JP4986117B2 - Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same - Google Patents

Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same Download PDF

Info

Publication number
JP4986117B2
JP4986117B2 JP2006168242A JP2006168242A JP4986117B2 JP 4986117 B2 JP4986117 B2 JP 4986117B2 JP 2006168242 A JP2006168242 A JP 2006168242A JP 2006168242 A JP2006168242 A JP 2006168242A JP 4986117 B2 JP4986117 B2 JP 4986117B2
Authority
JP
Japan
Prior art keywords
phosphonium salt
magnetic fine
fine particles
phase transfer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006168242A
Other languages
Japanese (ja)
Other versions
JP2007332107A (en
Inventor
一彦 佐藤
真人 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006168242A priority Critical patent/JP4986117B2/en
Publication of JP2007332107A publication Critical patent/JP2007332107A/en
Application granted granted Critical
Publication of JP4986117B2 publication Critical patent/JP4986117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Description

本発明は、分離回収が容易で尚且つ再利用可能な新規ホスホニウム塩とその製造方法、及び前記磁性微粒子担持ホスホニウム塩からなる相間移動触媒並びにそれを用いた相間移動反応に関する。   The present invention relates to a novel phosphonium salt that is easy to separate and recover and can be reused, a method for producing the same, a phase transfer catalyst comprising the above-mentioned magnetic fine particle-supported phosphonium salt, and a phase transfer reaction using the same.

相間移動反応は環境調和型の有機合成反応としてその有用性が広く認識され、多くの化合物の工業的製法にも応用されている。しかしながら、相間移動反応の触媒として用いられるホスホニウム塩は反応後の分離回収が困難な為、再利用ができないことが問題である。   The phase transfer reaction is widely recognized as an environmentally harmonious organic synthesis reaction, and has been applied to industrial processes for many compounds. However, the phosphonium salt used as a catalyst for the phase transfer reaction has a problem that it cannot be reused because it is difficult to separate and recover after the reaction.

上記の問題を解決する手段として、ホスホニウム塩をポリマー等の固体に担持させることによって、ろ過による触媒の分離回収を可能にする方法が提案されている。例えば、非特許文献1にはポリスチレン上に担持されたホスホニウム塩を用いる相間移動反応が記載されている。しかしながら、ポリマーに担持することで、有機溶媒による膨潤の為に使用できる溶媒が限定されることや操作性が悪化すること、物理的に壊れやすいこと、熱安定性が悪いこと等の新たな問題点が生まれる。   As a means for solving the above-described problem, a method has been proposed in which a phosphonium salt is supported on a solid such as a polymer so that the catalyst can be separated and recovered by filtration. For example, Non-Patent Document 1 describes a phase transfer reaction using a phosphonium salt supported on polystyrene. However, by supporting the polymer, new problems such as limited solvents that can be used for swelling with organic solvents, poor operability, physical fragility, poor thermal stability, etc. A point is born.

一方、マグネタイトやフェライト等の磁性材料はナノサイズの微粒子が製造可能であり、その表面に機能性有機分子を担持させることも可能である。例えば特許文献1、2にはナノサイズの磁性微粒子に担持された生理活性物質や酵素の製造方法が記載されている。しかも、これらの磁性微粒子は無機材料である為、有機溶媒による膨潤も起きず、ポリマー粒子と比べて熱的にも物理的にも安定であることが予想される。更に、磁気により迅速に分離回収することが可能であるというポリマーには無い最大の特徴を有している。
しかしながら、上記の特許文献において磁性微粒子に担持されるものは生理活性物質や酵素にすぎず、相間移動触媒としてホスホニウム塩を担持した例については未だに知られていないのが現状である。
米国特許第4672040号明細書 特開2005−60221号公報 Macromolecules、1984年、第17巻、1812−1814頁
On the other hand, magnetic materials such as magnetite and ferrite can produce nano-sized fine particles, and functional organic molecules can be supported on the surface thereof. For example, Patent Documents 1 and 2 describe methods for producing physiologically active substances and enzymes supported on nano-sized magnetic fine particles. Moreover, since these magnetic fine particles are inorganic materials, they are not swelled by an organic solvent, and are expected to be thermally and physically stable as compared with polymer particles. Furthermore, it has the greatest characteristic that the polymer can quickly separate and recover by magnetism.
However, in the above-mentioned patent documents, what is supported on the magnetic fine particles is only a physiologically active substance or an enzyme, and the present situation is not yet known about an example in which a phosphonium salt is supported as a phase transfer catalyst.
US Pat. No. 4,672,040 JP 2005-60221 A Macromolecules, 1984, 17: 1812-1814

本発明は上記に挙げた従来技術の問題点を克服する為になされたものであって、磁気による分離回収が可能で尚且つ再利用も可能な相間移動触媒を提供することを目的とするものである。   The present invention has been made to overcome the above-mentioned problems of the prior art, and an object thereof is to provide a phase transfer catalyst that can be separated and recovered by magnetism and can be reused. It is.

本発明者らは、前記課題を解決する為に鋭意研究を重ねた結果、磁性微粒子に相関移動触媒を固定化することによって、触媒が磁気により操作可能となるため、反応後の触媒の分離回収および再利用が大幅に簡便になることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have made it possible to operate the catalyst magnetically by immobilizing the phase transfer catalyst on the magnetic fine particles, so that the catalyst can be separated and recovered after the reaction. And it has been found that reuse is greatly simplified, and the present invention has been completed.

すなわち、本発明によれば、以下の発明が提供される。
(1)磁性体微粒子上に、下記の一般式(1)
That is, according to the present invention, the following inventions are provided.
(1) On the magnetic fine particles, the following general formula (1)

Figure 0004986117
Figure 0004986117

(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Xは酸の陰イオンを表す。)で表されるホスホニウム塩部位を有するシロキシ基が結合していることを特徴とする磁性微粒子担持ホスホニウム塩。
(2)下記の一般式(2)
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. X represents an anion of an acid. And a siloxy group having a phosphonium salt moiety represented by formula (1).
(2) The following general formula (2)

Figure 0004986117
Figure 0004986117

(式中、R1は炭化水素基を表す。R2、R3、R4は炭化水素基を表し、それぞれが結合して環を形成していてもよい。R5は炭素数が1から3のアルキル基を表す。Xは酸の陰イオンを表す。)で表されるトリアルコキシシリル基を有するホスホニウム塩と磁性微粒子を反応させることを特徴とする上記(1)の磁性微粒子担持ホスホニウム塩の製造方法。
(3)上記(1)の磁性微粒子担持ホスホニウム塩からなることを特徴とする相間移動触媒。
(4)相間移動反応において、上記(1)の磁性微粒子担持ホスホニウム塩を触媒に用いることを特徴とする方法
(In the formula, R 1 .R 2, R 3, R 4 representing a hydrocarbon group is a hydrocarbon group, good .R 5 also form a ring, each from 1 carbon atoms represents the 3 alkyl groups .X - magnetic fine particle-supporting phosphonium above (1) which comprises reacting the phosphonium salt and the magnetic fine particles having a trialkoxysilyl group represented by represents) an anion of an acid. Method for producing salt.
(3) A phase transfer catalyst comprising the phosphonium salt carrying a magnetic fine particle as described in (1) above.
(4) In the phase transfer reaction, a method which comprises using a magnetic particulate support phosphonium salt of the above (1) to the catalyst.

本発明の効果Effects of the present invention

本発明によれば、磁気操作可能な磁性微粒子担持ホスホニウム塩を得ることができる。こうして得られた磁性微粒子担持ホスホニウム塩を相間移動触媒として用いることにより、相間移動反応を有効に進めることができるだけでなく、触媒の迅速且つ簡便な分離回収と再使用が可能となる。   According to the present invention, a magnetic fine particle-supporting phosphonium salt that can be magnetically operated can be obtained. By using the magnetic particle-supported phosphonium salt thus obtained as a phase transfer catalyst, not only can the phase transfer reaction proceed effectively, but also the catalyst can be quickly and easily separated and recovered and reused.

本発明により得られる、新規な磁性微粒子担持ホスホニウム塩は、磁性微粒子上に、前記一般式(1)で表されるホスホニウム塩部位を有するシロキシ基が結合しているものであって、下記のとおり表される。   The novel magnetic fine particle-supported phosphonium salt obtained by the present invention is obtained by binding a siloxy group having a phosphonium salt moiety represented by the general formula (1) on a magnetic fine particle. expressed.

Figure 0004986117
Figure 0004986117

(式中、Mは磁性微粒子を表し、磁性微粒子R炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Xは酸の陰イオンを表す。)
以下、上記[化5]で表される磁性微粒子担持ホスホニウム塩について、その詳細を具体的に記述する。
Mは磁性微粒子を表す。本発明で担体として用いる磁性微粒子の種類には特に制限が無く、マグネタイト、フェライト、マグヘマイト等、公知のものであれば如何なるものでも使用できる。
本発明における磁性微粒子は如何なる大きさものでも使用可能であるが、小さすぎると磁気によって回収する事が困難となり、大きすぎても触媒効率が低下する為、100nmから100μmの粒径を有するものが好ましい。
(In the formula, M represents a magnetic fine particle and represents a magnetic fine particle R 1 hydrocarbon group. R 2 , R 3 , and R 4 represent a hydrocarbon group, and each may be bonded to form a ring. X - represents an anion of acid).
Hereinafter, the details of the phosphonium salt carrying magnetic fine particles represented by the above [Chemical Formula 5] will be specifically described.
M represents magnetic fine particles. The type of magnetic fine particles used as a carrier in the present invention is not particularly limited, and any known magnetic particles such as magnetite, ferrite, maghemite, etc. can be used.
The magnetic fine particles of any size can be used in the present invention, but if they are too small, it is difficult to recover them by magnetism, and if they are too large, the catalyst efficiency decreases, so those having a particle diameter of 100 nm to 100 μm. preferable.

は、炭化水素基であり、アルキレン基、芳香環上に置換基を有する或は有しないアリール基の中から選ばれる。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、フェニル基、ナフチル基、ビフェニル基、ビナフチル基等が挙げられる。
また、R、R、Rは、炭化水素基であり、それぞれが結合して環を形成していてもよく、アルキル基、アルキレン基、アラルキル基、芳香環上に置換基を有する或は有しないアリール基の中から選ばれる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、シクロペンチル基、シクロヘキシル基、メチレン基、エチレン基、プロピレン基、ブチレン基、ベンジル基、フェネチル基、フェニル基、ナフチル基、ビフェニル基、ビナフチル基、4−メトキシフェニル基等が挙げられる。
さらに、Xは酸の陰イオンを表す。好ましいものとして、具体的にはF、Cl、Br、Iのハロゲンイオンの他、OH、HSO 、NO 、(CFSO、CFSO 、(CFSO、PF 、BF 等が挙げられるが、これらに限られるものではない。
R 1 is a hydrocarbon group, and is selected from an alkylene group and an aryl group with or without a substituent on the aromatic ring. Specific examples include a methylene group, an ethylene group, a propylene group, a butylene group, a phenyl group, a naphthyl group, a biphenyl group, and a binaphthyl group.
R 2 , R 3 and R 4 are hydrocarbon groups which may be bonded to each other to form a ring, and have a substituent on the alkyl group, alkylene group, aralkyl group or aromatic ring; Is selected from aryl groups that do not have. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, methylene group, ethylene group, propylene group, Examples include butylene group, benzyl group, phenethyl group, phenyl group, naphthyl group, biphenyl group, binaphthyl group, 4-methoxyphenyl group and the like.
Further, X represents an anion of an acid. Preferable examples include, specifically, F , Cl , Br and I halogen ions, OH , HSO 4 , NO 3 , (CF 3 SO 2 ) 2 N and CF 3 SO 3. -, (CF 3 SO 2) 3 C -, PF 6 -, BF 4 - and others as mentioned, is not limited thereto.

次に、本発明の磁性微粒子担持ホスホニウム塩の製造方法について以下に記述する。
上記の本発明の磁性微粒子担持ホスホニウム塩は、下記の一般式(2)
Next, the method for producing the magnetic fine particle-supported phosphonium salt of the present invention will be described below .
The magnetic fine particle-supported phosphonium salt of the present invention has the following general formula (2):

Figure 0004986117
Figure 0004986117

(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Rは炭素数が1から3のアルキル基を表す。Xは酸の陰イオンを表す。)で表されるトリアルコキシシリル基を有するホスホニウム塩と磁性微粒子とを溶媒中で反応させることにより得ることができる。 (In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. R 5 has 1 carbon number. represents the 3 alkyl groups .X - it can be obtained by reacting the phosphonium salt and the magnetic fine particles having a trialkoxysilyl group represented by represents) an anion of an acid in a solvent..

この反応に使用できる溶媒は原料となる一般式(2)で表されるホスホニウム塩を溶解し得るものであれば特に制限は無く、具体的にはエタノール、メタノール、1−プロパノール、2−プロパノール、クロロホルム、ジクロロメタン、ジクロロエタン等が挙げられる。これらの溶媒は単独での使用に限られず、適宜混合して用いてもよい。また、この反応では有機溶媒に対して0.5〜1%の水の添加で反応が促進される場合もある。   The solvent that can be used for this reaction is not particularly limited as long as it can dissolve the phosphonium salt represented by the general formula (2) as a raw material. Specifically, ethanol, methanol, 1-propanol, 2-propanol, Examples include chloroform, dichloromethane, dichloroethane and the like. These solvents are not limited to being used alone, and may be used by appropriately mixing them. In this reaction, the reaction may be promoted by adding 0.5 to 1% of water with respect to the organic solvent.

反応条件としては、反応温度が低すぎると反応が進行しにくく、また、高すぎても好ましくない副反応が起こる可能性があることから、0℃から150℃の範囲が好ましく、更に好ましくは25℃から120℃の範囲である。又、反応時間は一概に定める事はできないが、通常は12時間〜24時間で十分である。   The reaction conditions are preferably in the range of 0 ° C. to 150 ° C., more preferably 25, because the reaction is difficult to proceed if the reaction temperature is too low, and undesirable side reactions may occur if the reaction temperature is too high. It is in the range of ℃ to 120 ℃. The reaction time cannot be generally determined, but usually 12 hours to 24 hours is sufficient.

本発明においては、原料となる一般式(2)で表されるホスホニウム塩と磁性微粒子の使用割合に特に制限はないが、磁性微粒子に対して原料となるホスホニウム塩の割合が少なすぎると担持量が減少し、また大量に使用しすぎても製造コストの無駄につながる恐れが有る事から、磁性微粒子1モル当たり0.5〜5モルの範囲のホスホニウム塩を用いることが好ましい。   In the present invention, there is no particular limitation on the use ratio of the phosphonium salt represented by the general formula (2) as a raw material and the magnetic fine particles, but if the proportion of the phosphonium salt as a raw material is too small relative to the magnetic fine particles, It is preferable to use a phosphonium salt in the range of 0.5 to 5 moles per mole of magnetic fine particles because the production cost may be wasted even if the amount is excessively used.

本発明の磁性微粒子担持ホスホニウム塩を相間移動触媒として用いることにより、各種の相間移動反応を進行させることができる。具体的にはハロゲン交換反応、脱ハロゲン化水素反応、エーテル合成反応、シアノ化反応、酸化反応等が挙げられる。以下にこれらの中の反応例について示す。なお、本発明の前記磁性微粒子担持ホスホニウム塩は前記した相間移動反応に用いることができるものであり、相間移動反応であれば、ここに挙げられる相間移動反応以外の相間移動反応にも使用することができる。   By using the phosphonium salt carrying the magnetic fine particles of the present invention as a phase transfer catalyst, various phase transfer reactions can proceed. Specific examples include halogen exchange reaction, dehydrohalogenation reaction, ether synthesis reaction, cyanation reaction, oxidation reaction and the like. The reaction examples among these are shown below. The magnetic fine particle-supported phosphonium salt of the present invention can be used for the phase transfer reaction described above, and if it is a phase transfer reaction, it can also be used for a phase transfer reaction other than the phase transfer reactions listed here. Can do.

上記[化5]で表される本発明の磁性微粒子担持ホスホニウム塩を触媒として用いることにより、以下の反応を行うことができる。
すなわち、前記触媒の存在下に、下記一般式(3)
−X (3)
(式中Rは炭化水素基を表し、炭素数1〜20のアルキル基、ベンジル基から選ばれるいずれの基でもよい。XはF、Cl、Br、Iから選ばれるハロゲン原子を表す。)で表されるハロゲン化アルキルと、下記一般式(4)
OM (4)
(式中Rは炭化水素基を表し、炭素数1〜20のアルキル基、フェニル基、ナフチル基から選ばれるいずれの基でもよい。MはLi、Na、Kの中から選ばれる金属原子を表す。)で表される金属アルコキシドを、溶媒の存在下に反応させ、下記一般式(5)
OR (5)
(式中R、Rは前記と同じ意味を持つ。)で表されるエーテル化合物を製造することができる。
The following reaction can be performed by using the magnetic particle-supported phosphonium salt of the present invention represented by the above [Chemical Formula 5] as a catalyst.
That is, in the presence of the catalyst, the following general formula (3)
R 6 -X 2 (3)
(Wherein R 6 represents a hydrocarbon group, and may be any group selected from an alkyl group having 1 to 20 carbon atoms and a benzyl group. X 2 represents a halogen atom selected from F, Cl, Br, and I. And an alkyl halide represented by the following general formula (4)
R 7 OM 2 (4)
(Wherein R 7 represents a hydrocarbon group, and may be any group selected from an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a naphthyl group. M 2 is a metal atom selected from Li, Na, and K. In the presence of a solvent, a metal alkoxide represented by the following general formula (5)
R 6 OR 7 (5)
(Wherein R 6 and R 7 have the same meaning as described above) can be produced.

この反応は、溶媒に原料物質、及び触媒を添加・溶解させる。溶媒には、水及び有機溶媒を用いる。有機溶媒は炭化水素、ハロゲン化炭化水素等を用いる。反応温度に制限はないが、低すぎると反応の進行が遅くなり、また、高すぎても望ましくない副反応が起こる可能性のあることから、20℃〜120℃で行うのが好ましい。反応中は反応溶液を激しく撹拌する。反応終了後、反応容器の外壁に磁石を密着させることで、触媒のみが反応容器の内壁に集積する為、生成物を含む反応溶液のみをデカンテーションによって分別することが可能である。反応溶液をガスクロマトグラフィーにより分析することにより目的物質の収率を求めることができるが、溶媒抽出することによって目的物質を単離することも可能である。また、触媒は反応容器に残る為、次の反応にそのまま使用することができる。   In this reaction, a raw material and a catalyst are added and dissolved in a solvent. As the solvent, water and an organic solvent are used. As the organic solvent, hydrocarbon, halogenated hydrocarbon or the like is used. The reaction temperature is not limited, but if it is too low, the progress of the reaction is slow, and if it is too high, an undesirable side reaction may occur. During the reaction, the reaction solution is vigorously stirred. After the reaction is complete, the magnet is brought into close contact with the outer wall of the reaction vessel, so that only the catalyst accumulates on the inner wall of the reaction vessel, so that only the reaction solution containing the product can be separated by decantation. The yield of the target substance can be determined by analyzing the reaction solution by gas chromatography, but it is also possible to isolate the target substance by solvent extraction. Further, since the catalyst remains in the reaction vessel, it can be used as it is for the next reaction.

かくして、上記[化5]で表される本発明の磁性微粒子担持ホスホニウム塩を相間移動触媒として用いることで効率的に相間移動反応を行うことができる。更に、磁気を利用することで、従来のポリマー担持型相間移動触媒に比べ、触媒の分離回収および再利用が大幅に簡便にすることが可能である。   Thus, the phase transfer reaction can be efficiently performed by using the phosphonium salt carrying the magnetic fine particles of the present invention represented by the above [Chemical Formula 5] as the phase transfer catalyst. Furthermore, by utilizing magnetism, it is possible to greatly simplify the separation and recovery and reuse of the catalyst as compared with the conventional polymer-supported phase transfer catalyst.

更に詳細な説明の為、以下に実施例を記述するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)(マグネタイト微粒子の製造)
塩化鉄(II)4水和物1.99gと塩化鉄(III)6水和物3.24gを蒸留水2.4lに加え、減圧脱気し、窒素雰囲気下で撹拌した。均一溶液になるまで撹拌した後、1.5Nの水酸化アンモニウム水溶液を激しく撹拌しながら溶液のpHが約9になるまで滴下した。生成した黒色コロイドはネオジウム磁石により凝集させ、上澄み液はデカンテーションにより取り除いた。残った黒色沈殿を蒸留水で5回、エタノールで2回洗浄した後、減圧乾燥を行い1.63gのマグネタイトを得た。
For further detailed description, examples will be described below, but the present invention is not limited to these examples.
(Example 1) (Production of magnetite fine particles)
1.99 g of iron (II) chloride tetrahydrate and 3.24 g of iron (III) chloride hexahydrate were added to 2.4 l of distilled water, degassed under reduced pressure, and stirred under a nitrogen atmosphere. After stirring until a homogeneous solution was obtained, 1.5N aqueous ammonium hydroxide solution was added dropwise with vigorous stirring until the pH of the solution reached about 9. The produced black colloid was aggregated with a neodymium magnet, and the supernatant was removed by decantation. The remaining black precipitate was washed 5 times with distilled water and twice with ethanol, and then dried under reduced pressure to obtain 1.63 g of magnetite.

(実施例2)(ヨウ化トリ−n−ブチル[3−(トリメトキシシリル)プロピル]ホスホニウムの製造)
窒素雰囲気下で(3−ヨウ化プロピル)トリメトキシシラン2.90g(10.0mmol)を乾燥トルエン10mlに溶解した後、凍結脱気を3回行った。この溶液にトリ−n−ブチルホスフィン2.02g(10.0mmol)を加え100℃で36時間撹拌した。反応溶液を減圧濃縮して得られる粗ホスホニウム塩をヘキサン、ヘキサン/エーテル(v/v=1/1)でそれぞれ3回洗浄した後、減圧乾燥して4.57g(収率93%)の無色透明液体を得た。H−NMR、13C−NMR、31P−NMR、FAB−MS、及び元素分析から目的の構造である事を確認した。
H−NMR(499MHz,CDCl):δ=0.89(t,2H,7.6Hz),0.99(t,9H,7.0Hz),1.49−1.77(m,14H),2.35−2.55(m,8H),3.58(s,9H). 13C−NMR(125MHz,CDCl):δ=9.9(d,Jp−=15.5Hz),13.0,15.5(d,Jp−=4.1Hz),18.9(d,Jp−=47.5Hz),21.2(d,Jp−=45.4Hz),23.4(d,Jp−=4.1Hz),23.3(d,Jp−=14.5Hz),50.3. 31P−NMR(202MHz,CDCl):δ=32.2. FAB−MS(positive):m/z=365([M−I]). 元素分析:計算値:C,43.90;H,8.60,測定値:C,43.89;H,8.55.
Example 2 (Production of tri-n-butyl iodide [3- (trimethoxysilyl) propyl] phosphonium iodide)
Under a nitrogen atmosphere, 2.90 g (10.0 mmol) of (3-iodopropyl) trimethoxysilane was dissolved in 10 ml of dry toluene, and freeze deaeration was performed three times. To this solution, 2.02 g (10.0 mmol) of tri-n-butylphosphine was added and stirred at 100 ° C. for 36 hours. The crude phosphonium salt obtained by concentrating the reaction solution under reduced pressure was washed with hexane and hexane / ether (v / v = 1/1) three times, and then dried under reduced pressure to give 4.57 g (yield 93%) of colorless. A clear liquid was obtained. From 1 H-NMR, 13 C-NMR, 31 P-NMR, FAB-MS, and elemental analysis, the target structure was confirmed.
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.89 (t, 2H, 7.6 Hz), 0.99 (t, 9H, 7.0 Hz), 1.49-1.77 (m, 14H) ), 2.35-2.55 (m, 8H), 3.58 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 9.9 (d, J p− = 15.5 Hz), 13.0, 15.5 (d, J p− = 4.1 Hz), 18.9 (D, J p− = 47.5 Hz), 21.2 (d, J p− = 45.4 Hz), 23.4 (d, J p− = 4.1 Hz), 23.3 (d, J p − = 14.5 Hz), 50.3. 31 P-NMR (202 MHz, CDCl 3 ): δ = 32.2. FAB-MS (positive): m / z = 365 ([M-I]). Elemental analysis: calculated value: C, 43.90; H, 8.60, measured value: C, 43.89; H, 8.55.

(実施例3)(ヨウ化トリ−n−オクチル[3−(トリメトキシシリル)プロピル]ホスホニウムの合成)
窒素雰囲気下で(3−ヨウ化プロピル)トリメトキシシラン5.36g(18.5mmol)を乾燥トルエン10mlに溶解した後、凍結脱気を3回行った。この溶液にトリ−n−オクチルホスフィン7.61g(アルドリッチ社製、純度90%、18.5mmolに相当)を加え120℃で36時間撹拌した。反応溶液を減圧濃縮して得られる粗ホスホニウム塩をヘキサンで5回洗浄した後、減圧乾燥して11.6g(収率95%)の無色透明液体を得た。H−NMR、13C−NMR、31P−NMR、FAB−MS、及び元素分析から目的の構造である事を確認した。
H−NMR(499MHz,CDCl):δ=0.80−0.89(m,11H),1.18−1.36(m,24H),1.42−1.74(m,14H),2.32−2.51(m,8H),3.55(s,9H). 13C−NMR(125MHz,CDCl):δ=10.3(d,Jp−=14.5Hz),13.9,15.9(d,Jp−=4.1Hz),19.5(d,Jp−=49.6Hz),21.6(d,Jp−=46.5Hz),21.8(d,Jp−=4.1Hz),22.4,28.80,28.83,30.6(d,Jp−=14.5Hz),31.6,50.6. 31P−NMR(202MHz,CDCl):δ=32.0. FAB−MS(positive):m/z=533([M−I]). 元素分析:計算値:C,54.53;H,10.07.測定値:C,54.57;H,10.14.
(Example 3) (Synthesis of tri-n-octyl iodide [3- (trimethoxysilyl) propyl] phosphonium iodide)
Under a nitrogen atmosphere, 5.36 g (18.5 mmol) of (3-iodopropyl) trimethoxysilane was dissolved in 10 ml of dry toluene, and freeze deaeration was performed three times. To this solution, 7.61 g of tri-n-octylphosphine (manufactured by Aldrich, purity 90%, corresponding to 18.5 mmol) was added and stirred at 120 ° C. for 36 hours. The crude phosphonium salt obtained by concentrating the reaction solution under reduced pressure was washed five times with hexane and then dried under reduced pressure to obtain 11.6 g (yield 95%) of a colorless transparent liquid. From 1 H-NMR, 13 C-NMR, 31 P-NMR, FAB-MS, and elemental analysis, the target structure was confirmed.
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.80-0.89 (m, 11H), 1.18-1.36 (m, 24H), 1.42-1.74 (m, 14H) ), 2.32-2.51 (m, 8H), 3.55 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 10.3 (d, J p− = 14.5 Hz), 13.9, 15.9 (d, J p− = 4.1 Hz), 19.5 (D, J p− = 49.6 Hz), 21.6 (d, J p− = 46.5 Hz), 21.8 (d, J p− = 4.1 Hz), 22.4, 28.80, 28.83, 30.6 (d, J p− = 14.5 Hz), 31.6, 50.6. 31 P-NMR (202 MHz, CDCl 3 ): δ = 32.0. FAB-MS (positive): m / z = 533 ([M-I]). Elemental analysis: calculated value: C, 54.53; H, 10.07. Measurement: C, 54.57; H, 10.14.

(実施例4)(ヨウ化トリフェニル[3−(トリメトキシシリル)プロピル]ホスホニウムの合成)
窒素雰囲気下で(3−ヨウ化プロピル)トリメトキシシラン2.90g(10.0mmol)、トリフェニルホスフィン2.62g(10.0mmol)を脱気した乾燥トルエン10mlに溶解した後、80℃で24時間撹拌した。反応溶液を室温まで冷却後、下層に分離した粗ホスホニウム塩を5mlの乾燥ジクロロメタンに溶解させ、ヘキサンを加えて再沈殿させた。沈殿をトルエンで洗浄後、更にエ−テルで3回洗浄し、減圧乾燥して4.43g(収率80%)の白色固体を得た。H−NMR、13C−NMR、31P−NMR、FAB−MS、及び元素分析から目的の構造である事を確認した。
H−NMR(499MHz,CDCl):δ=1.10(t,2H,J=7.6Hz),1.74−1.86(m,2H),3.53(s,9H),3.63−3.74(m,2H),7.68−7.87(m,15H). 13C−NMR(125MHz,CDCl):δ=10.1(d,Jp−=16.6Hz),16.7(d,Jp−=3.1Hz),24.9(d,Jp−=48.5Hz),50.8,118.1(d,Jp−=85.8Hz),130.6(d,Jp−=12.4Hz),133.7(d,Jp−=9.3Hz),135.2(d,Jp−=2.0Hz). 31P−NMR(202MHz,CDC1):δ=23.3. FAB−MS(positive):m/z=425([M−I]).元素分析:計算値:C,52.18;H,5.47. 測定値:C,52.24;H,5.37.
(Example 4) (Synthesis of triphenyl [3- (trimethoxysilyl) propyl] phosphonium iodide)
In a nitrogen atmosphere, 2.90 g (10.0 mmol) of (3-iodopropyl) trimethoxysilane and 2.62 g (10.0 mmol) of triphenylphosphine were dissolved in 10 ml of degassed dry toluene, and then dissolved at 80 ° C. for 24 hours. Stir for hours. After cooling the reaction solution to room temperature, the crude phosphonium salt separated in the lower layer was dissolved in 5 ml of dry dichloromethane and reprecipitated by adding hexane. The precipitate was washed with toluene, further washed with ether three times, and dried under reduced pressure to obtain 4.43 g (yield 80%) of a white solid. From 1 H-NMR, 13 C-NMR, 31 P-NMR, FAB-MS, and elemental analysis, the target structure was confirmed.
1 H-NMR (499 MHz, CDCl 3 ): δ = 1.10 (t, 2H, J = 7.6 Hz), 1.74-1.86 (m, 2H), 3.53 (s, 9H), 3.63-3.74 (m, 2H), 7.68-7.87 (m, 15H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 10.1 (d, J p− = 16.6 Hz), 16.7 (d, J p− = 3.1 Hz), 24.9 (d, J p- = 48.5 Hz), 50.8, 118.1 (d, J p- = 85.8 Hz), 130.6 (d, J p- = 12.4 Hz), 133.7 (d, J p − = 9.3 Hz), 135.2 (d, J p− = 2.0 Hz). 31 P-NMR (202 MHz, CDC1 3 ): δ = 23.3. FAB-MS (positive): m / z = 425 ([M-I]). Elemental analysis: calculated value: C, 52.18; H, 5.47. Measurement: C, 52.24; H, 5.37.

(実施例5)(ヨウ化トリ(4−メトキシフェニル)[3−(トリメトキシシリル)プロピル]ホスホニウムの合成)
窒素雰囲気下で(3−ヨウ化プロピル)トリメトキシシラン2.90g(10.0mmol)、トリ(4−メトキシフェニル)ホスフィン3.51g(10.0mmol)を脱気した乾燥トルエン30mlに溶解した後、80℃で24時間撹拌した。反応溶液を室温まで冷却後、下層に分離した粗ホスホニウム塩をトルエンで3回洗浄後、更にヘキサンで3回洗浄し、減圧乾燥して6.38g(収率100%)のアモルファス状白色固体を得た。H−NMR、13C−NMR、31P−NMR、FAB−MS、及び元素分析から目的の構造である事を確認した。
H−NMR(499MHz,CDCl):δ=1.04(t,2H,J=7.6Hz),1.70−1.81(m,2H),3.34−3.43(m,2H)3.54(s,9H),3.93(s,9H),7.14−7.70(m,12H). 13C−NMR(125MHz,CDCl):δ=10.1(d,Jp−=16.6Hz),16.6(d,Jp−=4.1Hz),26.0(d,Jp−=52.7Hz),50.8,56.0,109.0(d,Jp−=94.1Hz),116.2(d,Jp−=14.4Hz),135.5(d,Jp−=11.4Hz),164.6. 31P−NMR(202MHz,CDCl):δ=20.8. FAB−MS(positive):m/z=515([M−I]).元素分析:計算値:C,50.47;H,5.65. 測定値:C,50.43;H,5.65.
Example 5 Synthesis of tri (4-methoxyphenyl) [3- (trimethoxysilyl) propyl] phosphonium iodide
After dissolving 2.90 g (10.0 mmol) of (3-iodopropyl) trimethoxysilane and 3.51 g (10.0 mmol) of tri (4-methoxyphenyl) phosphine in 30 ml of deaerated dry toluene under a nitrogen atmosphere. , And stirred at 80 ° C. for 24 hours. After cooling the reaction solution to room temperature, the crude phosphonium salt separated in the lower layer was washed with toluene three times, further washed with hexane three times, and dried under reduced pressure to give 6.38 g (yield 100%) of an amorphous white solid. Obtained. From 1 H-NMR, 13 C-NMR, 31 P-NMR, FAB-MS, and elemental analysis, the target structure was confirmed.
1 H-NMR (499 MHz, CDCl 3 ): δ = 1.04 (t, 2H, J = 7.6 Hz), 1.70-1.81 (m, 2H), 3.34-3.43 (m , 2H) 3.54 (s, 9H), 3.93 (s, 9H), 7.14-7.70 (m, 12H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 10.1 (d, J p− = 16.6 Hz), 16.6 (d, J p− = 4.1 Hz), 26.0 (d, J p- = 52.7 Hz), 50.8, 56.0, 109.0 (d, J p- = 94.1 Hz), 116.2 (d, J p- = 14.4 Hz), 135.5 ( d, J p- = 11.4Hz), 164.6. 31 P-NMR (202 MHz, CDCl 3 ): δ = 20.8. FAB-MS (positive): m / z = 515 ([M-I]). Elemental analysis: calculated value: C, 50.47; H, 5.65. Measurement: C, 50.43; H, 5.65.

(実施例6)(触媒1の製造)
マグネタイト微粒子2.32g(1.00mmol)、ヨウ化トリ−n−ブチル[3−(トリメトキシシリル)プロピル]ホスホニウム2.46g(0.500mmol)、エタノール50ml、水0.33mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、エタノールで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、2.31gの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.84%であることがわかった。
(Example 6) (Production of catalyst 1)
A mixture of 2.32 g (1.00 mmol) of magnetite fine particles, 2.46 g (0.500 mmol) of tri-n-butyl [3- (trimethoxysilyl) propyl] phosphonium iodide, 50 ml of ethanol and 0.33 ml of water at room temperature. After ultrasonic stirring for 1 minute, the mixture was stirred at reflux for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with ethanol. The remaining magnetic fine particles were dried under reduced pressure to obtain 2.31 g of brown black fine particles. The elemental content of the fine particles obtained was found to have an iodine content of 1.84%.

(実施例7)(触媒2の製造)
マグネタイト微粒子2.76g(11.9mmol)、ヨウ化トリ−n−オクチル[3−(トリメトキシシリル)プロピル]ホスホニウム3.95g(5.97mmol)、エタノール50ml、水0.33mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、エタノールで2回、トルエンで3回洗浄した。残った磁性微粒子を減圧乾燥する事により、2.57gの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.07%であることがわかった。
(Example 7) (Production of catalyst 2)
A mixture of 2.76 g (11.9 mmol) of magnetite fine particles, 3.95 g (5.97 mmol) of tri-n-octyl [3- (trimethoxysilyl) propyl] phosphonium iodide, 50 ml of ethanol and 0.33 ml of water at room temperature. After ultrasonic stirring for 1 minute, the mixture was stirred at reflux for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed twice with ethanol and three times with toluene. The remaining magnetic fine particles were dried under reduced pressure to obtain 2.57 g of brown black fine particles. The obtained fine particles were analyzed by halogen element analysis, and the iodine content was found to be 1.07%.

(実施例8)(触媒3の製造)
マグネタイト微粒子1.59g(6.87mmol)、ヨウ化トリフェニル[3−(トリメトキシシリル)プロピル]ホスホニウム1.90g(3.44mmol)、エタノール50ml、水0.33mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、エタノールで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、1.63gの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は2.09%であることがわかった。
(Example 8) (Production of catalyst 3)
A mixture of 1.59 g (6.87 mmol) of magnetite fine particles, 1.90 g (3.44 mmol) of triphenyl [3- (trimethoxysilyl) propyl] phosphonium iodide, 50 ml of ethanol, and 0.33 ml of water was exceeded for 1 minute at room temperature. After sonic stirring, the mixture was stirred at reflux for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with ethanol. The remaining magnetic fine particles were dried under reduced pressure to obtain 1.63 g of brown black fine particles. The content of iodine was found to be 2.09% by halogen element analysis of the obtained fine particles.

(実施例9)(触媒4の製造)
マグネタイト微粒子2.32g(1.00mmol)、ヨウ化トリ(4−メトキシフェニル)[3−(トリメトキシシリル)プロピル]ホスホニウム3.21g(0.50mmol)、エタノール50ml、水0.33mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、エタノールで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、2.24gの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.43%であることがわかった。
(Example 9) (Production of catalyst 4)
A mixture of magnetite fine particles 2.32 g (1.00 mmol), tri (4-methoxyphenyl) [3- (trimethoxysilyl) propyl] phosphonium iodide 3.21 g (0.50 mmol), ethanol 50 ml, water 0.33 ml. The mixture was ultrasonically stirred at room temperature for 1 minute and then refluxed for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with ethanol. The remaining magnetic fine particles were dried under reduced pressure to obtain 2.24 g of brown black fine particles. The content of iodine was found to be 1.43% by halogen element analysis of the obtained fine particles.

(実施例10)
ナトリウムフェノキシド三水和物128mg(0.750mmol)、触媒1(155mg、ホスホニウム塩0.0225mmol相当)、1−ブロモブタン0.12ml(1.13mmol)、トルエン1ml、水1ml、テトラデカン(20μl:ガスクロマトグラフィーの内標準物質)の混合物をオイルバス中100℃で12時間撹拌した。ガスクロマトグラフィ−によりブチルフェニルエ−テルの収率を求めた。その結果を表1に示す。
(実施例10〜13)
実施例10において触媒1に代えて表1に示した触媒を用いた以外は実施例10と同様の操作を行った。その結果を表1に示す。
(Example 10)
Sodium phenoxide trihydrate 128 mg (0.750 mol), catalyst 1 (155 mg, phosphonium salt 0.0225 mmol equivalent), 1-bromobutane 0.12 ml (1.13 mmol), toluene 1 ml, water 1 ml, tetradecane (20 μl: gas chromatography) The mixture was stirred at 100 ° C. for 12 hours in an oil bath. The yield of butylphenyl ether was determined by gas chromatography. The results are shown in Table 1.
(Examples 10 to 13)
The same operation as in Example 10 was performed except that the catalyst shown in Table 1 was used in place of the catalyst 1 in Example 10. The results are shown in Table 1.

(比較例1)
実施例10において触媒1を省略した以外は実施例10と同様の操作を行った。その結果を表1に示す。
(Comparative Example 1)
The same operation as in Example 10 was performed except that the catalyst 1 was omitted in Example 10. The results are shown in Table 1.

Figure 0004986117
Figure 0004986117

かかる表1の結果から明らかなように、触媒1〜4は触媒活性を有することが確認された。これにより本発明の磁性微粒子担持ホスホニウム塩が相間移動反応に対して有効な触媒となることが認められたのである。   As is clear from the results in Table 1, it was confirmed that the catalysts 1 to 4 have catalytic activity. Thus, it was confirmed that the magnetic fine particle-supported phosphonium salt of the present invention is an effective catalyst for the phase transfer reaction.

(実施例14〜16)(触媒の再利用)
実施例12の反応終了後、反応容器の外壁にネオジウム磁石を密着させることで触媒を反応容器の壁面に集めた。そのままデカンテ−ションすることで上澄み溶液のみを別の容器へと移した。反応容器に残った触媒をヘキサン、水でそれぞれ3回洗浄し、減圧乾燥した後、実施例12と同じ条件下でのブチルフェニルエ−テルの製造に用いた。これらの操作を繰り返し行った結果を表2に示す。
(Examples 14 to 16) (Reuse of catalyst)
After completion of the reaction in Example 12, the catalyst was collected on the wall of the reaction vessel by bringing a neodymium magnet into close contact with the outer wall of the reaction vessel. By decanting as it was, only the supernatant solution was transferred to another container. The catalyst remaining in the reaction vessel was washed with hexane and water three times, dried under reduced pressure, and then used for the production of butylphenyl ether under the same conditions as in Example 12. Table 2 shows the results of repeating these operations.

Figure 0004986117
Figure 0004986117

表2の結果から本発明の磁性微粒子担持相間移動触媒は磁気により迅速且つ容易に分離回収されるだけでなく、繰り返し再使用可能であることが確認された。   From the results in Table 2, it was confirmed that the phase transfer catalyst supporting magnetic fine particles of the present invention was not only rapidly and easily separated and recovered by magnetism, but could be reused repeatedly.

本発明の磁性微粒子担持ホスホニウム塩は、磁気により迅速且つ容易に分離回収されるだけでなく、繰り返し再使用可能であることから、環境調和型の有機合成反応である相間移動反応において特に有用であり、多くの化合物の工業的製法に用いることができる。
The phosphonium salt carrying the magnetic fine particles of the present invention is not only rapidly and easily separated and recovered by magnetism, but also can be reused repeatedly, and thus is particularly useful in a phase transfer reaction that is an environmentally friendly organic synthesis reaction. It can be used for industrial production of many compounds.

Claims (4)

磁性体微粒子上に、下記の一般式(1)
Figure 0004986117
(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Xは酸の陰イオンを表す。)で表されるホスホニウム塩部位を有するシロキシ基が結合していることを特徴とする磁性微粒子担持ホスホニウム塩。
On the magnetic fine particles, the following general formula (1)
Figure 0004986117
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. X represents an anion of an acid. And a siloxy group having a phosphonium salt moiety represented by formula (1).
下記の一般式(2)
Figure 0004986117
(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Rは炭素数が1から3のアルキル基を表す。Xは酸の陰イオンを表す。)で表されるトリアルコキシシリル基を有するホスホニウム塩と磁性微粒子を反応させることを特徴とする請求項1記載の磁性微粒子担持ホスホニウム塩の製造方法。
The following general formula (2)
Figure 0004986117
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. R 5 has 1 carbon number. represents the 3 alkyl groups .X -. is representing the anion of an acid) tri represented by alkoxy magnetic fine particles supported phosphonium according to claim 1, characterized by reacting a phosphonium salt and magnetic fine particles having a silyl group Method for producing salt.
請求項1記載の磁性微粒子担持ホスホニウム塩からなることを特徴とする相間移動触媒。   A phase transfer catalyst comprising the phosphonium salt carrying magnetic fine particles according to claim 1. 相間移動反応において、請求項1記載の磁性微粒子担持ホスホニウム塩を触媒に用いることを特徴とする方法 In phase transfer reaction, a method which comprises using a magnetic particulate support phosphonium salt according to claim 1, wherein the catalyst.
JP2006168242A 2006-06-19 2006-06-19 Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same Expired - Fee Related JP4986117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168242A JP4986117B2 (en) 2006-06-19 2006-06-19 Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168242A JP4986117B2 (en) 2006-06-19 2006-06-19 Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same

Publications (2)

Publication Number Publication Date
JP2007332107A JP2007332107A (en) 2007-12-27
JP4986117B2 true JP4986117B2 (en) 2012-07-25

Family

ID=38931909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168242A Expired - Fee Related JP4986117B2 (en) 2006-06-19 2006-06-19 Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same

Country Status (1)

Country Link
JP (1) JP4986117B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704320B2 (en) * 2010-03-04 2015-04-22 独立行政法人産業技術総合研究所 Magnetic nanoparticles fixed osmium (VI) acid salt
CN108623606B (en) * 2018-08-02 2019-11-12 杭州中美华东制药有限公司 A kind of synthetic method for replacing Buddhist nun according to Shandong
CN112939783B (en) * 2021-01-27 2022-05-17 三峡大学 Method for preparing aldehyde or ketone by selectively oxidizing alcohol with oxygen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163681B2 (en) * 1991-09-06 2001-05-08 エヌオーケー株式会社 Production and recovery of hydrogenation catalysts
JPH06170245A (en) * 1992-12-02 1994-06-21 Tdk Corp Method for recovering magnetic catalyst particle
JP2005060221A (en) * 2003-07-31 2005-03-10 Rikogaku Shinkokai Composite material of organic substance and ferrite, and its production method
US20050136477A1 (en) * 2003-11-17 2005-06-23 Hashem Akhavan-Tafti Methods for isolating nucleic acids from biological and cellular materials
JP4586200B2 (en) * 2006-05-10 2010-11-24 独立行政法人産業技術総合研究所 Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same

Also Published As

Publication number Publication date
JP2007332107A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
Clark et al. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids
Yang et al. Highly stereoselective anti-Markovnikov hydrothiolation of alkynes and electron-deficient alkenes by a supported Cu-NHC complex
Calogero et al. Supported l-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition
JP4586200B2 (en) Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same
Keller et al. An efficient and recyclable dendritic catalyst able to dramatically decrease palladium leaching in Suzuki couplings
US7049266B2 (en) Layered double hydroxides supported nanopalladium catalysts for Heck-, Suzuki, Sonogashira-, and Stille type coupling reactions of haloarenes
US7064226B2 (en) Organopolysiloxanes containing phosphonic groups, method for the production and use thereof
US8871668B2 (en) Immobilized lewis acid catalysts coated with ionic liquids and use thereof
JP4986117B2 (en) Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same
Samanta et al. A mononuclear copper (II) complex immobilized in mesoporous silica: An efficient heterogeneous catalyst for the aerobic oxidation of benzylic alcohols
Hajipour et al. Simultaneous immobilization of a matrix containing palladium and phase transfer catalyst on silica nanoparticles: application as a recoverable catalyst for the Heck reaction in neat water
JP5704320B2 (en) Magnetic nanoparticles fixed osmium (VI) acid salt
CN104324751A (en) Catalyst used for olefin hydrosilylation reaction, preparation method thereof and the olefin hydrosilylation reaction employing the catalyst
CN106008401A (en) Preparation method of N-formamide compound
US20110172432A1 (en) Method for the synthesis of heterogeneous palladium catalysts, catalysts obtained and use of same
CN109746048B (en) Multiphase rhodium-based hydroformylation catalyst, and preparation method and application thereof
JP5131813B2 (en) Catalyst for phase transfer reaction
JP5628827B2 (en) Palladium catalyst and method for producing bisaryl compound using the same
Naikwade et al. Magnetic nanoparticle supported ionic liquid phase catalyst for oxidation of alcohols
JP2012082155A (en) Triazolium salt and method for producing the same, and method for producing alkylated oxindol using azide alcohol and asymmetric reaction
JP6536262B2 (en) Solid catalyst
JP6765098B2 (en) Magnetic nanoparticles immobilized imidazolium hydrogen carbonate
US10125069B2 (en) Polyfluoroalkyl allyl compound and method for producing the same
EP1464394A1 (en) Supported nanopalladium catalyst for C-C coupling reactions of haloarenes
JP5008063B2 (en) Diphosphine core type amphiphilic dendrimer, process for producing the same, bidentate phosphine ligand and palladium-containing complex compound having a coordination structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees