JP4216622B2 - Method and apparatus for decomposing halogen-containing chemicals - Google Patents

Method and apparatus for decomposing halogen-containing chemicals Download PDF

Info

Publication number
JP4216622B2
JP4216622B2 JP2003055303A JP2003055303A JP4216622B2 JP 4216622 B2 JP4216622 B2 JP 4216622B2 JP 2003055303 A JP2003055303 A JP 2003055303A JP 2003055303 A JP2003055303 A JP 2003055303A JP 4216622 B2 JP4216622 B2 JP 4216622B2
Authority
JP
Japan
Prior art keywords
gas
halogen
reaction
adsorbent
chemical substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055303A
Other languages
Japanese (ja)
Other versions
JP2004261726A (en
Inventor
章浩 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2003055303A priority Critical patent/JP4216622B2/en
Publication of JP2004261726A publication Critical patent/JP2004261726A/en
Application granted granted Critical
Publication of JP4216622B2 publication Critical patent/JP4216622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
この発明は、フロン類、ハロン類、六フッ化硫黄、ハロゲン化水素類等のハロゲンを含む化合物や、ハロゲンガス等(以下、これらを総称して「含ハロゲン化学物質」という。)を大量分解(破壊)処理するための分解処理方法及び分解処理装置に関する。本明細書で「反応」とは、「分解」、「解離」を含む広い意味である。
【0002】
【背景技術】
昨今、オゾン層破壊低減の見地からフロン類生産・使用規制が始まる前に生産された冷蔵庫や冷房装置(エアコン)が廃棄されつつある。また、フロン類、ハロン類は、工業製品等の洗浄に、六フッ化硫黄は電気絶縁用気体として電気機器にそれぞれ多用されている。それらの含ハロゲン化合物は、高い温暖化係数を示す温室効果ガスとして(フロン類はさらにオゾン層破壊ガスとしても)知られている。
【0003】
このため、使用済みの回収した廃棄含ハロゲン化合物を、効率的に分解処理する方法及び装置が要望されている。そこで、当該要望に応えるべく分解処理装置(吸着剤を含む。)が、例えば、特許文献1〜4等において提案されている。
【0004】
特許文献1・2に示す分解処理装置は、立て型石灰焼成炉を利用したもので、導入部から有機ハロゲン化合物をその炉内に導入することができるとともに、炉内には石灰石又はドロマイトからなる吸着剤が配置されるようになっている。そして、炉内において800〜1400℃の温度下で吸着剤と有機ハロゲン化合物とを接触させることで、有機ハロゲン化合物が分解処理できるようになっている。(特許文献4【0003】から引用)
しかし、上記処理装置の場合、800〜1400℃の炉内温度で融着して、吸着剤が塊状となって、大量の分解処理が困難であった。石灰又はドロマイトと含ハロゲン化合物が反応して生成する塩化カルシウム(CaCl2)や塩化マグネシウム(MgCl2)の融点(CaCl2:772℃、MgCl2:712℃)が炉内温度より低いためである(同【0004】、【0005】参照)。
【0005】
そこで、下記構成の有機ハロゲン吸着剤(特許文献3)、及び該吸着剤を使用した有機ハロゲン分解処理装置が提案されている(特許文献4)。
【0006】
この有機ハロゲン吸着剤は、
(a)酸化マグネシウムを50重量%以上含有する吸着剤、又は、
(b)酸化マグネシウムと酸化カルシウムとを含有し、その含有量が合わせて50重量%以上であるとともに、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)](モル比)が0.67以下である吸着剤、
であり、有機ハロゲン化合物の分解処理装置は、
反応部に有機ハロゲン化合物と吸着剤が反応部から連続的に排出されるように構成した有機ハロゲン化合物の分解処理装置であって、吸着剤が上記の(a)又は(b)であることを特徴とするものである。
【0007】
しかし、上記構成においては、ある程度大量処理(効率処理)が可能になるが、やはり、大量処理を行なおうとすると、固体アルカリ材(酸化マグネシウム、酸化カルシウム等)(以下「吸着剤」と称す。)が腐食性ガス(ハロゲンガス等)と反応中に融着する現象が若干見られた。
【0008】
したがって、有機ハロゲン化合物を大量(例えば、20kg/h程度)に処理することが機構的に困難であった。
【0009】
また、吸着剤(分解処理剤)も、MgOを所定比率以上(CaOを併用する場合は、13%以上)含有することが必須であり、吸着剤の選択幅が狭かった。このような問題は、ハロゲンガスやハロゲン化水素類等の分解処理時にもいえることである。
【0010】
【特許文献1】
特許第2795837号公報
【特許文献2】
特開平10−225618号公報
【特許文献3】
特開2001−79344公報
【特許文献4】
特開2002−165898公報
【0011】
【発明の開示】
本発明は、上記にかんがみて、含ハロゲン化学物質を従来にもまして、大量処理が容易となり、さらには、吸着剤の選択幅も広げることができる含ハロゲン化学物質の分解処理方法及び分解処理装置を提供することにある。
【0012】
本発明は、上記課題を、解決するために鋭意開発に努力をする過程で、前述の「吸着剤が融着する」という課題の原因は、「高温の吸着剤と、含ハロゲン化学物質が大量に(高濃度で)接触することにより、部分的ないし局所的に過剰反応が発生して、融点の低い化合物(塩化物、臭化物など)が局所的ないし部分的に大量生成するためである。」ことを解明して、下記構成の含ハロゲン化学物質の分解処理方法に想到した。
【0013】
吸着剤からなる充填層(流動層を除く)を備えた反応管に、含ハロゲン化学物質(被処理ガス)を連続的に導入・導出して、被処理ガスを分解反応させながら吸着剤に(反応)吸着させて前記含ハロゲン化学物質を分解処理する方法において、
充填層にガスの流れ方向に沿ってガス拡散帯および反応帯を連続的に形成し、反応帯を分解反応温度に維持しながら、ガス拡散帯を分解反応温度未満に制御し、反応帯にガス拡散帯を介して被処理ガスを導入することを特徴とする。
【0014】
反応帯に分解反応温度未満に制御された吸着剤からなるガス拡散帯を介して被処理ガスが導入されるため、被処理ガスが分解反応温度以上に維持された反応帯に直接導入される場合に発生する問題点(吸着剤の融着現象)が発生しない。ガス拡散帯により導入ガスが分散(希釈)されながら反応帯に移動するため、導入ガスが高濃度で吸着剤と接触して、部分的ないし局所的に急激な(過剰な)反応が発生し難い。
【0015】
上記構成において、分解反応温度の設定は、通常、600℃以上とする。600℃未満では、効率的な含ハロゲン化学物質の分解反応が期待できないためである。
【0016】
上記構成において、反応管に吸着剤を連続的又は間欠的に供給・排出することにより、充填層を移動層とすることが望ましい。吸着剤の移動(流通)により、導入ガスの拡散及び温度傾斜帯が形成され易く、さらには、たとえ、吸着剤粒子相互が融着しようとしても、当該融着が阻止(防止)される。
【0017】
そして、上記構成において、ガス拡散帯の被処理ガス導入口と、反応帯のガス導出口との間で差圧制御を行なうことが望ましい。ガス流れの円滑化のためである。
【0018】
反応管を立て型とすることにより、吸着剤からなる充填層の形成及び、該充填層の移動化(流通化)も、重力を利用でき容易となる。
【0019】
そして、上記方法に使用する含ハロゲン化学物質の分解処理装置は、下記構成となる。
【0020】
吸着剤の充填層(流動層を除く。)を備えた反応管に、含ハロゲン化学物質(被処理ガス)を連続的に導入・導出して、被処理ガスを吸着剤に接触させて含ハロゲン化学物質の処理を行なうための装置であって、
充填層が、被処理ガスの流れ方向に沿って、被処理ガス導入口を備えたガス拡散帯と、被処理ガス導出口を備えた反応帯とを備え、
反応管の反応帯対応部位には加熱手段が配されている、
ことを特徴とする。
【0021】
【発明を実施するための最良の形態】
本発明の含ハロゲン化学物質の分解処理方法に使用する分解処理装置の一例を図例(図1に示すモデル図)に基づいて説明をする。
【0022】
本分解処理方法に使用する装置は、上位概念的には、吸着剤からなる充填層12を備えた反応管14に、含ハロゲン化学物質(被処理ガス)を連続的に導入・導出して、被処理ガスを分解させながら吸着剤に主として反応吸着させて接触させて含ハロゲン化学物質の処理を行なうための装置である。
【0023】
ここで、吸着剤としては、通常、カルシウム系のものを使用し、石灰石やドロマイトを焼成して得られる生石灰(CaO)や軽焼ドロマイト(CaO・MgO)を使用するが、さらには、消石灰(Ca(OH)2)石灰石(炭酸カルシウム(CaCO3))、けい酸カルシウム(CaSiO3)等も使用可能である。
【0024】
また、吸収剤の粒径は、粒子形状により異なるが、通常2〜50mm、望ましくは5〜20mmとする。粒径が小さすぎては、充填層12(ガス拡散帯、反応帯)の空隙率が低くてガス流れが阻害されて、また、粒径が大きすぎては、粒子内へのガス拡散が不充分であるため、それぞれ、最適な処理効率(拡散効率及び吸着反応効率)を得難い。
【0025】
そして、該充填層12は、ガスの流れ方向に沿って、被処理ガス導入口16を備えたガス拡散帯18と、被処理ガス導出口20を備えた反応帯22とを備えている。図例では、反応管14は立て型(図例では垂直)とされ、ガス拡散帯18と反応帯22が上下に形成されるようになっている。また、ガス導入口16は、ガス拡散帯18にガス流れが下方に向かうようにガイド(案内)キャップ24が取り付けられている。
【0026】
そして、ガス導入口16(導入パイプ)とガス導出口20(導出パイプ)との一方側又は双方側には、ガス流れを吸引により発生させるために、差圧発生手段(気体輸送機)、図例ではブロア26がガス導出口20側に配されている。気体輸送機としては、通常、加圧輸送機となる送風機(ファン、ブロア)又は減圧輸送機となる圧縮機(コンプレッサ)を、適宜、要求処理量、反応管14の充填密度に対応させて適宜選定する。
【0027】
反応管14の反応帯22対応部位には電熱ヒータ(加熱手段)28、30が配されている。この電熱ヒータは、図示しない制御手段で出力制御可能なものを使用する。加熱手段としては、電熱ヒータ(抵抗発熱体)に限らず、誘導加熱等の他の電気加熱手段あるいは燃焼加熱等の火力加熱手段であってもよい。
【0028】
図例では筒状電熱ヒータからなる外設ヒータ28、及び反応帯22対応部位のみ加熱部とされたシーズドヒータ(電熱ヒータ)からなる内設ヒータ30とからなる。反応帯22の横断面内外の温度差を小さくするためである。ここで、外設ヒータ28のみ又は内設ヒータ30のみでもよい。また、内設ヒータを複数本としてもよい。
【0029】
他方、反応管14のガス拡散帯18対応部位には、第一冷却手段32が配されている。第一冷却手段32は、反応管14の一部を放熱蛇腹部で形成した空冷手段であるが、水冷手段であってもよい。
【0030】
さらに、反応管14の上方には、吸着剤供給ホッパ34が、反応管14の下方には吸着剤排出手段(機構)36が配されている。そして、吸着剤排出手段は、通常、の強制排出手段(図例ではねじコンベヤ(スクリューコンベヤ))36とし、強制排出手段の吸着剤流入口側と、反応管14の下端側(吸着剤流出口)との間には、吸着剤が移動する導管(連絡管、ダクト)38が配されている。そして、導管38の外周には第二冷却手段(図例では水冷ジャケット40)が配されている。
【0031】
この導管38は、反応管14の下端側から流出(流下)してきた吸着剤を冷却する作用を奏して吸着剤冷却帯42を形成するものである。吸着剤冷却帯42を介さずにねじコンベヤ36等の強制排出手段に直接吸着剤を流入させると、強制排出手段として特別な耐熱仕様のものを使用する必要がある。なお、この吸着剤冷却帯42は、ねじコンベヤ36等の強制排出手段と協働して、強制排出手段の出口36aを介してのガス導出口20との間のガス流れを絞る作用も奏する。ガス導出口20と強制排出手段出口36aとの間に、流体流れの圧損を発生させる吸着剤充填部が形成されるためである。この作用により、ガス導入口16からガス導出口20への被処理ガスの流れが円滑となる。
【0032】
すなわち、ガス導出口20と(強制)排出手段排出口36aの間のガス流れが絞られないと(自由であると)、被処理ガスを差圧制御により輸送(ガス移動)させるに際して、吸引制御の場合は外気が吸引されて、加圧制御の場合は排出手段出口に処理済みガスが逃げて、ガス流れが円滑に行なわれない。
【0033】
なお、該ガス流れをより円滑とする必要がある場合は、強制排出手段出口36aを回収コンテナ48も含めて略密閉状態とすることが望ましい。
【0034】
ここで、強制排出手段(コンベヤ)としては、図例のねじコンベヤ36でなくても、ベルトコンベヤ、エプロンコンベヤ、バケットコンベヤ等でもよい。なお、ねじコンベヤ(スクリューコンベヤ)36の方が他のコンベヤに比して、吸着剤を密状態で搬送可能なため外気封鎖性を確保し易い。なお、ねじコンベヤ36のねじ部(スクリュー軸)37には、適宜、冷水を通過させて排出吸着剤を積極的に冷却するようにしてもよい。
【0035】
また、間欠的に吸着剤を排出させる場合は、プランジャー方式でもよく、さらには、自由落下方式としてもよい。
【0036】
なお、図例中、44は歯車伝動手段であり、通常、原動機46の出力軸と接続されている。
【0037】
次に、上記含ハロゲン化学物質の分解処理装置の使用態様、すなわち、本発明の含ハロゲン化学物質の分解処理方法について説明する。
【0038】
まず、ねじコンベヤ36を停止させた状態で、吸収剤供給ホッパ34内に投入口34aの蓋46をあけて、導管38内および反応管14内が充填され、さらに、供給ホッパ34が略一杯になるまで吸着剤を投入する。
【0039】
次に、外設・内設電熱ヒータ28、30をオン(ON)として、反応帯22の内部雰囲気温度を、含ハロゲン化学物質の分解反応温度以上となるまで昇温させ維持する。ここで、分解反応温度の設定温度は、分解反応(効率)の見地から、通常、600℃以上、望ましくは、700℃以上、さらに望ましくは、900℃以上とする。そして、上限は、熱効率及び化学平衡の見地から、約1400℃以下、望ましくは1200℃以下とする。
【0040】
ここで、当該設定温度は、反応帯22の略中央部位置、例えば、図1のD点ないしE点におけるものとする。
【0041】
そして、通常、第一冷却手段(放熱蛇腹)32を備えたガス拡散帯18は、分解反応温度未満である。ここで、ガス拡散帯18は、通常、分解反応温度より格段に低い温度、高くて200℃以下、通常100℃以下の温度雰囲気になっている(例えば、図1のB点)。これは、ガス拡散帯18を形成する吸着剤の充填層12の熱伝導率が非常に低く、反応帯22の温度影響を受け難いためである。
【0042】
この状態で、ブロア26を運転(稼動)させると、含ハロゲン化学物質は、ガス導入口16から反応管14の充填層12内へ吸引導入される。すると、ガス導入口16から吸引導入された被処理ガスは、ガス拡散帯18で拡散されながら反応帯22ヘ輸送(搬送)される。
【0043】
このとき、ガス拡散帯18の吸着剤雰囲気温度は、被処理ガスの分解反応温度未満である。このため、被処理ガスは、吸着剤の充填隙間で拡散されながら反応帯22に移動する。
【0044】
反応帯22に到達した被処理ガスは、反応帯22で、分解後、反応吸着されてハロゲン成分が除去された排ガスとしてガス導出口20から排出される。
【0045】
なお、ガス拡散帯18の反応帯22との境界部には、温度傾斜ゾーン(例えば、100℃以上600℃未満)である移行帯(中間帯)が存在する。
【0046】
また、ガス導出口20は、図示しないが、例えば、脱水槽、集塵槽等の所要の後処理設備に接続されている。
【0047】
そして、ねじコンベヤ36を駆動させると、反応管14内の吸着剤は重力により、下方へ徐々に移動して、吸着反応が済んだ使用済み吸着剤は、導管38を介してねじコンベヤ36の入口に到達し、さらに、コンベヤ出口36aから回収コンテナ48内に落下排出される。
【0048】
このとき、反応管14内の充填層12は移動状態になり、たとえ、吸着剤の表面に融点の低い吸着反応生成物層が発生して吸着剤相互が融着しようとしても、吸着剤相互が移動しているため融着による吸着剤固着現象が発生することがない。
【0049】
また、導管38内の吸着剤は移動により放熱冷却されるとともに、水冷ジャケット(第二冷却手段)40でさらに強制冷却されて、コンベヤ36に達する。このため、コンベヤ36が耐熱仕様でなくてもコンベヤ36を傷めることがない。さらには、導管38内及びコンベア36内には、吸着剤の充填部が形成されて、ガス導出口20とコンベヤ出口36aとの間のガス流れが絞られ、外気がコンベヤ出口36aからガス導出口20へ吸引されるのが抑制される。このため、処理ガスのガス導入口16からガス導出口20への流れが円滑となる。結果的に、含ハロゲン化学物質の大量分解処理が容易となる。
【0050】
上記実施形態において、反応管14内の吸着剤充填層12を固定層として、バッチ的に所定量のガスを処理後、処理ガス導入を止めて、コンベヤ36を駆動させて、反応管14内の吸着剤充填層12を、供給ホッパ34から未使用吸着剤を流下させた未使用吸着剤に入れ替えてもよい。
【0051】
上記では反応管14を垂直立て型としたが、傾斜立て型であっても、吸着剤を自重落下可能な傾斜角度なら、上記立て型と同様な作用効果を期待できる。
【0052】
また、反応管14を横型としてもよい。移動層を形成させるには、スクリュー等の耐熱送り機構を反応管14内に配設する。
【0053】
ここで、本発明の特徴的機構及び成果を、まとめると、下記の如くになる。
【0054】
A.特徴的機構
(1)拡散機構
吸着剤と含ハロゲン化学物質が高温で局所的に接触することを防ぐためには、拡散帯において低温の吸着剤と接触させ、吸着剤中に含ハロゲン化学物質を十分拡散させることが必要である。吸着剤は断熱材と同様に蓄熱する性質を有しており、吸着剤の温度は容易に下がらない。したがって、反応管上部に温度の低い吸着剤充填層からなる拡散帯を形成し、該拡散帯に含ハロゲン化学物質を導入し、含ハロゲン化学物質が十分拡散させた機構を設けた。
(2)強制排出機構
吸着剤が多少融着しても、連続的な排出を容易にするために、機械的に強制排出する機構を設けた。
(3)差圧制御機構
反応管上部から含ハロゲン化学物質の導入を促進させるため、差圧制御機構をも設けた。
【0055】
B.本発明の効果
(1)含ハロゲン化学物質の処理結果
上記の対処により、本装置では吸着剤の融着が生じなくなり、大量の含ハロゲン化学物質を処理することが可能となった。
(2)吸着剤の選択幅の拡大
吸着剤が融着しにくくなったことより、従来法では使用できなかったMgO含有率33%未満の吸着剤も使用できるようになり、吸着剤の選択の幅が広がった。
【0056】
【試験例】
次に、本発明の効果を確認するために行なった、実施例と比較例について、行なった比較試験について説明をする。
【0057】
【試験例】
本発明の効果を確認するために行った図1(実施例)又は図2(比較例)の含ハロゲン化学物質の分解処理装置を使用して、下記各条件で含ハロゲン化学物質の分解処理試験を行った。
【0058】
<分解処理装置の説明>
実施例の分解処理装置は、図1において下記の仕様のものを使用した。
【0059】
反応管14:10Bインコネル管(267.4mmφ×1400mm)にステンレス伸縮管(250A×205mm)を接続して形成しもの。充填量:約800kg。
【0060】
導管38:ステンレス20鋼管(508mmφ×550mm)で形成したもの。充填量:約500kg。
【0061】
ねじコンベヤ36:排出速度35〜110kg/h、開口口20B鋼管。
【0062】
内設ヒータ:12kW、外設ヒータ:24kW。
【0063】
ガス導入口、ガス導出口:1B鋼管(34.0mm)
また、比較例の分解処理装置は、図2に示す如く、ガス導入を下側のガス導入口16Aから行い、ガス導出を上側のガス導出口20Aから行なうガス拡散帯が存在しない機構とするとともに、ガイドキャップ24を取り外したものを使用した。他の構成・仕様は、実施例に使用した分解処理装置と同一である。
【0064】
<分解処理試験方法・結果>
図1(実施例)の分解処理装置に、ハロン(1301)濃度50%のエア混合ガス(被処理ガス)を、100L/min(ガス処理量20kg/h)の条件で導入して、分解処理を行った。そして、ガス導出口からの排ガス中のハロンガス含有率は、3ppmで、処理ガスの分解率は99.99%であった。
【0065】
これに対して、図2(比較例)の分解処理装置に、ハロン(1301)濃度32%の空気混合ガス(被処理ガス)を、54L/min(ガス処理量7kg/h)の条件で導入して、分解処理を行った。しかし、吸着剤が融着して実質的に分解処理ができなかった。なお、ガス処理量2kgでは、分解処理可能なことを確認している。
【0066】
表1に、上記分解処理時の図1及び図2における各点温度を測定したので、参考的に示す。
【0067】
【表1】

Figure 0004216622

【図面の簡単な説明】
【図1】本発明の分解処理装置の一実施例における構成断面図。
【図2】図1の装置を処理ガスを下部導入した比較例における構成断面図。
【符号の説明】
12・・・充填層
14・・・反応管
16・・・ガス導入口
18・・・ガス拡散帯
20・・・ガス導出口
22・・・反応帯
26・・・差圧発生手段(ブロア)
28・・・外設ヒータ(加熱手段)
30・・・内設ヒータ(加熱手段)
32・・・第一冷却手段(蛇腹放熱)
36・・・吸着剤排出手段(ねじコンベヤ)
38・・・導管
40・・・第二冷却手段(水冷ジャケット)[0001]
【Technical field】
The present invention decomposes a large amount of halogen-containing compounds such as chlorofluorocarbons, halons, sulfur hexafluoride, hydrogen halides, etc., and halogen gases (hereinafter collectively referred to as “halogen-containing chemical substances”). The present invention relates to a decomposition processing method and a decomposition processing apparatus for processing (destruction). As used herein, “reaction” has a broad meaning including “decomposition” and “dissociation”.
[0002]
[Background]
In recent years, refrigerators and air conditioners (air conditioners) produced before the start of restrictions on the production and use of chlorofluorocarbons from the viewpoint of reducing ozone layer destruction are being discarded. In addition, chlorofluorocarbons and halons are frequently used for cleaning industrial products, and sulfur hexafluoride is frequently used in electrical equipment as an electrical insulating gas. These halogen-containing compounds are known as greenhouse gases exhibiting a high warming potential (fluorocarbons are also used as ozone-depleting gases).
[0003]
Therefore, there is a demand for a method and apparatus for efficiently decomposing used recovered halogen-containing compounds. Therefore, in order to meet the demand, decomposition apparatuses (including adsorbents) have been proposed in, for example, Patent Documents 1 to 4 and the like.
[0004]
The decomposition treatment apparatus shown in Patent Documents 1 and 2 uses a vertical lime firing furnace, and can introduce an organic halogen compound into the furnace from the introduction part, and is composed of limestone or dolomite in the furnace. An adsorbent is arranged. And an organic halogen compound can be decomposed | disassembled now by making an adsorbent and an organic halogen compound contact in the furnace at the temperature of 800-1400 degreeC. (Quoted from Patent Document 4 [0003])
However, in the case of the said processing apparatus, it melt | fused by the furnace temperature of 800-1400 degreeC, the adsorbent became a block shape, and a large amount of decomposition processing was difficult. This is because the melting points (CaCl 2 : 772 ° C., MgCl 2 : 712 ° C.) of calcium chloride (CaCl 2 ) and magnesium chloride (MgCl 2 ) produced by the reaction between lime or dolomite and a halogen-containing compound are lower than the furnace temperature. (See [0004] and [0005]).
[0005]
Thus, an organic halogen adsorbent having the following configuration (Patent Document 3) and an organic halogen decomposition treatment apparatus using the adsorbent have been proposed (Patent Document 4).
[0006]
This organic halogen adsorbent is
(A) an adsorbent containing 50% by weight or more of magnesium oxide, or
(B) Contains magnesium oxide and calcium oxide, the total content is 50% by weight or more, and [calcium oxide / (magnesium oxide + calcium oxide)] (molar ratio) is 0.67 or less. Adsorbent,
The organic halogen compound decomposition treatment apparatus is
An organic halogen compound decomposition treatment apparatus configured so that an organic halogen compound and an adsorbent are continuously discharged from the reaction section to the reaction section, wherein the adsorbent is (a) or (b) above. It is a feature.
[0007]
However, in the above configuration, a large amount of processing (efficiency processing) can be performed to some extent. However, when a large amount of processing is performed, a solid alkali material (magnesium oxide, calcium oxide, etc.) (hereinafter referred to as “adsorbent”). ) Was slightly fused with the corrosive gas (halogen gas, etc.) during the reaction.
[0008]
Therefore, it has been mechanically difficult to process a large amount (for example, about 20 kg / h) of the organic halogen compound.
[0009]
Also, the adsorbent (decomposition treatment agent) must contain MgO in a predetermined ratio or more (13% or more when CaO is used in combination), and the selection range of the adsorbent was narrow. Such a problem can also be said at the time of decomposition treatment of halogen gas or hydrogen halides.
[0010]
[Patent Document 1]
Japanese Patent No. 2795837 [Patent Document 2]
Japanese Patent Laid-Open No. 10-225618 [Patent Document 3]
JP 2001-79344 A [Patent Document 4]
JP 2002-165898 A
DISCLOSURE OF THE INVENTION
In view of the above, the present invention makes it possible to process a large amount of halogen-containing chemical substances more easily than in the past, and further, the method for decomposing halogen-containing chemical substances and the decomposition apparatus capable of expanding the selection range of the adsorbent. Is to provide.
[0012]
In the present invention, in the process of diligently developing to solve the above problems, the cause of the above-mentioned problem that the adsorbent is fused is that the high-temperature adsorbent and the halogen-containing chemical substance are large in quantity. This is because a partial or local excessive reaction occurs due to contact (at a high concentration), and a compound (chloride, bromide, etc.) having a low melting point is locally or partially produced in large quantities. As a result, the inventors have come up with a method for decomposing a halogen-containing chemical substance having the following constitution.
[0013]
Halogenated chemical substances (treated gas) are continuously introduced into and led out from reaction tubes equipped with a packed bed (excluding fluidized bed) made of adsorbent, and the treated gas is decomposed and reacted with the adsorbent ( Reaction) In the method of decomposing the halogen-containing chemical substance by adsorption,
A gas diffusion zone and a reaction zone are continuously formed along the gas flow direction in the packed bed, and the gas diffusion zone is controlled to be lower than the decomposition reaction temperature while maintaining the reaction zone at the decomposition reaction temperature. It is characterized in that the gas to be treated is introduced through the diffusion band.
[0014]
When the gas to be treated is introduced into the reaction zone through a gas diffusion zone made of an adsorbent controlled to be lower than the decomposition reaction temperature, the gas to be treated is directly introduced into the reaction zone maintained at or above the decomposition reaction temperature. (Adhesive phenomenon of adsorbent) does not occur. Since the introduced gas moves to the reaction zone while being dispersed (diluted) by the gas diffusion zone, the introduced gas is in contact with the adsorbent at a high concentration, so that a partial or local rapid (excessive) reaction is unlikely to occur. .
[0015]
In the above configuration, the decomposition reaction temperature is usually set to 600 ° C. or higher. This is because if the temperature is lower than 600 ° C., an efficient decomposition reaction of the halogen-containing chemical substance cannot be expected.
[0016]
In the above configuration, it is desirable that the packed bed be a moving bed by supplying or discharging the adsorbent to the reaction tube continuously or intermittently. Due to the movement (circulation) of the adsorbent, diffusion of the introduced gas and a temperature gradient band are easily formed, and further, even if the adsorbent particles try to fuse with each other, the fusion is prevented (prevented).
[0017]
And in the said structure, it is desirable to perform differential pressure control between the to-be-processed gas inlet of a gas diffusion zone, and the gas outlet of a reaction zone. This is to facilitate gas flow.
[0018]
By making the reaction tube upright, the formation of a packed bed made of an adsorbent and the movement (distribution) of the packed bed can be easily performed using gravity.
[0019]
And the decomposition processing apparatus of the halogen-containing chemical substance used for the said method becomes the following structure.
[0020]
Halogen-containing chemical substances (treated gas) are continuously introduced into and led out from reaction tubes equipped with adsorbent packed beds (excluding fluidized beds), and the treated gas is brought into contact with the adsorbent to contain halogen. An apparatus for processing chemical substances,
The packed bed is provided with a gas diffusion zone having a gas inlet to be processed and a reaction zone having a gas outlet to be processed along the flow direction of the gas to be processed,
A heating means is arranged at the reaction zone corresponding part of the reaction tube,
It is characterized by that.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
An example of the decomposition treatment apparatus used in the method for decomposing a halogen-containing chemical substance of the present invention will be described based on an example of the figure (model diagram shown in FIG. 1).
[0022]
The apparatus used in this decomposition treatment method conceptually has a concept in which a halogen-containing chemical substance (gas to be treated) is continuously introduced into and derived from a reaction tube 14 having a packed bed 12 made of an adsorbent, This is an apparatus for treating halogen-containing chemical substances by mainly reacting and adsorbing to the adsorbent while decomposing the gas to be treated.
[0023]
Here, as the adsorbent, calcium-based one is usually used, and quick lime (CaO) or light dolomite (CaO · MgO) obtained by firing limestone or dolomite is used. Ca (OH) 2 ) limestone (calcium carbonate (CaCO 3 )), calcium silicate (CaSiO 3 ) and the like can also be used.
[0024]
The particle size of the absorbent varies depending on the particle shape, but is usually 2 to 50 mm, preferably 5 to 20 mm. If the particle size is too small, the porosity of the packed bed 12 (gas diffusion zone, reaction zone) is low and the gas flow is hindered. If the particle size is too large, gas diffusion into the particle is not possible. Since it is sufficient, it is difficult to obtain optimum processing efficiency (diffusion efficiency and adsorption reaction efficiency).
[0025]
The packed bed 12 includes a gas diffusion zone 18 having a gas to be processed inlet 16 and a reaction zone 22 having a gas outlet 20 to be processed along the gas flow direction. In the illustrated example, the reaction tube 14 is a vertical type (vertical in the illustrated example), and a gas diffusion zone 18 and a reaction zone 22 are formed vertically. The gas inlet 16 is provided with a guide cap 24 so that the gas flow is directed downward in the gas diffusion zone 18.
[0026]
In order to generate a gas flow by suction on one side or both sides of the gas inlet 16 (introducing pipe) and the gas outlet 20 (outlet pipe), a differential pressure generating means (gas transporter), FIG. In the example, the blower 26 is arranged on the gas outlet 20 side. As a gas transporter, a blower (fan, blower) serving as a pressurized transporter or a compressor (compressor) serving as a decompression transporter is appropriately selected according to the required processing amount and the packing density of the reaction tube 14. Select.
[0027]
Electric heaters (heating means) 28 and 30 are disposed in the reaction tube 14 corresponding to the reaction zone 22. As this electric heater, a heater whose output can be controlled by a control means (not shown) is used. The heating means is not limited to an electric heater (resistance heating element), but may be other electric heating means such as induction heating or thermal heating means such as combustion heating.
[0028]
In the example shown in the figure, an external heater 28 composed of a cylindrical electric heater and an internal heater 30 composed of a sheathed heater (electric heater) in which only a portion corresponding to the reaction zone 22 is heated. This is to reduce the temperature difference between the inside and outside of the cross section of the reaction zone 22. Here, only the external heater 28 or the internal heater 30 may be used. Also, a plurality of internal heaters may be provided.
[0029]
On the other hand, a first cooling means 32 is disposed at a portion corresponding to the gas diffusion zone 18 of the reaction tube 14. The first cooling means 32 is an air cooling means in which a part of the reaction tube 14 is formed of a heat accordion bellows part, but may be a water cooling means.
[0030]
Further, an adsorbent supply hopper 34 is disposed above the reaction tube 14, and an adsorbent discharge means (mechanism) 36 is disposed below the reaction tube 14. The adsorbent discharge means is normally a forced discharge means (screw conveyor (screw conveyor) 36 in the illustrated example) 36, and the adsorbent inlet side of the forced discharge means and the lower end side of the reaction tube 14 (adsorbent outlet). ), A conduit (communication pipe, duct) 38 through which the adsorbent moves is arranged. A second cooling means (water cooling jacket 40 in the illustrated example) is disposed on the outer periphery of the conduit 38.
[0031]
This conduit 38 serves to cool the adsorbent flowing out (down) from the lower end side of the reaction tube 14 to form an adsorbent cooling zone 42. If the adsorbent is caused to flow directly into the forced discharge means such as the screw conveyor 36 without using the adsorbent cooling zone 42, it is necessary to use a special heat-resistant specification as the forced discharge means. The adsorbent cooling zone 42 cooperates with the forced discharge means such as the screw conveyor 36, and also has an effect of restricting the gas flow between the gas discharge port 20 and the outlet 36a of the forced discharge means. This is because an adsorbent filling part that generates pressure loss of the fluid flow is formed between the gas outlet 20 and the forced discharge means outlet 36a. By this action, the flow of the gas to be processed from the gas inlet 16 to the gas outlet 20 becomes smooth.
[0032]
That is, if the gas flow between the gas outlet 20 and the (forced) discharge means discharge port 36a is not restricted (if it is free), suction control is performed when the gas to be processed is transported (gas movement) by differential pressure control. In this case, the outside air is sucked, and in the case of pressurization control, the treated gas escapes to the outlet of the discharge means, and the gas flow is not smoothly performed.
[0033]
When it is necessary to make the gas flow smoother, it is desirable that the forced discharge means outlet 36 a including the collection container 48 be in a substantially sealed state.
[0034]
Here, the forced discharging means (conveyor) may be a belt conveyor, an apron conveyor, a bucket conveyor or the like instead of the screw conveyor 36 shown in the figure. In addition, since the screw conveyor (screw conveyor) 36 can convey an adsorbent in a dense state as compared with other conveyors, it is easy to ensure the outside air sealing property. Note that cold water may be appropriately passed through the screw portion (screw shaft) 37 of the screw conveyor 36 to positively cool the discharged adsorbent.
[0035]
Further, when the adsorbent is discharged intermittently, a plunger method may be used, and further, a free fall method may be used.
[0036]
In the figure, reference numeral 44 denotes a gear transmission means, which is normally connected to the output shaft of the prime mover 46.
[0037]
Next, a usage mode of the halogen-containing chemical substance decomposition treatment apparatus, that is, a halogen-containing chemical substance decomposition treatment method of the present invention will be described.
[0038]
First, with the screw conveyor 36 stopped, the lid 46 of the inlet 34a is opened in the absorbent supply hopper 34, the inside of the conduit 38 and the reaction tube 14 are filled, and the supply hopper 34 is almost full. The adsorbent is charged until
[0039]
Next, the external / internal electric heaters 28 and 30 are turned on (ON), and the internal atmospheric temperature of the reaction zone 22 is raised and maintained until the temperature exceeds the decomposition reaction temperature of the halogen-containing chemical substance. Here, the set temperature of the decomposition reaction temperature is usually 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 900 ° C. or higher, from the viewpoint of the decomposition reaction (efficiency). The upper limit is about 1400 ° C. or less, preferably 1200 ° C. or less, from the viewpoint of thermal efficiency and chemical equilibrium.
[0040]
Here, the set temperature is assumed to be at a substantially central position of the reaction zone 22, for example, at point D to point E in FIG.
[0041]
And normally, the gas diffusion zone 18 provided with the 1st cooling means (heat radiation bellows) 32 is less than decomposition reaction temperature. Here, the gas diffusion zone 18 is usually at a temperature much lower than the decomposition reaction temperature, which is at most 200 ° C. and usually 100 ° C. (for example, point B in FIG. 1). This is because the adsorbent packed bed 12 forming the gas diffusion zone 18 has a very low thermal conductivity and is not easily affected by the temperature of the reaction zone 22.
[0042]
When the blower 26 is operated (operated) in this state, the halogen-containing chemical substance is sucked and introduced into the packed bed 12 of the reaction tube 14 from the gas inlet 16. Then, the gas to be processed sucked and introduced from the gas inlet 16 is transported (conveyed) to the reaction zone 22 while being diffused in the gas diffusion zone 18.
[0043]
At this time, the adsorbent atmosphere temperature in the gas diffusion zone 18 is lower than the decomposition reaction temperature of the gas to be processed. For this reason, the gas to be treated moves to the reaction zone 22 while being diffused in the adsorbent filling gap.
[0044]
The gas to be treated that has reached the reaction zone 22 is exhausted from the gas outlet 20 as an exhaust gas from which the halogen components have been removed by reaction adsorption after decomposition in the reaction zone 22.
[0045]
A transition zone (intermediate zone) that is a temperature gradient zone (for example, 100 ° C. or higher and lower than 600 ° C.) exists at the boundary between the gas diffusion zone 18 and the reaction zone 22.
[0046]
Moreover, although not shown in figure, the gas outlet 20 is connected to required post-processing facilities, such as a dehydration tank and a dust collection tank, for example.
[0047]
When the screw conveyor 36 is driven, the adsorbent in the reaction tube 14 gradually moves downward due to gravity, and the used adsorbent that has undergone the adsorption reaction passes through the conduit 38 to the inlet of the screw conveyor 36. Furthermore, it is dropped and discharged into the collection container 48 from the conveyor outlet 36a.
[0048]
At this time, the packed bed 12 in the reaction tube 14 is in a moving state, and even if an adsorption reaction product layer having a low melting point is generated on the surface of the adsorbent and the adsorbents try to fuse together, Since it is moving , the adsorbent fixing phenomenon due to fusion does not occur.
[0049]
In addition, the adsorbent in the conduit 38 is cooled by radiating heat by moving, and is further forcibly cooled by a water cooling jacket (second cooling means) 40 to reach the conveyor 36. For this reason, even if the conveyor 36 is not heat-resistant specification, the conveyor 36 is not damaged. Further, an adsorbent filling portion is formed in the conduit 38 and the conveyor 36, the gas flow between the gas outlet 20 and the conveyor outlet 36a is throttled, and the outside air flows from the conveyor outlet 36a to the gas outlet. Suction to 20 is suppressed. For this reason, the flow of the processing gas from the gas inlet 16 to the gas outlet 20 becomes smooth. As a result, mass decomposition of the halogen-containing chemical substance becomes easy.
[0050]
In the above embodiment, the adsorbent packed layer 12 in the reaction tube 14 is used as a fixed layer, and after processing a predetermined amount of gas batchwise, the introduction of the processing gas is stopped, the conveyor 36 is driven, The adsorbent packed bed 12 may be replaced with an unused adsorbent in which the unused adsorbent has flowed down from the supply hopper 34.
[0051]
In the above, the reaction tube 14 is a vertical vertical type, but even if it is an inclined vertical type, the same effect as the vertical type can be expected if the inclination angle allows the adsorbent to fall by its own weight.
[0052]
The reaction tube 14 may be a horizontal type. In order to form the moving layer , a heat-resistant feed mechanism such as a screw is provided in the reaction tube 14.
[0053]
Here, the characteristic mechanisms and results of the present invention are summarized as follows.
[0054]
A. Characteristic mechanism (1) Diffusion mechanism In order to prevent local contact between the adsorbent and halogen-containing chemicals at high temperatures, contact with low-temperature adsorbents in the diffusion zone, and sufficient halogen-containing chemicals in the adsorbent It is necessary to diffuse. The adsorbent has the property of storing heat in the same manner as the heat insulating material, and the temperature of the adsorbent does not easily drop. Therefore, a diffusion band composed of a low temperature adsorbent packed layer was formed in the upper part of the reaction tube, and a halogen-containing chemical substance was introduced into the diffusion band to provide a mechanism in which the halogen-containing chemical substance was sufficiently diffused.
(2) Forced discharge mechanism In order to facilitate continuous discharge even if the adsorbent is somewhat fused, a mechanism for forced discharge is provided.
(3) Differential pressure control mechanism A differential pressure control mechanism was also provided to promote the introduction of halogen-containing chemicals from the upper part of the reaction tube.
[0055]
B. Advantages of the present invention (1) Result of treatment of halogen-containing chemical substance By the above countermeasure, the adsorbent is not fused in this apparatus, and a large amount of halogen-containing chemical substance can be treated.
(2) Expansion of the selection range of the adsorbent Since the adsorbent is difficult to fuse, an adsorbent with an MgO content of less than 33%, which could not be used in the conventional method, can be used. The width has widened.
[0056]
[Test example]
Next, the comparative test performed about the Example and comparative example which were performed in order to confirm the effect of this invention is demonstrated.
[0057]
[Test example]
Decomposition treatment test of halogen-containing chemical substances under the following conditions using the halogen-containing chemical substance decomposition treatment apparatus of FIG. 1 (Example) or FIG. 2 (Comparative Example) conducted to confirm the effect of the present invention Went.
[0058]
<Explanation of decomposition processing device>
The decomposition processing apparatus of the example used the thing of the following specification in FIG.
[0059]
Reaction tube 14: formed by connecting a stainless steel expansion tube (250A × 205mm) to a 10B Inconel tube (267.4mmφ × 1400mm). Filling amount: about 800kg.
[0060]
Conduit 38: A stainless steel 20 pipe (508 mmφ × 550 mm). Filling amount: about 500kg.
[0061]
Screw conveyor 36: discharge speed 35 to 110 kg / h, opening 20B steel pipe.
[0062]
Internal heater: 12 kW, external heater: 24 kW.
[0063]
Gas inlet / outlet: 1B steel pipe (34.0mm)
Further, as shown in FIG. 2, the decomposition processing apparatus of the comparative example has a mechanism in which there is no gas diffusion zone in which gas is introduced from the lower gas inlet 16A and gas is led out from the upper gas outlet 20A. The one with the guide cap 24 removed was used. Other configurations and specifications are the same as those of the decomposition processing apparatus used in the examples.
[0064]
<Decomposition treatment test method and results>
An air mixed gas (gas to be processed) having a halon (1301) concentration of 50% is introduced into the decomposition processing apparatus of FIG. 1 (example) under the condition of 100 L / min (gas processing amount 20 kg / h), and the decomposition processing is performed. Went. The content of the halon gas in the exhaust gas from the gas outlet was 3 ppm, and the decomposition rate of the treatment gas was 99.99%.
[0065]
On the other hand, an air mixed gas (gas to be treated) having a halon (1301) concentration of 32% is introduced into the decomposition treatment apparatus of FIG. 2 (comparative example) under the condition of 54 L / min (gas treatment amount: 7 kg / h). Then, the decomposition treatment was performed. However, the adsorbent was fused and could not be substantially decomposed. It has been confirmed that the gas can be decomposed at a gas throughput of 2 kg.
[0066]
Table 1 shows the temperature of each point in FIG. 1 and FIG.
[0067]
[Table 1]
Figure 0004216622

[Brief description of the drawings]
FIG. 1 is a sectional view of a configuration in an embodiment of a decomposition processing apparatus of the present invention.
FIG. 2 is a structural cross-sectional view of a comparative example in which processing gas is introduced into the apparatus of FIG.
[Explanation of symbols]
12 ... packed bed 14 ... reaction tube 16 ... gas inlet 18 ... gas diffusion zone 20 ... gas outlet 22 ... reaction zone 26 ... differential pressure generating means (blower)
28 ... External heater (heating means)
30 ... Internal heater (heating means)
32 ... First cooling means (bellows heat dissipation)
36 ... Adsorbent discharging means (screw conveyor)
38 ... Conduit 40 ... Second cooling means (water cooling jacket)

Claims (10)

吸着剤からなる充填層(流動層を除く。)を備えた反応管に、含ハロゲン化学物質(被処理ガス)を連続的に導入・導出して、被処理ガスを分解させながら前記吸着剤に反応吸着させて前記含ハロゲン化学物質を分解処理する方法において、
前記充填層に、ガスの流れ方向に沿ってガス拡散帯および反応帯を連続的に形成し、該反応帯を分解反応温度に維持しながら、前記ガス拡散帯を前記分解反応温度未満に制御し、該ガス拡散帯を介して前記反応帯に前記被処理ガスを導入する、
ことを特徴とする含ハロゲン化学物質の分解処理方法。
A halogen-containing chemical substance (treated gas) is continuously introduced into and led out from a reaction tube equipped with a packed bed (excluding a fluidized bed) made of an adsorbent to decompose the treated gas into the adsorbent. In the method of decomposing the halogen-containing chemical substance by reaction adsorption,
A gas diffusion zone and a reaction zone are continuously formed in the packed bed along the gas flow direction, and the gas diffusion zone is controlled to be lower than the decomposition reaction temperature while maintaining the reaction zone at the decomposition reaction temperature. Introducing the gas to be treated into the reaction zone through the gas diffusion zone,
A method for decomposing a halogen-containing chemical substance.
前記分解反応温度の設定温度を600℃以上とすることを特徴とする請求項1記載の含ハロゲン化学物質の分解処理方法。  The method for decomposing a halogen-containing chemical substance according to claim 1, wherein a set temperature of the decomposition reaction temperature is 600 ° C or higher. 前記反応管に前記吸着剤を連続的又は間欠的に供給・排出することにより、前記充填層を移動層とすることを特徴とする請求項1又は2記載の含ハロゲン化学物質の分解処理方法。The method for decomposing a halogen-containing chemical substance according to claim 1 or 2, wherein the packed bed is used as a moving bed by supplying or discharging the adsorbent to or from the reaction tube continuously or intermittently. 前記ガス拡散帯の被処理ガス導入口と、前記反応帯のガス導出口との間で差圧制御を行なうことを特徴とする請求項1、2又は3記載の含ハロゲン化学物質の分解処理方法。  The method for decomposing a halogen-containing chemical substance according to claim 1, 2 or 3, wherein differential pressure control is performed between a gas inlet to be treated in the gas diffusion zone and a gas outlet in the reaction zone. . 前記反応管が立て型であることを特徴とする請求項1〜4のいずれかに記載の含ハロゲン化学物質の分解処理方法。  The method for decomposing a halogen-containing chemical substance according to any one of claims 1 to 4, wherein the reaction tube is a vertical type. 吸着剤からなる充填層(流動層を除く。)を備えた反応管に、含ハロゲン化学物質(被処理ガス)を連続的に導入・導出して、被処理ガスを分解させながら前記吸着剤に反応吸着させて含ハロゲン化学物質の分解処理を行なうための装置であって、
前記充填層が、ガスの流れ方向に沿って、被処理ガス導入口を備えたガス拡散帯と、被処理ガス導出口を備えた反応帯とを備え、
前記反応管の反応帯対応部位には加熱手段が配されている、
ことを特徴とする含ハロゲン化学物質の分解処理装置。
A halogen-containing chemical substance (treated gas) is continuously introduced into and led out from a reaction tube equipped with a packed bed (excluding a fluidized bed) made of an adsorbent to decompose the treated gas into the adsorbent. An apparatus for performing reaction adsorption to decompose halogen-containing chemical substances,
The packed bed includes a gas diffusion zone having a gas inlet to be processed and a reaction zone having a gas outlet to be processed along the gas flow direction,
A heating means is arranged in the reaction zone corresponding part of the reaction tube,
An apparatus for decomposing a halogen-containing chemical substance.
前記反応管のガス拡散帯対応部位に冷却手段が配されていることを特徴とする請求項6記載の含ハロゲン化学物質の分解処理装置。  The apparatus for decomposing a halogen-containing chemical substance according to claim 6, wherein a cooling means is disposed at a portion corresponding to the gas diffusion zone of the reaction tube. 前記反応管に前記吸着剤の連続強制排出手段が接続されていることを特徴とする請求項6又は7記載の含ハロゲン化学物質の分解処理装置。  8. The halogenated chemical substance decomposition treatment apparatus according to claim 6, wherein a continuous forced discharge means for the adsorbent is connected to the reaction tube. 前記ガス拡散帯のガス導入口と前記反応帯のガス導出口の間に差圧を発生させる差圧制御手段を備えていることを特徴とする請求項6、7又は8記載の含ハロゲン化学物質の分解処理装置。  The halogen-containing chemical substance according to claim 6, 7 or 8, further comprising a differential pressure control means for generating a differential pressure between a gas inlet of the gas diffusion zone and a gas outlet of the reaction zone. Decomposition processing equipment. 前記反応管が立て型であることを特徴とする請求項6〜9のいずれかに記載の含ハロゲン化学物質の分解処理装置。  The said reaction tube is a vertical type, The decomposition processing apparatus of the halogen-containing chemical substance in any one of Claims 6-9 characterized by the above-mentioned.
JP2003055303A 2003-03-03 2003-03-03 Method and apparatus for decomposing halogen-containing chemicals Expired - Fee Related JP4216622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055303A JP4216622B2 (en) 2003-03-03 2003-03-03 Method and apparatus for decomposing halogen-containing chemicals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055303A JP4216622B2 (en) 2003-03-03 2003-03-03 Method and apparatus for decomposing halogen-containing chemicals

Publications (2)

Publication Number Publication Date
JP2004261726A JP2004261726A (en) 2004-09-24
JP4216622B2 true JP4216622B2 (en) 2009-01-28

Family

ID=33119352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055303A Expired - Fee Related JP4216622B2 (en) 2003-03-03 2003-03-03 Method and apparatus for decomposing halogen-containing chemicals

Country Status (1)

Country Link
JP (1) JP4216622B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581748B1 (en) * 2004-09-24 2006-05-22 한상배 Fluid Supply Equipments with the Function of Self-priming and Mixing and the Aerators with using the equipments
CN101370576B (en) * 2006-02-14 2012-01-11 株式会社吴羽 Continuous particulate high-temperature gas treatment apparatus and method of treating
JP5355882B2 (en) * 2007-12-06 2013-11-27 中部電力株式会社 Reaction tube sealing device for decomposition treatment device and method of using reaction tube sealing device for decomposition treatment device
JP5529374B2 (en) * 2007-12-26 2014-06-25 中部電力株式会社 Chemical treatment method of gas
JP5358139B2 (en) * 2008-08-06 2013-12-04 中部電力株式会社 Method for decomposing halogen-containing compounds

Also Published As

Publication number Publication date
JP2004261726A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
ES2424668T3 (en) Procedure and device for lime production
CN106987275A (en) The high-temperature plasma gasification and melting processing system and method for trade waste
JP4216622B2 (en) Method and apparatus for decomposing halogen-containing chemicals
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
JP4781734B2 (en) Method for treating fluid organic compounds
JP5848468B2 (en) Reactor
JPH05237324A (en) Method for purifying harmful gas
JP4163492B2 (en) Acid gas dry processing method and dry processing apparatus
JP3249986B2 (en) CFC decomposition treatment method and equipment
JP2008275178A (en) Asbestos-containing material treatment furnace and system
JP5529374B2 (en) Chemical treatment method of gas
JP2008126134A (en) Dry treatment device and dry treatment measure of halogen-containing gas
JP2001219031A (en) Method and device for decomposing perfluorinated compound
JP5850378B2 (en) Oiling equipment
JP5053050B2 (en) Halogen-containing gas dry processing apparatus and dry processing method
JP6343120B2 (en) Perfluoride treatment apparatus, perfluoride treatment method and program
JP2012055836A (en) Method of treating gas
JP5355882B2 (en) Reaction tube sealing device for decomposition treatment device and method of using reaction tube sealing device for decomposition treatment device
CN209771799U (en) Comprehensive recycling system for PVC (polyvinyl chloride) waste alkali and gas burning kiln waste gas
JP2010158620A (en) Method of treating emission comprising fluorine-containing compound, and reaction vessel for treating emission
JP5771896B2 (en) How to remove iodine fluoride
JP5016618B2 (en) Method for treating exhaust gas containing SF6
JP2005030608A (en) Heating treatment installation with gas combustor
JP5476043B2 (en) Method and apparatus for treating exhaust gas containing fluorine compound
JP2732220B2 (en) Method for heat treatment of solids generated during flue gas cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees