For example, the gas shown in FIG. 2 of Patent Document 1 is introduced from the lower side of the introduction reaction tube and exhausted to the upper side of the reaction tube. Further, as shown in FIG. 2, the exhaust is passed through the first screw conveyor 62A. The method to be performed, and further to various modes described in Patent Document 1. In FIG. 2, the corresponding parts in FIG. 1 are denoted by the suffix “A” of the same reference numerals, and description thereof is omitted.

また、本発明は、再処理品を、上記実施形態の如く、再生処理品を収着剤新品と連続混合するのではなく、再生処理品を貯留しておいて、収着剤新品とバッチ混合してもよい。   In addition, the present invention does not continuously mix the reprocessed product with the new sorbent as in the above embodiment, but stores the regenerated product and batch-mixes with the new sorbent. May be.

さらには、再生処理化は、使用後収着剤を貯留しておいて、独立的に再生化処理、分級・混合して再生収着剤を調製し、該再生収着剤を、同系統の又は別系統の反応管の収着剤としても使用可能である。ここで、再生化処理のために、各種汎用の攪拌(混合)装置、破砕装置を使用可能である。   Furthermore, in the regeneration treatment, the sorbent is stored after use, and the regeneration sorbent is prepared by independent regeneration treatment, classification and mixing. Alternatively, it can be used as a sorbent for a reaction tube of another system. Here, various general-purpose stirring (mixing) devices and crushing devices can be used for the regeneration treatment.

次に、本発明の効果を確認するために行なった、実施例1〜4と従来例について、行なった比較試験について説明をする。下記各実施例・従来例の運転に使用した化学的乾式処理装置は、収着剤循環機構を外した図1に示す下記仕様のものを使用した。   Next, the comparative tests conducted on Examples 1 to 4 and the conventional example conducted for confirming the effect of the present invention will be described. As the chemical dry processing apparatus used in the operations of the following examples and conventional examples, those having the following specifications shown in FIG. 1 with the sorbent circulation mechanism removed were used.

反応管22・・・10Bインコネル管(267.4mmφ×1400mm)にステンレス伸縮管(250A×205mm)を接続して形成しもの。充填量:約800kg。       Reaction tube 22 ... formed by connecting a stainless steel telescopic tube (250A x 205mm) to a 10B Inconel tube (267.4mmφ x 1400mm). Filling amount: about 800kg.

内ヒータ34:12kW(6kW×2)、外ヒータ36:24kW(12kW×2)。       Inner heater 34: 12kW (6kW x 2), outer heater 36: 24kW (12kW x 2).

下ホッパ44:ステンレス20鋼管(508mmφ×550mm)で形成したもの。       Lower hopper 44: a stainless steel 20 pipe (508 mmφ × 550 mm).

排出用ねじコンベヤ62・・・傾斜角度:15°、シリンダ内径150mm、シリンダ長さ1580mm、ねじピッチ100mm、ねじ外径105mm、シャフト径65mm、開口口20B鋼管、回転速度:6〜12.5rpm(min-1)。 Screw conveyor for discharge 62 ... Inclination angle: 15 °, cylinder inner diameter 150mm, cylinder length 1580mm, screw pitch 100mm, screw outer diameter 105mm, shaft diameter 65mm, opening 20B steel pipe, rotation speed: 6 ~ 12.5rpm (min -1 ).

ガス導入口32、ガス排出口:1B鋼管(34.0mm)
また、収着剤(新材)として、焼成ドロマイトの至適粒径品(5mmオン10mm通過の篩分級品:以下同じ)を用いた。また、以下で、「過小粒径品」とは、5mm通過の分級品を意味する。なお、本実施例で使用した焼成ドロマイトの組成を表1に示す。
Gas inlet 32, gas outlet: 1B steel pipe (34.0mm)
As the sorbent (new material), an optimum particle size product of baked dolomite (5 mm on 10 mm sieve classified product: the same applies hereinafter). Further, in the following, “under-sized product” means a classified product that passes 5 mm. The composition of the baked dolomite used in this example is shown in Table 1.

Figure 0004986822
<従来例>
上記収着剤新材(至適粒径品)を用いて、運転条件を、反応帯38を設定温度:800℃、収着剤供給量:90kg/h、フロン供給量:10kg/h(供給フロン濃度:21.2vol%)、吸引空気量:170L/minとして、10時間、フロン22の収着処理運転を行った。
Figure 0004986822
<Conventional example>
Using the above new sorbent material (optimum particle size), operating conditions, reaction zone 38 set temperature: 800 ° C, sorbent supply rate: 90 kg / h, chlorofluorocarbon supply rate: 10 kg / h (supply) The chlorofluorocarbon 22 was subjected to a sorption treatment operation for 10 hours at a freon concentration of 21.2 vol% and a suction air amount of 170 L / min.

この収着処理運転で排出ねじコンベヤから排出された使用後収着剤を至適粒径品と過小粒径品とに篩分級した。   The post-use sorbent discharged from the discharge screw conveyor in this sorption treatment operation was classified into an optimal particle size product and a small particle size product.

上記至適粒径品と過小粒径品について、フッ素含有率及び塩素含有率をそれぞれ測定した(ガスクロマトグラフ質量分析計(GC−MS)により測定)。   The fluorine content and the chlorine content were measured for the optimum particle size product and the small particle size product (measured by a gas chromatograph mass spectrometer (GC-MS)).

また、運転開始、5時間経過後の排ガスを採取して、未分解フロン22濃度を測定した(GC−MSにより測定)。   Further, exhaust gas was collected after 5 hours from the start of operation, and the concentration of undecomposed flon 22 was measured (measured by GC-MS).

<実施例1>
上記従来例で生成した使用後収着剤の至適粒径品を再生材として、該再生材を収着剤新材と、混合比率(前者/後者)=1/1となるように混合して実施例1用の再生材混合収着剤を調製した。
<Example 1>
Using the optimal particle size of the sorbent after use generated in the above conventional example as a recycled material, the recycled material is mixed with a new sorbent material so that the mixing ratio (the former / the latter) = 1/1. Thus, a recycled material mixed sorbent for Example 1 was prepared.

そして、該再生材混合収着剤を用いて、従来例と同様にして、フロン22を収着処理をし、且つ、各項目について計測を行った。   Then, using the recycled material mixed sorbent, chlorofluorocarbon 22 was subjected to a sorption process in the same manner as in the conventional example, and each item was measured.

<実施例2>
実施例1の排出用ねじコンベヤから排出された使用後収着剤(再再生材)を、未使用剤(新材)と、混合比率(前者/後者)=1/1となるように混合して調製した再再生剤混合収着剤を用いて、
<実施例3>
実施例2において、再再生剤混合収着剤の再再生材と新材(未使用収着剤)との混合比率=1/3とした以外は、同様に行った。
<Example 2>
The used sorbent (recycled material) discharged from the screw conveyor for discharge in Example 1 was mixed with the unused agent (new material) so that the mixing ratio (the former / the latter) = 1/1. Using the regenerating agent mixed sorbent prepared in
<Example 3>
The same procedure as in Example 2 was performed except that the mixing ratio of the regenerated regenerated material and the new material (unused sorbent) was 1/3.

<実施例4>
実施例2において、再再生剤混合収着剤の再再生材と新材(未使用収着剤)との混合比率=3/1とした以外は、同様に行った。
<Example 4>
The same procedure as in Example 2 was performed except that the mixing ratio of the regenerated material of the regenerated agent mixed sorbent and the new material (unused sorbent) was 3/1.

<結果及び考察>
それらの結果を示す表2から、下記のことが分かる。
<Results and discussion>
From Table 2 showing the results, the following can be understood.

再再生材を新材に対して3倍程度混合した再生材混合収着剤であっても、従来と変わらない収着効率(共に99.99%以上)を示すことが分かる。   It can be seen that even with a regenerated material mixed sorbent in which the regenerated material is mixed about three times as much as the new material, the sorption efficiency remains unchanged (both 99.99% or more).

このことは、使用後収着剤のフッ素・塩素含有率において、至適粒径品では、従来例に比して各実施例は格段に高く(1.5倍以上)、過小粒径品では従来例も実施例もほとんど変わらないことからも支持される。   This is because the fluorine / chlorine content of the sorbent after use is significantly higher (1.5 times or more) in the case of the optimal particle size product than in the conventional example, and the conventional example in the case of the small particle size product. This is also supported by the fact that the examples are almost unchanged.

Figure 0004986822
なお、本発明者らは、3回使用再生材及び4回使用再生材を新材と1/1混合したものを収着剤として使用し、上記と同様にしてフロン22及びフロン12について試験を行ったが、同様に99.99%以上の収着効率を示すことを確認している。
Figure 0004986822
In addition, the present inventors used a mixture of three times recycled materials and four times recycled materials with a new material as a sorbent, and tested Freon 22 and Freon 12 in the same manner as described above. It was confirmed that the sorption efficiency was 99.99% or more.

本発明のガスの化学的乾式処理装置の一例を示す概略全体構成図である。It is a schematic whole block diagram which shows an example of the chemical dry processing apparatus of the gas of this invention. 本発明を適用可能なガスの化学的乾式処理装置の他の態様を示す概略断面図である。It is a schematic sectional drawing which shows the other aspect of the chemical dry processing apparatus of the gas which can apply this invention.

符号の説明Explanation of symbols

12・・・化学的処理装置本体
14・・・収着剤供給コンベヤ(収着剤供給手段)
16・・・排気装置(排気手段)
18・・・使用後収着剤排出装置(収着剤排出手段)
20・・・充填層
22・・・反応管
38・・・反応帯
62・・・傾斜ねじコンベヤ(再生化処理手段)
12 ... Chemical treatment apparatus body 14 ... Sorbent supply conveyor (sorbent supply means)
16 ... Exhaust device (exhaust means)
18 ... Sorbent discharge device after use (sorbent discharge means)
20 ... packed bed 22 ... reaction tube 38 ... reaction zone 62 ... inclined screw conveyor (regeneration processing means)

Claims (2)

塩基性収着剤(以下「収着剤」という。)からなる充填層で、加熱手段を備えた反応帯が形成された反応管に、有機ハロゲン化合物又は六フッ化硫黄を被処理ガスとして連続的に導入・導出させて、前記被処理ガスと前記収着剤との接触反応により乾式処理をする方法において、
該乾式処理に使用した使用後収着剤を、摩耗及び/又は破砕を発生させて、粒状の再生処理品とし、
該再生処理品を、分級して所定粒径以下のものが除去された再生収着剤とし、
該再生収着剤を、同一系統又は別系統の前記反応管に充填して再利用する構成として、前記反応帯を前記収着剤の移動充填層で形成するとともに、前記再生収着剤を前記反応管に還流させ、さらに、
前記収着剤をCaO系焼成品として、前記再生収着品と収着剤新品とを、所定の混合比で混合するとともに、前記使用後収着剤の、摩耗及び破砕による再生処理を、コンベヤ出口側へ向かって傾斜している冷却手段を備えた傾斜ねじコンベヤで行うことを特徴とするガスの化学的乾式処理方法。
A packed bed of a basic sorbent (hereinafter referred to as “sorbent”), in which a reaction zone equipped with a heating means is formed, and an organic halogen compound or sulfur hexafluoride is used as a gas to be treated. In the method of conducting dry treatment by contact reaction between the gas to be treated and the sorbent, introduced and led out automatically,
The post-use sorbent used in the dry process generates abrasion and / or crushing into a granular recycled product,
The regenerated product is classified into a regenerated sorbent from which particles having a predetermined particle size or less have been removed,
The regenerated sorbent is filled in the reaction tube of the same system or another system and reused , and the reaction zone is formed by a moving packed bed of the sorbent, and the regenerated sorbent is Reflux to the reaction tube, and
The sorbent is a CaO-based fired product, the regenerated sorbent and a new sorbent are mixed at a predetermined mixing ratio, and the used sorbent is recycled by abrasion and crushing. A chemical dry processing method of gas, which is performed by an inclined screw conveyor provided with cooling means inclined toward the outlet side .
加熱手段を有する反応管を備えた化学的乾式処理装置本体と、該反応管に収着剤を供給する前記収着剤供給手段と、前記反応管から排出される使用後収着剤を強制排出する収着剤排出手段とを備え連続運転又は間欠運転可能とされた有機ハロゲン化合物又は六フッ化硫黄を被処理ガスとするガスの化学的乾式処理装置であって、
前記収着剤排出手段と前記収着剤供給手段との間に収着剤循環路が配され、
前記収着剤循環路が、再生化処理手段を備え、該再生化処理手段の下流側に収着剤新品混合手段を備え、
前記再生化処理手段が、使用後収着剤の構成粒子に摩耗及び/又は破砕を発生させるものである構成のガスの化学的乾式処理装置において、
前記再生化処理手段の下流側に分級手段を備えて、所定粒径以下のものを排除して再生収着剤を回収可能とされるとともに、該再生収着剤を前記収着剤供給手段に供給可能とされ、また、
前記再生化処理手段が、コンベヤ出口側に向かって上方へ傾斜している冷却手段を備えた傾斜ねじコンベヤであることを特徴とするガスの化学的乾式処理装置。
Chemical dry processing apparatus main body provided with a reaction tube having a heating means, the sorbent supply means for supplying the sorbent to the reaction tube, and forcibly discharging the used sorbent discharged from the reaction tube A chemical dry treatment apparatus for a gas having an organic halogen compound or sulfur hexafluoride as a gas to be treated , provided with a sorbent discharging means for performing continuous operation or intermittent operation ,
A sorbent circuit is disposed between the sorbent discharge means and the sorbent supply means,
The sorbent circulation path includes a regeneration treatment means, and a sorbent new article mixing means is provided downstream of the regeneration treatment means,
In the chemical dry treatment apparatus of gas, wherein the regeneration treatment means is configured to cause wear and / or crushing of the constituent particles of the sorbent after use ,
A classification means is provided on the downstream side of the regeneration treatment means so that the regenerated sorbent can be recovered by excluding those having a predetermined particle diameter or less, and the regenerated sorbent is supplied to the sorbent supply means. Available, and
A chemical dry processing apparatus for gas, wherein the regeneration treatment means is an inclined screw conveyor provided with a cooling means inclined upward toward the conveyor outlet side .
JP2007299509A 2007-11-19 2007-11-19 Chemical dry processing method of gas Expired - Fee Related JP4986822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299509A JP4986822B2 (en) 2007-11-19 2007-11-19 Chemical dry processing method of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299509A JP4986822B2 (en) 2007-11-19 2007-11-19 Chemical dry processing method of gas

Publications (2)

Publication Number Publication Date
JP2009119443A JP2009119443A (en) 2009-06-04
JP4986822B2 true JP4986822B2 (en) 2012-07-25

Family

ID=40812203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299509A Expired - Fee Related JP4986822B2 (en) 2007-11-19 2007-11-19 Chemical dry processing method of gas

Country Status (1)

Country Link
JP (1) JP4986822B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552476B2 (en) * 2016-12-19 2019-07-31 日本磁力選鉱株式会社 Method for producing adsorbent for detoxification treatment of pollutant, method for recovering heavy metal, and method for reusing adsorbent for detoxification treatment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924655B2 (en) * 1977-04-13 1984-06-11 石川島播磨重工業株式会社 Absorbent circulation device in moving bed type harmful gas removal equipment
JPS5943210B2 (en) * 1977-04-15 1984-10-20 石川島播磨重工業株式会社 Method for forming a moving layer in a moving bed type harmful gas removal device
DE2755314A1 (en) * 1977-12-12 1979-08-09 Babcock Ag PROCESS FOR ABSORPTIVE REMOVAL OF SULFUR DIOXIDE, CHLORINE AND FLUORINE FROM EXHAUST GASES
DE3322159A1 (en) * 1983-06-21 1985-01-03 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR SEPARATING POLLUTANTS FROM EXHAUST GAS
JP4061330B2 (en) * 2005-09-16 2008-03-19 株式会社亀山 Manufacturing method of granular tile material

Also Published As

Publication number Publication date
JP2009119443A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP6826850B2 (en) Garbage incineration facility
JP4781734B2 (en) Method for treating fluid organic compounds
KR100660234B1 (en) System and method for cleaning outgas of sintering process in the dry
JP2018126679A (en) Remover of halogen gas, manufacturing method therefor, halogen gas removal method using the same and system for removing halogen gas
KR100384274B1 (en) Reactive agent and process for decomposing fluorine compounds and use thereof
JP4986822B2 (en) Chemical dry processing method of gas
CZ915086A3 (en) Process of removing harmful substances from waste gases
JP2010179223A (en) Method for performing neutralization treatment for acid gas and apparatus therefor
JP4357018B2 (en) Detoxification method using halogenated gas treatment agent
JP2004249285A (en) Method of decomposing fluoride compound
EP0922484B1 (en) Method for treating incineration flue gas
JP4216622B2 (en) Method and apparatus for decomposing halogen-containing chemicals
JP4916397B2 (en) Cement kiln extraction gas processing system and processing method
JP4698201B2 (en) Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
JP5529374B2 (en) Chemical treatment method of gas
KR100482818B1 (en) Gas cleaning system equipped with reactant recycling system to reduce Dioxine
JP2004344729A (en) Apparatus and method for dry treatment of hf-containing gas
JP6050093B2 (en) Decomposition treatment apparatus and decomposition treatment method for fluorine-containing compound
JPH0611376B2 (en) Method for removing sulfur compounds and halogen compounds in exhaust gas
JPH11276858A (en) Decomposer for fluorine-containing compound gas and its manufacture
JPH09267026A (en) Harmful component absorbing and removing device
JP4417545B2 (en) Organohalogen compound decomposition treatment equipment
JPH11104458A (en) Dust treating in exhaust gas treating apparatus of refuse incinerator
JP2001149499A (en) Fire-extinguishing agent and activated carbon exhaust gas processing device, and its control method
JP5074439B2 (en) Halogen gas treating agent, method for producing the same, and detoxification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4986822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees