JP4985920B2 - Thermosetting resin composition and optical semiconductor adhesive - Google Patents

Thermosetting resin composition and optical semiconductor adhesive Download PDF

Info

Publication number
JP4985920B2
JP4985920B2 JP2006167879A JP2006167879A JP4985920B2 JP 4985920 B2 JP4985920 B2 JP 4985920B2 JP 2006167879 A JP2006167879 A JP 2006167879A JP 2006167879 A JP2006167879 A JP 2006167879A JP 4985920 B2 JP4985920 B2 JP 4985920B2
Authority
JP
Japan
Prior art keywords
atom
group
resin composition
thermosetting resin
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006167879A
Other languages
Japanese (ja)
Other versions
JP2007332314A (en
Inventor
利之 秋池
公彦 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2006167879A priority Critical patent/JP4985920B2/en
Publication of JP2007332314A publication Critical patent/JP2007332314A/en
Application granted granted Critical
Publication of JP4985920B2 publication Critical patent/JP4985920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition capable of potting molding and of forming an optical semiconductor-sealing material which is colorless and transparent, and has excellent UV durability and heat resistance; and to provide an optical semiconductor element sealed with the same. <P>SOLUTION: The thermosetting rein composition contains (A) a polyorganosiloxane having an epoxy equivalent of at most 1,600 g/mol, and (B) a metal chelate compound. The optical semiconductor element is sealed with the composition. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、特定の熱硬化性樹脂組成物を用いてなる光半導体用接着剤に関する。さらに詳しくは耐熱性、紫外線に対する耐久性が改良された光半導体チップの接着剤として好適な光半導体用接着剤に関する。   The present invention relates to an adhesive for optical semiconductors using a specific thermosetting resin composition. More particularly, the present invention relates to an adhesive for an optical semiconductor suitable as an adhesive for an optical semiconductor chip with improved heat resistance and durability against ultraviolet rays.

従来、光半導体の接着剤(図1参照、109が接着剤)には脂環式エポキシ樹脂が用いられてきたが青色もしくは紫外光を発光する光半導体の封止を行うには、紫外線に対する耐久性(以下、UV耐久性ともいう)が不十分であった。このため長期間の使用により接着剤の黄変が起こり、十分な出力光を安定的に得ることができなかった。
UV耐久性に優れた樹脂としてシリコーン樹脂を接着剤として用いることが試みられているが十分な接着力が得られないことや、樹脂が柔らかいため、振動で金のワイヤーが切れやすいなどの不具合があった。
Conventionally, an alicyclic epoxy resin has been used for an optical semiconductor adhesive (see FIG. 1, 109 is an adhesive). However, in order to seal an optical semiconductor that emits blue or ultraviolet light, it is resistant to ultraviolet light. The properties (hereinafter also referred to as UV durability) were insufficient. For this reason, the yellowing of the adhesive occurred due to long-term use, and sufficient output light could not be stably obtained.
Attempts have been made to use silicone resins as adhesives as UV-durable resins, but there are problems such as insufficient adhesive strength being obtained, and the softness of the resin to cause the gold wire to break easily. there were.

一方、我々はエポキシ基を有するポリオルガノシロキサンを簡便に得る方法を開発し、カルボン酸無水物硬化剤を用いて硬化することで十分な透明性、UV耐久性、硬度を有する光半導体組成物を得ることに既に成功している(特許文献1参照)。
しかし、この組成物はエポキシ基を有するポリオルガノシロキサン(A液)とカルボン酸無水物硬化剤(B液)を混ぜ合わせると硬化が始まる2液タイプのため、A、B液の混合後の保存安定性が十分でなく、そのため成型加工の都度A液とB液を混合しなければならなかった。このため硬化剤あるいは硬化触媒を混ぜておいても(1液タイプ)安定して保管できる、保存安定性の優れた熱硬化性樹脂組成物の開発が望まれていた。
On the other hand, we developed a method for easily obtaining polyorganosiloxane having an epoxy group, and by curing with a carboxylic anhydride curing agent, an optical semiconductor composition having sufficient transparency, UV durability and hardness was obtained. It has already been successfully obtained (see Patent Document 1).
However, this composition is a two-component type that begins to cure when the polyorganosiloxane having epoxy groups (liquid A) and a carboxylic acid anhydride curing agent (liquid B) are mixed together, so storage after mixing liquids A and B The stability was not sufficient, and therefore liquid A and liquid B had to be mixed every time molding was performed. For this reason, it has been desired to develop a thermosetting resin composition having excellent storage stability that can be stably stored even if a curing agent or a curing catalyst is mixed (one-pack type).

従来、1液タイプにする手法としては、熱潜在触媒を用いる方法が一般的であり(特許文献2参照)、このような熱潜在触媒としてアンチモンやリンを含む化合物が用いられていた。しかし、アンチモンを含む化合物は環境への悪影響の懸念があったり、リンを含む化合物では硬化が不十分という問題があった。
一方、エポキシをカチオン重合させる触媒としてアルミニウムキレート化合物を用いる方法が提案されている(特許文献3参照)。しかし、エポキシ樹脂を用いているため、青色もしくは紫外光を発光する光半導体の封止材としてUV耐久性の点で満足のいくものではなかった。
WO2005/100445号公報 特開2003−73452号公報 特開昭56−2319号公報
Conventionally, as a one-pack type method, a method using a thermal latent catalyst is generally used (see Patent Document 2), and a compound containing antimony or phosphorus has been used as such a thermal latent catalyst. However, the compound containing antimony has a problem of adverse effects on the environment, and the compound containing phosphorus has a problem that curing is insufficient.
On the other hand, a method using an aluminum chelate compound as a catalyst for cationic polymerization of epoxy has been proposed (see Patent Document 3). However, since an epoxy resin is used, it is not satisfactory in terms of UV durability as a sealing material for an optical semiconductor that emits blue or ultraviolet light.
WO2005 / 100445 publication JP 2003-73452 A JP 56-2319 A

本発明は上記実情に鑑みなされたもので、その目的は、UV耐久性、耐熱性、および接着性に優れた熱硬化性樹脂組成物および光半導体用接着剤を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the thermosetting resin composition excellent in UV durability, heat resistance, and adhesiveness, and the adhesive agent for optical semiconductors.

本発明のさらに他の目的および利点は以下の説明から明らかになろう。   Still other objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、第1に、
(A)エポキシ当量が1,600g/モル以下のポリオルガノシロキサン100重量部および(B)金属キレート化合物0.001〜0.1重量部を含有することを特徴とする熱硬化性樹脂組成物によって達成される。
According to the present invention, the above objects and advantages of the present invention are as follows.
A thermosetting resin composition comprising (A) 100 parts by weight of a polyorganosiloxane having an epoxy equivalent of 1,600 g / mol or less and (B) 0.001 to 0.1 parts by weight of a metal chelate compound. Achieved.

本発明によれば、本発明の上記目的および利点は、第2に、
本発明の上記熱硬化性樹脂組成物からなる光半導体用接着剤によって達成される。
According to the present invention, the above objects and advantages of the present invention are secondly,
This is achieved by an optical semiconductor adhesive comprising the thermosetting resin composition of the present invention.

本発明によれば、UV耐久性、耐熱性および接着性に優れた光半導体用接着剤を得ることができる。例えば500nm以下の領域に発光ピーク波長を有する青色LEDや白色LED等の接着に極めて好適に使用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the adhesive agent for optical semiconductors excellent in UV durability, heat resistance, and adhesiveness can be obtained. For example, it can be used very suitably for adhesion of blue LEDs, white LEDs, and the like having emission peak wavelengths in the region of 500 nm or less.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

ポリオルガノシロキサン(α)およびその製造方法
本発明で用いられるポリオルガノシロキサン(α)は、エポキシ当量が1,600g/モル以下であり、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(以下、「シラン化合物(1)」という。)と下記式(2)で表されるシラン化合物(以下、「シラン化合物(2)」という。)および/またはその部分縮合物(以下、シラン化合物(2)とその部分縮合物をまとめて「シラン化合物(2)等」ともいう。)とを、有機溶媒、有機塩基および水の存在下に加熱して、加水分解および縮合させて得られる。
Polyorganosiloxane (α) and production method thereof Polyorganosiloxane (α) used in the present invention has an epoxy equivalent of 1,600 g / mol or less, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane ( Hereinafter, it is referred to as “silane compound (1)” ) and a silane compound represented by the following formula (2) (hereinafter referred to as “silane compound (2)”) and / or a partial condensate thereof (hereinafter referred to as silane compound ( 2) and the partial condensate thereof are collectively referred to as “silane compound (2) and the like.”) In the presence of an organic solvent, an organic base and water, and are hydrolyzed and condensed.

Figure 0004985920
Figure 0004985920

〔式(2)において、Yは塩素原子、臭素原子、ヨウ素原子または炭素数1〜20の直鎖状、分岐状もしくは環状のアルコキシル基を示し、Rは水素原子、フッ素原子、炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1〜20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2〜20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基を示し、mは0〜3の整数である。
[In the formula (2), Y 2 represents a chlorine atom, a bromine atom, an iodine atom or a linear, branched or cyclic alkoxyl group having 1 to 20 carbon atoms, and R 2 represents a hydrogen atom, a fluorine atom or a carbon number. 1-20 linear, branched or cyclic alkyl groups, 1-20 carbon linear, branched or cyclic substituted alkyl groups, 2-20 linear, branched or cyclic alkyl groups An alkenyl group, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms is shown, and m is an integer of 0 to 3. ]

式(2)において、Yは塩素原子、臭素原子、ヨウ素原子または炭素数1〜20の直鎖状、分岐状もしくは環状のアルコキシル基を示す。これらの基は、有機塩基および水の存在下における加水分解と縮合反応の過程でシラノール基を生成し、該シラノール基同志で縮合反応を生起し、あるいは該シラノール基と塩素原子、臭素原子、ヨウ素原子ないし該アルコキシル基を有するケイ素原子との間で縮合反応を生起することにより、シロキサン結合を形成する基である。
式(2)において、Yの炭素数1〜20の直鎖状、分岐状もしくは環状のアルコキシル基としては、例えば、前記式(1)におけるYの対応する基について例示したものと同様の基等を挙げることができる。
式(2)におけるYとしては、塩素原子、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基等が好ましい。
In the formula (2), Y 2 represents a chlorine atom, a bromine atom, an iodine atom or a straight, branched or cyclic alkoxyl groups. These groups generate a silanol group in the course of hydrolysis and condensation reaction in the presence of an organic base and water, and cause a condensation reaction between the silanol groups, or the silanol group and chlorine atom, bromine atom, iodine It is a group that forms a siloxane bond by causing a condensation reaction with an atom or a silicon atom having the alkoxyl group.
In the formula (2), examples of the linear, branched or cyclic alkoxyl group having 1 to 20 carbon atoms of Y 2 are the same as those exemplified for the corresponding group of Y 1 in the formula (1). Groups and the like.
Y 2 in formula (2) is preferably a chlorine atom, a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a sec-butoxy group, a t-butoxy group, or the like.

式(2)において、Rの炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1〜20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2〜20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6〜20のアリール基および炭素数7〜20のアラルキル基としては、例えば、前記式(1)におけるRのそれぞれ対応する基について例示したものと同様の基等を挙げることができる。
式(2)におけるRとしては、フッ素原子、メチル基、エチル基、2−(トリフルオロメチル)エチル基、2−(パーフルオロ−n−ヘキシル)エチル基、2−(パーフルオロ−n−オクチル)エチル基、ヒドロキシメチル基、2−ヒドロキシエチル基、3−(メタ)アクリロキシプロピル基、3−メルカプトプロピル基、ビニル基、アリル基、フェニル基等が好ましい。
In the formula (2), linear carbon atoms R 2 20, branched or cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, 2 carbon atoms Examples of the linear, branched or cyclic alkenyl group having 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aralkyl group having 7 to 20 carbon atoms include groups corresponding to R 1 in the formula (1), respectively. Examples thereof include the same groups as those exemplified.
R 2 in the formula (2) is a fluorine atom, a methyl group, an ethyl group, a 2- (trifluoromethyl) ethyl group, a 2- (perfluoro-n-hexyl) ethyl group, or 2- (perfluoro-n- Octyl) ethyl group, hydroxymethyl group, 2-hydroxyethyl group, 3- (meth) acryloxypropyl group, 3-mercaptopropyl group, vinyl group, allyl group, phenyl group and the like are preferable.

シラン化合物(2)の具体例としては、
m=0の化合物として、テトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン等;
m=1の化合物として、トリクロロシラン、トリメトキシシラン、トリエトキシシラン、トリ−n−プロポキシシラン、トリ−i−プロポキシシラン、トリ−n−ブトキシシラン、トリ−sec−ブトキシシラン、
フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ−n−プロポキシシラン、フルオロトリ−i−プロポキシシラン、フルオロトリ−n−ブトキシシラン、フルオロトリ−sec−ブトキシシラン、
メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−i−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、
2−(トリフルオロメチル)エチルトリクロロシシラン、2−(トリフルオロメチル)エチルトリメトキシシラン、2−(トリフルオロメチル)エチルトリエトキシシラン、2−(トリフルオロメチル)エチルトリ−n−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−i−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−n−ブトキシシラン、2−(トリフルオロメチル)エチルトリ−sec−ブトキシシラン、
2−(パーフルオロ−n−ヘキシル)エチルトリクロロシラン、2−(パーフルオロ−n−ヘキシル)エチルトリメトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリエトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−sec−ブトキシシラン、
2−(パーフルオロ−n−オクチル)エチルトリクロロシラン、2−(パーフルオロ−n−オクチル)エチルトリメトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリエトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−sec−ブトキシシラン、
ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ−n−プロポキシシラン、ヒドロキシメチルトリ−i−プロポキシシラン、ヒドロキシメチルトリ−n−ブトキシシラン、ヒドロキシメチルトリ−sec−ブトキシシラン、
3−(メタ)アクリロキシプロピルトリクロロシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリ−n−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−i−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−n−ブトキシシラン、3−(メタ)アクリロキシプロピルトリ−sec−ブトキシシラン、
3−メルカプトプロピルトリクロロシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロポキシシラン、3−メルカプトプロピルトリ−i−プロポキシシラン、3−メルカプトプロピルトリ−n−ブトキシシラン、3−メルカプトプロピルトリ−sec−ブトキシシラン、
ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、ビニルトリ−i−プロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、
アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ−n−プロポキシシラン、アリルトリ−i−プロポキシシラン、アリルトリ−n−ブトキシシラン、アリルトリ−sec−ブトキシシラン、
フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリ−i−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン等:
m=2の化合物として、メチルジクロロシラン、メチルジメトキシシラン、メチルジエトキシシラン、メチルジ−n−プロポキシシラン、メチルジ−i−プロポキシシラン、メチルジ−n−ブトキシシラン、メチルジ−sec−ブトキシシラン、
ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジ−i−プロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、
(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジクロロシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジエメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−i−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−sec−ブトキシシラン、
(メチル)(γ−グリシドキシプロピル)ジクロロシラン、(メチル)(γ−グリシドキシプロピル)ジメトキシシラン、(メチル)(γ−グリシドキシプロピル)ジエトキシシラン、(メチル)(γ−グリシドキシプロピル)ジ−n−プロポキシシラン、(メチル)(γ−グリシドキシプロピル)ジ−i−プロポキシシラン、(メチル)(γ−グリシドキシプロピル)ジ−n−ブトキシシラン、(メチル)(γ−グリシドキシプロピル)ジ−sec−ブトキシシラン、
(メチル)(3−メルカプトプロピル)ジクロロシラン、(メチル)(3−メルカプトプロピル)ジメトキシシラン、(メチル)(3−メルカプトプロピル)ジエトキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−i−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジ−sec−ブトキシシラン、
(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ−n−プロポキシシラン、(メチル)(ビニル)ジ−i−プロポキシシラン、(メチル)(ビニル)ジ−n−ブトキシシラン、(メチル)(ビニル)ジ−sec−ブトキシシラン、
ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ−n−プロポキシシラン、ジビニルジ−i−プロポキシシラン、ジビニルジ−n−ブトキシシラン、ジビニルジ−sec−ブトキシシラン、
ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジ−i−プロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン等;
m=3の化合物として、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、
クロロトリメチルシラン、ブロモトリメチルシシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n−プロポキシトリメチルシラン、i−プロポキシトリメチルシラン、n−ブトキシトリメチルシラン、sec−ブトキシトリメチルシラン、t−ブトキシトリメチルシラン、
(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、
(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等
をそれぞれ挙げることができる。
As a specific example of the silane compound (2),
As compounds of m = 0, tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane and the like;
As compounds of m = 1, trichlorosilane, trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane,
Fluorotrichlorosilane, fluorotrimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane,
Methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane,
2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl) ethyltrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (trifluoromethyl) ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane,
2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltrimethoxysilane, 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro- n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-butoxysilane, 2- (perfluoro -N-hexyl) ethyltri-sec-butoxysilane,
2- (perfluoro-n-octyl) ethyltrichlorosilane, 2- (perfluoro-n-octyl) ethyltrimethoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro- n-octyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-i-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro) -N-octyl) ethyltri-sec-butoxysilane,
Hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltrimethoxysilane, hydroxymethyltri-n-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec- Butoxysilane,
3- (meth) acryloxypropyltrichlorosilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propoxysilane, 3- (meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane,
3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri -N-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane,
Vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri-n-propoxysilane, vinyltri-i-propoxysilane, vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane,
Allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, allyltri-i-propoxysilane, allyltri-n-butoxysilane, allyltri-sec-butoxysilane,
Phenyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri-i-propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, etc .:
As compounds of m = 2, methyldichlorosilane, methyldimethoxysilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxysilane, methyldi-sec-butoxysilane,
Dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane,
(Methyl) [2- (perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n- Octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i -Propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane,
(Methyl) (γ-glycidoxypropyl) dichlorosilane, (methyl) (γ-glycidoxypropyl) dimethoxysilane, (methyl) (γ-glycidoxypropyl) diethoxysilane, (methyl) (γ-glycyl Sidoxypropyl) di-n-propoxysilane, (methyl) (γ-glycidoxypropyl) di-i-propoxysilane, (methyl) (γ-glycidoxypropyl) di-n-butoxysilane, (methyl) (Γ-glycidoxypropyl) di-sec-butoxysilane,
(Methyl) (3-mercaptopropyl) dichlorosilane, (methyl) (3-mercaptopropyl) dimethoxysilane, (methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n- Propoxysilane, (methyl) (3-mercaptopropyl) di-i-propoxysilane, (methyl) (3-mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane ,
(Methyl) (vinyl) dichlorosilane, (methyl) (vinyl) dimethoxysilane, (methyl) (vinyl) diethoxysilane, (methyl) (vinyl) di-n-propoxysilane, (methyl) (vinyl) di-i -Propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane,
Divinyldichlorosilane, divinyldimethoxysilane, divinyldiethoxysilane, divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane,
Diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane and the like;
As compounds of m = 3, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane,
Chlorotrimethylsilane, bromotrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane ,
(Chloro) (vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane,
(Chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) (methyl) diphenylsilane and the like can be exemplified.

これらのシラン化合物(2)のうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン等が好ましい。   Among these silane compounds (2), tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxy Silane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane and the like are preferable.

また、シラン化合物(2)の部分縮合物としては、商品名で、例えば、KC−89、KC−89S、X−21−3153、X−21−5841、X−21−5842、X−21−5843、X−21−5844、X−21−5845、X−21−5846、X−21−5847、X−21−5848、X−22−160AS、X−22−170B、X−22−170BX、X−22−170D、X−22−170DX、X−22−176B、X−22−176D、X−22−176DX、X−22−176F、X−40−2308、X−40−2651、X−40−2655A、X−40−2671、X−40−2672、X−40−9220、X−40−9225、X−40−9227、X−40−9246、X−40−9247、X−40−9250、X−40−9323、X−41−1053、X−41−1056、X−41−1805、X−41−1810、KF6001、KF6002、KF6003、KR212、KR−213、KR−217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上、信越シリコーン(株)製);グラスレジン(昭和電工(株)製);SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング・シリコーン(株)製);FZ3711、FZ3722(以上、日本ユニカー(株)製);DMS−S12、DMS−S15、DMS−S21、DMS−S27、DMS−S31、DMS−S32、DMS−S33、DMS−S35、DMS−S38、DMS−S42、DMS−S45、DMS−S51、DMS−227、PDS−0332、PDS−1615、PDS−9931、XMS−5025(以上、チッソ(株)製);メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学(株)製);エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート(株)製);GR100、GR650、GR908、GR950(以上、昭和電工(株)製)等を挙げることができる。   Moreover, as a partial condensate of a silane compound (2), it is a brand name, for example, KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21- 5843, X-21-5844, X-21-5845, X-21-5845, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X-22-176B, X-22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X- 40-2655A, X-40-2671, X-40-2672, X-40-9220, X-40-9225, X-40-9227, X-40-9246, X-40-9247, X-4 -9250, X-40-9323, X-41-1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR212, KR-213, KR-217, KR220L , KR242A, KR271, KR282, KR300, KR311, KR401N, KR500, KR510, KR5206, KR5230, KR5235, KR9218, KR9706 (manufactured by Shin-Etsu Silicone); Glass Resin (manufactured by Showa Denko KK); SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, manufactured by Toray Dow Corning Silicone Co., Ltd.); FZ37 1, FZ3722 (manufactured by Nippon Unicar Co., Ltd.); DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS-227, PDS-0332, PDS-1615, PDS-9931, XMS-5025 (manufactured by Chisso Corporation); methyl silicate MS51, methyl silicate MS56 (and above) Ethyl silicate 28, ethyl silicate 40, ethyl silicate 48 (above, Colcoat Co., Ltd.); GR100, GR650, GR908, GR950 (above, Showa Denko Co., Ltd.), etc. be able to.

本発明において、シラン化合物(2)およびその部分縮合物は、それぞれ単独でまたは2種以上を混合して使用することができる。
ポリオルガノシロキサン(α)は、シラン化合物(1)とシラン化合物(2)等とを、有機溶媒、有機塩基および水の存在下に加熱して、加水分解および縮合させることにより製造することが好ましい。
前記有機溶媒としては、例えば、炭化水素、ケトン、エステル、エーテル、アルコール等を使用することができる。水と均一に混合しない溶媒が好ましい。
In this invention, a silane compound (2) and its partial condensate can be used individually or in mixture of 2 or more types, respectively.
The polyorganosiloxane (α) is preferably produced by heating and hydrolyzing and condensing the silane compound (1 ) and the silane compound (2) in the presence of an organic solvent, an organic base and water. .
As the organic solvent, for example, hydrocarbons, ketones, esters, ethers, alcohols and the like can be used. A solvent that does not mix uniformly with water is preferred.

前記炭化水素としては、例えば、トルエン、キシレン等;前記ケトンとしては、例えば、メチルエチルケトン、メチルイソブチルケトン、メチルn−アミルケトン、ジエチルケトン、シクロヘキサノン等;前記エステルとしては、例えば、酢酸エチル、酢酸n−ブチル、酢酸i−アミル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート、乳酸エチル等;前記エーテルとしては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、ジオキサン等;前記アルコールとしては、例えば、1−ヘキサノール、4−メチル−2−ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル等をそれぞれ挙げることができる。   Examples of the hydrocarbon include toluene and xylene; Examples of the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, diethyl ketone, and cyclohexanone; Examples of the ester include ethyl acetate and n-acetate. Butyl, i-amyl acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethyl lactate and the like; Examples of the ether include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran and dioxane; Examples of the alcohol include 1-hexanol, 4-methyl-2-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n- propyl ether, ethylene glycol monobutyl -n- butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono -n- propyl ether may be mentioned, respectively.

これらの有機溶媒は、単独でまたは2種以上を混合して使用することができる。
有機溶媒の使用量は、全シラン化合物100重量部に対して、好ましくは10〜10,000重量部、より好ましくは50〜5,000重量部である。
前記有機塩基としては、例えばエチルアミン、ジエチルアミン等の1〜2級の有機アミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミン等を挙げることができる。
これらの有機塩基のうち、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミンが好ましい。
These organic solvents can be used alone or in admixture of two or more.
The amount of the organic solvent used is preferably 10 to 10,000 parts by weight, more preferably 50 to 5,000 parts by weight with respect to 100 parts by weight of the total silane compound.
Examples of the organic base include primary and secondary organic amines such as ethylamine and diethylamine; tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and 4-dimethylaminopyridine; A quaternary organic amine such as tetramethylammonium hydroxide can be used.
Among these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and 4-dimethylaminopyridine; quaternary organic amines such as tetramethylammonium hydroxide preferable.

ポリオルガノシロキサン(α)を製造する際に、有機塩基を触媒として用いることにより、エポキシ基の開環などの副反応を生じることなく、高い加水分解・縮合速度で目的とするポリオルガノシロキサン(α)を得ることができるため、生産安定性がよく、また良好な硬化性を示す組成物を得ることができる。
有機アミンの使用量は、有機アミンの種類、温度などの反応条件等により異なり、特に限定されないが、全シラン化合物に対して、好ましくは0.01〜3倍モル程度、より好ましくは0.05〜1倍モル程度である。なお、有機アミン類以外の有機塩基を用いる場合の使用量も、ほぼ有機アミンに準じる量で十分である。
ポリオルガノシロキサン(α)を製造する際の水の使用量は、全シラン化合物に対して、好ましくは0.5〜100倍モル程度、より好ましくは1〜30倍モル程度である。
ポリオルガノシロキサン(α)を製造する際の加水分解および縮合反応は、シラン化合物(1)とシラン化合物(2)等とを有機溶媒に溶解し、この溶液を有機塩基および水と混合し、次いで例えば油浴などにより加熱することにより実施することができる。
When producing polyorganosiloxane (α), by using an organic base as a catalyst, the desired polyorganosiloxane (α) can be produced at a high hydrolysis / condensation rate without causing side reactions such as ring opening of epoxy groups. ) Can be obtained, so that a composition having good production stability and good curability can be obtained.
The amount of the organic amine used varies depending on the reaction conditions such as the type and temperature of the organic amine, and is not particularly limited. However, the amount is preferably about 0.01 to 3 moles, more preferably 0.05 to the total silane compound. About 1 mol. In addition, the amount used in the case of using an organic base other than the organic amines is sufficient in an amount substantially equivalent to that of the organic amine.
The amount of water used in producing the polyorganosiloxane (α) is preferably about 0.5 to 100 times mol, more preferably about 1 to 30 times mol, with respect to the total silane compound.
In the hydrolysis and condensation reaction in producing the polyorganosiloxane (α), the silane compound (1 ), the silane compound (2) and the like are dissolved in an organic solvent, this solution is mixed with an organic base and water, For example, it can be carried out by heating in an oil bath or the like.

加水分解と縮合反応時には、加熱温度を、好ましくは130℃以下、より好ましくは40〜120℃とし、好ましくは0.5〜12時間程度、より好ましくは1〜8時間程度加熱するのが望ましい。なお、加熱操作中は、混合液を撹拌してもよいし、還流下に放置してもよい。
反応終了後、反応液から有機溶媒層を分取して、好ましくは水で洗浄する。この洗浄に際しては、少量の塩を含む水、例えば0.2重量%程度の硝酸アンモニウム水溶液などで洗浄することにより、洗浄操作が容易になる。洗浄は洗浄後の水が中性になるまで行い、その後有機溶媒層を、必要に応じて無水硫酸カルシウム、モレキュラーシーブス等の乾燥剤で乾燥したのち、濃縮することにより、目的とするポリオルガノシロキサン(α)を得ることができる。
このようにして得られるポリオルガノシロキサン(α)は、残存する加水分解性基例えば、アルコキシル基等やシラノール基が少ないため、溶剤で希釈しなくても室温で1ヶ月以上ゲル化することなく保存できる。また所望により、反応終了後に、残存するシラノール基をヘキサメチルジシラザン等によりトリメチルシリル化することによって、さらにシラノール基を減らすことができる。
During the hydrolysis and condensation reaction, the heating temperature is preferably 130 ° C. or lower, more preferably 40 to 120 ° C., preferably about 0.5 to 12 hours, more preferably about 1 to 8 hours. During the heating operation, the mixed solution may be stirred or left under reflux.
After completion of the reaction, the organic solvent layer is separated from the reaction solution and preferably washed with water. In this cleaning, the cleaning operation is facilitated by cleaning with water containing a small amount of salt, for example, an aqueous ammonium nitrate solution of about 0.2% by weight. Washing is performed until the water after washing becomes neutral, and then the organic solvent layer is dried with a desiccant such as anhydrous calcium sulfate or molecular sieves if necessary, and then concentrated to obtain the desired polyorganosiloxane. (Α) can be obtained.
The polyorganosiloxane (α) thus obtained has few remaining hydrolyzable groups, such as alkoxyl groups and silanol groups, so it can be stored at room temperature without gelation for more than 1 month without being diluted with a solvent. it can. If desired, the silanol groups can be further reduced by trimethylsilylating the remaining silanol groups with hexamethyldisilazane or the like after completion of the reaction.

また、有機塩基および水の存在下における加水分解と縮合反応には、シラン化合物(1)中のエポキシ基の開環反応や重合反応などの副反応を生起することがなく、しかも含金属触媒を用いる場合に比べて、ポリオルガノシロキサン(α)中のナトリウム、カリウム、白金、ルテニウム等の金属不純物が少なくなるという利点がある。
ポリオルガノシロキサン(α)のポリスチレン換算重量平均分子量(以下、「Mw」という。)は、500〜1,000,000、好ましくは1,000〜100,000である。
ポリオルガノシロキサン(α)は、エポキシ当量が1,600g/モル以下であり、好ましくは160〜900g/モル、さらに好ましくは180〜500g/モルである。エポキシ当量が1,600g/モルを超えると、得られるポリオルガノシロキサンに耐熱性の低下や着色などの不具合を生じるようになる。
In addition, hydrolysis and condensation reactions in the presence of an organic base and water do not cause side reactions such as ring-opening reaction or polymerization reaction of the epoxy group in the silane compound (1 ) , and a metal-containing catalyst is used. There is an advantage that metal impurities such as sodium, potassium, platinum, ruthenium and the like in the polyorganosiloxane (α) are reduced as compared with the case of using.
The polystyrene-reduced weight average molecular weight of the polyorganosiloxane (alpha) (hereinafter. Referred to as "Mw") is 5 00~1,000,000, good Mashiku the Ru 1,000 to 100,000 der.
The polyorganosiloxane (α) has an epoxy equivalent of 1,600 g / mol or less, preferably 160 to 900 g / mol, more preferably 180 to 500 g / mol. When the epoxy equivalent exceeds 1,600 g / mol, the resulting polyorganosiloxane has problems such as reduced heat resistance and coloring.

また、ポリオルガノシロキサン(α)は、シラン化合物(1)に由来する構造単位の含有率が、全構造単位の、5モル%以上であるのが好ましい。該構造単位の含有率が全構造単位の5モル%未満であると、得られるポリオルガノシロキサンに耐熱性の低下や着色などの不具合を生じるおそれがある。
さらに、ポリオルガノシロキサン(α)は、3つ以上の酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合が、好ましくは10%以上であることが望ましい。3つ以上の酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合が10%未満であると、後述する各光半導体封止用組成物から得られる硬化物の硬度や基板との密着性に不具合を生じるおそれがある。
In the polyorganosiloxane (α), the content of the structural unit derived from the silane compound (1) is preferably 5 mol% or more of the total structural units. If the content of the structural unit is less than 5 mol% of the total structural units, the resulting polyorganosiloxane may have problems such as reduced heat resistance and coloring.
Further, in the polyorganosiloxane (α), the ratio of silicon atoms bonded to three or more oxygen atoms to all silicon atoms is preferably 10% or more. When the ratio of silicon atoms bonded to three or more oxygen atoms to the total silicon atoms is less than 10%, the hardness of the cured product obtained from each optical semiconductor sealing composition described later and the adhesion to the substrate May cause problems.

ポリオルガノシロキサン(α)は、後述する各光半導体封止用組成物における主体成分として極めて好適に使用することができるほか、単独でまたは一般のポリオルガノシロキサンと混合して、例えば、成型品、フィルム、ラミネート材、塗料等としても有用である。
ポリオルガノシロキサン(α)は、単独でまたは2種以上を混合して使用することができる。
The polyorganosiloxane (α) can be used very suitably as a main component in each optical semiconductor sealing composition to be described later, alone or mixed with a general polyorganosiloxane, for example, a molded product, It is also useful as a film, laminate material, paint and the like.
Polyorganosiloxane (α) can be used alone or in admixture of two or more.

−(B)金属キレート化合物−
本発明で使用される(B)金属キレート化合物は、好ましくは下記式(3)で表すことができる。
-(B) Metal chelate compound-
The (B) metal chelate compound used in the present invention can be preferably represented by the following formula (3).

Figure 0004985920
Figure 0004985920

〔式(3)において、MはAl、Ti,Zr、Fe、V、Mo、Sn、Cr,Rh、Co、Ni、CuおよびZnより選ばれ、Zは炭素数1〜20のアルキル基またはハロゲン原子であり、Lは2座の配位子であり、NはMの配位座数でありpは1〜N/2の整数である。〕
式(3)において、MはAl、Ti、Zrが好ましく、Alが特に好ましい。
Lとしてはβジケトンまたは下記式(4)で表される化合物が好ましい。
[In the formula (3), M is selected from Al, Ti, Zr, Fe, V, Mo, Sn, Cr, Rh, Co, Ni, Cu and Zn, and Z is an alkyl group having 1 to 20 carbon atoms or halogen. It is an atom, L is a bidentate ligand, N is the coordination number of M, and p is an integer of 1 to N / 2. ]
In the formula (3), M is preferably Al, Ti, or Zr, and particularly preferably Al.
L is preferably a β diketone or a compound represented by the following formula (4).

Figure 0004985920
Figure 0004985920

〔式(4)において、R19、R20はそれぞれ独立に水素原子、フッ素原子、フッ素原子を含んでいてもよい炭素数1〜20のアルキル基およびフッ素原子を含んでいてもよい炭素数6〜30のアリール基より選ばれ、xは1〜4の整数であり、lは0または1である。〕
化合物Lとしては、より具体的には(A)〜(H)のそれぞれで表わされる化合物を挙げることができる。
[In Formula (4), R 19 and R 20 each independently represent a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms which may contain a fluorine atom, and a carbon atom which may contain a fluorine atom. Is selected from ˜30 aryl groups, x is an integer from 1 to 4, and 1 is 0 or 1. ]
More specifically, examples of the compound L include compounds represented by each of (A) to (H).

Figure 0004985920
Figure 0004985920

ここで、R〜R18は、互に独立に、水素原子、フッ素原子、フッ素原子を含んでいてもよい炭素数1〜20のアルキル基およびフッ素原子を含んでいてもよい炭素数6〜30のアリール基より選ばれる。
〜Qは、互に独立に、水素原子、フッ素原子、フッ素原子を含んでいてもよい炭素数1〜20のアルキル基およびフッ素原子を含んでいてもよい炭素数6〜30のアリール基より選ばれる。Q〜Qとしては、水素原子、メチル基またはエチル基が好ましい。
xは1〜4の整数である。
また、上記式(4)において、pはN/2が好ましい。
式(B)で表わされる金属キレート化合物としては、以下の構造を有するものが特に好ましい。
Here, R 3 to R 18 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms which may contain a fluorine atom, and a carbon atom having 6 to 6 carbon atoms which may contain a fluorine atom. Selected from 30 aryl groups.
Q 1 to Q 3 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms that may contain a fluorine atom, or an aryl having 6 to 30 carbon atoms that may contain a fluorine atom. Selected from the group. Q 1 to Q 3 are preferably a hydrogen atom, a methyl group or an ethyl group.
x is an integer of 1-4.
In the above formula (4), p is preferably N / 2.
As the metal chelate compound represented by the formula (B), those having the following structures are particularly preferred.

Figure 0004985920
Figure 0004985920

金属キレート化合物(B)は(A)成分100重量部に対して、0.001〜0.1重量部で用いられる。0.1重量部以下でも硬化が十分に進行し、十分な接着力を有することは驚くべきことであった。本発明の熱硬化性樹脂組成物は金属キレート化合物の添加量が少ないため十分なUV耐久性、耐熱性および保存安定性を有することができる。 The metal chelate compound (B) is 0 . 001 to 0.1 parts by weight are used. It was surprising that the curing proceeded sufficiently even at 0.1 parts by weight or less and had sufficient adhesive strength. The thermosetting resin composition of the present invention can have sufficient UV durability, heat resistance and storage stability since the amount of the metal chelate compound added is small.

−他の添加剤−
本発明の熱硬化性樹脂組成物には硬化をさらに効率的に行う目的で(C)成分として酸を添加することもできる。酸は熱や加水分解により発生するものでもよい。
このような酸としては、例えばシラノールやその誘導体、フェノールやその誘導体および縮合物、スクアリン酸やその誘導体を好ましく用いることができる。
シラノールやその誘導体としては、例えば下記式(5)で表される化合物を挙げることができる。
-Other additives-
An acid can also be added to the thermosetting resin composition of the present invention as the component (C) for the purpose of more efficiently curing. The acid may be generated by heat or hydrolysis.
As such an acid, for example, silanol or a derivative thereof, phenol or a derivative or condensate thereof, squaric acid or a derivative thereof can be preferably used.
Examples of silanol and derivatives thereof include compounds represented by the following formula (5).

Figure 0004985920
Figure 0004985920

ここで、Aは、炭素数1〜20のアルキル基、炭素数6〜30のアリール基またはビニル基であり、Bは水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアセトキシ基でありそしてqは1〜3の整数である。 Here, A is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or a vinyl group, and B is a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, or an acetoxy group having 1 to 20 carbon atoms. And q is an integer from 1 to 3.

上記式(5)で表わされるシラノールとしては、例えばジフェニルシランジオール、トリフェニルシラノール、ジフェニルメチルシラノール、フェニルビニルシランジオール、トリ(パラメトキシフェニル)シラノール、トリアセチルシラノール、ジフェニルエチルシラノール、ジフェニルプロピルシラノール、トリ(パラニトロフェニル)シラノール、フェニルジビニルシラノール、ビニルジフェニルシラノール、2−ブテニルジフェニルシラノール、ジ(2−ペンテニル)フェニルシラノール、フェニルジプロピルシラノール、パラメチルベンジルジメチルシラノール、トリエチルシラノール、トリメチルシラノール、トリイソブチルシラノールなどを挙げることができる。   Examples of the silanol represented by the above formula (5) include diphenylsilanediol, triphenylsilanol, diphenylmethylsilanol, phenylvinylsilanediol, tri (paramethoxyphenyl) silanol, triacetylsilanol, diphenylethylsilanol, diphenylpropylsilanol, triphenyl. (Paranitrophenyl) silanol, phenyldivinylsilanol, vinyldiphenylsilanol, 2-butenyldiphenylsilanol, di (2-pentenyl) phenylsilanol, phenyldipropylsilanol, paramethylbenzyldimethylsilanol, triethylsilanol, trimethylsilanol, triisobutyl Examples include silanol.

また、シラノール誘導体としては、例えばジフェニルジメトキシシラン、トリフェニルメトキシシラン、ジフェニルメチルメトキシシラン、フェニルビニルジメトキシシラン、トリ(パラメトキシフェニル)メトキシシラン、トリアセチルメトキシシラン、ジフェニルエチルメトキシシラン、ジフェニルプロピルメトキシシラン、トリ(パラニトロフェニル)メトキシシラン、フェニルジビニルメトキシシラン、ビニルジフェニルメトキシシラン、2−ブテニルジフェニルメトキシシラン、ジ(2−ペンテニル)フェニルメトキシシラン、フェニルジプロピルメトキシシラン、パラメチルベンジルジメチルメトキシシラン、トリエチルメトキシシラン、トリメチルメトキシシラン、トリイソブチルメトキシシランなどのメトキシシラン;ジフェニルジエトキシシラン、トリフェニルエトキシシラン、ジフェニルメチルエトキシシラン、フェニルビニルジエトキシシラン、トリ(パラメトキシフェニル)エトキシシラン、トリアセチルエトキシシラン、ジフェニルエチルエトキシシラン、ジフェニルプロピルエトキシシラン、トリ(パラニトロフェニル)エトキシシラン、フェニルジビニルエトキシシラン、ビニルジフェニルエトキシシラン、2−ブテニルジフェニルエトキシシラン、ジ(2−ペンテニル)フェニルエトキシシラン、フェニルジプロピルエトキシシラン、パラメチルベンジルジメチルエトキシシラン、トリエチルエトキシシラン、トリメチルエトキシシラン、トリイソブチルエトキシシランなどのエトキシシランを挙げることができる。   Examples of silanol derivatives include diphenyldimethoxysilane, triphenylmethoxysilane, diphenylmethylmethoxysilane, phenylvinyldimethoxysilane, tri (paramethoxyphenyl) methoxysilane, triacetylmethoxysilane, diphenylethylmethoxysilane, diphenylpropylmethoxysilane. , Tri (paranitrophenyl) methoxysilane, phenyldivinylmethoxysilane, vinyldiphenylmethoxysilane, 2-butenyldiphenylmethoxysilane, di (2-pentenyl) phenylmethoxysilane, phenyldipropylmethoxysilane, paramethylbenzyldimethylmethoxysilane Methoxysilanes such as triethylmethoxysilane, trimethylmethoxysilane, triisobutylmethoxysilane; Nyldiethoxysilane, triphenylethoxysilane, diphenylmethylethoxysilane, phenylvinyldiethoxysilane, tri (paramethoxyphenyl) ethoxysilane, triacetylethoxysilane, diphenylethylethoxysilane, diphenylpropylethoxysilane, tri (paranitrophenyl) ) Ethoxysilane, phenyldivinylethoxysilane, vinyldiphenylethoxysilane, 2-butenyldiphenylethoxysilane, di (2-pentenyl) phenylethoxysilane, phenyldipropylethoxysilane, paramethylbenzyldimethylethoxysilane, triethylethoxysilane, trimethyl Mention may be made of ethoxysilanes such as ethoxysilane and triisobutylethoxysilane.

本発明の熱硬化性樹脂組成物はさらにエポキシ樹脂を含んでいてもよい。
かかるエポキシ樹脂としては、例えば下記式(13)〜(25)のそれぞれで表わされる化合物を挙げることができる。
The thermosetting resin composition of the present invention may further contain an epoxy resin.
Examples of the epoxy resin include compounds represented by the following formulas (13) to (25).

Figure 0004985920
Figure 0004985920

上記のエポキシ化合物は縮合された縮合体として用いることもできる。上記式(13)〜(25)のそれぞれで表わされる化合物は下記市販品として入手することができる。すなわち、(13)はHBE100(新日本理化(株)製)、YX8000(ジャパンエポキシレジン(株)製)、(14)はYL7040,(15)はYL6753,(16)はYED216D(以上、ジャパンエポキシレジン(株)製)、(17)はCE2021(ダイセル化学工業(株)製)、(18)はLS7970(信越化学工業(株)製)、(19)〜(23)はそれぞれCE2080,CE3000,エポリードGT300,エポリードGT400,EHPE3150(以上、ダイセル化学工業(株)製)、(24)はSR−HHPA(阪本薬品工業(株)製)、(25)はテピック(日産化学工業(株)製)として入手することができる。YL7170,YL8034(以上、ジャパンエポキシレジン(株)製)、W−100(新日本理化(株)製)なども用いることができる。これらの他に以下の芳香族エポキシ化合物を水素化して得られる脂環族エポキシ化合物を用いてもよい。ビスフェノールAD,ビスフェノールS,テトラメチルビスフェノールA,テトラメチルビスフェノールF、テトラメチルビスフェノールAD,テトラメチルビスフェノールS,テトラブロモビスフェノールA、テトラクロロビスフェノールA,テトラフルオロビスフェノールAなどのビスフェノールをグリシジル化したビスフェノール型エポキシ樹脂、ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン等の2価のフェノールをグリシジル化したエポキシ樹脂、1,1,1−トリス(4−ヒドロキシフェニル)メタン、4,4-(1−(4−(1−(4−ヒドロキシフェニル)−1−メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノールをグリシジル化したエポキシ樹脂、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン等のテトラキスフェノールをグリシジル化したエポキシ樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化ビスフェノールAノボラック等のノボラックをグリシジル化したノボラック型エポキシ樹脂等を挙げることができる。
上記脂肪族あるいは脂環族エポキシ化合物は(A)のポリオルガノシロキサン100重量部に対して0.1〜1,000重量部で加えることができる。
Said epoxy compound can also be used as a condensed condensate. The compounds represented by each of the above formulas (13) to (25) can be obtained as the following commercial products. That is, (13) is HBE100 (manufactured by Shin Nippon Rika Co., Ltd.), YX8000 (manufactured by Japan Epoxy Resin Co., Ltd.), (14) is YL7040, (15) is YL6753, (16) is YED216D (above, Japan Epoxy) Resin Co., Ltd.), (17) CE2021 (Daicel Chemical Industries, Ltd.), (18) LS7970 (Shin-Etsu Chemical Co., Ltd.), and (19)-(23) are CE2080, CE3000, respectively. Eporide GT300, Eporide GT400, EHPE3150 (above, manufactured by Daicel Chemical Industries, Ltd.), (24) SR-HHPA (produced by Sakamoto Pharmaceutical Co., Ltd.), (25) Tepic (produced by Nissan Chemical Industries, Ltd.) Can be obtained as YL7170, YL8034 (manufactured by Japan Epoxy Resin Co., Ltd.), W-100 (manufactured by Shin Nippon Rika Co., Ltd.) and the like can also be used. In addition to these, alicyclic epoxy compounds obtained by hydrogenating the following aromatic epoxy compounds may be used. Bisphenol type epoxy glycidylated bisphenol such as bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A, tetrafluorobisphenol A Resin, epoxy resin obtained by glycidylation of divalent phenol such as dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- ( Epoxy resin obtained by glycidylation of trisphenol such as 1- (4- (1- (4-hydroxyphenyl) -1-methylethyl) phenyl) ethylidene) bisphenol, Examples include epoxy resins obtained by glycidylating tetrakisphenol such as trakis (4-hydroxyphenyl) ethane, novolak type epoxy resins obtained by glycidylating novolaks such as phenol novolak, cresol novolak, bisphenol A novolak, brominated bisphenol A novolak, and the like. it can.
The aliphatic or alicyclic epoxy compound can be added in an amount of 0.1 to 1,000 parts by weight per 100 parts by weight of the polyorganosiloxane (A).

また、必要に応じて上記の如き芳香族エポキシ化合物を含んでいてもよい。
また、本発明の熱硬化性樹脂組成物には、リードフレームとの密着性を上げる目的で密着助剤をさらに添加することもできる。密着助剤としては、例えばβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、ドデカンジチオール、式(26)、(27)の化合物。
Moreover, you may contain the above aromatic epoxy compounds as needed.
In addition, an adhesion aid can be further added to the thermosetting resin composition of the present invention for the purpose of improving the adhesion to the lead frame. Examples of adhesion assistants include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and γ-glycidoxypropylmethyldi Ethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxy Silane, dodecanedithiol, Compounds of formula (26), (27).

Figure 0004985920
Figure 0004985920

また、式(28)、(29)のようなチタネート系密着助剤を使用することもできる。 In addition, titanate adhesion assistants such as formulas (28) and (29) can also be used.

Figure 0004985920
Figure 0004985920

これらの中でもβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、ドデカンジチオール、式(26)、(27)の化合物が好ましい。
密着助剤の添加量は好ましくは(A)成分100重量部に対し、好ましくは0.01〜30重量部、より好ましくは0.1〜20重量部である。
さらに、クラックやリードフレームとの剥離を防ぐ目的で応力緩和剤を添加することもできる。応力緩和剤としては、例えばエポキシ変性シリコーン、カルボキシル基変性シリコーン、メルカプト変性シリコーン、両末端カルボキシ変性水添ポリブタジエンおよび両末端ヒドロキシ変性ポリブタジエンを挙げることができる。
エポキシ変性シリコーンとして例えばKF−105,X−22−163A,X−22−163B,X−22−163C、KF−1001、KF−101、X−22−2000、X−22−169AS、X−22−169B、KF−102(以上信越化学工業(株)製)、SF8421(東レダウ(株)製)、カルボキシル基変性シリコーンとしてX−22−162C、X−22−3701E、X−22−3710(以上信越化学工業(株)製)、メルカプト変性シリコーンとしては、例えばX−22−167B、KF−2001、KF−2004(以上信越化学工業(株)製)、両末端カルボキシ変性水添ポリブタジエンとしてCI1000(日本曹達(株)製)、両末端ヒドロキシ変性ポリブタジエンとしてGI2000、GI3000(以上、日本曹達(株)製)を挙げることができる。
Among these, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ -Glycidoxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, dodecanedithiol, and compounds of formulas (26) and (27) are preferred.
The addition amount of the adhesion assistant is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the component (A).
Furthermore, a stress relaxation agent can be added for the purpose of preventing cracks and peeling from the lead frame. Examples of the stress relaxation agent include epoxy-modified silicone, carboxyl group-modified silicone, mercapto-modified silicone, both-end carboxy-modified hydrogenated polybutadiene, and both-end hydroxy-modified polybutadiene.
Examples of the epoxy-modified silicone include KF-105, X-22-163A, X-22-163B, X-22-163C, KF-1001, KF-101, X-22-2000, X-22-169AS, X-22. -169B, KF-102 (manufactured by Shin-Etsu Chemical Co., Ltd.), SF8421 (manufactured by Toray Dow Co., Ltd.), X-22-162C, X-22-3701E, X-22-3710 (carboxyl-modified silicone) As described above, manufactured by Shin-Etsu Chemical Co., Ltd.) and mercapto-modified silicones, for example, X-22-167B, KF-2001, KF-2004 (manufactured by Shin-Etsu Chemical Co., Ltd.), CI1000 as both-terminal carboxy-modified hydrogenated polybutadiene. (Manufactured by Nippon Soda Co., Ltd.), GI2000, GI3000 (both terminal hydroxy-modified polybutadiene On, it can be exemplified by Nippon Soda Co., Ltd., Ltd.).

また、樹脂の表面張力を調節する目的で界面活性剤を添加することもできる。
具体的にはF−474、F−479(以上、大日本インキ工業(株)製)、FC−4430、FC−4432(以上、住友スリーエム(株)製)、KP323、KP341(以上、信越化学工業(株)製)、PAINTAD32、PAINTAD54、DK8−8011(東レダウ(株)製)、エマルゲン104P、エマルゲン109P、エマルゲン123、レオドール8P(以上、花王(株)製)を挙げることができる。
本発明の熱硬化性樹脂組成物には、UV耐久性をさらに向上させ、また粘度の調整等の目的で、必要に応じて、無機酸化物粒子を配合することもできる。
Further, a surfactant can be added for the purpose of adjusting the surface tension of the resin.
Specifically, F-474, F-479 (above, Dainippon Ink Industries, Ltd.), FC-4430, FC-4432 (above, made by Sumitomo 3M Ltd.), KP323, KP341 (above, Shin-Etsu Chemical) Kogyo Co., Ltd.), PAINTAD32, PAINTAD54, DK8-8011 (manufactured by Toray Dow Co., Ltd.), Emulgen 104P, Emulgen 109P, Emulgen 123, and Rheodor 8P (above, manufactured by Kao Corporation).
In the thermosetting resin composition of the present invention, inorganic oxide particles can be blended as necessary for the purpose of further improving the UV durability and adjusting the viscosity.

前記無機酸化物粒子としては、特に限定されるものではないが、例えば、Si、Al、Zr、Ti、Zn、Ge、In、Sn、SbおよびCeの群から選ばれる少なくとも1種の元素を含有する酸化物からなる粒子を挙げることができる。より具体的には、シリカ、アルミナ、ジルコニア、酸化チタン、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウム−スズ酸化物(ITO)、酸化アンチモン、アンチモン−スズ酸化物(ATO)、酸化セリウム等の粒子を挙げることができる。
これらの無機酸化物粒子のうち、シリカ、アルミナ、ジルコニア、酸化アンチモン等の微粒子が好ましい。
また、前記無機酸化物粒子は、アルキル化、ポリシロキシル化、(メタ)アクリロキシアルキル化、グリコキシアルキル化、アミノアルキル化等の表面処理を適宜施して使用することもできる。
The inorganic oxide particles are not particularly limited, but include, for example, at least one element selected from the group consisting of Si, Al, Zr, Ti, Zn, Ge, In, Sn, Sb, and Ce. And particles made of oxides. More specifically, silica, alumina, zirconia, titanium oxide, zinc oxide, germanium oxide, indium oxide, tin oxide, indium-tin oxide (ITO), antimony oxide, antimony-tin oxide (ATO), cerium oxide And the like.
Of these inorganic oxide particles, fine particles such as silica, alumina, zirconia, and antimony oxide are preferable.
In addition, the inorganic oxide particles can be used after appropriately performing a surface treatment such as alkylation, polysiloxylation, (meth) acryloxyalkylation, glycoxyalkylation, aminoalkylation or the like.

前記無機酸化物粒子は、単独でまたは2種以上を混合して使用することができる。
無機酸化物粒子の一次平均粒径は、好ましくは100nm以下、より好ましくは1〜80nmである。この場合、無機酸化物粒子の一次平均粒径が100nmを超えると、得られる硬化物の透明性が損なわれるおそれがある。
無機酸化物粒子の使用量は、(A)ポリオルガノシロキサン100重量部に対して、好ましくは90重量部以下、さらに好ましくは80重量部以下である。無機酸化物粒子の使用量が90重量部を超えると、組成物が増粘して、加工が困難になるおそれがある。
前記無機酸化物粒子は、場合により、適当な溶媒に分散した分散液として使用することもできる。
The said inorganic oxide particle can be used individually or in mixture of 2 or more types.
The primary average particle diameter of the inorganic oxide particles is preferably 100 nm or less, more preferably 1 to 80 nm. In this case, when the primary average particle diameter of the inorganic oxide particles exceeds 100 nm, the transparency of the resulting cured product may be impaired.
The amount of the inorganic oxide particles used is preferably 90 parts by weight or less, more preferably 80 parts by weight or less with respect to 100 parts by weight of (A) polyorganosiloxane. When the usage-amount of inorganic oxide particle exceeds 90 weight part, there exists a possibility that a composition may thicken and processing may become difficult.
In some cases, the inorganic oxide particles can be used as a dispersion dispersed in an appropriate solvent.

前記溶媒としては、熱硬化性樹脂組成物を構成する各成分および硬化反応に対して不活性で、適度の揮発性を有する限り特に限定されるものではない。例えば、メタノール、エタノール、i−プロパノール、n−ブタノール、n−オクタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、プロピルグリコールモノメチルエーテル、プロピルグリコールモノエチルエーテル等のアルコール;
アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;
酢酸エチル、酢酸n−ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステルまたはラクトン;
ベンゼン、トルエン、キシレン等の芳香族炭化水素;
ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミドまたはラクタム
等を挙げることができる。
The solvent is not particularly limited as long as it is inert to each component constituting the thermosetting resin composition and the curing reaction and has an appropriate volatility. For example, alcohols such as methanol, ethanol, i-propanol, n-butanol, n-octanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, propyl glycol monomethyl ether, propyl glycol monoethyl ether;
Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone;
Esters or lactones such as ethyl acetate, n-butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, γ-butyrolactone;
Aromatic hydrocarbons such as benzene, toluene, xylene;
Examples include amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone, lactams, and the like.

これらの溶媒は、単独でまたは2種以上を混合して使用することができる。
無機酸化物粒子の分散液の固形分濃度は、好ましくは1〜60重量%、より好ましくは5〜50重量%である。
さらに必要に応じて、無機酸化物粒子と共に、例えば、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、高分子分散剤等の分散剤を1種以上併用することができる。
無機酸化物粒子やその分散液は市販されており、これらの市販品を使用することもできる。
These solvents can be used alone or in admixture of two or more.
The solid content concentration of the dispersion of inorganic oxide particles is preferably 1 to 60% by weight, more preferably 5 to 50% by weight.
Further, if necessary, one or more kinds of dispersants such as an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a polymer dispersant can be used in combination with the inorganic oxide particles.
Inorganic oxide particles and dispersions thereof are commercially available, and these commercially available products can also be used.

無機酸化物粒子やその分散液の市販品(商品名)としては、例えば、シリカ粒子の分散液として、メタノールシリカゾル、IPA−ST、MEK−ST、NBA−ST、XBA−ST、DMAC−ST、ST−UP、ST−OUP、ST−C、ST−N、ST−O、ST−OL、ST−20、ST−40、ST−50(以上、日産化学工業(株)製);オルガノゾルPL−2PGME(プロピレングリコールモノメチルエーテル分散液、扶桑化学工業(株)製)等を、シリカ粒子として、アエロジル130、アエロジル300、アエロジル380、アエロジルTT600、アエロジルOX50(以上、日本アエロジル(株)製);シルデックスH31、シルデックスH32、シルデックスH51、シルデックスH52、シルデックスH121、シルデックスH122(以上、旭硝子(株)製);E220A、E220(以上、日本シリカ工業(株)製);SYLYSIA470(富士シリシア(株)製)、SGフレーク(日本板硝子(株)製)等を、アルミナ粒子の分散液として、アルミナゾル−100、アルミナゾル−200、アルミナゾル−520(以上、いずれも水分散液、日産化学工業(株)製);AS−1501(i−プロパノール分散液、住友大阪セメント(株)製);AS−150T(トルエン分散液、住友大阪セメント(株)製)等を、ジルコニア粒子の分散液として、HXU−110JC(トルエン分散液、住友大阪セメント(株)製)等を、アンチモン酸亜鉛粒子の分散液として、セルナックス(水分散液、日産化学工業(株)製)等を、酸化セリウム粒子の分散液として、ニードラール(水分散液、多木化学(株)製)等を、それぞれ挙げることができる。
また、熱硬化性樹脂組成物には、硬化物の着色を抑えるために、必要に応じて、酸化防止剤、光安定剤や紫外線吸収剤を配合することもできる。
As a commercial item (trade name) of inorganic oxide particles and dispersions thereof, for example, as silica particle dispersions, methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST-OUP, ST-C, ST-N, ST-O, ST-OL, ST-20, ST-40, ST-50 (above, manufactured by Nissan Chemical Industries, Ltd.); Organosol PL- Aerosil 130, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil OX50 (above, Nippon Aerosil Co., Ltd.); 2PGME (propylene glycol monomethyl ether dispersion, manufactured by Fuso Chemical Industry Co., Ltd.) and the like as silica particles; Dex H31, Sildex H32, Sildex H51, Sildex H52, Sildex H121 Sildex H122 (manufactured by Asahi Glass Co., Ltd.); E220A, E220 (manufactured by Nippon Silica Industry Co., Ltd.); SYLYSIA470 (manufactured by Fuji Silysia Co., Ltd.), SG flake (manufactured by Nippon Sheet Glass Co., Ltd.), etc. As alumina particle dispersions, alumina sol-100, alumina sol-200, alumina sol-520 (all of which are aqueous dispersions, manufactured by Nissan Chemical Industries, Ltd.); AS-1501 (i-propanol dispersion, Sumitomo Osaka Cement) AS-150T (toluene dispersion, manufactured by Sumitomo Osaka Cement Co., Ltd.), etc., as a zirconia particle dispersion, HXU-110JC (toluene dispersion, manufactured by Sumitomo Osaka Cement Co., Ltd.), etc. As a dispersion of zinc antimonate particles, Celnax (aqueous dispersion, manufactured by Nissan Chemical Industries, Ltd.), etc. As dispersion liquid, Nidoraru (aqueous dispersion, Taki Chemical Co., Ltd.) and the like, can be exemplified respectively.
Moreover, in order to suppress coloring of hardened | cured material, antioxidant, a light stabilizer, and a ultraviolet absorber can also be mix | blended with a thermosetting resin composition as needed.

前記酸化防止剤としては、商品名で、例えば、SumilizerBHT、SumilizerGM、SumilizerGS、SumilizerMDP−S、SumilizerBBM−S、SumilizerWX−R、SumilizerGA−80、SumilizerTPL−R、SumilizerTPM、SumilizerTPS、SumilizerTP−D(以上、住友化学工業(株)製);Irganox1076、Irganox565、Irganox1520、Irganox245、Irganox1010、Irganox1098、Irganox1330、Irganox1425、Irganox3114、IrganoxMD−1024(以上、チバ・スペシャリティ・ケミカルズ社製);Cyanox1790(Cytec社製);TNP(四日市合成(株)製);Weston618(Vorg Warner社製);Irgafos168(チバ・スペシャリティ・ケミカルズ社製);AdekastabPEP−36、AdekastabHP−10(以上、旭電化工業(株)製)や、SandstabP−EPQ、Ultranox626等を挙げることができる。   Examples of the antioxidants include trade names such as Sumizer BHT, Sumizer GM, Sumizer GS, Sumizer MDP-S, Sumizer BBM-S, Sumizer WX-R, Sumizer GA-80, Sumitizer TZ-S, TP. Chemical Industry Co., Ltd.); Irganox 1076, Irganox 565, Irganox 1520, Irganox 245, Irganox 1010, Irganox 1098, Irganox 1330, Irganox 1425, Irganox 3114, Irganox MD-114 nox1790 (manufactured by Cytec); TNP (manufactured by Yokkaichi Gosei Co., Ltd.); Weston 618 (manufactured by Vorg Warner); Irgafos 168 (manufactured by Ciba Specialty Chemicals); Co., Ltd.), Sandstab P-EPQ, Ultranox 626, and the like.

前記光安定剤としては、商品名で、例えば、Viosorb04(共同薬品(株)製);Tinuvin622、Tinuvin765(以上、チバ・スペシャリティ・ケミカルズ社製);CyasorbUV−3346(Cytec社製);AdekastabLA−57(旭電化工業(株)製)や、Chimassorb119、Chimassorb944等を挙げることができる。
前記紫外線吸収剤としては、商品名で、例えば、Viosorb80、Viosorb110、Viosorb130、Viosorb520、Viosorb583、Viosorb590(以上、共同薬品(株)製);TinuvinP、Tinuvin213、Tinuvin234、Tinuvin320、Tinuvin326、Tinuvin328(以上、チバ・スペシャリティ・ケミカルズ社製);AdekastabLA−31(旭電化工業(株)製)等を挙げることができる。
Examples of the light stabilizer include, for example, Biosorb 04 (manufactured by Kyodo Yakuhin Co., Ltd.); Tinuvin 622, Tinuvin 765 (manufactured by Ciba Specialty Chemicals); Cyasorb UV-3346 (manufactured by Cytec); AdekatabLA-57 (Manufactured by Asahi Denka Kogyo Co., Ltd.), Chimassorb 119, Chimassorb 944 and the like.
Examples of the ultraviolet absorber include, for example, Viosorb 80, Viosorb 110, Viosorb 130, Viosorb 520, Viosorb 583, Viosorb 590 (above, manufactured by Kyodo Yakuhin Co., Ltd.); -Specialty Chemicals Co., Ltd.); AdekatabLA-31 (Asahi Denka Kogyo Co., Ltd.) etc. can be mentioned.

さらに、熱硬化性樹脂組成物には、必要に応じて、本発明の所期の効果を損なわない範囲で、エチレングリコールやプロピレングリコール等の脂肪族ポリオール、脂肪族または芳香族のカルボン酸、フェノール化合物等の炭酸ガス発生防止剤;ポリアルキレングリコール、ポリジメチルシロキサン誘導体等の応力緩和剤;各種のゴムや有機ポリマービーズ等の耐衝撃性改良剤のほか、可塑剤、滑剤、他のシランカップリング剤、難燃剤、帯電防止剤、レベリング剤、イオントラップ剤、摺動性改良剤、遥変性付与剤、表面張力低下剤、消泡剤、沈降防止剤、抗酸化剤、離型剤、蛍光剤、着色剤、導電性充填剤等の前記以外の添加剤を配合してもよい。   Furthermore, in the thermosetting resin composition, if necessary, an aliphatic polyol such as ethylene glycol or propylene glycol, an aliphatic or aromatic carboxylic acid, or phenol, as long as the desired effects of the present invention are not impaired. Carbon dioxide generation inhibitors such as compounds; Stress relaxation agents such as polyalkylene glycols and polydimethylsiloxane derivatives; Impact modifiers such as various rubbers and organic polymer beads, plasticizers, lubricants, and other silane couplings Agent, flame retardant, antistatic agent, leveling agent, ion trapping agent, sliding property improving agent, far denaturing imparting agent, surface tension reducing agent, antifoaming agent, anti-settling agent, antioxidant, release agent, fluorescent agent Additives other than those described above, such as colorants and conductive fillers, may be blended.

熱硬化性樹脂組成物の調製方法は、特に限定されるものではなく、従来公知の方法により各成分を混合して調製することができる。光半導体封止用組成物〔I〕の好ましい調製方法としては、シラン化合物(1)等とシラン化合物(2)等とを、前記した要領で加水分解と縮合させることにより得られた(A)ポリオルガノシロキサンを、(B)金属キレート化合物と混合する方法を挙げることができる。
この熱硬化性樹脂組成物は、(A)成分を主成分とするポリオルガノシロキサン液と(B)成分を主成分とする硬化剤液とを別々に調製しておき、使用時にこれらを混合して調製してもよい。
The preparation method of a thermosetting resin composition is not specifically limited, It can prepare by mixing each component by a conventionally well-known method. A preferred method for preparing the optical semiconductor encapsulating composition [I] was obtained by condensing the silane compound (1) and the like with the silane compound (2) and the like in the manner described above (A). The method of mixing polyorganosiloxane with (B) metal chelate compound can be mentioned.
This thermosetting resin composition is prepared by separately preparing a polyorganosiloxane liquid mainly composed of component (A) and a curing agent liquid mainly composed of component (B), and mixing them at the time of use. May be prepared.

光半導体用接着剤
本発明の熱硬化性樹脂組成物は光半導体用接着剤として用いることができる。
リードフレームに本発明の光半導体封止用接着剤をスタンピングなどの方法で塗布し、LEDチップをのせて50〜250℃のオーブンで30分〜4時間加熱して接着させることができる。
Adhesive for optical semiconductor The thermosetting resin composition of the present invention can be used as an adhesive for optical semiconductor.
The adhesive for optical semiconductor sealing of the present invention can be applied to the lead frame by a method such as stamping, and the LED chip can be placed on the lead frame and heated in an oven at 50 to 250 ° C. for 30 minutes to 4 hours for adhesion.

光半導体封止材
本発明の熱硬化性樹脂組成物は光半導体用封止材として用いることもできる。
光半導体封止材を形成する際には、光半導体層を有する基板の所定箇所に、本発明の熱硬化性樹脂組成物を、例えば、塗布、ポッティング、含浸等により施工したのち、加熱して硬化させる。
組成物のより具体的な施工方法としては、例えば、ディスペンサーによる塗布またはポッティング、真空下または常圧下におけるスクリーン印刷による塗布、反応射出成型等の公知の方法を採用することができる。
また、施工後の各光半導体封止用組成物を硬化させる方法としては、例えば、密閉式硬化炉、連続硬化が可能なトンネル炉等の従来公知の硬化装置を用いることができる。
Optical Semiconductor Encapsulant The thermosetting resin composition of the present invention can also be used as an optical semiconductor encapsulant.
When forming the optical semiconductor encapsulant, the thermosetting resin composition of the present invention is applied to a predetermined portion of the substrate having the optical semiconductor layer by, for example, coating, potting, impregnation, etc., and then heated. Harden.
As a more specific construction method of the composition, for example, a known method such as application or potting with a dispenser, application by screen printing under vacuum or normal pressure, reaction injection molding, or the like can be employed.
Moreover, as a method of hardening each composition for optical semiconductor sealing after construction, conventionally well-known hardening apparatuses, such as a closed-type hardening furnace and a tunnel furnace which can be continuously hardened, can be used, for example.

硬化させるための加熱方法としては、例えば、熱風循環式加熱、赤外線加熱、高周波加熱等の従来公知の方法を採用することができる。
硬化条件は、例えば、80〜250℃で30秒〜15時間程度が好ましい。硬化に際して、硬化物の内部応力を低減させることを目的とする場合は、例えば80〜120℃で0.5〜5時間程度の条件で予備硬化させたのち、例えば120〜180℃で0.1〜15時間程度の条件で後硬化させることが好ましく、また短時間硬化を目的とする場合は、例えば150〜250℃で30秒〜30分程度の条件で硬化させることが好ましい。
As a heating method for curing, for example, a conventionally known method such as hot air circulation heating, infrared heating, high frequency heating or the like can be employed.
The curing conditions are preferably about 80 to 250 ° C. and about 30 seconds to 15 hours, for example. At the time of curing, when it is intended to reduce the internal stress of the cured product, for example, after preliminary curing at 80 to 120 ° C. for about 0.5 to 5 hours, 0.1 to 120 to 180 ° C., for example. It is preferable to perform post-curing under conditions of about 15 hours, and when aiming at short-time curing, for example, it is preferable to perform curing at 150 to 250 ° C. for about 30 seconds to 30 minutes.

以下に実施例を示して、本発明の実施の形態をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

各合成例で得た(A)ポリオルガノシロキサンの粘度、Mwおよびエポキシ当量の測定方法は、下記のとおりである。
Mwの測定方法:カラム:東ソー製TSKgelGRCXLH、溶剤:テトラヒドロフラン、温度:40℃、圧力:68kgf/cm
エポキシ当量の測定方法:
JIS C 2105の塩酸−メチルエチルケトン法に準じた。
The measuring method of the viscosity, Mw, and epoxy equivalent of (A) polyorganosiloxane obtained in each synthesis example is as follows.
Measuring method of Mw: Column: TSKgelGRCXLH manufactured by Tosoh Corporation, solvent: tetrahydrofuran, temperature: 40 ° C., pressure: 68 kgf / cm 2
Method for measuring epoxy equivalent:
According to JIS C 2105 hydrochloric acid-methyl ethyl ketone method.

合成例1
撹拌機、温度計、滴下漏斗、還流冷却管を備えた反応容器に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)60.0g、ジメチルジメトキシシラン(DMDS)40.0g、メチルイソブチルケトン(MIBK)500g、トリエチルアミン10.0gを加え、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下したのち、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2重量%硝酸アンモニウム水溶液で、洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒および水を留去して、(A)ポリオルガノシロキサンを粘調な透明液体として得た。
この(A)ポリオルガノシロキサンについて、H−NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。
この(A)ポリオルガノシロキサンのMwおよびエポキシ当量を表1に示す。
Synthesis example 1
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 60.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECETS), 40.0 g of dimethyldimethoxysilane (DMDS), 500 g of methyl isobutyl ketone (MIBK) and 10.0 g of triethylamine were added and mixed at room temperature. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2 wt% ammonium nitrate aqueous solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure. (A) Polyorganosiloxane Was obtained as a viscous transparent liquid.
As a result of 1 H-NMR analysis of this (A) polyorganosiloxane, a peak based on an epoxy group was obtained in the vicinity of chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no reaction occurred.
Table 1 shows the Mw and epoxy equivalent of this (A) polyorganosiloxane.

合成例2〜4
仕込み原料を表1に示すとおりとした以外は、合成例1と同様にして、各(A)ポリオルガノシロキサンを粘調な透明液体として得た。
Synthesis Examples 2-4
Each (A) polyorganosiloxane was obtained as a viscous transparent liquid in the same manner as in Synthesis Example 1 except that the raw materials used were as shown in Table 1.

各(A)ポリオルガノシロキサンのMwおよびエポキシ当量を表1に示す。   Table 1 shows Mw and epoxy equivalent of each (A) polyorganosiloxane.

Figure 0004985920
Figure 0004985920

上記表中、MTMSはメチルトリメトキシシランを表す。
光半導体封止用組成物の成型治具と硬化条件、並びに硬化物の外観、UV耐久性および硬度の評価要領は、下記のとおりである。
In the above table, MTMS represents methyltrimethoxysilane.
The molding jig and curing conditions of the composition for optical semiconductor encapsulation, and the evaluation points of the appearance, UV durability and hardness of the cured product are as follows.

成型治具:
ポリエチレンテレフタレートフィルムを表面に貼り付けたガラス板2枚を対向させ、ガラス板の端部に直径2mmのシリコンゴムロッドをU字状にして挟み込んで、成型治具とした。
Molding jig:
Two glass plates with a polyethylene terephthalate film attached to the surface were opposed to each other, and a silicon rubber rod having a diameter of 2 mm was sandwiched between the ends of the glass plate in a U shape to form a molding jig.

硬化条件:
前記成型治具に光半導体封止用組成物を注入し、70℃のオーブンで30分150℃のオーブンで1時間加熱して硬化させて硬化物を得た。
Curing conditions:
The composition for optical semiconductor sealing was poured into the molding jig and cured by heating in an oven at 70 ° C. for 30 minutes in an oven at 150 ° C. for 1 hour to obtain a cured product.

UV耐久性の評価要領:
硬化物に対して、紫外線ロングライフフェードメーター(スガ試験機(株)製)を用い、紫外線(UV)を63℃で2週間連続照射して、照射前後における波長470nmでの透過率を分光光度計にて測定した。

○・・・(照射後の透過率)/(初期透過率)≧0.9
×・・・(照射後の透過率)/(初期透過率)<0.9
Evaluation procedure for UV durability:
The cured product was irradiated with ultraviolet rays (UV) continuously at 63 ° C. for 2 weeks using an ultraviolet long life fade meter (manufactured by Suga Test Instruments Co., Ltd.), and the transmittance at a wavelength of 470 nm before and after irradiation was measured spectrophotometrically. Measured with a meter.

○ ... (Transmission after irradiation) / (Initial transmittance) ≧ 0.9
× ... (Transmission after irradiation) / (Initial transmittance) <0.9

耐熱性:
硬化物の初期および150℃のオーブンに120時間放置した後の470nmでの透過率を測定した。

○・・・(照射後の透過率)/(初期透過率)≧0.9
×・・・(照射後の透過率)/(初期透過率)<0.9
Heat-resistant:
The transmittance at 470 nm was measured at the initial stage of the cured product and after being left in an oven at 150 ° C. for 120 hours.

○ ... (Transmission after irradiation) / (Initial transmittance) ≧ 0.9
× ... (Transmission after irradiation) / (Initial transmittance) <0.9

接着性:
リードフレームに光半導体封止用接着剤を塗布し、サファイアのチップを乗せて150℃のオーブンで1時間加熱し接着試験サンプルとし20個作成した。次に接着試験サンプルを150℃のホットプレート上に置き、ピンセットでつついたときの剥がれを生じた接着試験サンプルの数を数えた。

○・・・剥がれた接着試験サンプル≦2個
×・・・剥がれた接着試験サンプル≧3個
Adhesiveness:
An optical semiconductor sealing adhesive was applied to the lead frame, and a sapphire chip was placed on it and heated in an oven at 150 ° C. for 1 hour to prepare 20 adhesive test samples. Next, the adhesion test sample was placed on a hot plate at 150 ° C., and the number of adhesion test samples that had peeled off when tucked with tweezers was counted.

○ ・ ・ ・ Peeled adhesion test sample ≦ 2 pieces × ・ ・ ・ Peeled adhesion test sample ≧ 3 pieces

保存安定性
熱硬化性組成物を調整後TV型粘度計にて25℃での粘度を測定し、初期粘度とした。この熱硬化性組成物を−15℃で2ヶ月保存した後の粘度を同様の方法で測定し、保存後粘度とした。

○・・・(保存後粘度)/(初期粘度)<1.2
×・・・(保存後粘度)/(初期粘度)≧1.2
After preparing the storage-stable thermosetting composition, the viscosity at 25 ° C. was measured with a TV-type viscometer to obtain the initial viscosity. The viscosity after storing this thermosetting composition at −15 ° C. for 2 months was measured in the same manner as the viscosity after storage.

○ ... (viscosity after storage) / (initial viscosity) <1.2
X ... (viscosity after storage) / (initial viscosity) ≧ 1.2

実施例1
(A)成分として、合成例1で得た(A)ポリオルガノシロキサン10g、(B)成分としてアルミニウムアセチルアセトナート(以下、Alacacと略)1mgを加えて、均一に混合し、脱泡したのち、上述の方法で硬化物および接着試験サンプルを作成してUV耐久性、耐熱性、接着性の評価を行った。結果を表3に示す。
Example 1
As component (A), 10 g of (A) polyorganosiloxane obtained in Synthesis Example 1 and 1 mg of aluminum acetylacetonate (hereinafter abbreviated as Alacac 3 ) as component (B) were added, mixed uniformly, and degassed. Thereafter, a cured product and an adhesion test sample were prepared by the above-described method to evaluate UV durability, heat resistance, and adhesion. The results are shown in Table 3.

実施例2〜6
表2に示す各成分を用いた以外は実施例1と同様にして、硬化物を得た。各硬化物の評価結果を表3に示す。
Examples 2-6
A cured product was obtained in the same manner as in Example 1 except that each component shown in Table 2 was used. Table 3 shows the evaluation results of each cured product.

比較例1,2
表2に示す各成分を用いた以外は実施例1と同様にして、硬化物を得た。各硬化物の評価結果を表3に示す。
表2における前記以外の成分の内容は、下記のとおりである。
Comparative Examples 1 and 2
A cured product was obtained in the same manner as in Example 1 except that each component shown in Table 2 was used. Table 3 shows the evaluation results of each cured product.
The contents of the other components in Table 2 are as follows.

Figure 0004985920
Figure 0004985920

実施例、比較例に示すように本発明のポリオルガノシロキサンにアルミニウムアセチルアセトナートを少量添加することでUV耐久性、耐熱性、接着性および保存安定性を満足する光半導体用接着剤を得ることができる。 As shown in Examples and Comparative Examples, by adding a small amount of aluminum acetylacetonate to the polyorganosiloxane of the present invention, an adhesive for optical semiconductors satisfying UV durability, heat resistance, adhesiveness and storage stability can be obtained. Can do.

Figure 0004985920
Figure 0004985920

Figure 0004985920
Figure 0004985920

光半導体装置の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of an optical semiconductor device typically.

符号の説明Explanation of symbols

101 ハウジング
102 実装基板
103 LEDチップ
104 蛍光物質
105 導電性ワイヤ
106 実装基板の電極
107 導体配線
108 封止樹脂
109 光半導体接着剤
DESCRIPTION OF SYMBOLS 101 Housing 102 Mounting board 103 LED chip 104 Fluorescent substance 105 Conductive wire 106 Electrode of mounting board 107 Conductor wiring 108 Sealing resin 109 Optical semiconductor adhesive

Claims (4)

(A)2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランと下記式(2)で表されるシラン化合物および/またはその部分縮合物とを、有機溶媒、有機塩基および水の存在下に加熱して、加水分解および縮合させて得られる、ポリスチレン換算重量平均分子量が500〜1,000,000であり、エポキシ当量が1,600g/モル以下のポリオルガノシロキサン100重量部および(B)金属キレート化合物0.001〜0.1重量部を含有することを特徴とする熱硬化性樹脂組成物。
Figure 0004985920
〔式(2)において、Y は塩素原子、臭素原子、ヨウ素原子または炭素数1〜20の直鎖状、分岐状もしくは環状のアルコキシル基を示し、R は水素原子、フッ素原子、炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1〜20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2〜20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基を示し、mは0〜3の整数である。〕
(A) 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and a silane compound represented by the following formula (2) and / or a partial condensate thereof in the presence of an organic solvent, an organic base and water 100 parts by weight of a polyorganosiloxane having a polystyrene-reduced weight average molecular weight of 500 to 1,000,000 and an epoxy equivalent of 1,600 g / mol or less, and (B) a metal obtained by heating, hydrolysis and condensation A thermosetting resin composition comprising 0.001 to 0.1 parts by weight of a chelate compound.
Figure 0004985920
[In the formula (2), Y 2 represents a chlorine atom, a bromine atom, an iodine atom or a linear, branched or cyclic alkoxyl group having 1 to 20 carbon atoms, and R 2 represents a hydrogen atom, a fluorine atom or a carbon number. 1-20 linear, branched or cyclic alkyl groups, 1-20 carbon linear, branched or cyclic substituted alkyl groups, 2-20 linear, branched or cyclic alkyl groups An alkenyl group, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms is shown, and m is an integer of 0 to 3. ]
(B)の金属キレート化合物が下記式(3)で表される請求項1に記載の熱硬化性樹脂組成物。
Figure 0004985920
〔式(3)において、MはAl、Ti,Zr、Fe、V、Mo、Sn、Cr,Rh、Co、Ni、CuおよびZnより選ばれ、Zは炭素数1〜20のアルキル基またはハロゲン原子であり、Lは2座の配位子であり、NはMの配位座数であり、pは1〜N/2の整数である。〕
The thermosetting resin composition according to claim 1, wherein the metal chelate compound (B) is represented by the following formula (3).
Figure 0004985920
[In the formula (3), M is selected from Al, Ti, Zr, Fe, V, Mo, Sn, Cr, Rh, Co, Ni, Cu and Zn, and Z is an alkyl group having 1 to 20 carbon atoms or halogen. It is an atom, L is a bidentate ligand, N is the coordination number of M, and p is an integer of 1 to N / 2. ]
上記式(3)中のLがβジケトンまたは下記式(4)で表される化合物である請求項に記載の熱硬化性樹脂組成物。
Figure 0004985920
〔式(4)において、R19、R20はそれぞれ独立に、水素原子、フッ素原子、フッ素原子を含んでいてもよい炭素数1〜20のアルキル基およびフッ素原子を含んでいてもよい炭素数6〜30のアリール基より選ばれ、xは1〜4の整数でありlは0または1である。〕
The thermosetting resin composition according to claim 2 , wherein L in the formula (3) is a β diketone or a compound represented by the following formula (4).
Figure 0004985920
[In Formula (4), R 19 and R 20 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms which may contain a fluorine atom, and a carbon atom which may contain a fluorine atom. It is selected from 6 to 30 aryl groups, x is an integer of 1 to 4, and l is 0 or 1. ]
請求項1〜のいずれかに記載の熱硬化性樹脂組成物からなる光半導体用接着剤。
The adhesive for optical semiconductors which consists of a thermosetting resin composition in any one of Claims 1-3 .
JP2006167879A 2006-06-16 2006-06-16 Thermosetting resin composition and optical semiconductor adhesive Expired - Fee Related JP4985920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167879A JP4985920B2 (en) 2006-06-16 2006-06-16 Thermosetting resin composition and optical semiconductor adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167879A JP4985920B2 (en) 2006-06-16 2006-06-16 Thermosetting resin composition and optical semiconductor adhesive

Publications (2)

Publication Number Publication Date
JP2007332314A JP2007332314A (en) 2007-12-27
JP4985920B2 true JP4985920B2 (en) 2012-07-25

Family

ID=38932082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167879A Expired - Fee Related JP4985920B2 (en) 2006-06-16 2006-06-16 Thermosetting resin composition and optical semiconductor adhesive

Country Status (1)

Country Link
JP (1) JP4985920B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090971A1 (en) * 2007-01-25 2008-07-31 Jsr Corporation Terminally epoxidized polydimethylsiloxane, method for producing the same, and curable polysiloxane composition
WO2008105491A1 (en) * 2007-02-28 2008-09-04 Jsr Corporation One-part curable polysiloxane composition, cured product of the same, method for production of the same, and use of the same
TW200925173A (en) * 2007-12-07 2009-06-16 Jsr Corp Curative composition, coating composition for optical element, material for LED sealing, and manufacturing method of those compositions
JP2009215344A (en) * 2008-03-07 2009-09-24 Central Glass Co Ltd Thermosetting organic and inorganic hybrid transparent material
JP5240996B2 (en) 2008-05-15 2013-07-17 日東電工株式会社 Thermosetting composition and optical semiconductor device using the same
JP2009292855A (en) * 2008-06-02 2009-12-17 Jsr Corp Polymer for sealing optical semiconductor, method for producing it, and composition for sealing optical semiconductor
JP2010059359A (en) * 2008-09-05 2010-03-18 Jsr Corp Epoxy group-containing multifunctional polysiloxane and method for producing the same, and curable polysiloxane composition
TWI637020B (en) 2012-09-28 2018-10-01 三菱化學股份有限公司 Heat curable resin composition, method for manufacturing the same, method for manufacturing resin cured product and method for generating self-polymerization of epoxy compound
WO2014156696A1 (en) 2013-03-28 2014-10-02 日東電工株式会社 Method for manufacturing optical semiconductor device, system, manufacturing conditions determination device, and manufacturing management device
CN104813492B (en) * 2013-04-30 2016-05-04 创光科学株式会社 Ultraviolet rays emitting apparatus
JP5888349B2 (en) * 2014-01-29 2016-03-22 大日本印刷株式会社 Adhesive composition and adhesive sheet using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971747A (en) * 1975-04-11 1976-07-27 Dow Corning Corporation Curable compositions
JP3090351B2 (en) * 1991-09-09 2000-09-18 ダイセル化学工業株式会社 Thermosetting resin composition
JPH06347605A (en) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd Production of coating composition
US20070225465A1 (en) * 2004-04-16 2007-09-27 Toshiyuki Akiike Composition for Sealing Optical Semiconductor, Optical Semiconductor Sealing Material, and Method for Producing Composition for Sealing Optical Semiconductor
JP4630032B2 (en) * 2004-10-04 2011-02-09 東レ・ダウコーニング株式会社 Polyorganosiloxane, curable silicone composition containing the same, and use thereof
JP2007009086A (en) * 2005-06-30 2007-01-18 Toagosei Co Ltd Cation curable composition
JP4594851B2 (en) * 2005-11-25 2010-12-08 株式会社東芝 Resin composition and resin-encapsulated semiconductor device

Also Published As

Publication number Publication date
JP2007332314A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4985920B2 (en) Thermosetting resin composition and optical semiconductor adhesive
US20070225465A1 (en) Composition for Sealing Optical Semiconductor, Optical Semiconductor Sealing Material, and Method for Producing Composition for Sealing Optical Semiconductor
JP2007169427A (en) Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
JP2007106798A (en) Composition for optical semiconductor encapsulation, optical semiconductor encapsulating agent and manufacturing process of composition for optical semiconductor encapsulation
KR20060136460A (en) Composition for sealing optical semiconductor, optical semiconductor sealing material, and method for producing composition for sealing optical semiconductor
US8013056B2 (en) White heat-curable silicone resin composition, optoelectronic part case, and molding method
JP5034283B2 (en) High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP5248033B2 (en) Silicon-containing compound, curable composition, and cured product
JP2007169406A (en) Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
JP2008143954A (en) Isocyanuric ring-containing polymer, method for producing the same, and composition containing the same
JP2006225515A (en) Optical semiconductor element, sealing material therefor and sealing composition
TW200540198A (en) Epoxy-silicone mixed resin composition and light-emitting semiconductor device
JP6567693B2 (en) Condensation reaction type silicone composition and cured product
JP2008150506A (en) Curable resin composition and its use
JPWO2009072632A1 (en) Curable composition, optical element coating composition, LED sealing material, and method for producing the same
JP5407615B2 (en) Organopolysiloxane, curable composition containing the same, and method for producing the same
JP2011032392A (en) Silicone resin composition for optical semiconductor apparatus
WO2010090280A1 (en) Transparent sealing material composition and optical semiconductor element
JP2005158762A (en) Shell type light emitting semiconductor device
JPWO2008090971A1 (en) Epoxy group-terminated polydimethylsiloxane, method for producing the same, and curable polysiloxane composition
WO2006083025A1 (en) Optical semiconductor, sealing material therefor and sealing composition
JP6496185B2 (en) Curable silicone resin composition and cured product thereof
JP2007131782A (en) Thermosetting resin composition and its application
JP5369553B2 (en) Siloxane resin composition, cured product, and optical semiconductor using the same
JP2008075025A (en) Thermosetting resin composition and adhesive for optical semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

R150 Certificate of patent or registration of utility model

Ref document number: 4985920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees