JP4984456B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP4984456B2
JP4984456B2 JP2005238938A JP2005238938A JP4984456B2 JP 4984456 B2 JP4984456 B2 JP 4984456B2 JP 2005238938 A JP2005238938 A JP 2005238938A JP 2005238938 A JP2005238938 A JP 2005238938A JP 4984456 B2 JP4984456 B2 JP 4984456B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005238938A
Other languages
Japanese (ja)
Other versions
JP2007053055A (en
Inventor
洋 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005238938A priority Critical patent/JP4984456B2/en
Publication of JP2007053055A publication Critical patent/JP2007053055A/en
Application granted granted Critical
Publication of JP4984456B2 publication Critical patent/JP4984456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極板と負極板とをセパレータを介して積層してなる電極体を備える電池に関する。   The present invention relates to a battery including an electrode body formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed therebetween.

従来より、正極板と負極板とをセパレータを介して積層してなる電極体を備える電池が知られている。このような電池では、例えば過充電された場合や外部から熱が掛かったときに、電池温度が異常に上昇して、使用条件によってはその温度上昇により極板の活物質が熱分解してガスが発生し、電池の熱暴走反応を生じるおそれがある。   Conventionally, a battery including an electrode body in which a positive electrode plate and a negative electrode plate are laminated via a separator is known. In such a battery, for example, when overcharged or when heat is applied from the outside, the battery temperature rises abnormally, and depending on the use conditions, the active material of the electrode plate is thermally decomposed due to the temperature rise and gas May occur, causing a thermal runaway reaction of the battery.

このような問題に対し、特許文献1や特許文献2には、その解決案が提案されている。特許文献1に開示された電池では、捲回型電極体の最外周の極板と、それと逆極性の外装ケースとの対向面内に、セパレータの溶融温度より低い温度で溶融する低温溶融樹脂層を介在させている。或いは、捲回型電極体の最内周の極板と、それと逆極性の外装ケースに接続された部材との対向面内に、セパレータの溶融温度より低い温度で溶融する低温溶融樹脂層を介在させている(特許文献1の特許請求の範囲等を参照)。このような構成とすることで、電池の異常発熱時には、低温溶融樹脂層が溶融して電極体の最外周(または最内周)の極板と、それと逆極性の外装ケース(または外装ケースに接続された部材)とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを防止できる。   In order to solve such a problem, Patent Document 1 and Patent Document 2 propose a solution. In the battery disclosed in Patent Document 1, a low-temperature molten resin layer that melts at a temperature lower than the melting temperature of the separator in a facing surface between the outermost electrode plate of the wound electrode body and the outer case having the opposite polarity thereto. Is interposed. Alternatively, a low-temperature molten resin layer that melts at a temperature lower than the melting temperature of the separator is interposed in the facing surface between the innermost electrode plate of the wound electrode body and the member connected to the outer case of the opposite polarity. (Refer to the claim etc. of patent document 1). With such a configuration, when the battery is abnormally heated, the low-temperature molten resin layer melts, and the outermost (or innermost) electrode plate of the electrode body and the outer case (or outer case) of the opposite polarity to the electrode plate Contacted short circuit with the connected member). Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.

また、特許文献2に開示された電池では、セパレータよりも溶融温度の低い第2のセパレータを介して積層され、正極板及び負極板にそれぞれ電気的に接続した第2の電極対を、捲回型電極体の外側に設けている(特許文献2の特許請求の範囲等を参照)。このような構成とすることで、電池の異常発熱時には、第2のセパレータが溶融して、第2の電極対が接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを防止できる。   In addition, in the battery disclosed in Patent Document 2, the second electrode pair that is stacked via the second separator having a melting temperature lower than that of the separator and electrically connected to the positive electrode plate and the negative electrode plate is wound. It is provided on the outside of the mold electrode body (see the claims of Patent Document 2). With such a configuration, when the battery is abnormally heated, the second separator is melted and the second electrode pair is short-circuited. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.

或いは、特許文献2で開示された電池では、セパレータよりも熱収縮率が大きい第2のセパレータを介して積層され、正極板及び負極板にそれぞれ電気的に接続した第2の電極対を、捲回型電極体の外側に設けている(特許文献2の特許請求の範囲等を参照)。このような構成とすることで、電池の異常発熱時には、第2のセパレータが熱収縮により移動して、第2の電極対が接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを防止できる。   Alternatively, in the battery disclosed in Patent Document 2, a second electrode pair that is laminated via a second separator having a thermal contraction rate larger than that of the separator and is electrically connected to the positive electrode plate and the negative electrode plate, respectively, It is provided outside the rotary electrode body (see the claims of Patent Document 2). With such a configuration, when the battery is abnormally heated, the second separator moves due to thermal contraction, and the second electrode pair is short-circuited. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.

特開2003−338315号公報JP 2003-338315 A 特開2003−243037号公報JP 2003-243037 A

特許文献1で開示された電池も特許文献2で開示された電池も、電池の異常発熱時に接触短絡させる接触短絡機構を、電極体とは別に設けている。このため、電池のコストを招く。また、電池の製造に手間が掛かるなど生産上においても好ましくない。   Both the battery disclosed in Patent Document 1 and the battery disclosed in Patent Document 2 are provided with a contact short-circuit mechanism separately from the electrode body for short-circuiting when the battery is abnormally heated. For this reason, the cost of a battery is caused. In addition, it is not preferable in production because it takes time to manufacture the battery.

本発明は、かかる現状に鑑みてなされたものであって、電池の異常発熱時に接触短絡を起こさせることで、電池の熱暴走を防止できる電池でありながら、コスト高を抑え、製造が容易な電池を提供することを目的とする。   The present invention has been made in view of the present situation, and is a battery that can prevent thermal runaway of the battery by causing a contact short circuit when the battery is abnormally heated, while suppressing cost increase and easy manufacture. An object is to provide a battery.

その解決手段は、正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、前記正極板は、正極活物質層を有する正極活物質存在部と、前記正極活物質層を有しない正極活物質不存在部と、を有し、前記負極板は、負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、前記セパレータは、前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、前記正極活物質不存在部は、前記正極板の長手方向に延びまたは長手方向に散点状に分布し、前記負極活物質不存在部も、前記負極板の長手方向に延びまたは長手方向に散点状に分布し、前記短絡予定部も、前記セパレータの長手方向に延びまたは長手方向に散点状に分布する電池である。 The solution is a battery comprising an electrode body in which a positive electrode plate and a negative electrode plate are laminated via a separator, wherein the positive electrode plate includes a positive electrode active material presence portion having a positive electrode active material layer, and the positive electrode active material. A positive electrode active material absent portion having no material layer, and the negative electrode plate has a negative electrode active material layer, and is disposed to face the positive electrode active material present portion via the separator An active material-existing part; and a negative-electrode active material-existing part that does not have the negative-electrode active-material layer and is disposed to face the positive-electrode active-material-existing part and the separator. Is a short-circuit scheduled portion interposed between the positive electrode active material absent portion and the negative electrode active material absent portion, and melts, breaks, or moves due to heat during abnormal heat generation of the battery, Enables contact short circuit between the non-existing part and the negative active material non-existing part It has a short-circuit portion to be for revealing the shorting path that, the electrode body is wound formed by winding and laminating the elongated positive electrode plate and the elongated negative electrode plate via an elongated separator The positive electrode active material absent portion extends in the longitudinal direction of the positive electrode plate or is distributed in the form of scattered dots in the longitudinal direction, and the negative electrode active material absent portion is also in the longitudinal direction of the negative electrode plate. Or the short-circuit-scheduled portion also extends in the longitudinal direction of the separator or is distributed in the form of dots in the longitudinal direction .

本発明によれば、電池の異常発熱時には、セパレータの短絡予定部が、熱により溶断、破断または移動して、正極活物質不存在部と負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる。そして、この異常発熱時の熱による電解液の膨張やガス化、電極体自身の膨張による電池容器内圧力の上昇により、正極活物質不存在部と負極活物質不存在部とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを未然に防止できる。   According to the present invention, at the time of abnormal heat generation of the battery, the short-circuit scheduled portion of the separator is melted, broken or moved by heat, thereby enabling contact short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion. Make the short-circuit path appear. The positive electrode active material absent portion and the negative electrode active material absent portion are short-circuited due to the expansion and gasification of the electrolyte solution due to the heat generated during the abnormal heat generation and the increase in the pressure inside the battery container due to the expansion of the electrode body itself. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.

特に、正極活物質不存在部と負極活物質不存在部との短絡は、正極活物質層と負極活物質層とが短絡する場合よりも抵抗が大きいために、短絡電流が小さくなる。このため、短絡電流による発熱を抑制し、この発熱に伴って生じる電池の熱暴走を確実に防止できる。その上、本発明では、異常発熱時の接触短絡が電極体内で起こるように、電極体自体(正極板、負極板及びセパレータ)を構成しているので、上記特許文献1,2に記載された従来の電池のように、電極体とは別に接触短絡機構を設ける必要がない。従って、電池のコストを抑えることができる。また、電池の製造も比較的容易である。
また、上記特許文献1,2に記載の従来の電池では、接触短絡機構を電極体の外側や内側の一部にしか設けていない。このため、電池の異常発熱時に、予定通りに接触短絡機構が機能せずに接触短絡が起こらず、電池が熱暴走を起こすおそれもある。
これに対し、本発明の電池は、電極体が捲回型電極体であり、正極活物質不存在部、負極活物質不存在部及び短絡予定部が、それぞれ長手方向に延びまたは長手方向に散点状に分布する。このため、長手方向のどの部分においても、正極活物質不存在部と負極活物質不存在部とが接触短絡を起こし得るので、これら活物質不存在部同士の接触短絡が確実に行われる。従って、電池の熱暴走を確実に防止できる。
また、他の解決手段は、正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、前記正極板は、正極活物質層を有する正極活物質存在部と、前記正極活物質層を有しない正極活物質不存在部と、を有し、前記負極板は、負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、前記セパレータは、前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、前記短絡予定部は、電池の異常発熱時の熱により移動して、前記短絡用通路を現出させ、前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体の一端辺に沿って形成されてなる電池である。
本発明によれば、電池の異常発熱時には、セパレータの短絡予定部が、熱により溶断、破断または移動して、正極活物質不存在部と負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる。そして、この異常発熱時の熱による電解液の膨張やガス化、電極体自身の膨張による電池容器内圧力の上昇により、正極活物質不存在部と負極活物質不存在部とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを未然に防止できる。
特に、正極活物質不存在部と負極活物質不存在部との短絡は、正極活物質層と負極活物質層とが短絡する場合よりも抵抗が大きいために、短絡電流が小さくなる。このため、短絡電流による発熱を抑制し、この発熱に伴って生じる電池の熱暴走を確実に防止できる。その上、本発明では、異常発熱時の接触短絡が電極体内で起こるように、電極体自体(正極板、負極板及びセパレータ)を構成しているので、上記特許文献1,2に記載された従来の電池のように、電極体とは別に接触短絡機構を設ける必要がない。従って、電池のコストを抑えることができる。また、電池の製造も比較的容易である。
更に、本発明によれば、正極活物質不存在部、負極活物質不存在部及び短絡予定部が、電極体の一端辺に沿って形成されている。このため、正極活物質不存在部と負極活物質不存在部とが接触短絡したときに、短絡電流により発生した熱が、電極体外部に放熱されやすい。従って、短絡電流による発熱に起因して電池が熱暴走を起こすのを確実に防止できる。
また、他の解決手段は、正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、前記正極板は、正極活物質層を有する正極活物質存在部と、前記正極活物質層を有しない正極活物質不存在部と、を有し、前記負極板は、負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、前記セパレータは、前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、軸線方向の中央に形成されてなる電池である。
本発明によれば、電池の異常発熱時には、セパレータの短絡予定部が、熱により溶断、破断または移動して、正極活物質不存在部と負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる。そして、この異常発熱時の熱による電解液の膨張やガス化、電極体自身の膨張による電池容器内圧力の上昇により、正極活物質不存在部と負極活物質不存在部とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを未然に防止できる。
特に、正極活物質不存在部と負極活物質不存在部との短絡は、正極活物質層と負極活物質層とが短絡する場合よりも抵抗が大きいために、短絡電流が小さくなる。このため、短絡電流による発熱を抑制し、この発熱に伴って生じる電池の熱暴走を確実に防止できる。その上、本発明では、異常発熱時の接触短絡が電極体内で起こるように、電極体自体(正極板、負極板及びセパレータ)を構成しているので、上記特許文献1,2に記載された従来の電池のように、電極体とは別に接触短絡機構を設ける必要がない。従って、電池のコストを抑えることができる。また、電池の製造も比較的容易である。
また、電極体が捲回型電極体の場合、軸線方向に見てその中央が、過充電時に最も温度が高くなる。このため、この部分のセパレータが最も早く溶融や熱収縮して、正極板と負極板とが接触短絡しやすい。従って、この部位に正極活物質存在部と負極活物質存在部が位置すると、両者が接触短絡して、大きな短絡電流が流れ、これに伴う発熱で熱暴走が起きやすくなる。
これに対し、本発明では、捲回型電極体の軸線方向の中央に、正極活物質不存在部、負極活物質不存在部及び短絡予定部を形成している。このため、過充電による異常発熱時には、正極活物質存在部と負極活物質存在部との間に介在するセパレータが溶融や熱収縮する前に、正極活物質不存在部と負極活物質不存在部とが接触短絡を引き起こすので、活物質存在部同士で接触短絡を起こすのを防止できる。従って、電池の熱暴走を確実に防止できる。
また、他の解決手段は、正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、前記正極板は、正極活物質層を有する正極活物質存在部と、前記正極活物質層を有しない正極活物質不存在部と、を有し、前記負極板は、負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、前記セパレータは、前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、前記電極体は、複数の正極板と複数の負極板とをセパレータを介して交互に積層してなる積層型電極体であり、前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、積層方向に直交する平面の中央に形成されてなる電池である。
本発明によれば、電池の異常発熱時には、セパレータの短絡予定部が、熱により溶断、破断または移動して、正極活物質不存在部と負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる。そして、この異常発熱時の熱による電解液の膨張やガス化、電極体自身の膨張による電池容器内圧力の上昇により、正極活物質不存在部と負極活物質不存在部とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、電池が熱暴走反応を起こすのを未然に防止できる。
特に、正極活物質不存在部と負極活物質不存在部との短絡は、正極活物質層と負極活物質層とが短絡する場合よりも抵抗が大きいために、短絡電流が小さくなる。このため、短絡電流による発熱を抑制し、この発熱に伴って生じる電池の熱暴走を確実に防止できる。その上、本発明では、異常発熱時の接触短絡が電極体内で起こるように、電極体自体(正極板、負極板及びセパレータ)を構成しているので、上記特許文献1,2に記載された従来の電池のように、電極体とは別に接触短絡機構を設ける必要がない。従って、電池のコストを抑えることができる。また、電池の製造も比較的容易である。
また、電極体が積層型電極体の場合、積層方向に直交する平面の中央が、過充電時に最も温度が高くなる。このため、この部分のセパレータが最も早く溶融や熱収縮して、正極板と負極板とが接触短絡しやすい。従って、この部位に正極活物質存在部と負極活物質存在部が位置すると、両者が接触短絡して、大きな短絡電流が流れ、これに伴う発熱で熱暴走が起きやすくなる。
これに対し、本発明では、積層型電極体の積層方向に直交する平面の中央に、正極活物質不存在部、負極活物質不存在部及び短絡予定部を形成している。このため、過充電による異常発熱時には、正極活物質存在部と負極活物質存在部との間に介在するセパレータが溶融や熱収縮する前に、正極活物質不存在部と負極活物質不存在部とが接触短絡を引き起こすので、活物質存在部同士で接触短絡を起こすのを防止できる。従って、電池の熱暴走を確実に防止できる。
In particular, a short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion has a larger resistance than a case where the positive electrode active material layer and the negative electrode active material layer are short-circuited, and thus the short circuit current is reduced. For this reason, heat generation due to the short circuit current can be suppressed, and thermal runaway of the battery caused by the heat generation can be reliably prevented. Moreover, in the present invention, so that the contact shorting during the abnormal heat generation occurs in the electrode body, the electrode body itself (positive electrode plate, negative electrode plate and a separator) so constitutes a, described in Patent Documents 1 and 2 Unlike the conventional battery, it is not necessary to provide a contact short-circuit mechanism separately from the electrode body. Therefore, the cost of the battery can be suppressed. Also, the battery is relatively easy to manufacture.
Further, in the conventional batteries described in Patent Documents 1 and 2, the contact short-circuit mechanism is provided only on the outside or part of the inside of the electrode body. For this reason, at the time of abnormal heat generation of the battery, the contact short-circuit mechanism does not function as planned, so that the contact short-circuit does not occur and the battery may run out of heat.
In contrast, in the battery of the present invention, the electrode body is a wound electrode body, and the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion each extend in the longitudinal direction or are scattered in the longitudinal direction. Distributed in dots. For this reason, since the positive electrode active material absent portion and the negative electrode active material absent portion can cause a contact short circuit in any part in the longitudinal direction, the contact short circuit between these active material absent portions is reliably performed. Therefore, it is possible to reliably prevent thermal runaway of the battery.
Another solution is a battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed between the positive electrode plate and the positive electrode active material layer having a positive electrode active material layer, A positive electrode active material absence portion that does not have the positive electrode active material layer, and the negative electrode plate has a negative electrode active material layer and is disposed to face the positive electrode active material presence portion with the separator interposed therebetween. A negative electrode active material present part, and a negative electrode active material absent part, which does not have the negative electrode active material layer, and is disposed so as to face the positive electrode active material absent part and the separator. The separator is a short-circuit scheduled portion interposed between the positive electrode active material absent portion and the negative electrode active material absent portion, and is melted, broken, or moved by heat during abnormal heat generation of the battery, Contact short circuit between the positive electrode active material absent part and the negative electrode active material absent part A short-circuit scheduled portion that causes a short-circuit path to appear, and the short-circuit scheduled portion moves due to heat generated during abnormal heat generation of the battery, reveals the short-circuit path, and does not exist in the positive electrode active material The negative electrode active material absent portion and the short-circuit scheduled portion are batteries formed along one end side of the electrode body.
According to the present invention, at the time of abnormal heat generation of the battery, the short-circuit scheduled portion of the separator is melted, broken or moved by heat, thereby enabling contact short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion. Make the short-circuit path appear. The positive electrode active material absent portion and the negative electrode active material absent portion are short-circuited due to the expansion and gasification of the electrolyte solution due to the heat generated during the abnormal heat generation and the increase in the pressure inside the battery container due to the expansion of the electrode body itself. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.
In particular, a short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion has a larger resistance than a case where the positive electrode active material layer and the negative electrode active material layer are short-circuited, and thus the short circuit current is reduced. For this reason, heat generation due to the short circuit current can be suppressed, and thermal runaway of the battery caused by the heat generation can be reliably prevented. Moreover, in the present invention, the electrode body itself (positive electrode plate, negative electrode plate and separator) is configured so that a contact short circuit during abnormal heat generation occurs in the electrode body. Unlike the conventional battery, it is not necessary to provide a contact short-circuit mechanism separately from the electrode body. Therefore, the cost of the battery can be suppressed. Also, the battery is relatively easy to manufacture.
Furthermore, according to the present invention, the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed along one end side of the electrode body. For this reason, when the positive electrode active material absent portion and the negative electrode active material absent portion are contact-short-circuited, heat generated by the short-circuit current is easily radiated to the outside of the electrode body. Therefore, it is possible to reliably prevent the battery from causing thermal runaway due to heat generation due to the short-circuit current.
Another solution is a battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed between the positive electrode plate and the positive electrode active material layer having a positive electrode active material layer, A positive electrode active material absence portion that does not have the positive electrode active material layer, and the negative electrode plate has a negative electrode active material layer and is disposed to face the positive electrode active material presence portion with the separator interposed therebetween. A negative electrode active material present part, and a negative electrode active material absent part, which does not have the negative electrode active material layer, and is disposed so as to face the positive electrode active material absent part and the separator. The separator is a short-circuit scheduled portion interposed between the positive electrode active material absent portion and the negative electrode active material absent portion, and is melted, broken, or moved by heat during abnormal heat generation of the battery, Contact short circuit between the positive electrode active material absent part and the negative electrode active material absent part The electrode body is formed by laminating a long positive electrode plate and a long negative electrode plate with a long separator interposed therebetween, and winding the electrode body. The short-circuited portion is melted or broken by heat at the time of abnormal heat generation of the battery to reveal the short-circuit passage, and the positive electrode active material absent portion, the negative electrode active material The absent portion and the short-circuit scheduled portion are batteries formed in the center in the axial direction of the electrode body.
According to the present invention, at the time of abnormal heat generation of the battery, the short-circuit scheduled portion of the separator is melted, broken or moved by heat, thereby enabling contact short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion. Make the short-circuit path appear. The positive electrode active material absent portion and the negative electrode active material absent portion are short-circuited due to the expansion and gasification of the electrolyte solution due to the heat generated during the abnormal heat generation and the increase in the pressure inside the battery container due to the expansion of the electrode body itself. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.
In particular, a short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion has a larger resistance than a case where the positive electrode active material layer and the negative electrode active material layer are short-circuited, and thus the short circuit current is reduced. For this reason, heat generation due to the short circuit current can be suppressed, and thermal runaway of the battery caused by the heat generation can be reliably prevented. Moreover, in the present invention, the electrode body itself (positive electrode plate, negative electrode plate and separator) is configured so that a contact short circuit during abnormal heat generation occurs in the electrode body. Unlike the conventional battery, it is not necessary to provide a contact short-circuit mechanism separately from the electrode body. Therefore, the cost of the battery can be suppressed. Also, the battery is relatively easy to manufacture.
Further, when the electrode body is a wound electrode body, the temperature in the center when viewed in the axial direction is highest during overcharge. For this reason, the separator of this part melt | dissolves or heat-shrinks earliest, and a positive electrode plate and a negative electrode plate are easy to contact-short-circuit. Therefore, if the positive electrode active material existence part and the negative electrode active material existence part are located in this part, both will contact short-circuit, a big short circuit current will flow, and it will become easy to generate | occur | produce thermal runaway by the heat_generation | fever accompanying this.
On the other hand, in this invention, the positive electrode active material absence part, the negative electrode active material absence part, and the short circuit scheduled part are formed in the center of the axial direction of a wound electrode body. For this reason, during abnormal heat generation due to overcharging, the positive electrode active material absent part and the negative electrode active material absent part are present before the separator interposed between the positive electrode active material present part and the negative electrode active material present part is melted or thermally contracted. Cause a contact short circuit, so that it is possible to prevent a contact short circuit between active material existing portions. Therefore, it is possible to reliably prevent thermal runaway of the battery.
Another solution is a battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed between the positive electrode plate and the positive electrode active material layer having a positive electrode active material layer, A positive electrode active material absence portion that does not have the positive electrode active material layer, and the negative electrode plate has a negative electrode active material layer and is disposed to face the positive electrode active material presence portion with the separator interposed therebetween. A negative electrode active material present part, and a negative electrode active material absent part, which does not have the negative electrode active material layer, and is disposed so as to face the positive electrode active material absent part and the separator. The separator is a short-circuit scheduled portion interposed between the positive electrode active material absent portion and the negative electrode active material absent portion, and is melted, broken, or moved by heat during abnormal heat generation of the battery, Contact short circuit between the positive electrode active material absent part and the negative electrode active material absent part The electrode body is a stacked electrode body in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via a separator, The short-circuit scheduled portion is melted or broken by heat at the time of abnormal heat generation of the battery to reveal the short-circuit passage, and the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are The battery is formed in the center of a plane orthogonal to the stacking direction of the electrode bodies.
According to the present invention, at the time of abnormal heat generation of the battery, the short-circuit scheduled portion of the separator is melted, broken or moved by heat, thereby enabling contact short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion. Make the short-circuit path appear. The positive electrode active material absent portion and the negative electrode active material absent portion are short-circuited due to the expansion and gasification of the electrolyte solution due to the heat generated during the abnormal heat generation and the increase in the pressure inside the battery container due to the expansion of the electrode body itself. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the battery can be prevented from causing a thermal runaway reaction.
In particular, a short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion has a larger resistance than a case where the positive electrode active material layer and the negative electrode active material layer are short-circuited, and thus the short circuit current is reduced. For this reason, heat generation due to the short circuit current can be suppressed, and thermal runaway of the battery caused by the heat generation can be reliably prevented. Moreover, in the present invention, the electrode body itself (positive electrode plate, negative electrode plate and separator) is configured so that a contact short circuit during abnormal heat generation occurs in the electrode body. Unlike the conventional battery, it is not necessary to provide a contact short-circuit mechanism separately from the electrode body. Therefore, the cost of the battery can be suppressed. Also, the battery is relatively easy to manufacture.
Further, when the electrode body is a multilayer electrode body, the center of the plane orthogonal to the stacking direction has the highest temperature during overcharge. For this reason, the separator of this part melt | dissolves or heat-shrinks earliest, and a positive electrode plate and a negative electrode plate are easy to contact-short-circuit. Therefore, if the positive electrode active material existence part and the negative electrode active material existence part are located in this part, both will contact short-circuit, a big short circuit current will flow, and it will become easy to generate | occur | produce thermal runaway by the heat_generation | fever accompanying this.
On the other hand, in this invention, the positive electrode active material absence part, the negative electrode active material absence part, and the short circuit scheduled part are formed in the center of the plane orthogonal to the lamination direction of a laminated electrode body. For this reason, during abnormal heat generation due to overcharging, the positive electrode active material absent part and the negative electrode active material absent part are present before the separator interposed between the positive electrode active material present part and the negative electrode active material present part is melted or thermally contracted. Cause a contact short circuit, so that it is possible to prevent a contact short circuit between active material existing portions. Therefore, it is possible to reliably prevent thermal runaway of the battery.

更に、上記の電池であって、前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、前記正極活物質不存在部は、前記正極板の長手方向に延びまたは長手方向に散点状に分布し、前記負極活物質不存在部も、前記負極板の長手方向に延びまたは長手方向に散点状に分布し、前記短絡予定部も、前記セパレータの長手方向に延びまたは長手方向に散点状に分布する電池とすると良い。   Furthermore, in the battery described above, the electrode body is a wound electrode body in which a long positive electrode plate and a long negative electrode plate are stacked with a long separator interposed therebetween and wound. The positive electrode active material absent portion extends in the longitudinal direction of the positive electrode plate or is distributed in the form of dots in the longitudinal direction, and the negative electrode active material absent portion also extends in the longitudinal direction of the negative electrode plate or in the longitudinal direction. It is preferable that the battery is distributed in the form of dots and the short-circuit scheduled portion extends in the longitudinal direction of the separator or is distributed in the form of dots in the longitudinal direction.

上記特許文献1,2に記載の従来の電池では、接触短絡機構を電極体の外側や内側の一部にしか設けていない。このため、電池の異常発熱時に、予定通りに接触短絡機構が機能せずに接触短絡が起こらず、電池が熱暴走を起こすおそれもある。
これに対し、本発明の電池は、電極体が捲回型電極体であり、正極活物質不存在部、負極活物質不存在部及び短絡予定部が、それぞれ長手方向に延びまたは長手方向に散点状に分布する。このため、長手方向のどの部分においても、正極活物質不存在部と負極活物質不存在部とが接触短絡を起こし得るので、これら活物質不存在部同士の接触短絡が確実に行われる。従って、電池の熱暴走を確実に防止できる。
In the conventional batteries described in Patent Documents 1 and 2, the contact short-circuit mechanism is provided only on the outside or a part of the inside of the electrode body. For this reason, at the time of abnormal heat generation of the battery, the contact short-circuit mechanism does not function as planned, so that the contact short-circuit does not occur and the battery may run out of heat.
In contrast, in the battery of the present invention, the electrode body is a wound electrode body, and the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion each extend in the longitudinal direction or are scattered in the longitudinal direction. Distributed in dots. For this reason, since the positive electrode active material absent portion and the negative electrode active material absent portion can cause a contact short circuit in any part in the longitudinal direction, the contact short circuit between these active material absent portions is reliably performed. Therefore, it is possible to reliably prevent thermal runaway of the battery.

更に、上記のいずれかに記載の電池であって、前記セパレータは、一又は複数の第1セパレータ層と一又は複数の第2セパレータ層とを有し、前記短絡予定部は、前記第1セパレータ層からなり、前記正極活物質存在部と前記負極活物質存在部との間には、少なくとも前記第2セパレータ層が介在してなり、前記第1セパレータ層は、前記短絡予定部において前記正極活物質不存在部と前記負極活物質不存在部との接触短絡が起こる短絡発生温度よりも低い温度で溶融または熱収縮する材質からなり、前記第2セパレータ層は、前記短絡発生温度よりも高い温度まで、前記正極活物質存在部と前記負極活物質存在部との接触短絡が起こるほどには溶融も熱収縮もしない材質からなる電池とすると良い。   Furthermore, in the battery according to any one of the above, the separator has one or more first separator layers and one or more second separator layers, and the short-circuit scheduled portion is the first separator. And at least the second separator layer is interposed between the positive electrode active material existence part and the negative electrode active material existence part, and the first separator layer is formed in the short circuit scheduled part at the positive electrode active part. The second separator layer is made of a material that melts or heat shrinks at a temperature lower than a short-circuit generation temperature at which a contact short circuit occurs between the substance-free portion and the negative electrode active material-free portion, and the second separator layer has a temperature higher than the short-circuit generation temperature. Thus, it is preferable that the battery be made of a material that does not melt or heat shrink to such an extent that a contact short circuit occurs between the positive electrode active material presence portion and the negative electrode active material presence portion.

電池を構成する上においては、正極板と負極板との間には、セパレータを一枚介在させれば足りる。そしてその一部を前述の短絡予定部とすればよい。しかしながら、セパレータの溶融温度が低かったり、熱収縮率が大きい場合には、電池が異常発熱したとき、短絡予定部で正極活物質不存在部と負極活物質不存在部とが接触短絡を起こす前に、正極活物質存在部と負極活物質存在部との間に介在するセパレータが溶融や熱収縮して、これらの活物質存在部同士で接触短絡が起こって、電池が熱暴走を起こすおそれもある。   In configuring the battery, it is sufficient to interpose one separator between the positive electrode plate and the negative electrode plate. And the part should just be made into the above-mentioned short circuit planned part. However, if the melting temperature of the separator is low or the thermal shrinkage rate is large, when the battery abnormally generates heat, before the short-circuit scheduled portion, the positive electrode active material absent portion and the negative electrode active material absent portion cause a contact short circuit. In addition, the separator interposed between the positive electrode active material existing part and the negative electrode active material existing part melts or heat shrinks, and a contact short circuit occurs between these active material existing parts, which may cause a thermal runaway. is there.

これに対し、本発明の電池では、セパレータは、短絡予定部を構成する第1セパレータ層と、正極活物質存在部と負極活物質存在部との間に介在する第2セパレータ層とを有する。このうち、第1セパレータ層は、短絡予定部において正極活物質不存在部と負極活物質不存在部との接触短絡が起こる短絡発生温度よりも低い温度で溶融または熱収縮する材質からなる。一方、第2セパレータ層は、短絡発生温度よりも高い温度まで、正極活物質存在部と負極活物質存在部との接触短絡が起こるほどには溶融も熱収縮もしない材質からなる。つまり、第2セパレータ層は、短絡発生温度では溶融も熱収縮もしない材質からなる。或いは、短絡予定温度で溶融あるいは熱収縮するが、その程度は、第2セパレータ層の溶融や熱収縮により、正極活物質存在部と負極活物質存在部との間で接触短絡が生じる程に粘度が下がる溶融あるいは大きな熱収縮は生じない材質からなる。   On the other hand, in the battery of the present invention, the separator has a first separator layer that constitutes a short-circuit scheduled portion, and a second separator layer that is interposed between the positive electrode active material presence portion and the negative electrode active material presence portion. Among these, the first separator layer is made of a material that melts or heat shrinks at a temperature lower than a short-circuiting temperature at which a contact short circuit between the positive electrode active material absent portion and the negative electrode active material absent portion occurs in the short circuit scheduled portion. On the other hand, the second separator layer is made of a material that does not melt or heat shrink to such a degree that a contact short circuit between the positive electrode active material existence part and the negative electrode active material existence part occurs up to a temperature higher than the short circuit occurrence temperature. That is, the second separator layer is made of a material that does not melt or heat shrink at the temperature at which the short circuit occurs. Alternatively, it melts or heat shrinks at the expected short circuit temperature, but the degree of viscosity is such that a contact short circuit occurs between the positive electrode active material existence part and the negative electrode active material existence part due to melting or heat shrinkage of the second separator layer. It is made of a material that does not cause melting or significant heat shrinkage.

このため、電池の異常発熱時には、正極活物質存在部と負極活物質存在部との間に介在する第2セパレータ層が溶融や熱収縮してこれら活物質存在部同士で接触短絡を引き起こすよりも先に、短絡予定部を構成する第1セパレータ層が溶融や熱収縮して、この短絡予定部で正極活物質不存在部と負極活物質不存在部とが接触短絡を引き起こす。従って、正極活物質存在部と負極活物質存在部との間で接触短絡を起こすのを確実に防止でき、電池の熱暴走を確実に防止できる。   For this reason, at the time of abnormal heat generation of the battery, the second separator layer interposed between the positive electrode active material existence part and the negative electrode active material existence part is melted or thermally contracted to cause a contact short circuit between the active material existence parts. First, the first separator layer constituting the short circuit scheduled portion is melted or thermally contracted, and the positive electrode active material absent portion and the negative electrode active material absent portion cause a contact short circuit in the short circuit planned portion. Therefore, it is possible to reliably prevent a contact short circuit between the positive electrode active material presence portion and the negative electrode active material presence portion, and it is possible to reliably prevent thermal runaway of the battery.

なお、本発明において、セパレータは、上記要件を満たす第1セパレータ層及び第2セパレータ層を有するものであればよく、例えば、第1セパレータ層と第2セパレータ層とを一部積層したものでも、第1セパレータ層と第2セパレータ層とを繋いだものでもよい。
また、第1セパレータ層としては、短絡発生温度よりも低い温度で溶融するが熱収縮はしない材質や、短絡発生温度よりも低い温度で熱収縮するが溶融はしない材質、短絡発生温度よりも低い温度で溶融も熱収縮もする材質のものを用いることができる。一方、第2セパレータ層としては、前述したように、短絡発生温度よりも高い温度まで、実質的に溶融も熱収縮もしない、つまり、溶融も熱収縮もしない材質か、正極活物質存在部と負極活物質存在部との接触短絡が起こらない程度にしか溶融も熱収縮もしない材質のものを用いることができる。
In the present invention, the separator only needs to have the first separator layer and the second separator layer satisfying the above requirements. For example, even if the first separator layer and the second separator layer are partially laminated, What connected the 1st separator layer and the 2nd separator layer may be used.
The first separator layer is a material that melts at a temperature lower than the short-circuiting temperature but does not shrink, or a material that heat-shrinks at a temperature lower than the short-circuiting temperature but does not melt, and is lower than the short-circuiting temperature. A material that melts and contracts at a temperature can be used. On the other hand, as described above, as the second separator layer, a material that does not substantially melt or heat shrink to a temperature higher than the short circuit occurrence temperature, that is, a material that does not melt or heat shrink, It is possible to use a material that does not melt or heat shrink to such an extent that a contact short circuit with the negative electrode active material existing portion does not occur.

更に、上記のいずれかに記載の電池であって、前記短絡予定部は、電池の異常発熱時の熱により移動して、前記短絡用通路を現出させ、前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体の一端辺に沿って形成されてなる電池とすると良い。   Further, in the battery according to any one of the above, the short-circuit scheduled portion is moved by heat at the time of abnormal heat generation of the battery, and the short-circuit path is exposed, and the positive electrode active material absent portion, The negative electrode active material absent portion and the short circuit scheduled portion may be a battery formed along one end side of the electrode body.

本発明によれば、正極活物質不存在部、負極活物質不存在部及び短絡予定部が、電極体の一端辺に沿って形成されている。このため、正極活物質不存在部と負極活物質不存在部とが接触短絡したときに、短絡電流により発生した熱が、電極体外部に放熱されやすい。従って、短絡電流による発熱に起因して電池が熱暴走を起こすのを確実に防止できる。   According to the present invention, the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed along one end side of the electrode body. For this reason, when the positive electrode active material absent portion and the negative electrode active material absent portion are contact-short-circuited, heat generated by the short-circuit current is easily radiated to the outside of the electrode body. Therefore, it is possible to reliably prevent the battery from causing thermal runaway due to heat generation due to the short-circuit current.

更に、上記のいずれかに記載の電池であって、前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、少なくとも過充電時に最も温度が高くなる部位に形成されてなる電池とすると良い。   Furthermore, in the battery according to any one of the above, the short-circuit scheduled portion is melted or broken by heat at the time of abnormal heat generation of the battery to reveal the short-circuit passage, and the positive electrode active material absent portion The negative electrode active material absent portion and the short circuit scheduled portion may be a battery formed at least in a portion of the electrode body where the temperature is highest during overcharge.

電極体のうち、過充電の際に最も温度が高くなる部位は、過充電の際に元も早くセパレータが溶融や熱収縮して、正極板と負極板とが接触短絡しやすい。しかるに、この部位に正極活物質存在部と負極活物質存在部が位置すると、両者が接触短絡して、大きな短絡電流が流れ、これに伴う発熱で熱暴走が起きやすくなる。   Of the electrode body, the portion where the temperature is highest during overcharging is likely to cause contact and short circuit between the positive electrode plate and the negative electrode plate due to the separator melting and heat shrinking earlier during overcharge. However, when the positive electrode active material existence part and the negative electrode active material existence part are located at this part, both of them are contact-short-circuited, a large short-circuit current flows, and thermal runaway is likely to occur due to the heat generated thereby.

これに対し、本発明では、電極体のうち、少なくとも過充電時に最も温度が高くなる部位に、正極活物質不存在部、負極活物質不存在部及び短絡予定部を形成している。このため、過充電による異常発熱時には、正極活物質存在部と負極活物質存在部との間に介在するセパレータが溶融や熱収縮する前に、正極活物質不存在部と負極活物質不存在部とが接触短絡を引き起こすので、活物質存在部同士で接触短絡を起こすのを防止できる。従って、電池の熱暴走を確実に防止できる。   On the other hand, in the present invention, the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed at least in a portion of the electrode body where the temperature is highest during overcharge. For this reason, during abnormal heat generation due to overcharging, the positive electrode active material absent part and the negative electrode active material absent part are present before the separator interposed between the positive electrode active material present part and the negative electrode active material present part is melted or thermally contracted. Causes a contact short circuit, so that it is possible to prevent a contact short circuit between the active material existing portions. Therefore, it is possible to reliably prevent thermal runaway of the battery.

更に、上記のいずれかに記載の電池であって、前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、軸線方向の中央に形成されてなる電池とすると良い。   Furthermore, in the battery according to any one of the above, the electrode body is a winding obtained by laminating a long positive electrode plate and a long negative electrode plate with a long separator interposed therebetween and winding. The short-circuit scheduled portion is melted or broken by heat at the time of abnormal heat generation of the battery to expose the short-circuit passage, and the positive electrode active material absent portion, the negative electrode active material absent portion And the said short circuit scheduled part is good to use the battery formed in the center of an axial direction among the said electrode bodies.

電極体が捲回型電極体の場合、軸線方向に見てその中央が、過充電時に最も温度が高くなる。このため、この部分のセパレータが最も早く溶融や熱収縮して、正極板と負極板とが接触短絡しやすい。従って、この部位に正極活物質存在部と負極活物質存在部が位置すると、両者が接触短絡して、大きな短絡電流が流れ、これに伴う発熱で熱暴走が起きやすくなる。   When the electrode body is a wound electrode body, the temperature at the center when viewed in the axial direction is highest during overcharge. For this reason, the separator of this part melt | dissolves or heat-shrinks earliest, and a positive electrode plate and a negative electrode plate are easy to contact-short-circuit. Therefore, if the positive electrode active material existence part and the negative electrode active material existence part are located in this part, both will contact short-circuit, a big short circuit current will flow, and it will become easy to generate | occur | produce thermal runaway by the heat_generation | fever accompanying this.

これに対し、本発明では、捲回型電極体の軸線方向の中央に、正極活物質不存在部、負極活物質不存在部及び短絡予定部を形成している。このため、過充電による異常発熱時には、正極活物質存在部と負極活物質存在部との間に介在するセパレータが溶融や熱収縮する前に、正極活物質不存在部と負極活物質不存在部とが接触短絡を引き起こすので、活物質存在部同士で接触短絡を起こすのを防止できる。従って、電池の熱暴走を確実に防止できる。   On the other hand, in this invention, the positive electrode active material absence part, the negative electrode active material absence part, and the short circuit scheduled part are formed in the center of the axial direction of a wound electrode body. For this reason, during abnormal heat generation due to overcharging, the positive electrode active material absent part and the negative electrode active material absent part are present before the separator interposed between the positive electrode active material present part and the negative electrode active material present part is melted or thermally contracted. Cause a contact short circuit, so that it is possible to prevent a contact short circuit between active material existing portions. Therefore, it is possible to reliably prevent thermal runaway of the battery.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に本実施形態に係るリチウム二次電池(電池)100を示す。このリチウム二次電池100は、ハイブリットカーや電気自動車の動力源として利用される密閉型の非水系二次電池である。このようなリチウム二次電池100では、例えば過充電された場合や外部から熱が掛かったときに、電池温度が異常に上昇して、使用条件によってはその温度上昇により極板の活物質が熱分解してガスが発生し、電池の熱暴走反応を生じるおそれがある。従って、電池の異常発熱時に電池の熱暴走が生じるのを未然に防止できるように構成する必要がある。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium secondary battery (battery) 100 according to this embodiment. The lithium secondary battery 100 is a sealed non-aqueous secondary battery used as a power source for a hybrid car or an electric vehicle. In such a lithium secondary battery 100, for example, when overcharged or when heat is applied from the outside, the battery temperature rises abnormally, and depending on the use conditions, the active material of the electrode plate is heated by the temperature rise. It decomposes and generates gas, which may cause thermal runaway reaction of the battery. Therefore, it is necessary to configure the battery so that it is possible to prevent the battery from running out of control when the battery is abnormally heated.

このリチウム二次電池100は、略直方体形状をなす角型電池である。リチウム二次電池100は、電池容器110、電池容器110に設けられた安全弁120、電池容器110内に収容された捲回型電極体130、電池容器110にそれぞれ固設された正極端子161及び負極端子163等から構成され、電池容器110内には、非水系の電解液が注入され封止されている。   The lithium secondary battery 100 is a rectangular battery having a substantially rectangular parallelepiped shape. The lithium secondary battery 100 includes a battery container 110, a safety valve 120 provided in the battery container 110, a wound electrode body 130 accommodated in the battery container 110, a positive electrode terminal 161 and a negative electrode fixed to the battery container 110, respectively. A non-aqueous electrolyte is injected into the battery case 110 and sealed.

詳細には、電池容器110は、捲回型電極体130を収容する容器本体111と、この容器本体111を封口する蓋体113とからなる。容器本体111と蓋体113は、共に金属によって形成されている。容器本体111は、外形が直方体形状をなし、平板状で矩形状の底部111aと、平板状で矩形状をなし、底部111aの周縁からそれぞれ底部111aに対して垂直に延びる4つの側壁部111b,111b,… とから構成されている。一方、蓋体113は、概略板形状をなす。そして、容器本体111と蓋体113とは、容器本体111の各側壁部111b,111b,… に蓋体113を当接させた状態で蓋体113の全周にわたって溶接されている。   Specifically, the battery container 110 includes a container main body 111 that houses the wound electrode body 130 and a lid body 113 that seals the container main body 111. Both the container body 111 and the lid body 113 are made of metal. The container main body 111 has a rectangular parallelepiped shape, and has a flat plate-like rectangular bottom portion 111a and a flat plate-like rectangular shape, and four side wall portions 111b extending perpendicularly to the bottom portion 111a from the periphery of the bottom portion 111a, respectively. 111b,... On the other hand, the lid body 113 has a substantially plate shape. The container body 111 and the lid body 113 are welded over the entire circumference of the lid body 113 with the lid body 113 in contact with the side wall portions 111b, 111b,.

電池容器110の蓋体113の略中央には、安全弁120が設けられている。この安全弁120は、電池容器110内の圧力が一定以上に達したときに作動して、電池容器110内のガスを電池外部へ排出する。
また、蓋体113の所定位置には、正極端子161と負極端子163がそれぞれ固設されている。正極端子161は、電池内部において、正極リード162等を介して、後述する捲回型電極体130の正極板131と電気的に接続する一方、電池外部に露出し、外部との電気的接続に利用される。また、負極端子163は、電池内部において、負極リード164等を介して、後述する捲回型電極体130の負極板141と電気的に接続する一方、電池外部に露出し、外部との電気的接続に利用される。
A safety valve 120 is provided in the approximate center of the lid 113 of the battery container 110. The safety valve 120 operates when the pressure in the battery container 110 reaches a certain level or more, and discharges the gas in the battery container 110 to the outside of the battery.
Further, a positive terminal 161 and a negative terminal 163 are fixedly provided at predetermined positions of the lid 113. The positive electrode terminal 161 is electrically connected to a positive electrode plate 131 of a wound electrode body 130, which will be described later, via a positive electrode lead 162 and the like inside the battery, while being exposed to the outside of the battery and used for electrical connection with the outside. Used. In addition, the negative electrode terminal 163 is electrically connected to a negative electrode plate 141 of a wound electrode body 130, which will be described later, via a negative electrode lead 164 or the like inside the battery, while being exposed to the outside of the battery and electrically connected to the outside. Used for connection.

次に、捲回型電極体130について詳述する(図1の他、図2〜図4も参照)。図2に捲回型電極体130の概略形態を示す。但し、セパレータ151のうち最表面の部分は省略してある。また、図3に捲回型電極体130を構成する正極板131、負極板141及びセパレータ151の各部についての厚み方向の位置関係を示す。なお、図3中、上下方向が正極板131、負極板141及びセパレータ151の長手方向になる。また、図4に捲回型電極体130の断面の一部を示す。   Next, the wound electrode body 130 will be described in detail (see FIGS. 2 to 4 in addition to FIG. 1). FIG. 2 shows a schematic form of the wound electrode body 130. However, the outermost part of the separator 151 is omitted. FIG. 3 shows the positional relationship in the thickness direction for each part of the positive electrode plate 131, the negative electrode plate 141, and the separator 151 constituting the wound electrode body 130. In FIG. 3, the vertical direction is the longitudinal direction of the positive electrode plate 131, the negative electrode plate 141, and the separator 151. FIG. 4 shows a part of a cross section of the wound electrode body 130.

この捲回型電極体130は、長尺状の正極板131と長尺状の負極板141とを通気性を有する長尺状のセパレータ151を介して積層し、これを複数回、軸線AX周りに扁平状に捲回することにより構成されている(図2,図4等参照)。捲回型電極体130の軸線AX方向(図2,図4等における左右方向)の一端部(図1〜図4において左端部)には、正極リード162と電気的に接続するために、正極板131の一部が突出している。また、捲回型電極体130の軸線AX方向の他端部(図1〜図4において右端部)には、負極リード部164と電気的に接続するために、負極板141の一部が突出している。   The wound electrode body 130 is formed by laminating a long positive electrode plate 131 and a long negative electrode plate 141 through a long separator 151 having air permeability, and this is laminated a plurality of times around an axis AX. It is comprised by winding to flat shape (refer FIG.2, FIG.4 etc.). One end (left end in FIGS. 1 to 4) of the wound electrode body 130 in the axis AX direction (left and right direction in FIGS. 2 and 4) has a positive electrode A part of the plate 131 protrudes. In addition, a part of the negative electrode plate 141 protrudes from the other end portion of the wound electrode body 130 in the axis AX direction (the right end portion in FIGS. 1 to 4) so as to be electrically connected to the negative electrode lead portion 164. ing.

正極板131は、芯材として、その寸法が厚さ15μm、幅100mm、長さ8884mmのアルミニウム箔からなる金属箔正極集電体132を有する(図3,図4等参照)。金属箔正極集電体132の表面(両面)には、リチウムコバルト複合酸化物を含む正極電極材料を長手方向に沿って塗工した正極活物質層133が形成され、帯状をなす正極活物質存在部134を構成している。   The positive electrode plate 131 has a metal foil positive electrode current collector 132 made of an aluminum foil having a thickness of 15 μm, a width of 100 mm, and a length of 8884 mm as a core material (see FIGS. 3 and 4). On the surface (both sides) of the metal foil positive electrode current collector 132 is formed a positive electrode active material layer 133 in which a positive electrode material containing a lithium cobalt composite oxide is applied along the longitudinal direction. Part 134 is configured.

また、これに伴い金属箔正極集電体132の幅方向の一端部(図3及び図4中、左端部)には、正極活物質層133を有しない、幅15mmの第1正極活物質不存在部135が長手方向に帯状に形成されている。同様に、金属箔正極集電体132の幅方向の他端部(図3及び図4中、右端部)にも、正極活物質層133を有しない、幅2.55mmの第2正極活物質不存在部136が長手方向に帯状に形成されている。   In addition, along with this, one end of the metal foil positive electrode current collector 132 in the width direction (the left end in FIGS. 3 and 4) does not have the positive electrode active material layer 133 and does not have the first positive electrode active material having a width of 15 mm. The existence part 135 is formed in a band shape in the longitudinal direction. Similarly, the second positive electrode active material having a width of 2.55 mm without the positive electrode active material layer 133 at the other end portion in the width direction of the metal foil positive electrode current collector 132 (the right end portion in FIGS. 3 and 4). The non-existing portion 136 is formed in a strip shape in the longitudinal direction.

負極板141は、芯材として、その寸法が厚さ10μm、幅100mm、長さ9102mmの銅箔からなる金属箔負極集電体142を有する(図3,図4等参照)。金属箔負極集電体142の表面(両面)には、カーボン等を含む負極電極材料を長手方向に沿って塗工した負極活物質層143が形成され、帯状をなす負極活物質存在部144を構成している。この負極活物質存在部144は、正極活物質存在部134とセパレータ151を介して対向して配置されている(図3,図4等参照)。   The negative electrode plate 141 includes, as a core material, a metal foil negative electrode current collector 142 made of a copper foil having a thickness of 10 μm, a width of 100 mm, and a length of 9102 mm (see FIGS. 3 and 4). On the surface (both sides) of the metal foil negative electrode current collector 142, a negative electrode active material layer 143 is formed by applying a negative electrode material containing carbon or the like along the longitudinal direction. It is composed. The negative electrode active material existence portion 144 is disposed to face the positive electrode active material existence portion 134 with the separator 151 interposed therebetween (see FIGS. 3 and 4).

また、これに伴い金属箔負極集電体142の幅方向の一端部(図3及び図4中、右端部)には、負極活物質層143を有しない、幅13mmの負極活物質不存在部145が長手方向に帯状に形成されている。この負極活物質不存在部145は、その一部が第2正極活物質不存在部136とセパレータ151を介して対向して配置されている(図3,図4等参照)。   In addition, in accordance with this, one end portion in the width direction of the metal foil negative electrode current collector 142 (the right end portion in FIGS. 3 and 4) does not have the negative electrode active material layer 143 and has a 13 mm wide negative electrode active material absence portion. 145 is formed in a band shape in the longitudinal direction. A part of the negative electrode active material absent portion 145 is disposed so as to face the second positive electrode active material absent portion 136 via the separator 151 (see FIGS. 3 and 4).

セパレータ151は、3層構造をなす。即ち、セパレータ151は、ポリプロピレンからなり、多孔質状をなし通気性を有する2つの第2セパレータ層153の間に、ポリエチレンからなり、多孔質状をなし通気性を有する1つの第1セパレータ層152が積層されることにより構成されている。第1セパレータ層152は、その寸法が厚さ8μm、幅91mm、長さ9272mmである。また、第2セパレータ層153は、その寸法が厚さ8μm、幅87.95mm、長さ9272mmである。また、第1セパレータ層152の溶融温度が135℃であるのに対して、第2セパレータ層153の溶融温度は175℃と耐熱性が高くされている。また、第1セパレータ層152は、第2セパレータ層153よりも熱収縮率が大きくされている。   The separator 151 has a three-layer structure. That is, the separator 151 is made of polypropylene, and is formed of a polyethylene between the two second separator layers 153 that are porous and have air permeability. The first separator layer 152 that is porous and has air permeability. Is formed by laminating. The first separator layer 152 has a thickness of 8 μm, a width of 91 mm, and a length of 9272 mm. The second separator layer 153 has a thickness of 8 μm, a width of 87.95 mm, and a length of 9272 mm. Further, the melting temperature of the first separator layer 152 is 135 ° C., whereas the melting temperature of the second separator layer 153 is 175 ° C., which is high in heat resistance. The first separator layer 152 has a thermal contraction rate larger than that of the second separator layer 153.

このセパレータ151は、その幅方向の一端部(図3及び図4中、右端部)に位置する単層部(短絡予定部)155が、第1セパレータ層152のみからなり、幅3.05mmで長手方向に延びている。また、セパレータの151のうち、この単層部155を除く部分には、第1セパレータ層152と2つの第2セパレータ層153からなり、幅87.95mmで長手方向に延びる複層部156が位置している。   In this separator 151, a single layer portion (short-circuit planned portion) 155 located at one end portion in the width direction (right end portion in FIGS. 3 and 4) is composed of only the first separator layer 152, and has a width of 3.05 mm. It extends in the longitudinal direction. Further, in the portion of the separator 151 excluding the single layer portion 155, a multi-layer portion 156 made of the first separator layer 152 and the two second separator layers 153 and having a width of 87.95 mm and extending in the longitudinal direction is located. is doing.

セパレータ151の短絡予定部155は、第2正極活物質不存在部136と負極活物質不存在部145との間に介在する(図3及び図4参照)。従って、第2正極活物質不存在部136、負極活物質不存在部145及び短絡予定部155は、捲回型電極体130の一端辺に沿って位置する。また、セパレータ151の複層部156は、正極活物質存在部134と負極活物質存在部144との間に介在する(図3及び図4参照)。   The short-circuit scheduled portion 155 of the separator 151 is interposed between the second positive electrode active material absent portion 136 and the negative electrode active material absent portion 145 (see FIGS. 3 and 4). Therefore, the second positive electrode active material absent portion 136, the negative electrode active material absent portion 145, and the short-circuit scheduled portion 155 are positioned along one end side of the wound electrode body 130. The multilayer portion 156 of the separator 151 is interposed between the positive electrode active material existence portion 134 and the negative electrode active material existence portion 144 (see FIGS. 3 and 4).

次いで、このリチウム二次電池100において、例えば過充電されたり、外部から熱が掛かって、電池が異常発熱した場合について、図5を参照しつつ説明する。図5中、上方の図は、平常時を示している。電池が異常発熱した場合、その熱によって、第2セパレータ層153よりも低い温度で熱収縮し、熱収縮率の大きくされた第1セパレータ層152が収縮して、短絡予定部155がセパレータ151の幅方向の中心に向かって移動する。一方、第2セパレータ層153は、殆ど熱収縮しないため、殆ど移動しない。   Next, in the lithium secondary battery 100, for example, a case where the battery is overcharged or heat is applied from the outside and the battery abnormally generates heat will be described with reference to FIG. In FIG. 5, the upper diagram shows a normal state. When the battery abnormally generates heat, the heat causes thermal contraction at a temperature lower than that of the second separator layer 153, the first separator layer 152 having a large thermal contraction rate contracts, and the short-circuit scheduled portion 155 becomes the separator 151. Move toward the center in the width direction. On the other hand, the second separator layer 153 hardly moves because it hardly heat shrinks.

そして、図5中、中央の図に示すように、第2正極活物質不存在部136と負極活物質不存在部145との接触短絡を可能とする短絡用通路158を現出させる。そして更に、この異常発熱時の熱による電解液の膨張やガス化、捲回型電極体130自身の膨張による電池容器110内圧力の上昇により、図5中、下方の図に示すように、第2正極活物質不存在部136と負極活物質不存在部145とが接触短絡する。そうすると、ここに短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、リチウム二次電池100が熱暴走反応を起こすのを未然に防止できる。   Then, as shown in the center diagram in FIG. 5, a short-circuit passage 158 that enables a short-circuit between the second positive electrode active material absence portion 136 and the negative electrode active material absence portion 145 is made to appear. Further, due to the expansion and gasification of the electrolyte due to the heat during the abnormal heat generation and the increase in the pressure in the battery container 110 due to the expansion of the wound electrode body 130 itself, as shown in the lower diagram in FIG. The two positive electrode active material absence part 136 and the negative electrode active material absence part 145 are short-circuited. Then, since a short-circuit current flows here, a chemical reaction between the electrolytic solution and the active material is blocked, so that it is possible to prevent the lithium secondary battery 100 from causing a thermal runaway reaction.

特に、活物質を有しない第2正極活物質不存在部136と負極活物質不存在部145との短絡は、正極活物質層133と負極活物質層143とが短絡する場合よりも抵抗が大きいために、短絡電流が小さくなる。このため、短絡電流による発熱を抑制し、その発熱に起因する電池の熱暴走を防止できる。その上、本実施形態1では、異常発熱時の接触短絡が捲回型電極体130内で起こるように、捲回型電極体130自体を構成しているので、従来の電池のように電極体とは別に接触短絡機構を設ける必要がない。従って、リチウム二次電池100のコストを抑えることができる。   In particular, the short circuit between the second positive electrode active material absence part 136 and the negative electrode active material absence part 145 having no active material has a larger resistance than the case where the positive electrode active material layer 133 and the negative electrode active material layer 143 are short-circuited. Therefore, the short circuit current is reduced. For this reason, the heat_generation | fever by a short circuit current can be suppressed and the thermal runaway of the battery resulting from the heat_generation | fever can be prevented. In addition, in the first embodiment, the wound electrode body 130 itself is configured so that a contact short circuit in the event of abnormal heat generation occurs in the wound electrode body 130. Therefore, the electrode body as in a conventional battery is used. There is no need to provide a contact short circuit mechanism. Therefore, the cost of the lithium secondary battery 100 can be suppressed.

更に、本実施形態1では、電極体が捲回型電極体130であり、第2正極活物質不存在部136、負極活物質不存在部145及び短絡予定部155が、それぞれ長手方向に延びている。このため、長手方向のどの部分においても、第2正極活物質不存在部136と負極活物質不存在部145とが接触短絡を起こし得るので、これら活物質不存在部136,145同士の接触短絡が確実に行われる。従って、リチウム二次電池100の熱暴走を確実に防止できる。   Further, in the first embodiment, the electrode body is a wound electrode body 130, and the second positive electrode active material absence portion 136, the negative electrode active material absence portion 145, and the short-circuit scheduled portion 155 extend in the longitudinal direction. Yes. For this reason, since the second positive electrode active material absence part 136 and the negative electrode active material absence part 145 can cause a contact short circuit in any part in the longitudinal direction, a contact short circuit between the active material absence parts 136 and 145 is present. Is surely done. Therefore, thermal runaway of the lithium secondary battery 100 can be reliably prevented.

また、本実施形態1では、第2セパレータ層153は、短絡予定部155における第2正極活物質不存在部136と負極活物質不存在部145との接触短絡が起こる短絡発生温度よりも高い温度まで、実質的に溶融も熱収縮もしない。このため、電池の異常発熱時には、正極活物質存在部134と負極活物質存在部144とが接触短絡を引き起こすよりも先に、第2正極活物質不存在部136と負極活物質不存在部145とが接触短絡を引き起こす。従って、正極活物質存在部134と負極活物質存在部144との接触短絡を起こすのを確実に防止でき、リチウム二次電池100の熱暴走を確実に防止できる。   In the first embodiment, the second separator layer 153 has a temperature higher than the short circuit occurrence temperature at which the contact short circuit between the second positive electrode active material absent portion 136 and the negative electrode active material absent portion 145 occurs in the short circuit planned portion 155. Until substantially no melting or heat shrinking. For this reason, when the battery is abnormally heated, the second positive electrode active material absence portion 136 and the negative electrode active material absence portion 145 are present before the positive electrode active material presence portion 134 and the negative electrode active material presence portion 144 cause a contact short circuit. Cause a contact short circuit. Therefore, it is possible to reliably prevent a contact short circuit between the positive electrode active material existence part 134 and the negative electrode active material existence part 144, and to reliably prevent thermal runaway of the lithium secondary battery 100.

また、本実施形態1では、前述したように、第2正極活物質不存在部136、負極活物質不存在部145及び短絡予定部155が、捲回型電極体130の一端辺に沿って形成されている。このため、第2正極活物質不存在部136と負極活物質不存在部145とが接触短絡したときに、短絡電流により発生した熱が、捲回型電極体130の外部に放熱されやすい。従って、短絡電流による発熱に起因してリチウム二次電池100が熱暴走を起こすのを確実に防止できる。   In the first embodiment, as described above, the second positive electrode active material absence portion 136, the negative electrode active material absence portion 145, and the short-circuit scheduled portion 155 are formed along one end side of the wound electrode body 130. Has been. For this reason, when the second positive electrode active material absent portion 136 and the negative electrode active material absent portion 145 are contact-short-circuited, heat generated by the short-circuit current is easily radiated to the outside of the wound electrode body 130. Therefore, it is possible to reliably prevent the lithium secondary battery 100 from causing thermal runaway due to heat generation due to the short-circuit current.

次いで、上記リチウム二次電池100の製造方法について説明する。まず、正極板131を作製する。具体的には、アルミニウム箔からなる金属箔正極集電体132の表面の所定位置に、正極電極材料を含む正極用ペーストを塗布した後、公知の手法により、ロール圧縮や加熱処理等を行って、前述した正極活物質存在部134、第1,第2正極活物質不存在部135,136を形成する。   Next, a method for manufacturing the lithium secondary battery 100 will be described. First, the positive electrode plate 131 is produced. Specifically, after applying a positive electrode paste containing a positive electrode material to a predetermined position on the surface of a metal foil positive electrode current collector 132 made of an aluminum foil, roll compression or heat treatment is performed by a known method. The positive electrode active material existence part 134 and the first and second positive electrode active material absence parts 135 and 136 described above are formed.

また正極板131と同様にして、負極板141も作製する。具体的には、銅箔からなる金属箔負極集電体142の表面の所定位置に、負極電極材料を含む負極用ペーストを塗布した後、公知の手法により、ロール圧縮や加熱処理等を行って、前述した負極活物質存在部144、負極活物質不存在部145を形成する。
また、第1セパレータ層152と第2セパレータ層153を位置合わせをして積層し、セパレータ151を作製する。
Further, the negative electrode plate 141 is also produced in the same manner as the positive electrode plate 131. Specifically, after applying a negative electrode paste containing a negative electrode material to a predetermined position on the surface of a metal foil negative electrode current collector 142 made of copper foil, roll compression or heat treatment is performed by a known method. The negative electrode active material existence part 144 and the negative electrode active material absence part 145 described above are formed.
In addition, the first separator layer 152 and the second separator layer 153 are aligned and laminated to produce the separator 151.

次に、正極板131と負極板141とをセパレータ151を介して位置合わせをして積層する。その後、公知の手法により、これらを所定回数、扁平状に捲回して、捲回型電極体130を作製する。
また一方で、公知の手法で製造された、リチウム二次電池100を構成するその他の部品を用意する。そして、捲回型電極体130とその他の部品を用いて、公知の手法により、リチウム二次電池100を組み立てる。かくして、リチウム二次電池100が完成する。このように本実施形態1では、従来のような電極体とは別に形成する接触短絡機構がないため、リチウム二次電池100の製造が比較的容易である。
Next, the positive electrode plate 131 and the negative electrode plate 141 are aligned and stacked via the separator 151. Thereafter, these are wound into a flat shape a predetermined number of times by a known method to produce a wound electrode body 130.
On the other hand, other parts that constitute the lithium secondary battery 100 manufactured by a known method are prepared. Then, the lithium secondary battery 100 is assembled by a known method using the wound electrode body 130 and other components. Thus, the lithium secondary battery 100 is completed. As described above, in the first embodiment, since there is no contact short-circuit mechanism formed separately from the conventional electrode body, it is relatively easy to manufacture the lithium secondary battery 100.

(実施例)
本発明の効果を検証するために、実施例として、上記実施形態1に係るリチウム二次電池100を用意した。また、比較例として、異常発熱時に活物質不存在部同士で接触短絡を起こさないように、正極板、負極板及びセパレータを構成した従来の捲回型電極体を有するリチウム二次電池も用意した。そして、これらのサンプルに電流を流し、過充電状態にして、リチウム二次電池100等の状態を観察した。その結果を表1に示す。
(Example)
In order to verify the effect of the present invention, the lithium secondary battery 100 according to Embodiment 1 was prepared as an example. In addition, as a comparative example, a lithium secondary battery having a conventional wound electrode body configured with a positive electrode plate, a negative electrode plate, and a separator was also prepared so as not to cause a contact short circuit between the active material absent portions during abnormal heat generation. . And the electric current was sent through these samples, it was set as the overcharge state, and the state of the lithium secondary battery 100 grade | etc., Was observed. The results are shown in Table 1.

Figure 0004984456
Figure 0004984456

表1において、「開弁」は、電池容器110に設けられた安全弁120が開弁したことを意味する。また、「ミスト」は、電解液がガス化して安全弁120から吹き出したことを意味する。また、「発煙」は、リチウム二次電池が熱暴走を起こし、リチウム二次電池に発煙が見られたことを意味する。   In Table 1, “open valve” means that the safety valve 120 provided in the battery container 110 is opened. “Mist” means that the electrolyte gasified and was blown out from the safety valve 120. In addition, “smoke” means that the lithium secondary battery caused a thermal runaway and smoke was seen in the lithium secondary battery.

表1から明らかなように、実施例では、26Aあるいは50Aというように、より発熱が大きくなる大電流領域においても熱暴走反応が起こらず、リチウム二次電池100に発煙は認められなかった。これに対して、比較例では、13A以上の大電流を流すと、熱暴走反応を起こし、リチウム二次電池100に発煙が見られた。また、電池表面の温度も異常に高温となった。このことから、本実施形態1のリチウム二次電池100は、異常発熱時に接触短絡を起こさせることで、電池の熱暴走を未然に防止できると言える。   As is clear from Table 1, in the example, no thermal runaway reaction occurred even in a large current region where heat generation was larger, such as 26 A or 50 A, and no smoke was observed in the lithium secondary battery 100. On the other hand, in the comparative example, when a large current of 13 A or more was passed, a thermal runaway reaction occurred, and smoke was seen in the lithium secondary battery 100. Moreover, the temperature of the battery surface also became abnormally high. From this, it can be said that the lithium secondary battery 100 of the first embodiment can prevent the battery from being runaway by causing a contact short circuit when abnormal heat is generated.

(実施形態2)
次いで、第2の実施形態について説明する。なお、上記実施形態1と同様な部分の説明は、省略または簡略化する。本実施形態2のリチウム二次電池200は、捲回型電極体230の構造が上記実施形態1の捲回型電極体130と異なる。それ以外の構成は同様である(図1参照)。図6〜図8に本実施形態2に係る捲回型電極体230を示す。図6は捲回型電極体230の概略形態を示す。但し、セパレータ251のうち最表面の部分は省略してある。図7は捲回型電極体230を構成する正極板231、負極板241及びセパレータ251の各部についての厚み方向の位置関係を示す。また、図8は捲回型電極体230の断面の一部を示す。
(Embodiment 2)
Next, a second embodiment will be described. Note that the description of the same parts as those in the first embodiment is omitted or simplified. The lithium secondary battery 200 of the second embodiment is different from the wound electrode body 130 of the first embodiment in the structure of the wound electrode body 230. The other configuration is the same (see FIG. 1). 6 to 8 show a wound electrode body 230 according to the second embodiment. FIG. 6 shows a schematic form of the wound electrode body 230. However, the outermost part of the separator 251 is omitted. FIG. 7 shows the positional relationship in the thickness direction for each part of the positive electrode plate 231, the negative electrode plate 241 and the separator 251 constituting the wound electrode body 230. FIG. 8 shows a part of a cross section of the wound electrode body 230.

本実施形態2に係る捲回型電極体230は、長尺状の正極板231と長尺状の負極板241とを通気性を有する長尺状のセパレータ251を介して積層し、これを複数回、軸線AX周りに扁平状に捲回することにより構成されている(図6,図8等参照)。捲回型電極体230の軸線AX方向(図6,図8等における左右方向)の一端部には、正極リード162と電気的に接続するために、正極板231の一部が突出している(図1,図6,図8等参照)。また、捲回型電極体230の軸線方向の他端部には、負極リード部164と電気的に接続するために、負極板241の一部が突出している(図1,図6,図8等参照)。   In the wound electrode body 230 according to the second embodiment, a long positive electrode plate 231 and a long negative electrode plate 241 are stacked via a long separator 251 having air permeability, and a plurality of these are stacked. It is constituted by winding around the axis AX in a flat shape (see FIGS. 6 and 8). A part of the positive electrode plate 231 protrudes at one end of the wound electrode body 230 in the axis AX direction (left and right direction in FIGS. 6, 8, etc.) in order to be electrically connected to the positive electrode lead 162 ( (See FIGS. 1, 6 and 8). In addition, a part of the negative electrode plate 241 protrudes from the other end portion in the axial direction of the wound electrode body 230 in order to be electrically connected to the negative electrode lead portion 164 (FIGS. 1, 6, and 8). Etc.).

正極板231は、芯材として、その寸法が厚さ15μm、幅100mm、長さ8884mmのアルミニウムの金属箔正極集電体232を有する(図7,図8等参照)。金属箔正極集電体232の表面(両面)には、正極電極材料を長手方向に沿って塗工した正極活物質層233が形成され、2本の帯状をなす正極活物質存在部234を構成している。   The positive electrode plate 231 has an aluminum metal foil positive electrode current collector 232 having a thickness of 15 μm, a width of 100 mm, and a length of 8884 mm as a core material (see FIGS. 7 and 8). On the surface (both sides) of the metal foil positive electrode current collector 232, a positive electrode active material layer 233 is formed by coating the positive electrode material along the longitudinal direction, and a positive electrode active material existence portion 234 that forms two strips is formed. is doing.

また、これに伴い金属箔正極集電体232の幅方向の一端部(図7及び図8中、左端部)には、正極活物質層233を有しない、幅15mmの第1正極活物質不存在部235が長手方向に帯状に形成されている。同様に、金属箔正極集電体232のうち、2本の帯状をなす正極活物質存在部234の間にも、正極活物質層233を有しない、幅10mmの第2正極活物質不存在部236が長手方向に帯状に形成されている。   Accordingly, one end of the metal foil positive electrode current collector 232 in the width direction (the left end in FIGS. 7 and 8) does not have the positive electrode active material layer 233 and does not have the first positive electrode active material having a width of 15 mm. The existence part 235 is formed in a band shape in the longitudinal direction. Similarly, in the metal foil positive electrode current collector 232, the second positive electrode active material absence portion having a width of 10 mm that does not include the positive electrode active material layer 233 between the two positive electrode active material existence portions 234 having a band shape. 236 is formed in a band shape in the longitudinal direction.

負極板241は、芯材として、その寸法が厚さ10μm、幅100mm、長さ9102mmの金属箔負極集電体242を有する(図7,図8等参照)。金属箔負極集電体242の表面(両面)には、負極電極材料を長手方向に沿って塗工した負極活物質層243が形成され、2本の帯状をなす負極活物質存在部244を構成している。これらの負極活物質存在部244は、正極活物質存在部234とセパレータ251を介して対向して配置されている(図8等参照)。   The negative electrode plate 241 has a metal foil negative electrode current collector 242 having a thickness of 10 μm, a width of 100 mm, and a length of 9102 mm as a core material (see FIGS. 7 and 8). On the surface (both sides) of the metal foil negative electrode current collector 242, a negative electrode active material layer 243 obtained by coating the negative electrode material along the longitudinal direction is formed, and a negative electrode active material existence portion 244 having two strips is formed. is doing. These negative electrode active material existence portions 244 are arranged to face the positive electrode active material existence portion 234 with the separator 251 therebetween (see FIG. 8 and the like).

また、これに伴い金属箔負極集電体242の幅方向の一端部(図7及び図8中、右端部)には、負極活物質層243を有しない、幅13mmの第1負極活物質不存在部245が長手方向に帯状に形成されている。同様に、金属箔負極集電体242のうち、2本の帯状をなす負極活物質存在部244の間にも、負極活物質層243を有しない、幅10mmの第2負極活物質不存在部246が長手方向に帯状に形成されている。この第2負極活物質不存在部246は、第2正極活物質不存在部236とセパレータ251を介して対向して配置されている(図8等参照)。   In addition, along with this, one end portion in the width direction of the metal foil negative electrode current collector 242 (the right end portion in FIGS. 7 and 8) does not have the negative electrode active material layer 243 and does not have the first negative electrode active material having a width of 13 mm. The existence portion 245 is formed in a strip shape in the longitudinal direction. Similarly, in the metal foil negative electrode current collector 242, a second negative electrode active material absence portion having a width of 10 mm that does not include the negative electrode active material layer 243 between the two negative electrode active material existence portions 244 having a strip shape. 246 is formed in a band shape in the longitudinal direction. The second negative electrode active material absent portion 246 is disposed to face the second positive electrode active material absent portion 236 with the separator 251 interposed therebetween (see FIG. 8 and the like).

セパレータ251は、3層構造をなす。即ち、ポリプロピレンからなり、多孔質状をなし通気性を有する2つの第2セパレータ層253の間に、ポリエチレンからなり、多孔質状をなし通気性を有する1つの第1セパレータ層252が積層されることにより構成されている。第1セパレータ層252は、その寸法が厚さ8μm、幅91mm、長さ9272mmである。また、第2セパレータ層253は、それぞれ長手方向に沿って2つに分割されており、各々の寸法が厚さ8μm、幅91mm、長さ9272mmである。また、第1セパレータ層252の溶融温度が135℃であるのに対して、第2セパレータ層253の溶融温度は175℃と耐熱性が高くされている。また、第1セパレータ層252は、第2セパレータ層253よりも熱収縮率が大きくされている。   The separator 251 has a three-layer structure. That is, one first separator layer 252 made of polyethylene, porous, and air permeable is laminated between two second separator layers 253 made of polypropylene and having air permeability. It is constituted by. The first separator layer 252 has a thickness of 8 μm, a width of 91 mm, and a length of 9272 mm. The second separator layer 253 is divided into two along the longitudinal direction, and each dimension is 8 μm in thickness, 91 mm in width, and 9272 mm in length. Further, the melting temperature of the first separator layer 252 is 135 ° C., whereas the melting temperature of the second separator layer 253 is 175 ° C., which is high in heat resistance. The first separator layer 252 has a thermal contraction rate larger than that of the second separator layer 253.

このセパレータ251は、その幅方向の中央に位置する単層部(短絡予定部)255が、第1セパレータ層252のみからなり、幅6mmで長手方向に延びている。また、セパレータの251のうち、この単層部255の両側に位置する2つの複層部256は、第1セパレータ層252と2つの第2セパレータ層253からなり、それぞれ幅42.5mmで長手方向に延びている。   In this separator 251, a single layer portion (short-circuit scheduled portion) 255 located at the center in the width direction is composed of only the first separator layer 252 and extends in the longitudinal direction with a width of 6 mm. Of the separator 251, two multilayer portions 256 located on both sides of the single layer portion 255 are composed of a first separator layer 252 and two second separator layers 253, each having a width of 42.5 mm and a longitudinal direction. It extends to.

セパレータ251の短絡予定部255は、第2正極活物質不存在部236と第2負極活物質不存在部246との間に介在する(図7及び図8参照)。従って、第2正極活物質不存在部236、第2負極活物質不存在部246及び短絡予定部255は、捲回型電極体230の軸線AX方向の中央に位置する。また、セパレータ251の複層部256は、それぞれ正極活物質存在部234と負極活物質存在部244との間に介在する(図7及び図8参照)。   The short-circuit scheduled portion 255 of the separator 251 is interposed between the second positive electrode active material absent portion 236 and the second negative electrode active material absent portion 246 (see FIGS. 7 and 8). Therefore, the second positive electrode active material absent portion 236, the second negative electrode active material absent portion 246, and the short circuit scheduled portion 255 are located at the center of the wound electrode body 230 in the axis AX direction. Moreover, the multilayer part 256 of the separator 251 is interposed between the positive electrode active material existence part 234 and the negative electrode active material existence part 244, respectively (see FIGS. 7 and 8).

次いで、このリチウム二次電池200において、電池が異常発熱した場合について、図9を参照しつつ説明する。図9中、上方の図は、平常時を示している。電池が異常発熱した場合、その熱によって、熱収縮率の大きく耐熱性が低い第1セパレータ層252が収縮すると共に、短絡予定部255において溶断する。一方、この温度では、第2セパレータ層253は、殆ど溶融も熱収縮もしないため、第2セパレータ層253が溶断したり、大きく移動することはない。   Next, in the lithium secondary battery 200, a case where the battery abnormally generates heat will be described with reference to FIG. In FIG. 9, the upper diagram shows a normal state. When the battery abnormally generates heat, the heat causes the first separator layer 252 having a large thermal contraction rate and low heat resistance to shrink, and to melt at the short-circuit scheduled portion 255. On the other hand, at this temperature, the second separator layer 253 hardly melts or heat shrinks, so that the second separator layer 253 does not melt or move greatly.

そして、図9中、中央の図に示すように、第2正極活物質不存在部236と第2負極活物質不存在部246との接触短絡を可能とする短絡用通路258を現出させる。そして更に、この異常発熱時の熱による電解液の膨張やガス化、捲回型電極体230自身の膨張による電池容器110内圧力の上昇により、図9中、下方の図に示すように、第2正極活物質不存在部236と第2負極活物質不存在部246とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、リチウム二次電池200が熱暴走反応を起こすのを未然に防止できる。   Then, as shown in the center diagram in FIG. 9, a short-circuit passage 258 that enables a short-circuit between the second positive electrode active material absent portion 236 and the second negative electrode active material absent portion 246 is made to appear. Furthermore, due to the expansion and gasification of the electrolyte due to the heat during the abnormal heat generation and the increase in the pressure in the battery container 110 due to the expansion of the wound electrode body 230 itself, as shown in the lower diagram in FIG. The two positive electrode active material absence part 236 and the second negative electrode active material absence part 246 are short-circuited. Then, since the short circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that it is possible to prevent the lithium secondary battery 200 from causing a thermal runaway reaction.

本実施形態2でも、異常発熱時の接触短絡が捲回型電極体230内で起こるように、捲回型電極体230自体を構成しているので、従来の電池のように電極体とは別に接触短絡機構を設ける必要がない。従って、リチウム二次電池200のコストを抑えることができる。また、リチウム二次電池200の製造も比較的容易である。   Also in the second embodiment, the wound electrode body 230 itself is configured so that a contact short circuit in the event of abnormal heat generation occurs in the wound electrode body 230, so that it is separate from the electrode body as in a conventional battery. There is no need to provide a contact short-circuit mechanism. Therefore, the cost of the lithium secondary battery 200 can be suppressed. Moreover, the manufacture of the lithium secondary battery 200 is relatively easy.

更に、本実施形態2では、過充電の際に最も温度が高くなる部位である捲回型電極体230の軸線AX方向の中央に、第2正極活物質不存在部236、第2負極活物質不存在部246及び短絡予定部255を形成している。このため、過充電による異常発熱時には、正極活物質存在部234と負極活物質存在部244との間に介在する部分でセパレータ251(複層部256)が溶断や熱収縮する前に、第2正極活物質不存在部236と第2負極活物質不存在部246とが接触短絡を引き起こすので、活物質存在部234,244同士で接触短絡を起こすのを確実に防止できる。従って、リチウム二次電池200の熱暴走を確実に防止できる。その他、上記実施形態1と同様な部分は、同様な作用効果を奏する。なお、本実施形態2に係るリチウム二次電池200も、基本的に上記実施形態1に係るリチウム二次電池100と同様にして製造すればよい。   Furthermore, in the second embodiment, the second positive electrode active material absence part 236, the second negative electrode active material are provided at the center in the axis AX direction of the wound electrode body 230, which is the part where the temperature becomes highest during overcharge. A non-existing portion 246 and a short-circuit scheduled portion 255 are formed. For this reason, at the time of abnormal heat generation due to overcharge, the second portion before the separator 251 (multi-layer portion 256) is melted or thermally contracted at the portion interposed between the positive electrode active material presence portion 234 and the negative electrode active material presence portion 244. Since the positive electrode active material absence part 236 and the second negative electrode active material absence part 246 cause a contact short circuit, it is possible to reliably prevent a contact short circuit between the active material existence parts 234 and 244. Therefore, thermal runaway of the lithium secondary battery 200 can be reliably prevented. In addition, the same parts as those of the first embodiment have the same effects. Note that the lithium secondary battery 200 according to the second embodiment may be manufactured basically in the same manner as the lithium secondary battery 100 according to the first embodiment.

(実施形態3)
次いで、第3の実施形態について説明する。なお、上記実施形態1または2と同様な部分の説明は、省略または簡略化する。本実施形態3のリチウム二次電池300は、電極体が積層型電極体330である点が、電極体が捲回型電極体130,230である上記実施形態1,2と大きく異なる。それ以外の構成は概略同様である(図1参照)。図10〜図12に本実施形態3に係る積層型電極体330を示す。図10は積層型電極体330の概略形態を示す。但し、最表面に位置するセパレータ351は省略してある。図11は積層型電極体330を構成する正極板331、負極板341及びセパレータ351の各部についての厚み方向の位置関係を示す。また、図12は積層型電極体330の断面の一部を示す。
(Embodiment 3)
Next, a third embodiment will be described. Note that description of the same parts as those in the first or second embodiment is omitted or simplified. The lithium secondary battery 300 according to the third embodiment is greatly different from the first and second embodiments in which the electrode body is a laminated electrode body 330 and the electrode bodies are wound electrode bodies 130 and 230. Other configurations are substantially the same (see FIG. 1). 10 to 12 show a stacked electrode body 330 according to the third embodiment. FIG. 10 shows a schematic form of the laminated electrode body 330. However, the separator 351 located on the outermost surface is omitted. FIG. 11 shows the positional relationship in the thickness direction for each part of the positive electrode plate 331, the negative electrode plate 341, and the separator 351 constituting the laminated electrode body 330. FIG. 12 shows a part of a cross section of the laminated electrode body 330.

本実施形態3に係る積層型電極体330は、複数の矩形状の正極板331と複数の矩形状の負極板341とを通気性を有する矩形状のセパレータ351を介して交互に積層することにより構成されている(図10,図12等参照)。積層型電極体330の一端部(図10,図12等における左端部)には、図示しない正極集電板を介して、正極リード162と電気的に接続するために、正極板331の一部が突出している(図1,図10,図12等参照)。また、積層型電極体330の反対側の一端部(図10,図12等における右端部)には、図示しない負極集電板を介して、負極リード部164と電気的に接続するために、負極板341の一部が突出している(図1,図10,図12等参照)。   The laminated electrode body 330 according to the third embodiment is obtained by alternately laminating a plurality of rectangular positive plates 331 and a plurality of rectangular negative plates 341 via a rectangular separator 351 having air permeability. It is configured (see FIG. 10, FIG. 12, etc.). A part of the positive electrode plate 331 is connected to one end portion (the left end portion in FIGS. 10, 12, etc.) of the stacked electrode body 330 in order to be electrically connected to the positive electrode lead 162 through a positive electrode current collector plate (not shown). Protrudes (see FIGS. 1, 10, 12, etc.). In addition, in order to be electrically connected to the negative electrode lead portion 164 through a negative electrode current collector plate (not shown) at one end (the right end in FIGS. 10 and 12) on the opposite side of the multilayer electrode body 330, A part of the negative electrode plate 341 protrudes (see FIGS. 1, 10, 12, etc.).

正極板331は、芯材として、その一枚の寸法が厚さ15μm、幅100mm、長さ80mmの金属箔正極集電体332を有する(図11,図12等参照)。金属箔正極集電体332の表面(両面)には、正極電極材料を塗工した正極活物質層333が形成され、2本の帯状をなす正極活物質存在部334を構成している。   The positive electrode plate 331 has a metal foil positive electrode current collector 332 having a thickness of 15 μm, a width of 100 mm, and a length of 80 mm as a core material (see FIGS. 11 and 12, etc.). On the surface (both sides) of the metal foil positive electrode current collector 332, a positive electrode active material layer 333 coated with a positive electrode material is formed to constitute a positive electrode active material existence portion 334 that forms two strips.

また、これに伴い金属箔正極集電体332の一端部(図11及び図12中、左端部)には、正極活物質層333を有しない、幅15mmの第1正極活物質不存在部335が帯状に形成されている。同様に、金属箔正極集電体332のうち、2本の帯状をなす正極活物質存在部334の間にも、正極活物質層333を有しない、幅10mmの第2正極活物質不存在部336が帯状に形成されている。   Accordingly, one end of the metal foil positive electrode current collector 332 (the left end in FIGS. 11 and 12) does not have the positive electrode active material layer 333, and the first positive electrode active material absent portion 335 having a width of 15 mm. Is formed in a band shape. Similarly, in the metal foil positive electrode current collector 332, the second positive electrode active material absence portion having a width of 10 mm that does not include the positive electrode active material layer 333 between the two positive electrode active material existence portions 334 formed in a strip shape. 336 is formed in a strip shape.

負極板341は、芯材として、その一枚の寸法が厚さ10μm、幅100mm、長さ80mmの金属箔負極集電体342を有する(図11,図12等参照)。金属箔負極集電体342の表面(両面)には、負極電極材料を塗工した負極活物質層343が形成され、2本の帯状をなす負極活物質存在部344を構成している。これらの負極活物質存在部344は、正極活物質存在部334とセパレータ351を介して対向して配置されている(図12等参照)。   The negative electrode plate 341 includes a metal foil negative electrode current collector 342 having a thickness of 10 μm, a width of 100 mm, and a length of 80 mm as a core material (see FIGS. 11 and 12, etc.). On the surface (both sides) of the metal foil negative electrode current collector 342, a negative electrode active material layer 343 coated with a negative electrode material is formed to constitute a negative electrode active material existence portion 344 having two strips. These negative electrode active material existence portions 344 are arranged to face the positive electrode active material existence portion 334 with the separator 351 therebetween (see FIG. 12 and the like).

また、これに伴い金属箔負極集電体342の一端部(図11及び図12中、右端部)には、負極活物質層343を有しない、幅13mmの第1負極活物質不存在部345が帯状に形成されている。同様に、金属箔負極集電体342のうち、2本の帯状をなす負極活物質存在部344の間にも、負極活物質層343を有しない、幅10mmの第2負極活物質不存在部346が帯状に形成されている。この第2負極活物質不存在部346は、第2正極活物質不存在部336とセパレータ351を介して対向して配置されている(図12等参照)。   Accordingly, one end of the metal foil negative electrode current collector 342 (the right end in FIGS. 11 and 12) does not have the negative electrode active material layer 343, and the first negative electrode active material absent portion 345 having a width of 13 mm. Is formed in a band shape. Similarly, in the metal foil negative electrode current collector 342, the second negative electrode active material absence portion having a width of 10 mm that does not include the negative electrode active material layer 343 between the two negative electrode active material existence portions 344 having a strip shape. 346 is formed in a strip shape. The second negative electrode active material absence portion 346 is disposed to face the second positive electrode active material absence portion 336 with the separator 351 therebetween (see FIG. 12 and the like).

セパレータ351は、3層構造をなす。即ち、ポリプロピレンからなり、多孔質状をなし通気性を有する2つの第2セパレータ層353の間に、ポリエチレンからなり、多孔質状をなし通気性を有する1つの第1セパレータ層352が積層されることにより構成されている。第1セパレータ層352は、その寸法が厚さ8μm、幅91mm、長さ86mmである。また、第2セパレータ層353は、それぞれ2つの分割されており、各々の寸法が厚さ8μm、幅91mm、長さ86mmである。また、第1セパレータ層352の溶融温度が135℃であるのに対して、第2セパレータ層353の溶融温度は175℃と耐熱性が高くされている。また、第1セパレータ層352は、第2セパレータ層353よりも熱収縮率が大きくされている。   The separator 351 has a three-layer structure. That is, one first separator layer 352 made of polyethylene, porous and air permeable is laminated between two second separator layers 353 made of polypropylene and having air permeability. It is constituted by. The first separator layer 352 has a thickness of 8 μm, a width of 91 mm, and a length of 86 mm. The second separator layer 353 is divided into two parts, each having a thickness of 8 μm, a width of 91 mm, and a length of 86 mm. Further, the melting temperature of the first separator layer 352 is 135 ° C., whereas the melting temperature of the second separator layer 353 is 175 ° C., which is high in heat resistance. The first separator layer 352 has a thermal contraction rate larger than that of the second separator layer 353.

このセパレータ351は、その幅方向(図中、横方向)の中央に位置する単層部(短絡予定部)355が、第1セパレータ層352のみからなり、幅6mmで縦方向に延びている。また、セパレータの351のうち、この単層部355の両側に位置する2つの複層部356は、第1セパレータ層352と2つの第2セパレータ層353からなり、それぞれ幅42.5mmで縦方向に延びている。   In this separator 351, a single layer portion (short-circuit scheduled portion) 355 located at the center in the width direction (lateral direction in the figure) is composed of only the first separator layer 352, and extends in the vertical direction with a width of 6 mm. Of the separator 351, two multilayer portions 356 located on both sides of the single layer portion 355 are composed of a first separator layer 352 and two second separator layers 353, each having a width of 42.5 mm and a longitudinal direction. It extends to.

セパレータ351の短絡予定部355は、第2正極活物質不存在部336と第2負極活物質不存在部346との間に介在する(図11及び図12参照)。従って、第2正極活物質不存在部336、第2負極活物質不存在部346及び短絡予定部355は、捲回型電極体330のうち、その積層方向と直交する平面の中央を含むように、帯状に形成されている。また、セパレータ351の複層部356は、それぞれ正極活物質存在部334と負極活物質存在部344との間に介在する(図11及び図12参照)。   The short circuit scheduled portion 355 of the separator 351 is interposed between the second positive electrode active material absent portion 336 and the second negative electrode active material absent portion 346 (see FIGS. 11 and 12). Accordingly, the second positive electrode active material absent portion 336, the second negative electrode active material absent portion 346, and the short circuit scheduled portion 355 include a center of a plane perpendicular to the stacking direction of the wound electrode body 330. It is formed in a band shape. Moreover, the multilayer part 356 of the separator 351 is interposed between the positive electrode active material existence part 334 and the negative electrode active material existence part 344, respectively (see FIGS. 11 and 12).

次いで、このリチウム二次電池300において、電池が異常発熱した場合について、図13を参照しつつ説明する。図13中、上方の図は、平常時を示している。電池が異常発熱した場合、その熱によって、熱収縮率が大きく耐熱性が低い第1セパレータ層352が収縮すると共に、短絡予定部355において溶断する。一方、この温度では、第2セパレータ層353は、殆ど溶融も熱収縮もしないため、第2セパレータ層353が溶断したり、大きく移動することはない。   Next, in the lithium secondary battery 300, the case where the battery abnormally generates heat will be described with reference to FIG. In FIG. 13, the upper diagram shows the normal time. When the battery abnormally generates heat, the heat causes the first separator layer 352 having a large heat shrinkage ratio and low heat resistance to shrink, and at the short-circuit scheduled portion 355, the battery is blown out. On the other hand, at this temperature, the second separator layer 353 hardly melts or heat shrinks, so the second separator layer 353 does not melt or move significantly.

そして、図13中、中央の図に示すように、第2正極活物質不存在部336と第2負極活物質不存在部346との接触短絡を可能とする短絡用通路358を現出させる。そして更に、この異常発熱時の熱による電解液の膨張やガス化、積層型電極体330自身の膨張による電池容器110内圧力の上昇により、図13中、下方の図に示すように、第2正極活物質不存在部336と第2負極活物質不存在部346とが接触短絡する。そうすると、短絡電流が流れることにより、電解液と活物質との化学反応が阻止されるので、リチウム二次電池300が熱暴走反応を起こすのを未然に防止できる。   Then, as shown in the center diagram in FIG. 13, a short-circuit passage 358 that enables a short-circuit between the second positive electrode active material absence portion 336 and the second negative electrode active material absence portion 346 is made to appear. Further, due to the expansion and gasification of the electrolyte solution due to the heat during the abnormal heat generation, and the increase in the pressure inside the battery container 110 due to the expansion of the multilayer electrode body 330 itself, as shown in the lower diagram in FIG. The positive electrode active material absent portion 336 and the second negative electrode active material absent portion 346 are short-circuited. Then, since the short-circuit current flows, the chemical reaction between the electrolytic solution and the active material is blocked, so that the lithium secondary battery 300 can be prevented from causing a thermal runaway reaction.

本実施形態3でも、異常発熱時の接触短絡が積層型電極体330内で起こるように、積層型電極体330自体を構成しているので、従来の電池のように電極体とは別に接触短絡機構を設ける必要がない。従って、リチウム二次電池300のコストを抑えることができる。また、リチウム二次電池300の製造も比較的容易である。   Also in the third embodiment, since the stacked electrode body 330 itself is configured so that a contact short circuit during abnormal heat generation occurs in the stacked electrode body 330, a contact short circuit separate from the electrode body as in the conventional battery. There is no need to provide a mechanism. Therefore, the cost of the lithium secondary battery 300 can be suppressed. Moreover, the manufacture of the lithium secondary battery 300 is relatively easy.

更に、本実施形態3では、過充電の際に最も温度が高くなる部位である積層型電極体330の積層方向に直交する平面の中央を含むように、第2正極活物質不存在部336、第2負極活物質不存在部346及び短絡予定部355を形成している。このため、過充電による異常発熱時には、正極活物質存在部334と負極活物質存在部344との間に介在するセパレータ351(複層部356)が溶断や熱収縮する前に、第2正極活物質不存在部336と第2負極活物質不存在部346とが接触短絡を引き起こすので、活物質存在部334,344同士で接触短絡を起こすのを防止できる。従って、リチウム二次電池300の熱暴走を確実に防止できる。その他、上記実施形態1または2と同様な部分は、同様な作用効果を奏する。なお、本実施形態3に係るリチウム二次電池300も、基本的に上記実施形態1に係るリチウム二次電池100と同様にして製造すればよい。   Furthermore, in the third embodiment, the second positive electrode active material absent portion 336 includes a center of a plane orthogonal to the stacking direction of the stacked electrode body 330, which is a portion where the temperature becomes highest during overcharge. A second negative electrode active material absent portion 346 and a short-circuit scheduled portion 355 are formed. For this reason, during abnormal heat generation due to overcharging, the second positive electrode active portion 334 (multilayer portion 356) interposed between the positive electrode active material presence portion 334 and the negative electrode active material presence portion 344 is blown out or thermally contracted. Since the material absent portion 336 and the second negative electrode active material absent portion 346 cause a contact short circuit, it is possible to prevent a contact short circuit between the active material presence portions 334 and 344. Therefore, thermal runaway of the lithium secondary battery 300 can be reliably prevented. In addition, the same parts as in the first or second embodiment have the same effects. Note that the lithium secondary battery 300 according to the third embodiment may be manufactured basically in the same manner as the lithium secondary battery 100 according to the first embodiment.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1〜3に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、上記実施形態1では、セパレータ151の短絡予定部155が、熱により移動して、短絡用通路158を現出される場合を示した。また、上記実施形態2,3では、セパレータ251,351の短絡予定部255,355が、熱により溶断すると共に移動して、短絡用通路258,358を現出させる場合を示した。しかし、短絡用通路の現出方法は、これらに限定されるものではない。例えば、セパレータの短絡予定部にミシン目を入れておき、熱により破断して、短絡用通路を現出させるようにしてもよい。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first to third embodiments, and can be appropriately modified and applied without departing from the gist thereof. Not too long.
For example, in the first embodiment, the case where the short-circuit scheduled portion 155 of the separator 151 is moved by heat and the short-circuit passage 158 appears is shown. Moreover, in the said Embodiment 2, 3, the short circuit scheduled part 255,355 of the separators 251 and 351 showed the case where it melt | dissolves with heat and moves, and the short circuit paths 258 and 358 appear. However, the method of appearing the short circuit passage is not limited to these. For example, a perforation may be provided in the short-circuit scheduled portion of the separator, and it may be broken by heat so that the short-circuit path appears.

また、上記実施形態1,2では、短絡予定部155,255等が長手方向に延びて形成されているものを示したが、短絡予定部等を長手方向に散点状に分布させてもよい。
また、上記実施形態1〜3では、セパレータ151,251,351のうち第2セパレータ層153,253,353を、耐熱性が高く、熱収縮率が小さいポリプロピレンにより構成しているが、例えば紙など、高温でも溶融せず、熱収縮もしない材質で構成してもよい。
In the first and second embodiments, the short circuit planned portions 155 and 255 are formed extending in the longitudinal direction. However, the short circuit planned portions and the like may be distributed in the form of dots in the longitudinal direction. .
In the first to third embodiments, the second separator layers 153, 253, and 353 of the separators 151, 251 and 351 are made of polypropylene having high heat resistance and low heat shrinkage. Alternatively, it may be made of a material that does not melt even at high temperatures and does not heat shrink.

また、上記実施形態1〜3では、第1セパレータ層152,252,352の熱収縮率を大きくする一方、第2セパレータ層153,253,353の熱収縮率を小さくしている。しかし、第1セパレータ層152等の熱収縮を起こす温度を低くする一方、第2セパレータ層153等の熱収縮を起こす温度を高くすれば、第2セパレータ層153等として熱収縮率の大きい材質からなるものを用いることもできる。   In the first to third embodiments, the thermal contraction rate of the first separator layers 152, 252, and 352 is increased, while the thermal contraction rate of the second separator layers 153, 253, and 353 is decreased. However, if the temperature causing the thermal contraction of the first separator layer 152 or the like is lowered while the temperature causing the thermal contraction of the second separator layer 153 or the like is increased, the second separator layer 153 or the like is made of a material having a large thermal contraction rate. Can also be used.

実施形態1に係るリチウム二次電池の概略形態を示す説明図である。1 is an explanatory diagram showing a schematic form of a lithium secondary battery according to Embodiment 1. FIG. 実施形態1に係るリチウム二次電池の捲回型電極体の概略形態を示す説明図である。3 is an explanatory diagram showing a schematic form of a wound electrode body of a lithium secondary battery according to Embodiment 1. FIG. 実施形態1に係るリチウム二次電池の捲回型電極体のうち、正極板、負極板及びセパレータの各部の厚さ方向の位置関係を示す説明図である。FIG. 3 is an explanatory diagram showing a positional relationship in a thickness direction of each part of a positive electrode plate, a negative electrode plate, and a separator in a wound electrode body of a lithium secondary battery according to Embodiment 1. 実施形態1に係るリチウム二次電池のうち、捲回型電極体の一部の断面を示す説明図である。FIG. 3 is an explanatory diagram showing a partial cross section of a wound electrode body in the lithium secondary battery according to Embodiment 1. 実施形態1に係るリチウム二次電池について、接触短絡が生じる作用を示す説明図である。It is explanatory drawing which shows the effect | action which a contact short circuit produces about the lithium secondary battery which concerns on Embodiment 1. FIG. 実施形態2に係るリチウム二次電池の捲回型電極体の概略形態を示す説明図である。6 is an explanatory view showing a schematic form of a wound electrode body of a lithium secondary battery according to Embodiment 2. FIG. 実施形態2に係るリチウム二次電池の捲回型電極体のうち、正極板、負極板及びセパレータの各部の厚さ方向の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the thickness direction of each part of a positive electrode plate, a negative electrode plate, and a separator among the winding type electrode bodies of the lithium secondary battery which concerns on Embodiment 2. FIG. 実施形態2に係るリチウム二次電池のうち、捲回型電極体の一部の断面を示す説明図である。FIG. 6 is an explanatory diagram showing a partial cross section of a wound electrode body in a lithium secondary battery according to Embodiment 2. 実施形態2に係るリチウム二次電池について、接触短絡が生じる作用を示す説明図である。It is explanatory drawing which shows the effect | action which a contact short circuit produces about the lithium secondary battery which concerns on Embodiment 2. FIG. 実施形態3に係るリチウム二次電池の捲回型電極体の概略形態を示す説明図である。6 is an explanatory view showing a schematic form of a wound electrode body of a lithium secondary battery according to Embodiment 3. FIG. 実施形態3に係るリチウム二次電池の捲回型電極体のうち、正極板、負極板及びセパレータの各部の厚さ方向の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the thickness direction of each part of a positive electrode plate, a negative electrode plate, and a separator among the winding type electrode bodies of the lithium secondary battery which concerns on Embodiment 3. FIG. 実施形態3に係るリチウム二次電池のうち、捲回型電極体の一部の断面を示す説明図である。FIG. 4 is an explanatory diagram showing a partial cross section of a wound electrode body in a lithium secondary battery according to Embodiment 3. 実施形態3に係るリチウム二次電池について、接触短絡が生じる作用を示す説明図である。It is explanatory drawing which shows the effect | action which a contact short circuit produces about the lithium secondary battery which concerns on Embodiment 3. FIG.

100,200,300 リチウム二次電池(電池)
130,230 捲回型電極体(電極体)
330 積層型電極体(電極体)
131,231,331 正極板
133,233,333 正極活物質層
134,234,334 正極活物質存在部
135,235 第1正極活物質不存在部
136,236 第2正極活物質不存在部
141,241,341 負極板
143,243,343 負極活物質層
144,244,344 負極活物質存在部
145 負極活物質不存在部
245,345 第1負極活物質不存在部
246,346 第2負極活物質不存在部
151,251,351 セパレータ
152,252,352 第1セパレータ層
153,253,353 第2セパレータ層
155,255,355 単層部(短絡予定部)
156,256,356 複層部
100, 200, 300 Lithium secondary battery (battery)
130,230 Winding type electrode body (electrode body)
330 Stacked electrode body (electrode body)
131, 231, 331 Cathode plates 133, 233, 333 Cathode active material layer 134, 234, 334 Cathode active material present part 135, 235 First cathode active material absent part 136, 236 Second cathode active material absent part 141, 241, 341 Negative electrode plate 143, 243, 343 Negative electrode active material layer 144, 244, 344 Negative electrode active material existence part 145 Negative electrode active material absence part 245, 345 First negative electrode active material absence part 246, 346 Second negative electrode active material Absent portions 151, 251, 351 Separator 152, 252, 352 First separator layer 153, 253, 353 Second separator layer 155, 255, 355 Single layer portion (scheduled short-circuit portion)
156, 256, 356 Multi-layer part

Claims (10)

正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、
前記正極板は、
正極活物質層を有する正極活物質存在部と、
前記正極活物質層を有しない正極活物質不存在部と、を有し、
前記負極板は、
負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、
前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、
前記セパレータは、
前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、
前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、
前記正極活物質不存在部は、前記正極板の長手方向に延びまたは長手方向に散点状に分布し、
前記負極活物質不存在部も、前記負極板の長手方向に延びまたは長手方向に散点状に分布し、
前記短絡予定部も、前記セパレータの長手方向に延びまたは長手方向に散点状に分布する
電池。
A battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate via a separator,
The positive electrode plate is
A positive electrode active material presence part having a positive electrode active material layer;
A positive electrode active material absent portion not having the positive electrode active material layer,
The negative electrode plate is
A negative electrode active material layer, having a negative electrode active material layer, the negative electrode active material layer being disposed opposite to the positive electrode active material layer;
Having no negative electrode active material layer, having a negative electrode active material absence portion formed by facing the positive electrode active material absence portion and the separator,
The separator is
A short-circuit scheduled portion interposed between the positive electrode active material non-existing portion and the negative electrode active material non-existing portion, which melts, breaks, or moves due to heat during abnormal heat generation of the battery, thereby revealing the shorting path to allow the a missing portion contacting short-circuit between the negative electrode active material missing portion have a short portion to be,
The electrode body is a wound electrode body formed by laminating and winding a long positive electrode plate and a long negative electrode plate through a long separator,
The positive electrode active material absent portion extends in the longitudinal direction of the positive electrode plate or is distributed in the form of dots in the longitudinal direction,
The negative electrode active material absent portion also extends in the longitudinal direction of the negative electrode plate or is distributed in the form of dots in the longitudinal direction,
The battery is also provided with the short-circuited portions extending in the longitudinal direction of the separator or distributed in the form of dots in the longitudinal direction .
正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、
前記正極板は、
正極活物質層を有する正極活物質存在部と、
前記正極活物質層を有しない正極活物質不存在部と、を有し、
前記負極板は、
負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、
前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、
前記セパレータは、
前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、
前記短絡予定部は、電池の異常発熱時の熱により移動して、前記短絡用通路を現出させ、
前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体の一端辺に沿って形成されてなる
電池。
A battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate via a separator,
The positive electrode plate is
A positive electrode active material presence part having a positive electrode active material layer;
A positive electrode active material absent portion not having the positive electrode active material layer,
The negative electrode plate is
A negative electrode active material layer, having a negative electrode active material layer, the negative electrode active material layer being disposed opposite to the positive electrode active material layer;
Having no negative electrode active material layer, having a negative electrode active material absence portion formed by facing the positive electrode active material absence portion and the separator,
The separator is
A short-circuit scheduled portion interposed between the positive electrode active material non-existing portion and the negative electrode active material non-existing portion, which melts, breaks, or moves due to heat during abnormal heat generation of the battery, thereby revealing the shorting path to allow the a missing portion contacting short-circuit between the negative electrode active material missing portion have a short portion to be,
The short-circuit scheduled portion is moved by heat at the time of abnormal heat generation of the battery, and the short-circuit path is exposed,
The battery, wherein the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed along one end side of the electrode body .
正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、
前記正極板は、
正極活物質層を有する正極活物質存在部と、
前記正極活物質層を有しない正極活物質不存在部と、を有し、
前記負極板は、
負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、
前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、
前記セパレータは、
前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、
前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、
前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、
前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、軸線方向の中央に形成されてなる
電池。
A battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate via a separator,
The positive electrode plate is
A positive electrode active material presence part having a positive electrode active material layer;
A positive electrode active material absent portion not having the positive electrode active material layer,
The negative electrode plate is
A negative electrode active material layer, having a negative electrode active material layer, the negative electrode active material layer being disposed opposite to the positive electrode active material layer;
Having no negative electrode active material layer, having a negative electrode active material absence portion formed by facing the positive electrode active material absence portion and the separator,
The separator is
A short-circuit scheduled portion interposed between the positive electrode active material non-existing portion and the negative electrode active material non-existing portion, which melts, breaks, or moves due to heat during abnormal heat generation of the battery, thereby revealing the shorting path to allow the a missing portion contacting short-circuit between the negative electrode active material missing portion have a short portion to be,
The electrode body is a wound electrode body formed by laminating and winding a long positive electrode plate and a long negative electrode plate through a long separator,
The short-circuit scheduled portion is melted or broken by heat at the time of abnormal heat generation of the battery, and the short-circuit path is exposed,
The battery, wherein the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed at the center in the axial direction of the electrode body .
正極板と負極板とをセパレータを介して積層してなる電極体を備える電池であって、
前記正極板は、
正極活物質層を有する正極活物質存在部と、
前記正極活物質層を有しない正極活物質不存在部と、を有し、
前記負極板は、
負極活物質層を有し、前記正極活物質存在部と前記セパレータを介して対向して配置されてなる負極活物質存在部と、
前記負極活物質層を有さず、前記正極活物質不存在部と前記セパレータを介して対向して配置されてなる負極活物質不存在部と、を有し、
前記セパレータは、
前記正極活物質不存在部と前記負極活物質不存在部との間に介在する短絡予定部であって、電池の異常発熱時の熱により、溶断、破断または移動して、前記正極活物質不存在部と前記負極活物質不存在部との接触短絡を可能とする短絡用通路を現出させる短絡予定部を有し、
前記電極体は、複数の正極板と複数の負極板とをセパレータを介して交互に積層してなる積層型電極体であり、
前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、
前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、積層方向に直交する平面の中央に形成されてなる
電池。
A battery comprising an electrode body formed by laminating a positive electrode plate and a negative electrode plate via a separator,
The positive electrode plate is
A positive electrode active material presence part having a positive electrode active material layer;
A positive electrode active material absence portion that does not have the positive electrode active material layer,
The negative electrode plate is
A negative electrode active material layer, having a negative electrode active material layer, the negative electrode active material layer being disposed opposite to the positive electrode active material layer;
Having no negative electrode active material layer, having a negative electrode active material absence portion formed by facing the positive electrode active material absence portion and the separator,
The separator is
A short-circuit scheduled portion interposed between the positive electrode active material non-existing portion and the negative electrode active material non-existing portion, which melts, breaks, or moves due to heat during abnormal heat generation of the battery, thereby revealing the shorting path to allow the a missing portion contacting short-circuit between the negative electrode active material missing portion have a short portion to be,
The electrode body is a laminated electrode body in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately laminated via separators,
The short-circuit scheduled portion is melted or broken by heat at the time of abnormal heat generation of the battery, and the short-circuit path is exposed,
The battery, wherein the positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed in the center of a plane perpendicular to the stacking direction of the electrode body .
請求項2または請求項3に記載の電池であって、
前記電極体は、長尺状の正極板と長尺状の負極板とを長尺状のセパレータを介して積層し捲回してなる捲回型電極体であり、
前記正極活物質不存在部は、前記正極板の長手方向に延びまたは長手方向に散点状に分布し、
前記負極活物質不存在部も、前記負極板の長手方向に延びまたは長手方向に散点状に分布し、
前記短絡予定部も、前記セパレータの長手方向に延びまたは長手方向に散点状に分布する
電池。
The battery according to claim 2 or claim 3 ,
The electrode body is a wound electrode body formed by laminating and winding a long positive electrode plate and a long negative electrode plate through a long separator,
The positive electrode active material absent portion extends in the longitudinal direction of the positive electrode plate or is distributed in the form of dots in the longitudinal direction,
The negative electrode active material absent portion also extends in the longitudinal direction of the negative electrode plate or is distributed in the form of dots in the longitudinal direction,
The battery in which the short-circuit-scheduled portions also extend in the longitudinal direction of the separator or are distributed in the longitudinal direction.
請求項2〜請求項5のいずれか一項に記載の電池であって、
前記セパレータは、一又は複数の第1セパレータ層と一又は複数の第2セパレータ層とを有し、
前記短絡予定部は、前記第1セパレータ層からなり、
前記正極活物質存在部と前記負極活物質存在部との間には、少なくとも前記第2セパレータ層が介在してなり、
前記第1セパレータ層は、前記短絡予定部において前記正極活物質不存在部と前記負極活物質不存在部との接触短絡が起こる短絡発生温度よりも低い温度で溶融または熱収縮する材質からなり、
前記第2セパレータ層は、前記短絡発生温度よりも高い温度まで、前記正極活物質存在部と前記負極活物質存在部との接触短絡が起こるほどには溶融も熱収縮もしない材質からなる
電池。
A battery according to any one of claims 2 to 5 ,
The separator has one or more first separator layers and one or more second separator layers,
The short-circuit scheduled portion is composed of the first separator layer,
At least the second separator layer is interposed between the positive electrode active material existence part and the negative electrode active material existence part,
The first separator layer is made of a material that melts or heat shrinks at a temperature lower than a short circuit generation temperature at which a contact short circuit occurs between the positive electrode active material absence part and the negative electrode active material absence part in the short circuit scheduled part,
The second separator layer is a battery made of a material that does not melt or heat shrink to such a degree that a contact short circuit between the positive electrode active material existence part and the negative electrode active material existence part occurs up to a temperature higher than the short circuit occurrence temperature.
請求項1に記載の電池であって、
前記セパレータは、一又は複数の第1セパレータ層と一又は複数の第2セパレータ層とを有し、
前記短絡予定部は、前記第1セパレータ層からなり、
前記正極活物質存在部と前記負極活物質存在部との間には、少なくとも前記第2セパレータ層が介在してなり、
前記第1セパレータ層は、前記短絡予定部において前記正極活物質不存在部と前記負極活物質不存在部との接触短絡が起こる短絡発生温度よりも低い温度で溶融または熱収縮する材質からなり、
前記第2セパレータ層は、前記短絡発生温度よりも高い温度まで、前記正極活物質存在部と前記負極活物質存在部との接触短絡が起こるほどには溶融も熱収縮もしない材質からなる
電池。
The battery according to claim 1 ,
The separator has one or more first separator layers and one or more second separator layers,
The short-circuit scheduled portion is composed of the first separator layer,
At least the second separator layer is interposed between the positive electrode active material existence part and the negative electrode active material existence part,
The first separator layer is made of a material that melts or heat shrinks at a temperature lower than a short circuit generation temperature at which a contact short circuit occurs between the positive electrode active material absence part and the negative electrode active material absence part in the short circuit scheduled part,
The second separator layer is a battery made of a material that does not melt or heat shrink to such a degree that a contact short circuit between the positive electrode active material existence part and the negative electrode active material existence part occurs up to a temperature higher than the short circuit occurrence temperature.
請求項1または請求項7に記載の電池であって、
前記短絡予定部は、電池の異常発熱時の熱により移動して、前記短絡用通路を現出させ、
前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体の一端辺に沿って形成されてなる
電池。
The battery according to claim 1 or 7 ,
The short-circuit scheduled portion is moved by heat at the time of abnormal heat generation of the battery, and the short-circuit path is exposed,
The positive electrode active material absent portion, the negative electrode active material absent portion, and the short circuit scheduled portion are formed along one end side of the electrode body.
請求項1または請求項7に記載の電池であって、
前記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、
前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、少なくとも過充電時に最も温度が高くなる部位に形成されてなる
電池。
The battery according to claim 1 or 7 ,
The short-circuit scheduled portion is melted or broken by heat at the time of abnormal heat generation of the battery, and the short-circuit path is exposed,
The positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed in a portion of the electrode body that has the highest temperature during at least overcharge.
請求項1または請求項7に記載の電池であって、
記短絡予定部は、電池の異常発熱時の熱により溶断または破断して、前記短絡用通路を現出させ、
前記正極活物質不存在部、前記負極活物質不存在部及び前記短絡予定部は、前記電極体のうち、軸線方向の中央に形成されてなる
電池。
The battery according to claim 1 or 7 ,
Before Symbol short scheduled portion is blown or broken by heat during abnormal heat generation of the battery, to appear the shorting path,
The positive electrode active material absent portion, the negative electrode active material absent portion, and the short-circuit scheduled portion are formed in the center of the electrode body in the axial direction.
JP2005238938A 2005-08-19 2005-08-19 battery Active JP4984456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238938A JP4984456B2 (en) 2005-08-19 2005-08-19 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238938A JP4984456B2 (en) 2005-08-19 2005-08-19 battery

Publications (2)

Publication Number Publication Date
JP2007053055A JP2007053055A (en) 2007-03-01
JP4984456B2 true JP4984456B2 (en) 2012-07-25

Family

ID=37917349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238938A Active JP4984456B2 (en) 2005-08-19 2005-08-19 battery

Country Status (1)

Country Link
JP (1) JP4984456B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309434B2 (en) * 2006-10-04 2013-10-09 日産自動車株式会社 Thin battery
JP2008243660A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5196534B2 (en) * 2007-12-17 2013-05-15 Necカシオモバイルコミュニケーションズ株式会社 Batteries and electronic devices
JP5526488B2 (en) * 2008-03-26 2014-06-18 Tdk株式会社 Electrochemical devices
JP5239445B2 (en) * 2008-03-26 2013-07-17 Tdk株式会社 Electrochemical devices
WO2011096070A1 (en) * 2010-02-05 2011-08-11 トヨタ自動車株式会社 Electrode body for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6036107B2 (en) * 2012-09-27 2016-11-30 株式会社Gsユアサ Electricity storage element
KR102217449B1 (en) 2017-11-01 2021-02-22 주식회사 엘지화학 Rechargeable battery
KR102273100B1 (en) 2017-11-01 2021-07-02 주식회사 엘지에너지솔루션 Electrode assembly and method of stabilizing secondary battery
KR102288123B1 (en) 2018-10-05 2021-08-11 주식회사 엘지에너지솔루션 Electrode assembly, secondary battery and battery pack comprising the same
KR20210048924A (en) * 2019-10-24 2021-05-04 주식회사 엘지화학 Secondary battery and battery pack including the same
KR20210078742A (en) 2019-12-19 2021-06-29 주식회사 엘지에너지솔루션 Electrode Assembly having Short Induction Member with Magnetic Substance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200340B2 (en) * 1994-09-27 2001-08-20 旭化成株式会社 Non-aqueous battery
JP4186430B2 (en) * 2001-04-27 2008-11-26 新神戸電機株式会社 Cylindrical lithium secondary battery
JP2002352788A (en) * 2001-05-24 2002-12-06 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JP2003243037A (en) * 2002-02-18 2003-08-29 Shin Kobe Electric Mach Co Ltd Lithium ion battery

Also Published As

Publication number Publication date
JP2007053055A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4984456B2 (en) battery
JP4378657B2 (en) Battery and power supply
JP5541514B2 (en) Multilayer secondary battery
US11024855B2 (en) Electrode for use in a nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell
CN114223096A (en) Secondary battery and method for manufacturing same
JP2010003692A (en) Electrode assembly, secondary battery using the same, and manufacturing method for the secondary battery
WO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and method for producing same
KR20180055717A (en) Separator-integrated electrode plate, electrode plate pair, stacked electric power storage element, and method of manufacturing separator-integrated electrode plate
JP2019106274A (en) Square secondary battery and manufacturing method thereof
JP2006210031A (en) Wound type power storage device
CN114223088A (en) Secondary battery and method for manufacturing same
JP7330211B2 (en) Square secondary battery
US11444332B2 (en) Secondary battery
JP2009181899A (en) Laminated battery
CN109155442B (en) Secondary battery
JP5125438B2 (en) Lithium ion secondary battery and battery pack using the same
JP2019139844A (en) Laminate type battery
JP2017130301A (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP2017142896A (en) Secondary battery
JP2011216205A (en) Laminated battery and its manufacturing method
JP2020057484A (en) Laminate-type secondary battery and method for producing the same
JPWO2019012825A1 (en) Bag-shaped separator for power storage device, thermal bonding method and thermal bonding apparatus thereof, and power storage device
US20220052425A1 (en) Electrode plate for secondary cell, and secondary cell using same
US20220059827A1 (en) Secondary battery electrode plate and secondary battery using same
JP2011108538A (en) Laminate battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4984456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3