JP4984564B2 - Epoxy resin composition, method for producing the same, and semiconductor device - Google Patents

Epoxy resin composition, method for producing the same, and semiconductor device Download PDF

Info

Publication number
JP4984564B2
JP4984564B2 JP2006042932A JP2006042932A JP4984564B2 JP 4984564 B2 JP4984564 B2 JP 4984564B2 JP 2006042932 A JP2006042932 A JP 2006042932A JP 2006042932 A JP2006042932 A JP 2006042932A JP 4984564 B2 JP4984564 B2 JP 4984564B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
inorganic filler
curing agent
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006042932A
Other languages
Japanese (ja)
Other versions
JP2007217649A (en
Inventor
誠志 中川
延弘 今泉
剛 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006042932A priority Critical patent/JP4984564B2/en
Publication of JP2007217649A publication Critical patent/JP2007217649A/en
Application granted granted Critical
Publication of JP4984564B2 publication Critical patent/JP4984564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Description

本発明は、半導体素子と基板とのフリップチップ実装に用いられるエポキシ樹脂組成物及びその製造方法、並びにそのエポキシ樹脂組成物を用いた半導体装置に関する。   The present invention relates to an epoxy resin composition used for flip-chip mounting of a semiconductor element and a substrate, a manufacturing method thereof, and a semiconductor device using the epoxy resin composition.

半導体素子を基板に実装して半導体装置を製造する分野では、半導体素子を高密度に実装する要求が高まっており、その要求を満たす方式としてフリップチップ実装方式が注目されている。これは、半導体素子(チップ)と基板との電気的接続をワイヤボンディングを介して達成する従来のフェイスアップ実装に代わるものであり、半導体素子をフェイスダウン実装し、半導体素子の回路面側に形成したバンプと配線基板の電極との間を電気的及び機械的に接続する方式である。   In the field of manufacturing a semiconductor device by mounting a semiconductor element on a substrate, there is an increasing demand for mounting semiconductor elements at high density, and a flip chip mounting system is attracting attention as a system that satisfies the demand. This is an alternative to the conventional face-up mounting that achieves electrical connection between the semiconductor element (chip) and the substrate through wire bonding. The semiconductor element is mounted face-down and formed on the circuit surface side of the semiconductor element. In this method, the bumps and the electrodes of the wiring board are electrically and mechanically connected.

上記フリップチップ実装において、回路面の保護や、バンプ破断の抑制等のために、半導体素子と基板との間に樹脂組成物が充填されている。この樹脂組成物には、水分や粉塵に対して半導体素子を保護する機能と、半導体素子と基板との熱膨張率差に起因する接合部の破断を抑制する機能とが必要であり、低熱膨張性、高弾性、耐吸水性等が要求される。このため、通常上記樹脂組成物には、低熱膨張率化のために40〜60重量%程度の無機フィラーを含有させている(例えば、特許文献1、特許文献2、特許文献3参照。)。   In the flip chip mounting described above, a resin composition is filled between the semiconductor element and the substrate in order to protect the circuit surface, suppress bump breakage, and the like. This resin composition requires a function of protecting the semiconductor element against moisture and dust and a function of suppressing breakage of the joint due to the difference in thermal expansion coefficient between the semiconductor element and the substrate. Properties, high elasticity, water absorption resistance and the like are required. For this reason, the said resin composition is made to contain the inorganic filler about 40 to 60 weight% normally for the low thermal expansion coefficient (for example, refer patent document 1, patent document 2, patent document 3).

また、本発明に関連する先行技術文献としては、例えば特許文献4及び特許文献5がある。
特開平10−101906号公報 特開2004−346232号公報 特表2004−518796号公報 特開平5−121578号公報 特開平10−101906号公報
Moreover, there exist patent document 4 and patent document 5 as a prior art document relevant to this invention, for example.
JP-A-10-101906 JP 2004-346232 A JP-T-2004-518996 JP-A-5-121578 JP-A-10-101906

しかし、従来は無機フィラーをそのまま樹脂組成物に添加して用いていたため、(1)樹脂組成物の粘度が上昇して作業性が低下する、(2)無機フィラーとエポキシ樹脂との密着強度が弱く耐吸水性に乏しい、(3)樹脂組成物中の無機フィラーがエポキシ樹脂分子の動きを妨げるためエポキシ樹脂の硬化反応を阻害して接続信頼性が低下する、等の問題があった。   However, in the past, since the inorganic filler was used as it was added to the resin composition, (1) the viscosity of the resin composition increased and workability decreased, (2) the adhesion strength between the inorganic filler and the epoxy resin There are problems such as weak and poor water absorption resistance, and (3) the inorganic filler in the resin composition hinders the movement of the epoxy resin molecules, thereby inhibiting the curing reaction of the epoxy resin and lowering the connection reliability.

本発明は上記問題を解決したもので、作業性、耐吸水性及び接続信頼性が高いエポキシ樹脂組成物及びその製造方法、並びにそのエポキシ樹脂組成物を用いた半導体装置を提供する。   The present invention solves the above problems, and provides an epoxy resin composition having high workability, water absorption resistance and connection reliability, a method for producing the same, and a semiconductor device using the epoxy resin composition.

本発明のエポキシ樹脂組成物は、無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを含むエポキシ樹脂組成物であって、前記無機フィラーは、その表面に塩基性の官能基を有し、且つ前記官能基を介してエポキシ樹脂で予め被覆されていることを特徴とする。   The epoxy resin composition of the present invention is an epoxy resin composition containing an inorganic filler, an epoxy resin main component, and an epoxy resin curing agent, and the inorganic filler has a basic functional group on its surface, And it is previously coated with an epoxy resin through the functional group.

また、本発明のエポキシ樹脂組成物の製造方法は、上記本発明のエポキシ樹脂組成物の製造方法であって、無機フィラーの表面に塩基性の官能基を付与する工程と、前記官能基を付与した無機フィラーの表面をエポキシ樹脂で被覆する工程と、前記エポキシ樹脂で被覆した無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを混合する工程とを含むことを特徴とする。   Moreover, the manufacturing method of the epoxy resin composition of the present invention is a manufacturing method of the above-described epoxy resin composition of the present invention, which includes the step of imparting a basic functional group to the surface of the inorganic filler, and the functional group. A step of coating the surface of the inorganic filler with an epoxy resin, and a step of mixing the inorganic filler coated with the epoxy resin, an epoxy resin main component, and an epoxy resin curing agent.

また、本発明の半導体装置は、上記本発明のエポキシ樹脂組成物を用いて半導体素子と基板とを接合したことを特徴とする。   The semiconductor device of the present invention is characterized in that a semiconductor element and a substrate are bonded using the epoxy resin composition of the present invention.

本発明のエポキシ樹脂組成物によれば、無機フィラーとエポキシ樹脂主剤との相溶性が向上して粘度が低下するため作業性が向上し、無機フィラーとエポキシ樹脂との密着強度が高まり耐吸水性及び接続信頼性が向上する。   According to the epoxy resin composition of the present invention, the compatibility between the inorganic filler and the epoxy resin main agent is improved and the viscosity is lowered, so that the workability is improved, the adhesion strength between the inorganic filler and the epoxy resin is increased, and the water absorption resistance is increased. And connection reliability is improved.

また、本発明のエポキシ樹脂組成物の製造方法によれば、上記本発明のエポキシ樹脂組成物を合理的に製造できる。   Moreover, according to the manufacturing method of the epoxy resin composition of this invention, the said epoxy resin composition of this invention can be manufactured rationally.

また、本発明の半導体装置によれば、半導体素子と基板との接続信頼性の高い半導体装置を提供できる。   Further, according to the semiconductor device of the present invention, a semiconductor device with high connection reliability between the semiconductor element and the substrate can be provided.

(実施形態1)
先ず、本発明のエポキシ樹脂組成物の実施形態を説明する。本実施形態のエポキシ樹脂組成物は、無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを含み、上記無機フィラーは、その表面に塩基性の官能基を有し、且つ上記官能基を介してエポキシ樹脂で予め被覆されている。無機フィラーが、その表面に塩基性の官能基を有し、且つ上記官能基を介してエポキシ樹脂で予め被覆されていることにより、無機フィラーとエポキシ樹脂主剤との相溶性が向上して粘度が低下するため作業性が向上すると共に、無機フィラーとエポキシ樹脂との密着強度が高まり耐吸水性及び接続信頼性が向上する。
(Embodiment 1)
First, an embodiment of the epoxy resin composition of the present invention will be described. The epoxy resin composition of the present embodiment includes an inorganic filler, an epoxy resin main component, and an epoxy resin curing agent, and the inorganic filler has a basic functional group on the surface thereof, and the functional group is interposed therebetween. And pre-coated with an epoxy resin. The inorganic filler has a basic functional group on its surface and is pre-coated with an epoxy resin via the functional group, so that the compatibility between the inorganic filler and the epoxy resin main agent is improved and the viscosity is increased. Since it falls, workability | operativity improves and the adhesive strength of an inorganic filler and an epoxy resin increases, and water absorption resistance and connection reliability improve.

上記無機フィラーとしては、シリカ粉末やアルミナ粉末を用いることができる。本実施形態のエポキシ樹脂組成物を後述する半導体素子の接合に用いる場合、熱膨張率を適切な範囲に制御する観点からは、無機フィラーの含有量は、エポキシ樹脂組成物の全重量に対して30〜70重量%が好ましく、接続信頼性を向上させる観点からは50〜70重量%が好ましい。   As the inorganic filler, silica powder or alumina powder can be used. In the case where the epoxy resin composition of the present embodiment is used for joining semiconductor elements described later, from the viewpoint of controlling the thermal expansion coefficient to an appropriate range, the content of the inorganic filler is based on the total weight of the epoxy resin composition. 30 to 70% by weight is preferable, and 50 to 70% by weight is preferable from the viewpoint of improving connection reliability.

上記塩基性の官能基としては、特に限定されないが、アミン基、イミダゾール基等が好ましい。後述するように、これらの官能基はエポキシ樹脂主剤の硬化促進剤又は反応促進剤として機能するからである。   Although it does not specifically limit as said basic functional group, An amine group, an imidazole group, etc. are preferable. This is because these functional groups function as a curing accelerator or reaction accelerator for the epoxy resin main component, as will be described later.

また、上記塩基性官能基は、修飾基を介して無機フィラーの表面に付与されていることが好ましい。これにより、無機フィラーの表面に塩基性官能基を確実に保持できる。修飾基としては、特に限定されないが、シラン基、シリコーン等の珪素含有修飾基を使用できる。   Moreover, it is preferable that the said basic functional group is provided to the surface of the inorganic filler through the modification group. Thereby, a basic functional group can be reliably held on the surface of the inorganic filler. Although it does not specifically limit as a modifying group, Silicon-containing modifying groups, such as a silane group and silicone, can be used.

上記エポキシ樹脂主剤としては、例えば、固形タイプ又は液状タイプの、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ナフタレン型エポキシ、臭素化エポキシ、フェノールノボラック型エポキシ、クレゾールノボラック型エポキシ、ビフェニル型エポキシ等を用いることができる。これらの中でも、特にビスフェノール型エポキシ及びナフタレン型エポキシから選ばれる少なくとも1種のエポキシ樹脂が好ましい。これらは、接続信頼性が特に高いからである。   As the epoxy resin main component, for example, bisphenol A type epoxy, bisphenol F type epoxy, naphthalene type epoxy, brominated epoxy, phenol novolak type epoxy, cresol novolak type epoxy, biphenyl type epoxy, etc., are used. be able to. Among these, at least one epoxy resin selected from bisphenol-type epoxy and naphthalene-type epoxy is particularly preferable. This is because the connection reliability is particularly high.

上記エポキシ樹脂硬化剤としては、イミダゾール系硬化剤、アミン系硬化剤及び酸無水物硬化剤から選ばれる少なくとも1種の硬化剤を用いることができる。イミダゾール系硬化剤としては、例えば、2−フェニル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2,4−ジアミノ−6−[2−メチルイミダゾール−(1)]−エチル−S−トリアジン、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等を用いることができる。アミン系硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、メンセンジアミン、イソホロンジアミン、メタキシレンジアミン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォン等を用いることができる。酸無水物硬化剤としては、例えば、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸、テトラブロモ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物等を用いることができる。   As the epoxy resin curing agent, at least one curing agent selected from imidazole curing agents, amine curing agents and acid anhydride curing agents can be used. Examples of the imidazole curing agent include 2-phenyl-4-methylimidazole, 2-undecylimidazole, 2,4-diamino-6- [2-methylimidazole- (1)]-ethyl-S-triazine, 1 -Cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, etc. are used. be able to. As the amine curing agent, for example, diethylenetriamine, triethylenetetramine, mensendiamine, isophoronediamine, metaxylenediamine, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone and the like can be used. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride, tetrabromophthalic anhydride, Trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, and the like can be used.

また、上記エポキシ樹脂で被覆された無機フィラーがエポキシ樹脂主剤と接触すると、被覆されたエポキシ樹脂の一部が溶解し、無機フィラーの表面の塩基性官能基が露出し、塩基性官能基がエポキシ樹脂主剤と接触する場合がある。この場合には、無機フィラーの塩基性官能基が、エポキシ樹脂主剤の硬化促進剤又は反応促進剤として機能する。   Also, when the inorganic filler coated with the epoxy resin comes into contact with the epoxy resin main agent, a part of the coated epoxy resin is dissolved, the basic functional group on the surface of the inorganic filler is exposed, and the basic functional group is epoxy. May come into contact with resin base. In this case, the basic functional group of the inorganic filler functions as a curing accelerator or reaction accelerator for the epoxy resin main component.

また、本実施形態のエポキシ樹脂組成物は、カップリング剤をさらに含むことが好ましい。これにより、エポキシ樹脂組成物に含まれる各成分の結合性がより向上するからである。カップリング剤としては、例えば、シラン系カップリング剤、チタン系カップリング剤等を用いることができる。カップリング剤の添加量は、エポキシ樹脂主剤100重量部に対して、0.1重量部以上7重量部以下とすることができる。   Moreover, it is preferable that the epoxy resin composition of this embodiment further contains a coupling agent. Thereby, the connectivity of each component contained in the epoxy resin composition is further improved. As the coupling agent, for example, a silane coupling agent, a titanium coupling agent, or the like can be used. The addition amount of the coupling agent can be 0.1 parts by weight or more and 7 parts by weight or less with respect to 100 parts by weight of the epoxy resin main agent.

図1は、本実施形態のエポキシ樹脂組成物のイメージ図である。本実施形態のエポキシ樹脂組成物は、通常液状に形成され、例えば、塩基性官能基を有し、エポキシ樹脂で被覆された無機フィラー11と、液状のエポキシ樹脂主剤12と、エポキシ樹脂硬化剤13とを含んでいる。   FIG. 1 is an image diagram of the epoxy resin composition of the present embodiment. The epoxy resin composition of the present embodiment is usually formed in a liquid state, and has, for example, an inorganic filler 11 having a basic functional group and coated with an epoxy resin, a liquid epoxy resin main agent 12, and an epoxy resin curing agent 13. Including.

また、図2は、本実施形態で用いる無機フィラーの表面の概念図である。本実施形態で用いる無機フィラーは、例えば、無機フィラーの表面にシリコーン〔−(Si−O)n−〕を介してアミン基を有し、そのアミン基がエポキシ樹脂と結合することにより、無機フィラー全体がエポキシ樹脂で被覆されている。 FIG. 2 is a conceptual diagram of the surface of the inorganic filler used in this embodiment. The inorganic filler used in the present embodiment has, for example, an amine filler on the surface of the inorganic filler via silicone [— (Si—O) n —], and the amine group is bonded to the epoxy resin, thereby the inorganic filler. The whole is covered with an epoxy resin.

次に、本発明のエポキシ樹脂組成物の製造方法の実施形態について説明する。本実施形態のエポキシ樹脂組成物の製造方法は、上記で説明した無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを含むエポキシ樹脂組成物の製造方法であり、無機フィラーの表面に塩基性の官能基を付与する工程と、上記官能基を付与した無機フィラーの表面をエポキシ樹脂で被覆する工程と、上記エポキシ樹脂で被覆した無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを混合する工程とを含む。   Next, an embodiment of a method for producing an epoxy resin composition of the present invention will be described. The manufacturing method of the epoxy resin composition of this embodiment is a manufacturing method of the epoxy resin composition containing the inorganic filler demonstrated above, an epoxy resin main ingredient, and an epoxy resin hardening | curing agent, and is basic on the surface of an inorganic filler. The step of imparting the functional group of the step, the step of coating the surface of the inorganic filler to which the functional group has been imparted with an epoxy resin, the inorganic filler coated with the epoxy resin, the epoxy resin main agent, and the epoxy resin curing agent are mixed. Including the step of.

上記無機フィラーの表面に塩基性の官能基を付与するには、例えば、無機フィラーとエタノールとの混合液を十分撹拌した後、この混合液に0.5〜2.0重量%のアミン基等の塩基性官能基を付与したシラン化合物又はシリコーン化合物を加えて室温(25℃)で撹拌し、その後、濾過して、100〜150℃にて乾燥させればよい。十分に乾燥させた後、さらにふるいに掛けて分級を行うことが好ましい。   In order to impart a basic functional group to the surface of the inorganic filler, for example, after sufficiently stirring a mixed liquid of the inorganic filler and ethanol, 0.5 to 2.0% by weight of an amine group or the like is added to the mixed liquid. A silane compound or a silicone compound to which a basic functional group is added is added and stirred at room temperature (25 ° C.), and then filtered and dried at 100 to 150 ° C. After sufficiently drying, it is preferable to classify by further sieving.

上記官能基を付与した無機フィラーの表面をエポキシ樹脂で被覆するには、例えば、界面重合法、in−situ重合法、相分離法等により無機フィラーの表面をエポキシ樹脂で被覆すればよい。その場合、エポキシ樹脂と無機フィラーの塩基性官能基とは反応し、エポキシ樹脂が無機フィラーに安定的に被覆される。   In order to coat the surface of the inorganic filler provided with the functional group with an epoxy resin, for example, the surface of the inorganic filler may be coated with the epoxy resin by an interfacial polymerization method, an in-situ polymerization method, a phase separation method, or the like. In that case, the epoxy resin reacts with the basic functional group of the inorganic filler, and the epoxy resin is stably coated on the inorganic filler.

上記エポキシ樹脂で被覆した無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを混合するには、通常の混合装置等により行えばよい。この際、カップリン剤等をさらに加えて混合してもよい。   In order to mix the inorganic filler coated with the epoxy resin, the epoxy resin main component, and the epoxy resin curing agent, an ordinary mixing device or the like may be used. At this time, a coupling agent or the like may be further added and mixed.

本実施形態の製造方法で得たエポキシ樹脂組成物は、前述のとおり、無機フィラーとエポキシ樹脂主剤との相溶性が向上して粘度が低下するため作業性が向上すると共に、無機フィラーとエポキシ樹脂との密着強度が高まり耐吸水性及び接続信頼性が向上する。   As described above, the epoxy resin composition obtained by the production method of the present embodiment improves the workability because the compatibility between the inorganic filler and the epoxy resin main component is improved and the viscosity is lowered, and the inorganic filler and the epoxy resin are improved. Adhesion strength with water increases and water absorption resistance and connection reliability are improved.

(実施形態2)
次に、本発明の半導体装置の実施形態を説明する。本実施形態の半導体装置は、上記実施形態1のエポキシ樹脂組成物を用いて半導体素子と基板とが接合されている。実施形態1のエポキシ樹脂組成物を用いることにより、接続信頼性の高い半導体装置を提供できる。
(Embodiment 2)
Next, embodiments of the semiconductor device of the present invention will be described. In the semiconductor device of the present embodiment, the semiconductor element and the substrate are bonded using the epoxy resin composition of the first embodiment. By using the epoxy resin composition of Embodiment 1, a semiconductor device with high connection reliability can be provided.

上記半導体素子には、例えば、LSIチップ、ウエハ等が含まれる。また、上記基板には、プリント基板、セラミック基板、半導体基板等が含まれる。   Examples of the semiconductor element include an LSI chip and a wafer. The substrate includes a printed circuit board, a ceramic substrate, a semiconductor substrate, and the like.

次に、図面に基づき本実施形態の半導体装置の製造方法を説明する。図3A〜Cは、本実施形態の半導体装置の製造工程を示す工程断面図である。本実施形態の半導体装置の製造方法では、先ず図3Aに示すように、複数の電極21が形成された基板22の上に、実施形態1のエポキシ樹脂組成物23を塗布する。ここで、エポキシ樹脂組成物23は、粘度を低く抑えることができるので、塗布時の作業性が向上する。この時点で基板22は、例えば50〜100℃に加熱されている。次に、図3Bに示すように、基板22の上に、複数のバンプ24を形成した半導体素子25を位置合わせする。最後に、図3Cに示すように、例えば200〜250℃に加熱した半導体素子25を基板22に押圧して、電極21とバンプ24とを接続(熱圧接)する。   Next, a method for manufacturing the semiconductor device of this embodiment will be described with reference to the drawings. 3A to 3C are process cross-sectional views illustrating the manufacturing process of the semiconductor device of this embodiment. In the method for manufacturing a semiconductor device of this embodiment, first, as shown in FIG. 3A, the epoxy resin composition 23 of Embodiment 1 is applied onto a substrate 22 on which a plurality of electrodes 21 are formed. Here, since the epoxy resin composition 23 can keep viscosity low, workability | operativity at the time of application | coating improves. At this time, the substrate 22 is heated to 50 to 100 ° C., for example. Next, as shown in FIG. 3B, the semiconductor element 25 having a plurality of bumps 24 formed thereon is aligned on the substrate 22. Finally, as shown in FIG. 3C, for example, the semiconductor element 25 heated to 200 to 250 ° C. is pressed against the substrate 22 to connect (heat press contact) the electrode 21 and the bump 24.

上記基板22を予め50〜100℃に加熱しておくのは、最終的に半導体素子25と基板22とを熱圧接する際の温度(200〜250℃)との温度差を小さくして、基板22の熱膨張を小さくするためである。このため、エポキシ樹脂組成物23は、基板22の上に塗布した状態の50〜100℃の温度では硬化が進まず、粘度上昇もなく、その後に200〜250℃に昇温した時には速やかに硬化する特性が望ましい。   The substrate 22 is heated to 50 to 100 ° C. in advance by reducing the temperature difference between the temperature (200 to 250 ° C.) when the semiconductor element 25 and the substrate 22 are finally heat-welded. This is to reduce the thermal expansion of 22. For this reason, the epoxy resin composition 23 does not cure at a temperature of 50 to 100 ° C. when applied on the substrate 22, and does not increase in viscosity, and then quickly cures when heated to 200 to 250 ° C. The characteristic to be desirable is desirable.

以下、実施例に基づき本発明を具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

(実施例1)
アドマテックス製のアルミナ粉末“AO802”(商品名)100重量部と、エタノール100重量部とを混合して室温(25℃)で充分攪拌した後、さらにアミン基が付与された信越シリコーン製のシリコーン化合物“KBM−573”(商品名)を1.0重量部加えて室温で攪拌した。その後、混合液を濾過し、130℃で乾燥し、分級して平均粒径5μmのアルミナ粉末を得た。
Example 1
Silicone made by Shin-Etsu Silicone to which amine groups were further added after mixing 100 parts by weight of Admatex alumina powder “AO802” (trade name) and 100 parts by weight of ethanol and thoroughly stirring at room temperature (25 ° C.) 1.0 part by weight of the compound “KBM-573” (trade name) was added and stirred at room temperature. Thereafter, the mixed solution was filtered, dried at 130 ° C., and classified to obtain alumina powder having an average particle diameter of 5 μm.

次に、上記アルミナ粉末をエポキシ樹脂で被覆してアルミナ粉末Aを得た。即ち、エポキシ樹脂を分散媒とし、この分散媒に芯物質である上記アルミナ粉末を撹拌しながら添加して、上記アルミナ粉末の表面にエポキシ樹脂被膜を形成させて、アルミナ粉末Aを得た。   Next, the alumina powder was coated with an epoxy resin to obtain alumina powder A. That is, an epoxy resin was used as a dispersion medium, and the alumina powder as a core substance was added to the dispersion medium while stirring to form an epoxy resin film on the surface of the alumina powder, whereby alumina powder A was obtained.

続いて、エポキシ樹脂主剤として室温で液状タイプの大日本インキ化学工業製のビスフェノールF型エポキシ樹脂“EXA830LVP”(商品名)100重量部と、硬化剤として四国化成製のイミダゾール系硬化剤“キュアゾールC11Z−A”(商品名)15重量と、カップリング剤として信越化学製のγ−グリシドキプロピルトリエトキシシラン“KBM403”(商品名)2重量部と、無機フィラーとして上記アルミナ粉末A50重量部とを均一に撹拌・混合し、本実施例のエポキシ樹脂組成物を作製した。   Subsequently, 100 parts by weight of a bisphenol F type epoxy resin “EXA830LVP” (trade name) manufactured by Dainippon Ink and Chemicals, Inc., which is a liquid type at room temperature, as an epoxy resin main ingredient, and an imidazole-based curing agent “Curazole C11Z, manufactured by Shikoku Kasei as a curing agent. -A "(trade name) 15 weight, γ-glycidoxypropyltriethoxysilane" KBM403 "(trade name) 2 parts by weight as a coupling agent, and 50 parts by weight of the alumina powder A as an inorganic filler. The epoxy resin composition of this example was produced by stirring and mixing uniformly.

(実施例2)
アミン基に代えてイミダゾール基を付与したアルミナ粉末Bを用いた以外は、実施例1と同様にして本実施例のエポキシ樹脂組成物を作製した。
(Example 2)
An epoxy resin composition of this example was produced in the same manner as in Example 1 except that alumina powder B provided with an imidazole group instead of an amine group was used.

(実施例3)
アルミナ粉末Aの含有量を30重量%とした以外は、実施例1と同様にして本実施例のエポキシ樹脂組成物を作製した。
Example 3
An epoxy resin composition of this example was produced in the same manner as in Example 1 except that the content of the alumina powder A was 30% by weight.

(実施例4)
アルミナ粉末Aの含有量を60重量%とした以外は、実施例1と同様にして本実施例のエポキシ樹脂組成物を作製した。
Example 4
An epoxy resin composition of this example was produced in the same manner as in Example 1 except that the content of the alumina powder A was 60% by weight.

(実施例5)
イミダゾール系硬化剤“キュアゾールC11Z−A”に代えて、酸無水物硬化剤である旭電化製のメチルテトラヒドロ無水フタル酸“KRM−291−5”(商品名)100重量部を用い、さらに四国化成製の硬化触媒“1M2EZ”(商品名)0.5重量部を加えた以外は、実施例1と同様にして本実施例のエポキシ樹脂組成物を作製した。
(Example 5)
Instead of the imidazole-based curing agent “Curazole C11Z-A”, 100 parts by weight of methyltetrahydrophthalic anhydride “KRM-291-5” (trade name) manufactured by Asahi Denka Co., Ltd., which is an acid anhydride curing agent, was further used. An epoxy resin composition of this example was prepared in the same manner as in Example 1 except that 0.5 part by weight of the curing catalyst “1M2EZ” (trade name) manufactured was added.

(実施例6)
硬化触媒“1M2EZ”を用いなかった以外は、実施例5と同様にして本実施例のエポキシ樹脂組成物を作製した。
(Example 6)
An epoxy resin composition of this example was produced in the same manner as in Example 5 except that the curing catalyst “1M2EZ” was not used.

(実施例7)
アルミナ粉末Aに代えてアルミナ粉末Bを用いた以外は、実施例5と同様にして本実施例のエポキシ樹脂組成物を作製した。
(Example 7)
An epoxy resin composition of this example was prepared in the same manner as in Example 5 except that the alumina powder B was used in place of the alumina powder A.

(実施例8)
硬化触媒“1M2EZ”を用いなかった以外は、実施例7と同様にして本実施例のエポキシ樹脂組成物を作製した。
(Example 8)
An epoxy resin composition of this example was produced in the same manner as in Example 7 except that the curing catalyst “1M2EZ” was not used.

(比較例1)
アルミナ粉末Aに代えて、アミン基を付与せず且つエポキシ樹脂で被覆していないアルミナ粉末“AO802”を用いた以外は、実施例1と同様にして本比較例のエポキシ樹脂組成物を作製した。
(Comparative Example 1)
An epoxy resin composition of this comparative example was produced in the same manner as in Example 1 except that alumina powder “AO802” which was not provided with an amine group and was not coated with an epoxy resin was used in place of the alumina powder A. .

(比較例2)
アルミナ粉末Aに代えて、アミン基を付与せず且つエポキシ樹脂で被覆していないアルミナ粉末“AO802”を用いた以外は、実施例5と同様にして本比較例のエポキシ樹脂組成物を作製した。
(Comparative Example 2)
An epoxy resin composition of this comparative example was prepared in the same manner as in Example 5 except that alumina powder “AO802” which was not provided with an amine group and was not coated with an epoxy resin was used in place of the alumina powder A. .

<エポキシ樹脂組成物の粘度の測定>
上記実施例1、2、5〜8及び比較例1、2のエポキシ樹脂組成物の粘度を、東京計器産業製の粘度測定機“EH型粘度計”(商品名)を用いて測定した。その結果を表1に示す。表1から、実施例1、2のエポキシ樹脂組成物の粘度は、比較例1のエポキシ樹脂組成物の粘度に比べて大きく低下し、作業性が向上したことが分かる。また、実施例5〜8のエポキシ樹脂組成物の粘度は、比較例2のエポキシ樹脂組成物の粘度に比べて大きく低下し、作業性が向上したことが分かる。
<Measurement of viscosity of epoxy resin composition>
The viscosities of the epoxy resin compositions of Examples 1, 2, 5 to 8 and Comparative Examples 1 and 2 were measured using a viscometer “EH viscometer” (trade name) manufactured by Tokyo Keiki Sangyo. The results are shown in Table 1. From Table 1, it can be seen that the viscosities of the epoxy resin compositions of Examples 1 and 2 were greatly reduced as compared with the viscosities of the epoxy resin composition of Comparative Example 1, and the workability was improved. Moreover, it turns out that the viscosity of the epoxy resin composition of Examples 5-8 falls greatly compared with the viscosity of the epoxy resin composition of the comparative example 2, and workability | operativity improved.

<耐吸水性の評価>
上記実施例1、2、5〜8及び比較例1、2のエポキシ樹脂組成物の吸水前後における接着強度を下記のようにして測定して耐吸水性を評価した。
<Evaluation of water absorption resistance>
The adhesive strength before and after water absorption of the epoxy resin compositions of Examples 1, 2, 5 to 8 and Comparative Examples 1 and 2 was measured as follows to evaluate water absorption resistance.

先ず、被着体として日立化成製のガラスエポキシ基板を用い、このガラスエポキシ基板二枚を上記各エポキシ樹脂組成物により接着し、インストロンジャパン製の接着強度試験機“Instron5581”(商品名)を用いて吸水前の接着強度を測定した。接着条件は、加熱温度150℃、加熱時間1時間とした。   First, Hitachi Chemical's glass epoxy substrate was used as the adherend, and these two glass epoxy substrates were bonded together with the above epoxy resin compositions, and an Instron Japan adhesive strength tester “Instron 5581” (trade name) was used. Used to measure the adhesive strength before water absorption. The bonding conditions were a heating temperature of 150 ° C. and a heating time of 1 hour.

次に、上記と同様に接着したガラスエポキシ基板を用いて加速吸水試験を行った。加速吸水試験は、楠本化成製の高加速寿命試験器“PM250”(商品名)を用いて温度121℃、相対湿度100%、気圧2.1atm、供試時間24時間の条件で行い、その後上記と同様にして接着強度を測定し、吸水後の接着強度とした。   Next, an accelerated water absorption test was performed using a glass epoxy substrate bonded in the same manner as described above. The accelerated water absorption test is performed using a highly accelerated life tester “PM250” (trade name) manufactured by Enomoto Kasei under conditions of a temperature of 121 ° C., a relative humidity of 100%, an atmospheric pressure of 2.1 atm, and a test time of 24 hours. In the same manner as above, the adhesive strength was measured and taken as the adhesive strength after water absorption.

その結果を表1に示す。表1から、実施例1、2、5〜8のエポキシ樹脂組成物の吸水後の接着強度は、吸水前の接着強度に比べて10%以下の低下に抑制でき、高い耐吸水性を維持していることが分かる。一方、比較例1、2のエポキシ樹脂組成物の吸水後の接着強度は、吸水前の接着強度に比べて40%を超えて大幅に低下した。   The results are shown in Table 1. From Table 1, the adhesive strength after water absorption of the epoxy resin compositions of Examples 1, 2, and 5 to 8 can be suppressed to a decrease of 10% or less compared with the adhesive strength before water absorption, and maintains high water absorption resistance. I understand that On the other hand, the adhesive strength after water absorption of the epoxy resin compositions of Comparative Examples 1 and 2 significantly decreased by over 40% compared to the adhesive strength before water absorption.

<半導体素子と基板の準備>
半導体素子として、電極径70μm、電極ピッチ120μm、電極数120の金製の電極(バンプ)を備える縦8.5mm、横8.5mm、厚さ0.06mmのLSIチップを準備した。また、基板として、電極径70μm、電極ピッチ120μm、電極数2700の電極を備える縦40mm、横40mm、厚さ0.35mmの三菱瓦斯化学製のトリアジン系樹脂“BTレジン”(商品名)からなる配線基板を準備した。
<Preparation of semiconductor element and substrate>
As a semiconductor element, an LSI chip having an electrode diameter of 70 μm, an electrode pitch of 120 μm, a gold electrode (bump) having 120 electrodes and a length of 8.5 mm, a width of 8.5 mm, and a thickness of 0.06 mm was prepared. Further, the substrate is made of Mitsubishi Gas Chemical's triazine resin “BT resin” (trade name) having an electrode diameter of 70 μm, an electrode pitch of 120 μm, an electrode number of 2700, and a length of 40 mm, a width of 40 mm, and a thickness of 0.35 mm. A wiring board was prepared.

<半導体装置の作製>
上記実施例1〜8及び比較例1、2のエポキシ樹脂組成物を用いてそれぞれ下記のようにして半導体装置を作製した。
<Fabrication of semiconductor device>
Using the epoxy resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2, semiconductor devices were produced as follows.

即ち、図3Aに示すように、エポキシ樹脂組成物6mgを、上記配線基板の電極周辺に塗布した。次に、図3Bに示すように、上記LSIチップのバンプと配線基板の電極とをフェイスダウンの状態で位置合わせを行った。続いて、図3Cに示すように、基板加熱温度60℃、荷重6kg、接合時間10秒、加熱ヘッド温度265℃、エポキシ樹脂組成物温度220℃の条件で加圧し、半導体素子と配線基板とを加熱接合した。   That is, as shown to FIG. 3A, 6 mg of epoxy resin compositions were apply | coated to the electrode periphery of the said wiring board. Next, as shown in FIG. 3B, the LSI chip bumps and the wiring board electrodes were aligned face-down. Subsequently, as shown in FIG. 3C, pressurization is performed under the conditions of a substrate heating temperature of 60 ° C., a load of 6 kg, a bonding time of 10 seconds, a heating head temperature of 265 ° C., and an epoxy resin composition temperature of 220 ° C. Heat bonding was performed.

<接続信頼性の評価>
次に、上記各半導体装置を、高加速寿命試験器“PM250”を用いて温度121℃、相対湿度100%、気圧2.1atmの条件で加速寿命試験を行い、試験前(0時間)、試験開始から168時間後及び336時間後における各半導体装置の各接続点間の導通抵抗を測定することにより、接続信頼性を評価した。評価基準は、試験後の導通抵抗の上昇が、試験前の導通抵抗に対して10%以下の場合には、接続信頼性は良と判断し、10%を超えた場合には、接続信頼性は不良と判断した。試験開始時の供試数は各15とした。
<Evaluation of connection reliability>
Next, each semiconductor device is subjected to an accelerated life test under the conditions of a temperature of 121 ° C., a relative humidity of 100%, and an atmospheric pressure of 2.1 atm using a high accelerated life tester “PM250”. Connection reliability was evaluated by measuring the conduction resistance between each connection point of each semiconductor device after 168 hours and 336 hours from the start. The evaluation criterion is that if the increase in conduction resistance after the test is 10% or less than the conduction resistance before the test, the connection reliability is judged to be good, and if it exceeds 10%, the connection reliability Was judged as bad. The number of tests at the start of the test was 15 each.

その結果を表1に示す。表1では、不良数/供試数として示した。表1から、実施例1、2、5〜8のエポキシ樹脂組成物を用いて接合した半導体装置では、全て導通抵抗の上昇が10%以下と確認され、接続信頼性は全て良と判断された。一方、比較例1、2では、試験時間の経過に伴い導通抵抗の上昇が10%を超えるものが増加することが分かる。   The results are shown in Table 1. Table 1 shows the number of defects / number of samples. From Table 1, in the semiconductor devices joined using the epoxy resin compositions of Examples 1, 2, and 5 to 8, it was confirmed that the increase in conduction resistance was 10% or less, and the connection reliability was all judged to be good. . On the other hand, in Comparative Examples 1 and 2, it can be seen that the increase in conduction resistance increases with the passage of test time over 10%.

また、無機フィラーの含有量以外は全て同様にして作製した実施例1、3及び4の比較から、無機フィラーの含有量が50重量%以上であると接続信頼性が良好であることが分かる。   Moreover, it turns out that connection reliability is favorable when content of an inorganic filler is 50 weight% or more from the comparison of Example 1, 3, and 4 produced in the same way except content of an inorganic filler.

Figure 0004984564
Figure 0004984564

<硬化率の測定>
上記実施例1、2、5〜8及び比較例1、2のエポキシ樹脂組成物を用いて、加熱温度220℃、加熱時間5秒の硬化反応における硬化率を測定した。硬化率は、セイコーインスツル製の発熱量測定装置“DSC100”を用いて測定した硬化発熱量から、下記式(1)により計算した。
(1)硬化率=100−(硬化反応後の硬化発熱量/硬化反応前の硬化発熱量)×100
硬化反応後の硬化発熱量は、各エポキシ樹脂組成物を220℃に加熱したホットプレート上に5秒間放置した後に測定した。
<Measurement of curing rate>
Using the epoxy resin compositions of Examples 1, 2, 5 to 8 and Comparative Examples 1 and 2, the curing rate in a curing reaction at a heating temperature of 220 ° C. and a heating time of 5 seconds was measured. The curing rate was calculated from the curing calorific value measured using a calorific value measuring device “DSC100” manufactured by Seiko Instruments Inc. according to the following formula (1).
(1) Curing rate = 100− (curing calorific value after curing reaction / curing calorific value before curing reaction) × 100
The amount of heat generated by curing after the curing reaction was measured after leaving each epoxy resin composition on a hot plate heated to 220 ° C. for 5 seconds.

その結果を表2に示す。表2から、実施例1、2、5〜8のエポキシ樹脂組成物では、比較例1、2に比べて硬化率が高いことが分かる。これは、無機フィラーの表面に付与した塩基性官能基が硬化反応を促進したからであると考えられる。   The results are shown in Table 2. From Table 2, it can be seen that the epoxy resin compositions of Examples 1, 2, and 5 to 8 have higher curing rates than Comparative Examples 1 and 2. This is presumably because the basic functional group imparted to the surface of the inorganic filler promoted the curing reaction.

Figure 0004984564
Figure 0004984564

以上の実施例1〜実施例8を含む本発明の実施形態に関し、さらに以下の付記を開示する。   Regarding the embodiment of the present invention including Examples 1 to 8 described above, the following additional notes are disclosed.

(付記1) 無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを含むエポキシ樹脂組成物であって、
前記無機フィラーは、その表面に塩基性の官能基を有し、且つ前記官能基を介してエポキシ樹脂で予め被覆されていることを特徴とするエポキシ樹脂組成物。
(Appendix 1) An epoxy resin composition comprising an inorganic filler, an epoxy resin main component, and an epoxy resin curing agent,
The said inorganic filler has a basic functional group on the surface, and is previously coat | covered with the epoxy resin through the said functional group, The epoxy resin composition characterized by the above-mentioned.

(付記2) 前記官能基は、アミン基である付記1に記載のエポキシ樹脂組成物。   (Supplementary note 2) The epoxy resin composition according to supplementary note 1, wherein the functional group is an amine group.

(付記3) 前記官能基は、イミダゾール基である付記1に記載のエポキシ樹脂組成物。   (Additional remark 3) The said functional group is an epoxy resin composition of Additional remark 1 which is an imidazole group.

(付記4) 前記官能基は、シラン基を介して前記無機フィラーの表面に付与されている付記1〜3のいずれかに記載のエポキシ樹脂組成物。   (Additional remark 4) The said functional group is an epoxy resin composition in any one of Additional remark 1-3 added to the surface of the said inorganic filler through the silane group.

(付記5) 前記官能基は、シリコーンを介して前記無機フィラーの表面に付与されている付記1〜3のいずれかに記載のエポキシ樹脂組成物。   (Additional remark 5) The said functional group is an epoxy resin composition in any one of Additional remark 1-3 added to the surface of the said inorganic filler through silicone.

(付記6) 前記エポキシ樹脂硬化剤は、イミダゾール系硬化剤、アミン系硬化剤及び酸無水物硬化剤から選ばれる少なくとも1種の硬化剤である付記1に記載のエポキシ樹脂組成物。   (Supplementary note 6) The epoxy resin composition according to supplementary note 1, wherein the epoxy resin curing agent is at least one curing agent selected from an imidazole curing agent, an amine curing agent, and an acid anhydride curing agent.

(付記7) 前記無機フィラーの含有量が、エポキシ樹脂組成物の全重量に対して50重量%以上である付記1に記載のエポキシ樹脂組成物。   (Additional remark 7) The epoxy resin composition of Additional remark 1 whose content of the said inorganic filler is 50 weight% or more with respect to the total weight of an epoxy resin composition.

(付記8) 付記1〜7に記載のエポキシ樹脂組成物の製造方法であって、
無機フィラーの表面に塩基性の官能基を付与する工程と、
前記官能基を付与した無機フィラーの表面をエポキシ樹脂で被覆する工程と、
前記エポキシ樹脂で被覆した無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを混合する工程とを含むことを特徴とするエポキシ樹脂組成物の製造方法。
(Additional remark 8) It is a manufacturing method of the epoxy resin composition of Additional remarks 1-7,
Providing a basic functional group on the surface of the inorganic filler;
Coating the surface of the inorganic filler with the functional group with an epoxy resin;
The manufacturing method of the epoxy resin composition characterized by including the process of mixing the inorganic filler coat | covered with the said epoxy resin, an epoxy resin main ingredient, and an epoxy resin hardening | curing agent.

(付記9) 付記1〜7のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子と基板とを接合したことを特徴とする半導体装置。   (Additional remark 9) The semiconductor device which joined the semiconductor element and the board | substrate using the epoxy resin composition in any one of additional marks 1-7.

実施形態1のエポキシ樹脂組成物のイメージ図である。It is an image figure of the epoxy resin composition of Embodiment 1. 実施形態1で用いる無機フィラーの表面の概念図である。2 is a conceptual diagram of the surface of an inorganic filler used in Embodiment 1. FIG. 実施形態2の半導体装置の製造工程を示す工程断面図である。11 is a process cross-sectional view illustrating a manufacturing process of the semiconductor device of Embodiment 2.

符号の説明Explanation of symbols

11 無機フィラー
12 エポキシ樹脂主剤
13 エポキシ樹脂硬化剤
21 電極
22 基板
23 エポキシ樹脂組成物
24 バンプ
25 半導体素子
11 Inorganic filler 12 Epoxy resin main agent 13 Epoxy resin curing agent 21 Electrode 22 Substrate 23 Epoxy resin composition 24 Bump 25 Semiconductor element

Claims (5)

無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを含むエポキシ樹脂組成物であって、
前記無機フィラーは、その表面にシラン基又はシリコーンを介してイミダゾール基を有し、且つ前記イミダゾール基を介してエポキシ樹脂で予め被覆され
前記無機フィラーの含有量が、エポキシ樹脂組成物の全重量に対して30〜70重量%であることを特徴とするエポキシ樹脂組成物。
An epoxy resin composition comprising an inorganic filler, an epoxy resin main component, and an epoxy resin curing agent,
The inorganic filler has an imidazole group on its surface via a silane group or silicone , and is pre-coated with an epoxy resin via the imidazole group ,
Content of the said inorganic filler is 30 to 70 weight% with respect to the total weight of an epoxy resin composition, The epoxy resin composition characterized by the above-mentioned.
カップリング剤をさらに含む請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, further comprising a coupling agent . 無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを含むエポキシ樹脂組成物の製造方法であって、
無機フィラーの表面にイミダゾール基を付与する工程と、
前記イミダゾール基を付与した無機フィラーの表面をエポキシ樹脂で被覆する工程と、
前記エポキシ樹脂で被覆した無機フィラーと、エポキシ樹脂主剤と、エポキシ樹脂硬化剤とを混合する工程とを含むことを特徴とするエポキシ樹脂組成物の製造方法。
A method for producing an epoxy resin composition comprising an inorganic filler, an epoxy resin main component, and an epoxy resin curing agent ,
Providing an imidazole group on the surface of the inorganic filler;
Coating the surface of the inorganic filler provided with the imidazole group with an epoxy resin;
The manufacturing method of the epoxy resin composition characterized by including the process of mixing the inorganic filler coat | covered with the said epoxy resin, an epoxy resin main ingredient, and an epoxy resin hardening | curing agent.
カップリング剤を添加する工程をさらに含む請求項3に記載のエポキシ樹脂組成物の製造方法。 The manufacturing method of the epoxy resin composition of Claim 3 which further includes the process of adding a coupling agent . 請求項1又は2に記載のエポキシ樹脂組成物を用いて半導体素子と基板とを接合したことを特徴とする半導体装置。 The semiconductor device is characterized in that bonding the semiconductor element and the substrate with an epoxy resin composition according to claim 1 or 2.
JP2006042932A 2006-02-20 2006-02-20 Epoxy resin composition, method for producing the same, and semiconductor device Expired - Fee Related JP4984564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042932A JP4984564B2 (en) 2006-02-20 2006-02-20 Epoxy resin composition, method for producing the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042932A JP4984564B2 (en) 2006-02-20 2006-02-20 Epoxy resin composition, method for producing the same, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2007217649A JP2007217649A (en) 2007-08-30
JP4984564B2 true JP4984564B2 (en) 2012-07-25

Family

ID=38495267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042932A Expired - Fee Related JP4984564B2 (en) 2006-02-20 2006-02-20 Epoxy resin composition, method for producing the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP4984564B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411774B2 (en) * 2010-03-30 2014-02-12 ナミックス株式会社 Pre-feed type liquid semiconductor encapsulating resin composition
JP6769359B2 (en) * 2017-03-15 2020-10-14 株式会社Soken Pressure sensor and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203160A (en) * 1985-03-06 1986-09-09 Fujitsu Ltd Epoxy resin composition for sealing semiconductor
JPS63299150A (en) * 1987-05-28 1988-12-06 Nitto Electric Ind Co Ltd Semiconductor device
JPH09302072A (en) * 1996-05-17 1997-11-25 Shikoku Chem Corp Filler for epoxy resin and epoxy resin composition
JP2004124000A (en) * 2002-10-07 2004-04-22 Sumitomo Bakelite Co Ltd Silane coupling agent, coated inorganic filler, and resin composition

Also Published As

Publication number Publication date
JP2007217649A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4736473B2 (en) Liquid sealing resin composition for underfill, semiconductor device using the same, and manufacturing method thereof
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP5114935B2 (en) Liquid resin composition for electronic components, and electronic component device using the same
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
TWI481685B (en) Adhesive for electronic parts
TW593611B (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP5055830B2 (en) Polyhydroxypolyether resin, resin composition using the same, adhesive for connecting circuit members, and circuit board
JP5692212B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP4747586B2 (en) Method for producing liquid encapsulating resin composition for semiconductor
JP3991268B2 (en) Film adhesive for connecting circuit members and semiconductor device using the same
JP2001323249A (en) Adhesive for circuit connection
JP4984564B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device
JP2009256466A (en) Adhesive for electronic part
JP6286959B2 (en) Epoxy resin composition, electronic component device, and method of manufacturing electronic component device
JP5070789B2 (en) Liquid resin composition for underfill and semiconductor device
JP2005187508A (en) Adhesive film for semiconductor and semiconductor device
JP4730501B2 (en) Liquid epoxy resin composition and semiconductor device using the same
JP2009177003A (en) Adhesive agent composition, semiconductor device and production method
JP2006028521A (en) Addhesive for circuit connection
JP3786409B2 (en) adhesive
JP2005191069A (en) Adhesive film for semiconductor, and semiconductor device
JP5251949B2 (en) PCB and printed circuit board
JP2001291804A (en) Semiconductor element and semiconductor device and semiconductor mounting structure
JP2003147287A (en) Adhesive film for connecting circuit
JP4626495B2 (en) Adhesive for circuit connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees