JP4586200B2 - Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same - Google Patents

Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same Download PDF

Info

Publication number
JP4586200B2
JP4586200B2 JP2006131902A JP2006131902A JP4586200B2 JP 4586200 B2 JP4586200 B2 JP 4586200B2 JP 2006131902 A JP2006131902 A JP 2006131902A JP 2006131902 A JP2006131902 A JP 2006131902A JP 4586200 B2 JP4586200 B2 JP 4586200B2
Authority
JP
Japan
Prior art keywords
magnetic fine
fine particles
phase transfer
ammonium salt
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131902A
Other languages
Japanese (ja)
Other versions
JP2007301466A (en
Inventor
一彦 佐藤
真人 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006131902A priority Critical patent/JP4586200B2/en
Publication of JP2007301466A publication Critical patent/JP2007301466A/en
Application granted granted Critical
Publication of JP4586200B2 publication Critical patent/JP4586200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、分離回収が容易で尚且つ再利用可能な新規4級アンモニウム塩とその製造方法、並びに前記磁性微粒子担持4級アンモニウム塩からなる相間移動触媒、及びそれを用いた相間移動反応に関する。   The present invention relates to a novel quaternary ammonium salt that is easy to separate and recover and can be reused, a method for producing the same, a phase transfer catalyst comprising the quaternary ammonium salt carrying magnetic fine particles, and a phase transfer reaction using the same.

相間移動反応は環境調和型の有機合成反応としてその有用性が認識され、広く研究されているだけでなく、多くの化合物の工業的製法にも応用されている。しかしながら、相間移動反応の触媒として用いられる4級アンモニウム塩等は反応後の分離回収が困難な為、触媒の再利用ができないことが問題となっている。そこで、反応終了後の分離回収が容易で尚且つ再利用可能な相間移動触媒の開発が求められている。   Phase transfer reactions have been recognized for their usefulness as environmentally conscious organic synthesis reactions and are not only widely studied but also applied to the industrial production of many compounds. However, since quaternary ammonium salts and the like used as phase transfer reaction catalysts are difficult to separate and recover after the reaction, there is a problem that the catalyst cannot be reused. Therefore, development of a phase transfer catalyst that is easy to separate and recover after completion of the reaction and can be reused is required.

上記の問題を解決する手段として、相間移動触媒をポリマーに担持させることによって、ろ過による触媒の分離回収を可能にする方法が提案されている。例えば、非特許文献1、2にはポリスチレン上に担持された4級アンモニウム塩を用いる相間移動反応が記載されている。しかしながら、ポリマーを担体として用いることで、有機溶媒による膨潤の為に使用できる溶媒が限定されることや操作性が悪化すること、物理的に壊れやすいこと、熱安定性が悪いこと等の新たな問題点が生まれる。   As a means for solving the above-described problem, a method has been proposed in which a phase transfer catalyst is supported on a polymer so that the catalyst can be separated and recovered by filtration. For example, Non-Patent Documents 1 and 2 describe a phase transfer reaction using a quaternary ammonium salt supported on polystyrene. However, by using a polymer as a carrier, new solvents such as limited solvents that can be used for swelling with organic solvents, poor operability, physical fragility, poor thermal stability, etc. Problems are born.

一方、マグネタイトやフェライト等の磁性材料はナノサイズの微粒子が製造可能であり、その表面に機能性有機分子を担持させることも可能である。例えば特許文献1、2にはナノサイズの磁性微粒子に担持された生理活性物質や酵素の製造方法が記載されている。しかも、これらの磁性微粒子は無機材料である為、有機溶媒による膨潤も起きず、ポリマー粒子と比べて熱的にも物理的にも安定であることが予想される。更に、磁気により迅速に分離回収することが可能であるというポリマーには無い最大の特徴を有している。
しかしながら、これらの特許文献において磁性微粒子に担持されるものは生理活性物質や酵素にすぎず、相間移動触媒については未だに知られていないのが現状である。
米国特許第4672040号明細書 特開2005−60221号公報 Journal of the American Chemical Society、1975年、第97巻、5956−5957頁 Reactive and Functional Polymers、1999年、第41巻,37−43頁
On the other hand, magnetic materials such as magnetite and ferrite can produce nano-sized fine particles, and functional organic molecules can be supported on the surface thereof. For example, Patent Documents 1 and 2 describe methods for producing physiologically active substances and enzymes supported on nano-sized magnetic fine particles. Moreover, since these magnetic fine particles are inorganic materials, they are not swelled by an organic solvent, and are expected to be thermally and physically stable as compared with polymer particles. Furthermore, it has the greatest characteristic that the polymer can quickly separate and recover by magnetism.
However, in these patent documents, what is supported on magnetic fine particles is only a physiologically active substance or an enzyme, and the phase transfer catalyst is not yet known at present.
US Pat. No. 4,672,040 JP 2005-60221 A Journal of the American Chemical Society, 1975, 97, 5956-5957 Reactive and Functional Polymers, 1999, 41, 37-43

本発明は上記に挙げた従来技術の問題点を克服する為になされたものであって、4級アンモニウム塩を磁性微粒子に担持させることで、磁気による分離回収が可能で尚且つ再利用も可能な相間移動触媒を提供することを目的とするものである。   The present invention has been made to overcome the above-mentioned problems of the prior art, and by supporting a quaternary ammonium salt on magnetic fine particles, it can be separated and recovered by magnetism and can also be reused. An object of the present invention is to provide a simple phase transfer catalyst.

本発明者らは、前記課題を解決する為に鋭意研究を重ねた結果、磁性微粒子に相間移動触媒を固定化することによって、触媒が磁気により操作可能となるため、反応後の触媒の分離回収および再利用が大幅に簡便になるに想到し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have made it possible to operate the catalyst magnetically by immobilizing the phase transfer catalyst on the magnetic fine particles, so that the catalyst can be separated and recovered after the reaction. As a result, the present invention has been completed.

すなわち、本発明によれば、以下の発明が提供される。
(1)磁性体微粒子上に、下記の一般式(1)
That is, according to the present invention, the following inventions are provided.
(1) On the magnetic fine particles, the following general formula (1)

Figure 0004586200
Figure 0004586200

(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Xは酸の陰イオンを表す。)で表される4級アンモニウム塩部位を有するシロキシ基が結合していることを特徴とする磁性微粒子担持4級アンモニウム塩。
(2)下記の一般式(2)
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. X represents an anion of an acid. A magnetic fine particle-supported quaternary ammonium salt, wherein a siloxy group having a quaternary ammonium salt moiety represented by formula (1) is bonded.
(2) The following general formula (2)

Figure 0004586200
Figure 0004586200

(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Rは炭素数が1から3のアルキル基を表す。Xは酸の陰イオンを表す。)で表されるトリアルコキシシリル基を有する4級アンモニウム塩と磁性微粒子を反応させることを特徴とする上記(1)の磁性微粒子担持4級アンモニウム塩の製造方法。
(3)上記(1)の磁性微粒子担持4級アンモニウム塩からなることを特徴とする相間移動触媒。
(4)上記(1)の磁性微粒子担持4級アンモニウム塩を触媒に用いることを特徴とする相間移動反応。
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. R 5 has 1 carbon number. Wherein the magnetic fine particles are reacted with a quaternary ammonium salt having a trialkoxysilyl group represented by the formula (1), wherein X represents an anion of an acid. A method for producing a supported quaternary ammonium salt.
(3) A phase transfer catalyst comprising the quaternary ammonium salt carrying the magnetic fine particles of (1) above.
(4) A phase transfer reaction characterized in that the magnetic fine particle supported quaternary ammonium salt of (1) is used as a catalyst.

本発明の効果Effects of the present invention

本発明によれば、磁気操作可能な磁性微粒子担持4級アンモニウム塩を得ることができる。こうして得られた磁性微粒子担持4級アンモニウム塩を相間移動触媒として用いることにより、相間移動反応を有効に進めることができるだけでなく、触媒の迅速且つ簡便な分離回収と再使用が可能となる。   According to the present invention, a magnetic fine particle-supported quaternary ammonium salt that can be magnetically operated can be obtained. By using the magnetic particle-supported quaternary ammonium salt thus obtained as a phase transfer catalyst, not only can the phase transfer reaction proceed effectively, but the catalyst can be quickly and easily separated and recovered and reused.

本ハツメイニヨリ得られる、新規な磁性微粒子担持4級アンモニウム塩は、磁性微粒子上に、前記一般式(1)で表される4級アンモニウム塩部位を有するシロキシ基が結合しているものであって、下記のとおり表される。   The novel magnetic fine particle-supported quaternary ammonium salt obtained by the present fluffy tail is obtained by binding a siloxy group having a quaternary ammonium salt moiety represented by the general formula (1) on the magnetic fine particle, It is expressed as follows.

Figure 0004586200
Figure 0004586200

(式中、Mは磁性微粒子を表し、磁性微粒子R炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Xは酸の陰イオンを表す。)
以下、上記[化5]で表される磁性微粒子担持4級アンモニウム塩について、その詳細を具体的に記述する。
Mは磁性微粒子を表す。本発明で担体として用いる磁性微粒子の種類には特に制限が無く、マグネタイト、フェライト、マグヘマイト等、公知のものであれば如何なるものでも使用できる。
本発明における磁性微粒子は如何なる大きさものでも使用可能であるが、小さすぎると磁気によって回収する事が困難となり、大きすぎても触媒効率が低下する為、100nmから100μmの粒径を有するものが好ましい。
(In the formula, M represents a magnetic fine particle and represents a magnetic fine particle R 1 hydrocarbon group. R 2 , R 3 , and R 4 represent a hydrocarbon group, and each may be bonded to form a ring. X - represents an anion of acid).
Hereinafter, the details of the magnetic fine particle-supported quaternary ammonium salt represented by the above [Chemical Formula 5] will be specifically described.
M represents magnetic fine particles. The type of magnetic fine particles used as a carrier in the present invention is not particularly limited, and any known magnetic particles such as magnetite, ferrite, maghemite, etc. can be used.
The magnetic fine particles of any size can be used in the present invention, but if they are too small, it is difficult to recover them by magnetism, and if they are too large, the catalyst efficiency decreases, so those having a particle diameter of 100 nm to 100 μm. preferable.

は、炭化水素基であり、アルキレン基、芳香環上に置換基を有する或は有しないアリール基の中から選ばれる。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、フェニル基、ナフチル基、ビフェニル基、ビナフチル基等が挙げられる。
また、R、R、Rは、炭化水素基であり、それぞれが結合して環を形成していてもよく、アルキル基、アルキレン基、アラルキル基、芳香環上に置換基を有する或は有しないアリール基の中から選ばれる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、シクロペンチル基、シクロヘキシル基、メチレン基、エチレン基、プロピレン基、ブチレン基、ベンジル基、フェネチル基、フェニル基、ナフチル基、ビフェニル基、ビナフチル基等が挙げられる。
さらに、Xは酸の陰イオンを表す。好ましいものとして、具体的にはF、Cl、Br、Iのハロゲンイオンの他、OH、HSO 、NO 、(CFSO、CFSO 、(CFSO、PF 、BF 等が挙げられるが、これらに限られるものではない。
R 1 is a hydrocarbon group, and is selected from an alkylene group and an aryl group with or without a substituent on the aromatic ring. Specific examples include a methylene group, an ethylene group, a propylene group, a butylene group, a phenyl group, a naphthyl group, a biphenyl group, and a binaphthyl group.
R 2 , R 3 and R 4 are hydrocarbon groups which may be bonded to each other to form a ring, and have a substituent on the alkyl group, alkylene group, aralkyl group or aromatic ring; Is selected from aryl groups that do not have. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, methylene group, ethylene group, propylene group, Examples include butylene group, benzyl group, phenethyl group, phenyl group, naphthyl group, biphenyl group, and binaphthyl group.
Further, X represents an anion of an acid. Preferable examples include, specifically, F , Cl , Br and I halogen ions, OH , HSO 4 , NO 3 , (CF 3 SO 2 ) 2 N and CF 3 SO 3. -, (CF 3 SO 2) 3 C -, PF 6 -, BF 4 - and others as mentioned, is not limited thereto.

次に、本発明の磁性微粒子担持4級アンモニウム塩の製造方法について以下に記述する。
上記の本発明の磁性微粒子担持4級アンモニウム塩は、下記の一般式(2)
Next, a method for producing the magnetic fine particle supported quaternary ammonium salt of the present invention will be described below.
The magnetic fine particle-supported quaternary ammonium salt of the present invention has the following general formula (2)

Figure 0004586200
Figure 0004586200

(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Rは炭素数が1から3のアルキル基を表す。Xは酸の陰イオンを表す。)で表されるトリアルコキシシリル基を有する4級アンモニウム塩と磁性微粒子とを溶媒中で反応させることにより得ることができる。 (In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. R 5 has 1 carbon number. represents the 3 alkyl groups .X - it can be obtained by reacting the quaternary ammonium salt and the magnetic fine particles having a trialkoxysilyl group represented by represents) an anion of an acid in a solvent..

この反応に使用できる溶媒は原料となる一般式(2)で表されるアンモニウム塩を溶解し得るものであれば特に制限は無く、具体的にはエタノール、メタノール、1−プロパノール、2−プロパノール、クロロホルム、ジクロロメタン、ジクロロエタン等が挙げられる。これらの溶媒は単独での使用に限られず、適宜混合して用いてもよい。また、この反応では有機溶媒に対して0.5〜1%の水の添加で反応が促進される場合もある。   The solvent that can be used for this reaction is not particularly limited as long as it can dissolve the ammonium salt represented by the general formula (2) as a raw material. Specifically, ethanol, methanol, 1-propanol, 2-propanol, Examples include chloroform, dichloromethane, dichloroethane and the like. These solvents are not limited to being used alone, and may be used by appropriately mixing them. In this reaction, the reaction may be promoted by adding 0.5 to 1% of water with respect to the organic solvent.

反応条件としては、反応温度が低すぎると反応が進行しにくく、また、高すぎても好ましくない副反応が起こる可能性があることから、0℃から150℃の範囲が好ましく、更に好ましくは25℃から120℃の範囲である。又、反応時間は一概に定める事はできないが、通常は12時間〜24時間で十分である。   The reaction conditions are preferably in the range of 0 ° C. to 150 ° C., more preferably 25, because the reaction is difficult to proceed if the reaction temperature is too low, and undesirable side reactions may occur if the reaction temperature is too high. It is in the range of from ° C to 120 ° C. The reaction time cannot be generally determined, but usually 12 hours to 24 hours is sufficient.

本発明においては、原料となる一般式(2)で表される4級アンモニウム塩と磁性微粒子の使用割合に特に制限はないが、磁性微粒子に対して原料となるアンモニウム塩の割合が少なすぎると担持量が減少し、また大量に使用しすぎても製造コストの無駄につながる恐れが有る事から、磁性微粒子1モル当たり0.5〜5モルの範囲の4級アンモニウム塩を用いることが好ましい。   In the present invention, there is no particular limitation on the use ratio of the quaternary ammonium salt represented by the general formula (2) as a raw material and magnetic fine particles, but if the proportion of the ammonium salt as a raw material is too small relative to the magnetic fine particles, It is preferable to use a quaternary ammonium salt in the range of 0.5 to 5 moles per mole of magnetic fine particles, because the supported amount decreases and there is a possibility that the production cost is wasted even if it is used in a large amount.

本発明の磁性微粒子担持4級アンモニウム塩を相間移動触媒として用いることにより、各種の相間移動反応を進行させることができる。具体的にはハロゲン交換反応、脱ハロゲン化水素反応、エーテル合成反応、シアノ化反応、酸化反応等が挙げられる。以下にこれらの中の反応例について示す。なお、本発明の前記磁性微粒子担持4級アンモニウム塩は前記した相間移動反応に用いることができるものであり、相間移動反応であれば、ここに挙げられる相間移動反応以外の相間移動反応にも使用することができる。   By using the magnetic fine particle-supported quaternary ammonium salt of the present invention as a phase transfer catalyst, various phase transfer reactions can proceed. Specific examples include a halogen exchange reaction, a dehydrohalogenation reaction, an ether synthesis reaction, a cyanation reaction, and an oxidation reaction. The reaction examples among these are shown below. The magnetic fine particle-supported quaternary ammonium salt of the present invention can be used for the phase transfer reaction described above. If the phase transfer reaction is used, it is also used for a phase transfer reaction other than the phase transfer reaction listed here. can do.

上記[化5]で表される本発明の磁性微粒子担持4級アンモニウム塩を触媒として用いることにより、以下の反応を行うことができる。
すなわち、前記触媒の存在下に、下記一般式(3)
−X (3)
(式中Rは炭化水素基を表し、炭素数1〜20のアルキル基、ベンジル基から選ばれるいずれの基でもよい。XはF、Cl、Br、Iから選ばれるハロゲン原子を表す。)で表されるハロゲン化アルキルと、下記一般式(4)
OM (4)
(式中Rは炭化水素基を表し、炭素数1〜20のアルキル基、フェニル基、ナフチル基から選ばれるいずれの基でもよい。MはLi、Na、Kの中から選ばれる金属原子を表す。)で表される金属アルコキシドを、溶媒の存在下に反応させ、下記一般式(5)
OR (5)
(式中R、Rは前記と同じ意味を持つ。)で表されるエーテル化合物を製造することができる。
By using the magnetic fine particle-supported quaternary ammonium salt of the present invention represented by the above [Chemical Formula 5] as a catalyst, the following reaction can be performed.
That is, in the presence of the catalyst, the following general formula (3)
R 6 -X 2 (3)
(Wherein R 6 represents a hydrocarbon group, and may be any group selected from an alkyl group having 1 to 20 carbon atoms and a benzyl group. X 2 represents a halogen atom selected from F, Cl, Br, and I. And an alkyl halide represented by the following general formula (4)
R 7 OM 2 (4)
(Wherein R 7 represents a hydrocarbon group, and may be any group selected from an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a naphthyl group. M 2 is a metal atom selected from Li, Na, and K. In the presence of a solvent, a metal alkoxide represented by the following general formula (5)
R 6 OR 7 (5)
(Wherein R 6 and R 7 have the same meaning as described above) can be produced.

この反応は、溶媒に原料物質、及び触媒を添加・溶解させる。溶媒には、水及び有機溶媒を用いる。有機溶媒は炭化水素、ハロゲン化炭化水素等を用いる。反応温度に制限はないが、低すぎると反応の進行が遅くなり、また、高すぎても望ましくない副反応が起こる可能性のあることから、20℃〜120℃で行うのが好ましい。反応中は反応溶液を激しく撹拌する。反応終了後、反応容器の外壁に磁石を密着させることで、触媒のみが反応容器の内壁に集積する為、生成物を含む反応溶液のみをデカンテーションによって分別することが可能である。反応溶液をガスクロマトグラフィーにより分析することにより目的物質の収率を求めることができるが、溶媒抽出することによって目的物質を単離することも可能である。また、触媒は反応容器に残る為、次の反応にそのまま使用することができる。   In this reaction, a raw material and a catalyst are added and dissolved in a solvent. As the solvent, water and an organic solvent are used. As the organic solvent, hydrocarbon, halogenated hydrocarbon or the like is used. The reaction temperature is not limited, but if it is too low, the progress of the reaction is slow, and if it is too high, an undesirable side reaction may occur. During the reaction, the reaction solution is vigorously stirred. After the reaction is complete, the magnet is brought into close contact with the outer wall of the reaction vessel, so that only the catalyst accumulates on the inner wall of the reaction vessel, so that only the reaction solution containing the product can be separated by decantation. The yield of the target substance can be determined by analyzing the reaction solution by gas chromatography, but it is also possible to isolate the target substance by solvent extraction. Further, since the catalyst remains in the reaction vessel, it can be used as it is for the next reaction.

かくして、上記[化5]で表される本発明の磁性微粒子担持4級アンモニウム塩を相間移動触媒として用いることで効率的に相間移動反応を行うことができる。更に、磁気を利用することで、従来のポリマー担持型相間移動触媒に比べ、触媒の分離回収および再利用が大幅に簡便にすることが可能である。   Thus, the phase transfer reaction can be efficiently performed by using the magnetic fine particle-supported quaternary ammonium salt of the present invention represented by the above [Chemical Formula 5] as a phase transfer catalyst. Furthermore, by utilizing magnetism, it is possible to greatly simplify the separation and recovery and reuse of the catalyst as compared with the conventional polymer-supported phase transfer catalyst.

更に詳細な説明の為、以下に実施例を記述するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)(マグネタイト微粒子の製造)
塩化鉄(II)4水和物1.99gと塩化鉄(III)6水和物3.24gを蒸留水2.4lに加え、減圧脱気し、窒素雰囲気下で撹拌した。均一溶液になるまで撹拌した後、1.5Nの水酸化アンモニウム水溶液を激しく撹拌しながら溶液のpHが約9になるまで滴下した。生成した黒色コロイドはネオジウム磁石により凝集させ、上澄み液はデカンテーションにより取り除いた。残った黒色沈殿を蒸留水で5回、エタノールで2回洗浄した後、減圧乾燥を行い1.63gのマグネタイトを得た。
For further detailed description, examples will be described below, but the present invention is not limited to these examples.
(Example 1) (Production of magnetite fine particles)
1.99 g of iron (II) chloride tetrahydrate and 3.24 g of iron (III) chloride hexahydrate were added to 2.4 l of distilled water, degassed under reduced pressure, and stirred under a nitrogen atmosphere. After stirring until a homogeneous solution was obtained, 1.5N aqueous ammonium hydroxide solution was added dropwise with vigorous stirring until the pH of the solution reached about 9. The produced black colloid was aggregated with a neodymium magnet, and the supernatant was removed by decantation. The remaining black precipitate was washed 5 times with distilled water and twice with ethanol, and then dried under reduced pressure to obtain 1.63 g of magnetite.

(実施例2)(ヨウ化トリエチル[3−(トリメトキシシリル)プロピル]アンモニウムの製造)
(3−ヨードプロピル)トリメトキシシラン1.45gをジクロロメタン5mlに溶解し、トリエチルアミン0.56gを加えて40℃で24時間撹拌した。混合物を減圧濃縮して得られた固体をヘキサン、エーテルでそれぞれ3回洗浄した後、減圧乾燥する事により、ヨウ化トリエチル[3−(トリメトキシシリル)プロピル]アンモニウム1.55gを得た(収率79%)。
H−NMR(499MHz,CDCl):δ=0.74(t,2H,J=7.6Hz),1.41(t,9H,J=7.3Hz),1.75−1.85(m,2H),3.29−3.35(m,2H),3.48(q,6H,J=7.3Hz),3.59(s,9H). 13C−NMR(125MHz,CDCl):δ=5.4,8.1,15.8,50.7,53.7,58.8. FAB−MS(positive):m/z=264([M−I]).
Example 2 (Production of triethyl [3- (trimethoxysilyl) propyl] ammonium iodide)
1.45 g of (3-iodopropyl) trimethoxysilane was dissolved in 5 ml of dichloromethane, 0.56 g of triethylamine was added, and the mixture was stirred at 40 ° C. for 24 hours. The solid obtained by concentrating the mixture under reduced pressure was washed three times with hexane and ether, respectively, and then dried under reduced pressure to obtain 1.55 g of triethyl [3- (trimethoxysilyl) propyl] ammonium iodide (yield). 79%).
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.74 (t, 2H, J = 7.6 Hz), 1.41 (t, 9H, J = 7.3 Hz), 1.75-1.85 (M, 2H), 3.29-3.35 (m, 2H), 3.48 (q, 6H, J = 7.3 Hz), 3.59 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 5.4, 8.1, 15.8, 50.7, 53.7, 58.8. FAB-MS (positive): m / z = 264 ([M-I]).

(実施例3)(ヨウ化トリ−n−ブチル[3−(トリメトキシシリル)プロピル]アンモニウムの製造)
(3−ヨードプロピル)トリメトキシシラン5.80g、トリ−n−ブチルアミン3.71g、トルエン10mlの混合物を100℃で24時間撹拌した。室温まで冷却後、分離した粗生成物を含む下層をヘキサン、エーテルでそれぞれ3回洗浄した後、減圧乾燥する事により、ヨウ化トリ−n−ブチル[3−(トリメトキシシリル)プロピル]アンモニウム8.50gを得た(収率88%)。
H−NMR(499MHz,CDCl):δ=0.76(t,2H,J=7.6Hz),0.98(t,9H,J=7.3Hz),1.41(sextet,6H,J=7.3Hz),1.68−1.86(m,8H),3.33−3.39(m,8H),3.59(s,9H). 13C−NMR(125MHz,CDCl):δ=5.5,13.8,16.3,19.8,24.3,50.9,59.3,60.6. FAB−MS(positive):m/z=348([M-I]).
Example 3 (Production of tri-n-butyl [3- (trimethoxysilyl) propyl] ammonium iodide)
A mixture of 5.80 g of (3-iodopropyl) trimethoxysilane, 3.71 g of tri-n-butylamine and 10 ml of toluene was stirred at 100 ° C. for 24 hours. After cooling to room temperature, the lower layer containing the separated crude product was washed three times with hexane and ether, and then dried under reduced pressure to give tri-n-butyl iodide [3- (trimethoxysilyl) propyl] ammonium iodide 8 .50 g was obtained (88% yield).
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.76 (t, 2H, J = 7.6 Hz), 0.98 (t, 9H, J = 7.3 Hz), 1.41 (sextet, 6H , J = 7.3 Hz), 1.68-1.86 (m, 8H), 3.33-3.39 (m, 8H), 3.59 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 5.5, 13.8, 16.3, 19.8, 24.3, 50.9, 59.3, 60.6. FAB-MS (positive): m / z = 348 ([M-I]).

(実施例4)(ヨウ化トリ−n−ペンチル[3−(トリメトキシシリル)プロピル]アンモニウムの製造)
(3−ヨードプロピル)トリメトキシシラン5.80g、トリ−n−ペンチルアミン4.55g、トルエン10mlの混合物を120℃で36時間撹拌した。室温まで冷却後、混合物を減圧濃縮して得られる粗生成物をヘキサン/エーテル(1/1)、ヘキサンでそれぞれ3回洗浄した後、減圧乾燥する事により、ヨウ化トリ−n−ペンチル[3−(トリメトキシシリル)プロピル]アンモニウム7.64gを得た(収率74%)。
H−NMR(499MHz,CDCl):δ=0.76(t,2H,J=7.3Hz),0.94(t,9H,J=7.3Hz),1.36−1.45(m,12H),1.66−1.84(m,8H),3.30−3.41(m,8H),3.59(s,9H). 13C−NMR(125MHz,CDCl):δ=5.5,10.1,16.3,22.1,22.3,28.5,50.9,59.5,60.6.FAB−MS(positive):m/z=390([M−I]).
Example 4 (Production of tri-n-pentyl iodide [3- (trimethoxysilyl) propyl] ammonium iodide)
A mixture of 5.80 g of (3-iodopropyl) trimethoxysilane, 4.55 g of tri-n-pentylamine and 10 ml of toluene was stirred at 120 ° C. for 36 hours. After cooling to room temperature, the crude product obtained by concentrating the mixture under reduced pressure was washed three times with hexane / ether (1/1) and hexane, respectively, and then dried under reduced pressure to give tri-n-pentyl iodide [3 7.64 g of-(trimethoxysilyl) propyl] ammonium was obtained (yield 74%).
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.76 (t, 2H, J = 7.3 Hz), 0.94 (t, 9H, J = 7.3 Hz), 1.36 to 1.45 (M, 12H), 1.66-1.84 (m, 8H), 3.30-3.41 (m, 8H), 3.59 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 5.5, 10.1, 16.3, 22.1, 22.3, 28.5, 50.9, 59.5, 60.6. FAB-MS (positive): m / z = 390 ([M-I]).

(実施例5)(ヨウ化トリ−n−ヘキシル[3−(トリメトキシシリル)プロピル]アンモニウムの製造)
実施例4においてトリ−n−ペンチルアミンをトリ−n−ヘキシルアミン5.39gに変えた以外は実施例4と同様の操作を行い、ヨウ化トリ−n−ヘキシル[3−(トリメトキシシリル)プロピル]アンモニウム10.5gを得た(収率94%)。
H−NMR(499MHz,CDCl):δ=0.76(t,2H,J=7.6Hz),0.90(t,9H,J=7.0Hz),1.29−1.47(m,18H),1.65−1.89(m,8H),3.30−3.42(m,8H),3.59(s,9H). 13C−NMR(125MHz,CDCl):δ=5.4,13.7,16.1,22.17,22.24,25.9,31.1,50.7,59.3,60.4. FAB−MS(positive):m/z=432([M−I]).
Example 5 (Production of tri-n-hexyl iodide [3- (trimethoxysilyl) propyl] ammonium iodide)
The same operation as in Example 4 was carried out except that tri-n-pentylamine was changed to 5.39 g of tri-n-hexylamine in Example 4, and tri-n-hexyl iodide [3- (trimethoxysilyl) iodide was used. Propyl] ammonium 10.5 g was obtained (yield 94%).
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.76 (t, 2H, J = 7.6 Hz), 0.90 (t, 9H, J = 7.0 Hz), 1.29-1.47 (M, 18H), 1.65-1.89 (m, 8H), 3.30-3.42 (m, 8H), 3.59 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 5.4, 13.7, 16.1, 22.17, 22.24, 25.9, 31.1, 50.7, 59.3, 60 .4. FAB-MS (positive): m / z = 432 ([M-I]).

(実施例6)(ヨウ化トリ−n−ヘプチル[3−(トリメトキシシリル)プロピル]アンモニウムの製造)
実施例4においてトリ−n−ペンチルアミンをトリ−n−ヘプチルアミン6.23gに変えた以外は実施例4と同様の操作を行い、ヨウ化トリ−n−ヘプチル[3−(トリメトキシシリル)プロピル]アンモニウム11.1gを得た(収率92%)。
H−NMR(499MHz,CDCl):δ=0.76(t,2H,J=7.6Hz),0.89(t,9H,J=7.0Hz),1.24−1.44(m,24H),1.65−1.88(m,8H),3.29−3.41(m,8H),3.59(s,9H). 13C−NMR(125MHz,CDCl):δ=5.5,13.9,16.2,22.3,22.4,26.7,28.7,31.5,50.8,59.4,60.5. FAB−MS(positive):m/z=474([M-I]).
Example 6 (Production of tri-n-heptyl [3- (trimethoxysilyl) propyl] ammonium iodide)
The same operation as in Example 4 was performed except that tri-n-pentylamine was changed to 6.23 g of tri-n-heptylamine in Example 4, and tri-n-heptyl iodide [3- (trimethoxysilyl) iodide was used. Propyl] ammonium 11.1 g was obtained (yield 92%).
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.76 (t, 2H, J = 7.6 Hz), 0.89 (t, 9H, J = 7.0 Hz), 1.24-1.44 (M, 24H), 1.65-1.88 (m, 8H), 3.29-3.41 (m, 8H), 3.59 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 5.5, 13.9, 16.2, 22.3, 22.4, 26.7, 28.7, 31.5, 50.8, 59 .4,60.5. FAB-MS (positive): m / z = 474 ([M-I]).

(実施例7)(ヨウ化トリ−n−オクチル[3−(トリメトキシシリル)プロピル]アンモニウムの製造)
(3−ヨードプロピル)トリメトキシシラン4.66g、トリ−n−オクチルアミン5.69g、トルエン5mlの混合物を120℃で36時間撹拌した。室温まで冷却後、混合物を減圧濃縮して得られる粗生成物をヘキサンで3回洗浄した後、エーテル20mlを加え撹拌した。不溶物をろ過により除いた後、ろ液を減圧濃縮する事により、ヨウ化トリ−n−オクチル[3−(トリメトキシシリル)プロピル]アンモニウム6.61gを得た(収率64%)。
H−NMR(499MHz,CDCl):δ=0.76(t,2H,J=7.6Hz),0.88(t,9H,J=7.0Hz),1.21−1.45(m,30H),1.64−1.87(m,8H),3.27−3.42(m,8H),3.59(s,9H). 13C−NMR(125MHz,CDCl):δ=5.4,14.0,16.2,22.4,22.5,26.4,28.98,29.0,31.6,50.8,59.4,60.5. FAB−MS(positive):m/z=516([M-I]).
Example 7 (Production of tri-n-octyl iodide [3- (trimethoxysilyl) propyl] ammonium iodide)
A mixture of 4.66 g of (3-iodopropyl) trimethoxysilane, 5.69 g of tri-n-octylamine and 5 ml of toluene was stirred at 120 ° C. for 36 hours. After cooling to room temperature, the crude product obtained by concentrating the mixture under reduced pressure was washed three times with hexane, and then 20 ml of ether was added and stirred. After removing insolubles by filtration, the filtrate was concentrated under reduced pressure to obtain 6.61 g of tri-n-octyl [3- (trimethoxysilyl) propyl] ammonium iodide (yield 64%).
1 H-NMR (499 MHz, CDCl 3 ): δ = 0.76 (t, 2H, J = 7.6 Hz), 0.88 (t, 9H, J = 7.0 Hz), 1.21-1.45 (M, 30H), 1.64-1.87 (m, 8H), 3.27-3.42 (m, 8H), 3.59 (s, 9H). 13 C-NMR (125 MHz, CDCl 3 ): δ = 5.4, 14.0, 16.2, 22.4, 22.5, 26.4, 28.98, 29.0, 31.6, 50 .8, 59.4, 60.5. FAB-MS (positive): m / z = 516 ([M-I]).

(実施例8)(触媒1の製造)
マグネタイト微粒子308mg、ヨウ化トリエチル[3−(トリメトキシシリル)プロピル]アンモニウム2.60g、クロロホルム10mlの混合物を室温で1分間超音波撹拌した後、更に12時間還流撹拌した。室温まで冷却後、ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、クロロホルムで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、303mgの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は3.18%であることがわかった。
(Example 8) (Production of catalyst 1)
A mixture of 308 mg of magnetite fine particles, 2.60 g of triethyl [3- (trimethoxysilyl) propyl] ammonium iodide, and 10 ml of chloroform was subjected to ultrasonic stirring for 1 minute at room temperature, and then further refluxed for 12 hours. After cooling to room temperature, only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with chloroform. The remaining magnetic fine particles were dried under reduced pressure to obtain 303 mg of brown black fine particles. The elemental content of the fine particles obtained was found to be 3.18% iodine.

(実施例9)(触媒2の製造)
マグネタイト微粒子578mg、ヨウ化トリ−n−ブチル[3−(トリメトキシシリル)プロピル]アンモニウム5.94g、クロロホルム20mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、クロロホルムで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、531mgの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は2.29%であることがわかった。
(Example 9) (Production of catalyst 2)
A mixture of 578 mg of magnetite fine particles, 5.94 g of tri-n-butyl [3- (trimethoxysilyl) propyl] ammonium iodide, and 20 ml of chloroform was subjected to ultrasonic stirring for 1 minute at room temperature and then refluxed for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with chloroform. The remaining magnetic fine particles were dried under reduced pressure to obtain 531 mg of brown black fine particles. The elemental content of the fine particles obtained was found to have an iodine content of 2.29%.

(実施例10)(触媒3の製造)
マグネタイト微粒子663mg、ヨウ化トリ−n−ペンチル[3−(トリメトキシシリル)プロピル]アンモニウム7.41g、クロロホルム23mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、クロロホルムで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、620mgの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.68%であることがわかった。
(Example 10) (Production of catalyst 3)
A mixture of 663 mg of magnetite fine particles, 7.41 g of tri-n-pentyl [3- (trimethoxysilyl) propyl] ammonium iodide and 23 ml of chloroform was subjected to ultrasonic stirring for 1 minute at room temperature and then refluxed for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with chloroform. The remaining magnetic fine particles were dried under reduced pressure to obtain 620 mg of brown black fine particles. The content of iodine was found to be 1.68% by halogen element analysis of the obtained fine particles.

(実施例11)(触媒4の製造)
マグネタイト微粒子495mg、ヨウ化トリ−n−ヘキシル[3−(トリメトキシシリル)プロピル]アンモニウム6.01g、クロロホルム17mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、クロロホルムで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、479mgの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.43%であることがわかった。
(Example 11) (Production of catalyst 4)
A mixture of 495 mg of magnetite fine particles, tri-n-hexyl iodide [3- (trimethoxysilyl) propyl] ammonium 6.01 g, and chloroform 17 ml was subjected to ultrasonic stirring for 1 minute at room temperature, and then refluxed for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with chloroform. The remaining magnetic fine particles were dried under reduced pressure to obtain 479 mg of brown black fine particles. The content of iodine was found to be 1.43% by halogen element analysis of the obtained fine particles.

(実施例12)(触媒5の製造)
マグネタイト微粒子619mg、ヨウ化トリ−n−ヘプチル[3−(トリメトキシシリル)プロピル]アンモニウム8.05g、クロロホルム21mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、クロロホルムで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、562mgの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.50%であることがわかった。
(Example 12) (Production of catalyst 5)
A mixture of 619 mg of magnetite fine particles, tri-n-heptyl [3- (trimethoxysilyl) propyl] ammonium iodide 8.05 g and chloroform 21 ml was subjected to ultrasonic stirring for 1 minute at room temperature and then refluxed for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with chloroform. The remaining magnetic fine particles were dried under reduced pressure to obtain 562 mg of brown black fine particles. The obtained fine particles were analyzed by halogen element analysis, and the iodine content was found to be 1.50%.

(実施例13)(触媒6の製造)
マグネタイト微粒子429mg、ヨウ化トリ−n−オクチル[3−(トリメトキシシリル)プロピル]アンモニウム5.96g、クロロホルム15mlの混合物を室温で1分間超音波撹拌した後、12時間還流撹拌した。ネオジウム磁石を用いたマグネティックデカンテーションによって磁性体のみを分離し、クロロホルムで5回洗浄した。残った磁性微粒子を減圧乾燥する事により、405mgの茶黒色微粒子を得た。得られた微粒子のハロゲン元素分析によりヨウ素の含有量は1.27%であることがわかった。
(Example 13) (Production of catalyst 6)
A mixture of 429 mg of magnetite fine particles, 5.96 g of tri-n-octyl [3- (trimethoxysilyl) propyl] ammonium iodide, and 15 ml of chloroform was subjected to ultrasonic stirring for 1 minute at room temperature and then refluxed for 12 hours. Only the magnetic material was separated by magnetic decantation using a neodymium magnet and washed 5 times with chloroform. The remaining magnetic fine particles were dried under reduced pressure to obtain 405 mg of brown black fine particles. The obtained fine particles were analyzed by halogen element analysis, and the iodine content was found to be 1.27%.

(実施例14)
ナトリウムフェノキシド三水和物128mg(0.750mmol)、触媒1(64mg、アンモニウム塩0.0225mmol相当)、1−ブロモブタン0.12ml(1.50mmol)、トルエン1ml、水1mlの混合物をオイルバス中100℃で12時間撹拌した。内標準物質としてテトラデカン20μlを反応混合物に加え、ガスクロマトグラフィーによりブチルフェニルエーテルの収率を求めた。その結果を表1に示す。
(実施例14〜19)
実施例14において触媒1に代えて表1に示した触媒を用いた以外は実施例14と同様の操作を行った。その結果を表1に示す。
(Example 14)
A mixture of 128 mg (0.750 mmol) of sodium phenoxide trihydrate, catalyst 1 (64 mg, corresponding to 0.0225 mmol of ammonium salt), 0.12 ml (1.50 mmol) of 1-bromobutane, 1 ml of toluene and 1 ml of water was placed in an oil bath. Stir at 12 ° C. for 12 hours. Tetradecane (20 μl) was added to the reaction mixture as an internal standard substance, and the yield of butylphenyl ether was determined by gas chromatography. The results are shown in Table 1.
(Examples 14 to 19)
The same operation as in Example 14 was carried out except that the catalyst shown in Table 1 was used in place of the catalyst 1 in Example 14. The results are shown in Table 1.

(比較例1)
実施例14において触媒1を省略した以外は実施例14と同様の操作を行った。その結果を表1に示す。
(比較例2)
実施例14において触媒1に代えてヨウ化トリ−n−ブチルアンモニウム8.3mg(0.0225mmol)を用いた以外は実施例14と同様の操作を行った。その結果を表1に示す。
(Comparative Example 1)
The same operation as in Example 14 was performed except that the catalyst 1 was omitted in Example 14. The results are shown in Table 1.
(Comparative Example 2)
The same operation as in Example 14 was carried out except that 8.3 mg (0.0225 mmol) of tri-n-butylammonium iodide was used in place of the catalyst 1 in Example 14. The results are shown in Table 1.

Figure 0004586200
Figure 0004586200

かかる表1の結果から明らかなように、触媒2、3、4はヨウ化トリ−n−ブチルアンモニウム比べてほぼ同等或はそれ以上の触媒活性を有することが確認された。これにより本発明の磁性微粒子担持4級アンモニウム塩が相間移動反応に対して有効な触媒となることが認められたのである。   As is apparent from the results in Table 1, it was confirmed that the catalysts 2, 3, and 4 have substantially the same or higher catalytic activity than tri-n-butylammonium iodide. As a result, it was confirmed that the quaternary ammonium salt carrying the magnetic fine particles of the present invention is an effective catalyst for the phase transfer reaction.

(実施例20〜22)(触媒の再利用)
実施例16の反応終了後、反応容器の外壁にネオジウム磁石を密着させることで触媒を反応容器の壁面に集めた。そのままデカンテーションすることで上澄み溶液のみを別の容器へと移した。反応容器に残った触媒をヘキサン、水でそれぞれ3回洗浄し、減圧乾燥した後、実施例16と同じ条件下でのブチルフェニルエーテルの製造に用いた。これらの操作を繰り返し行った結果を表2に示す。
(Examples 20 to 22) (Reuse of catalyst)
After completion of the reaction in Example 16, the catalyst was collected on the wall of the reaction vessel by bringing a neodymium magnet into close contact with the outer wall of the reaction vessel. By decanting as it was, only the supernatant solution was transferred to another container. The catalyst remaining in the reaction vessel was washed three times with hexane and water, dried under reduced pressure, and then used for the production of butylphenyl ether under the same conditions as in Example 16. Table 2 shows the results of repeating these operations.

Figure 0004586200
Figure 0004586200

表2の結果から本発明の磁性微粒子担持相間移動触媒は磁気により迅速且つ容易に分離回収されるだけでなく、繰り返し再使用可能であることが確認された。   From the results in Table 2, it was confirmed that the phase transfer catalyst supporting magnetic fine particles of the present invention was not only rapidly and easily separated and recovered by magnetism, but could be reused repeatedly.

本発明の磁性微粒子担持4級アンモニウム塩は、磁気により迅速且つ容易に分離回収されるだけでなく、繰り返し再使用可能であることから、環境調和型の有機合成反応である相間移動反応において特に有用であり、多くの化合物の工業的製法に用いることができる。
The quaternary ammonium salt carrying the magnetic fine particles of the present invention is particularly useful in a phase transfer reaction, which is an environmentally friendly organic synthesis reaction, because it is not only quickly and easily separated and recovered by magnetism but also can be reused repeatedly. And can be used in the industrial production of many compounds.

Claims (4)

磁性体微粒子上に、下記の一般式(1)
Figure 0004586200
(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Xは酸の陰イオンを表す。)で表される4級アンモニウム塩部位を有するシロキシ基が結合していることを特徴とする磁性微粒子担持4級アンモニウム塩。
On the magnetic fine particles, the following general formula (1)
Figure 0004586200
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. X represents an anion of an acid. A magnetic fine particle-supported quaternary ammonium salt, wherein a siloxy group having a quaternary ammonium salt moiety represented by formula (1) is bonded.
下記の一般式(2)
Figure 0004586200
(式中、Rは炭化水素基を表す。R、R、Rは炭化水素基を表し、それぞれが結合して環を形成していてもよい。Rは炭素数が1から3のアルキル基を表す。Xは酸の陰イオンを表す。)で表されるトリアルコキシシリル基を有する4級アンモニウム塩と磁性微粒子を反応させることを特徴とする請求項1記載の磁性微粒子担持4級アンモニウム塩の製造方法。
The following general formula (2)
Figure 0004586200
(In the formula, R 1 represents a hydrocarbon group. R 2 , R 3 , and R 4 each represents a hydrocarbon group, which may be bonded to each other to form a ring. R 5 has 1 carbon number. The magnetic fine particles according to claim 1, wherein the magnetic fine particles are reacted with a quaternary ammonium salt having a trialkoxysilyl group represented by the following formula : X-represents an anion of an acid. A method for producing a supported quaternary ammonium salt.
請求項1記載の磁性微粒子担持4級アンモニウム塩からなることを特徴とする相間移動触媒。   A phase transfer catalyst comprising the magnetic fine particle supported quaternary ammonium salt according to claim 1. 請求項1記載の磁性微粒子担持4級アンモニウム塩を触媒に用いることを特徴とする相間移動反応。
A phase transfer reaction using the magnetic fine particle-supported quaternary ammonium salt according to claim 1 as a catalyst.
JP2006131902A 2006-05-10 2006-05-10 Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same Expired - Fee Related JP4586200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131902A JP4586200B2 (en) 2006-05-10 2006-05-10 Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131902A JP4586200B2 (en) 2006-05-10 2006-05-10 Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same

Publications (2)

Publication Number Publication Date
JP2007301466A JP2007301466A (en) 2007-11-22
JP4586200B2 true JP4586200B2 (en) 2010-11-24

Family

ID=38835869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131902A Expired - Fee Related JP4586200B2 (en) 2006-05-10 2006-05-10 Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same

Country Status (1)

Country Link
JP (1) JP4586200B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986117B2 (en) * 2006-06-19 2012-07-25 独立行政法人産業技術総合研究所 Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same
JP4984139B2 (en) * 2007-05-29 2012-07-25 国立大学法人 岡山大学 Method for producing catalyst cross-linking agent used for immobilization catalyst for synthesis of cyclic carbonate, method for producing immobilization catalyst, catalyst cross-linking agent used for immobilization catalyst, and immobilization catalyst
JP5704320B2 (en) * 2010-03-04 2015-04-22 独立行政法人産業技術総合研究所 Magnetic nanoparticles fixed osmium (VI) acid salt
CN107082870A (en) 2012-03-30 2017-08-22 三菱化学株式会社 Epoxy composite
KR101349713B1 (en) 2012-06-25 2014-01-14 한국에너지기술연구원 Method of harvesting microalgal biomass using amine-grafted magnetic nanoflocculant
KR102340560B1 (en) * 2013-07-10 2021-12-21 모멘티브 퍼포먼스 머티리얼즈 인크. Continuous process for the preparation of thiocarboxylate silane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106493A (en) * 1982-12-10 1984-06-20 スチユワ−ト イ−・クレイン Silyl quaternary ammonium compound and use
JPS60225648A (en) * 1984-04-25 1985-11-09 Toray Ind Inc Fibrous phase-transfer catalyst
JPS615086A (en) * 1984-06-18 1986-01-10 Koshii Purezaabingu:Kk Trialkyltrimethoxysilylpropylammonium halide and antifungal composition containing the same
JPH0564744A (en) * 1991-09-06 1993-03-19 Nok Corp Production and recovery of hydrogenating catalyst
JPH06170245A (en) * 1992-12-02 1994-06-21 Tdk Corp Method for recovering magnetic catalyst particle
JPH09169739A (en) * 1995-12-19 1997-06-30 Nippon Synthetic Chem Ind Co Ltd:The Production of n-alkylformylimidazoles
JP2005060221A (en) * 2003-07-31 2005-03-10 Rikogaku Shinkokai Composite material of organic substance and ferrite, and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106493A (en) * 1982-12-10 1984-06-20 スチユワ−ト イ−・クレイン Silyl quaternary ammonium compound and use
JPS60225648A (en) * 1984-04-25 1985-11-09 Toray Ind Inc Fibrous phase-transfer catalyst
JPS615086A (en) * 1984-06-18 1986-01-10 Koshii Purezaabingu:Kk Trialkyltrimethoxysilylpropylammonium halide and antifungal composition containing the same
JPH0564744A (en) * 1991-09-06 1993-03-19 Nok Corp Production and recovery of hydrogenating catalyst
JPH06170245A (en) * 1992-12-02 1994-06-21 Tdk Corp Method for recovering magnetic catalyst particle
JPH09169739A (en) * 1995-12-19 1997-06-30 Nippon Synthetic Chem Ind Co Ltd:The Production of n-alkylformylimidazoles
JP2005060221A (en) * 2003-07-31 2005-03-10 Rikogaku Shinkokai Composite material of organic substance and ferrite, and its production method

Also Published As

Publication number Publication date
JP2007301466A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4586200B2 (en) Quaternary ammonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle-supported phase transfer catalyst comprising the same, and phase transfer reaction using the same
Clark et al. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids
Yang et al. Highly stereoselective anti-Markovnikov hydrothiolation of alkynes and electron-deficient alkenes by a supported Cu-NHC complex
US7375170B2 (en) Organosilicon compound
US7049266B2 (en) Layered double hydroxides supported nanopalladium catalysts for Heck-, Suzuki, Sonogashira-, and Stille type coupling reactions of haloarenes
CN105344378B (en) It is a kind of for phosphotungstic acid metal organic framework of catalyzing cellulose hydrolysis and preparation method and application
Dubey et al. A biomimetic magnetically recoverable palladium nanocatalyst for the Suzuki cross-coupling reaction
Didier et al. Charge‐Transfer Interactions: An Efficient Tool for Recycling Bis (oxazoline)‐Copper Complexes in Asymmetric Henry Reactions
Keller et al. An efficient and recyclable dendritic catalyst able to dramatically decrease palladium leaching in Suzuki couplings
Saha et al. Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction
Michalek et al. Synthesis of functional cobalt nanoparticles for catalytic applications. Use in asymmetric transfer hydrogenation of ketones
Ma'mani et al. Palladium catalyst supported on N-aminoguanidine functionalized magnetic graphene oxide as a robust water-tolerant and versatile nanocatalyst
CN106582710A (en) Method for preparing biphenyl by catalyzing Suzuki reaction through graphene-loaded palladium-copper nanocapsule
Shakourian-Fard et al. Synthesis of α-aminophosphonates in the presence of a magnetic recyclable Fe3O4@ SiO2-2mimSO3H nanocatalyst
Hajipour et al. Simultaneous immobilization of a matrix containing palladium and phase transfer catalyst on silica nanoparticles: application as a recoverable catalyst for the Heck reaction in neat water
Samanta et al. A mononuclear copper (II) complex immobilized in mesoporous silica: An efficient heterogeneous catalyst for the aerobic oxidation of benzylic alcohols
US8557726B2 (en) Chiral heterogeneous catalyst for assymmetric nitroaldol reaction
Peng et al. A highly efficient and recyclable catalyst—dendrimer supported chiral salen Mn (iii) complexes for asymmetric epoxidation
US9376390B2 (en) Methods of isolating (4-chloro-2-fluoro-3-substituted-phenyl)boronates and methods of using the same
JP5704320B2 (en) Magnetic nanoparticles fixed osmium (VI) acid salt
JP4986117B2 (en) Phosphonium salt supported on magnetic fine particles, production method thereof, magnetic fine particle supported phase transfer catalyst comprising the phosphonium salt, and phase transfer reaction using the same
Hu et al. MCM‐41‐Supported Bidentate Phosphine Rhodium Complex: An Efficient and Recyclable Heterogeneous Catalyst for the Hydrosilylation of Olefins
Kutzscher et al. Synthesis of the homochiral metal–organic framework DUT-129 based on a chiral dicarboxylate linker with 6 stereocenters
CN106008401A (en) Preparation method of N-formamide compound
CN109746048B (en) Multiphase rhodium-based hydroformylation catalyst, and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees