JP4984133B2 - Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds - Google Patents

Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds Download PDF

Info

Publication number
JP4984133B2
JP4984133B2 JP2007069823A JP2007069823A JP4984133B2 JP 4984133 B2 JP4984133 B2 JP 4984133B2 JP 2007069823 A JP2007069823 A JP 2007069823A JP 2007069823 A JP2007069823 A JP 2007069823A JP 4984133 B2 JP4984133 B2 JP 4984133B2
Authority
JP
Japan
Prior art keywords
concentration
solution
region
raw material
guest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007069823A
Other languages
Japanese (ja)
Other versions
JP2008230989A (en
Inventor
繁則 松本
謙年 林
信吾 高雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2007069823A priority Critical patent/JP4984133B2/en
Publication of JP2008230989A publication Critical patent/JP2008230989A/en
Application granted granted Critical
Publication of JP4984133B2 publication Critical patent/JP4984133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液における、当該ゲスト分子を濃縮させる濃縮方法、濃縮分離方法及び濃縮回収方法並びに再生方法に関する。   The present invention relates to a concentration method, a concentration separation method, a concentration recovery method, and a regeneration method for concentrating a guest molecule in a solution containing a host molecule of the inclusion compound as a solvent and a guest molecule as a solute and having a density different from that of the inclusion compound. About.

なお、次に掲げる用語又は表現の意味又は解釈は、以下のとおりとする。   In addition, the meaning or interpretation of the following terms or expressions are as follows.

(1)「原料溶液」とは、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液をいう。包接化合物のホスト分子を溶媒としゲスト分子を溶質として含むとともに包接化合物が分散又は懸濁している溶液も「原料溶液」に該当する。   (1) “Raw material solution” refers to a solution containing a host molecule of a clathrate compound as a solvent and a guest molecule as a solute. A solution containing a host molecule of the inclusion compound as a solvent and a guest molecule as a solute and in which the inclusion compound is dispersed or suspended is also a “raw material solution”.

(2)「包接化合物」とは、複数の分子が適当な条件下で組み合わさって結晶ができるとき、一方の分子(ホスト分子)が籠状、トンネル形、層状または網状構造をつくり、その隙間に他の分子(ゲスト分子)が入りこんだ構造の化合物の意味であり、包接水和物を除くこととする狭義の包接化合物(特許文献1参照)のみならず、この包接水和物(特許文献2,3参照)を含む、広義の包接化合物も「包接化合物」に該当する。言うまでもなく、水が凝固してできる氷はこれに該当しない。   (2) “Clusion compound” means that when a plurality of molecules are combined under appropriate conditions to form a crystal, one molecule (host molecule) forms a cage, tunnel, layer, or network structure. This means a compound having a structure in which another molecule (guest molecule) enters the gap, and includes not only the clathrate compound in a narrow sense to exclude the clathrate hydrate (see Patent Document 1), but also this clathrate hydration. Broadly defined clathrate compounds including products (see Patent Documents 2 and 3) also fall under the “clathrate compound”. Needless to say, this is not the case with ice formed by water solidification.

「包接化合物」には包接水和物が、包接水和物には準包接水和物がそれぞれ含まれる。   The “clathrate compound” includes clathrate hydrate, and the clathrate hydrate includes quasi clathrate hydrate.

(3)「熱交換器」とは、熱源又は熱媒体との熱交換を可能にする外表面を備える伝熱物体を意味し、中実であるか否か、断面形状、寸法、材質等は問わない。プレート式や多管式といった型式も問わない。ヒートパイプも「熱交換器」の一種である。本発明の具体的な説明を行う際に、熱輸送媒体が流通する空洞を有する伝熱管を「熱交換器」として本発明の具体的な説明を行う場合があるとしても、それは「熱交換器」をかかる伝熱管に限定する意図ではない。   (3) “Heat exchanger” means a heat transfer object having an outer surface that enables heat exchange with a heat source or a heat medium, and whether it is solid, cross-sectional shape, dimensions, material, etc. It doesn't matter. A plate type or a multi-tube type may be used. A heat pipe is also a kind of “heat exchanger”. In the specific description of the present invention, even if the specific description of the present invention is sometimes made using a heat transfer tube having a cavity through which a heat transport medium flows as a “heat exchanger”, the “heat exchanger” Is not intended to be limited to such heat transfer tubes.

(4)熱交換器の「外表面」とは、熱交換器の熱交換面(伝熱面)及びその熱交換の効果が及ぶ当該熱交換面の近傍領域をいう。   (4) The “outer surface” of the heat exchanger refers to a heat exchange surface (heat transfer surface) of the heat exchanger and a region near the heat exchange surface where the effect of the heat exchange extends.

(5)「下方」及び「上方」とは、それぞれ、重力が働く方向及びその反対の方向をいう。   (5) “Lower” and “upper” refer to the direction in which gravity works and the opposite direction, respectively.

(6)「塊状体」とは、一つの集合体としての外形を有する物体をいい、周囲のものと視覚的に区別できる外形であれば、その形状に限定はなく、特に明記する場合を除き、内部の構造、強度、硬度、粘性、密度、組成等は問わない。なお、「包接化合物の塊状体」とは、包接化合物が生成を重ねて塊状をなし、塊状体と肉眼で認定できる状態になるに至ったものをいう。   (6) “Block” refers to an object having an outer shape as one aggregate, and there is no limitation on the shape as long as it is visually distinguishable from surrounding objects, unless otherwise specified. The internal structure, strength, hardness, viscosity, density, composition, etc. are not limited. The “clumps of clathrate compound” refers to those in which the clathrate compound is repeatedly formed to form a clump and can be recognized as a lump and the naked eye.

(7)「スラリー」とは、液体中に固体粒子が分散又は懸濁した状態又はその状態にある物質をいう。沈降しがちな固体粒子を浮遊状態とするために界面活性剤を添加したり、機械的に攪拌することもあるが、その場合にも「スラリー」という。特に包接化合物又はその塊状体について「スラリー」という場合には、界面物性剤の添加や機械的攪拌の有無に拘らず、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液の中に当該包接化合物が分散又は懸濁した状態又はその状態にある物質をいうが、分散や懸濁が均質であることまで必要とされない。例えば、包接化合物の塊状体の一部(特に溶液に接している部分)が前記溶液中に分散又は懸濁しているが残部は前記溶液中で塊状体のままである場合には、その分散又は懸濁しているものは「スラリー」であり、包接化合物の塊状体と前記溶液中で並存している状態にあるといえる。   (7) “Slurry” refers to a substance in which solid particles are dispersed or suspended in a liquid or a substance in that state. In order to make solid particles that tend to settle into a suspended state, a surfactant may be added or mechanically stirred. In particular, when a clathrate or a mass thereof is referred to as a “slurry”, the inclusion compound includes a host molecule of the clathrate compound as a solvent and a guest molecule as a solute, regardless of the presence or absence of an interfacial physical agent. The clathrate is dispersed or suspended, or a substance in that state, but is not required until the dispersion or suspension is homogeneous. For example, when a part of the clathrate of the clathrate compound (particularly the part in contact with the solution) is dispersed or suspended in the solution but the rest remains agglomerate in the solution, the dispersion Or what is suspended is a "slurry", and it can be said that it exists in the state coexisting in the said lump of inclusion compound and the said solution.

(8)「水和物生成温度」とは、原料水溶液を冷却したとき、包接水和物が生成するべき平衡温度をいう。原料水溶液のゲスト化合物の濃度により包接化合物が生成する温度が変動する場合であっても、これを「水和物生成温度」という。なお、簡便のため、「水和物生成温度」を「融点」という場合がある。   (8) “Hydrate formation temperature” refers to an equilibrium temperature at which clathrate hydrate should be generated when the aqueous raw material solution is cooled. Even when the temperature at which the clathrate compound is generated varies depending on the concentration of the guest compound in the raw material aqueous solution, this is referred to as “hydrate formation temperature”. For convenience, the “hydrate formation temperature” may be referred to as “melting point”.

(9)「調和融点」とは、原料水溶液の液相から包接水和物が生成する際、原料水溶液中のゲスト分子の濃度と包接水和物中のゲスト分子の濃度とが等しく、包接水和物の生成の前後において当該液相の組成が変わらない場合の温度をいう。なお、縦軸を水和物生成温度、横軸を原料水溶液の液相のゲスト化合物の濃度とした状態図では極大点が「調和融点」となる。また、調和融点を与える原料水溶液中のゲスト分子の濃度を「調和融点濃度」という。調和融点濃度未満の濃度の原料水溶液から包接水和物を生成する場合には、包接水和物の生成につれて原料水溶液のゲスト分子の濃度が低下し、その濃度に対する水和物生成温度が低下する。   (9) “Harmonic melting point” means that when clathrate hydrate is produced from the liquid phase of the raw material aqueous solution, the concentration of the guest molecule in the raw material aqueous solution is equal to the concentration of the guest molecule in the clathrate hydrate, The temperature at which the composition of the liquid phase does not change before and after the clathrate hydrate is formed. In the state diagram in which the vertical axis represents the hydrate formation temperature and the horizontal axis represents the concentration of the guest compound in the liquid phase of the raw material aqueous solution, the maximum point is the “harmonic melting point”. The concentration of guest molecules in the raw material aqueous solution that gives a harmonic melting point is referred to as “harmonic melting point concentration”. When clathrate hydrate is produced from a raw material aqueous solution having a concentration lower than the harmonic melting point concentration, the concentration of guest molecules in the raw material aqueous solution decreases as the clathrate hydrate is produced, and the hydrate formation temperature relative to that concentration is reduced. descend.

(10)包接化合物の存在比率又はゲスト分子の濃度が相対的に高い領域を「高濃度領域」という場合があり、前記包接化合物の存在比率又はゲスト分子の濃度が相対的に低い領域を「低濃度領域」という場合がある。尤も、「高濃度領域」以外のすべての領域が「低濃度領域」に該当するという意味ではなく、「低濃度領域」以外のすべての領域が「高濃度領域」に該当するという意味でもない。   (10) A region in which the inclusion ratio of the inclusion compound or the concentration of the guest molecule is relatively high may be referred to as a “high concentration region”, and a region in which the inclusion ratio of the inclusion compound or the concentration of the guest molecule is relatively low Sometimes referred to as a “low density region”. However, it does not mean that all the regions other than the “high concentration region” correspond to the “low concentration region”, and it does not mean that all the regions other than the “low concentration region” correspond to the “high concentration region”.

包接化合物は、その生成時に潜熱として熱エネルギーを蓄積し、融解時にその熱エネルギーを放出する性質を有することから、これを蓄熱材の主成分又は組成物として利用するための研究開発が行われている(特許文献1乃至3)。   The clathrate compound has the property of accumulating thermal energy as latent heat when it is generated and releasing the thermal energy when it is melted. Therefore, research and development for using it as a main component or composition of a heat storage material has been conducted. (Patent Documents 1 to 3).

ここで、原料溶液の特定の領域においてゲスト分子の濃度が相対的に高いという状態にあるときには、特段の技術的価値が認められる。例えば、包接化合物のゲスト分子を原料溶液の中の特定領域に偏在させ、当該特定領域に高濃度領域を形成し、ゲスト分子の濃度を相対的に高めることができれば、当該特定領域とは別の領域の原料溶液を除去することでゲスト分子を高濃度で分離することができ、その高濃度領域の原料溶液を取り出せばゲスト分子を高濃度で回収することができ、分離又は回収されたゲスト分子を蓄熱材の主成分又は組成物として再利用することも可能になる。更に、ゲスト分子の濃度が相対的に高い原料溶液の特定領域に熱交換器を設置した場合、当該特定領域では包接化合物の潜熱蓄熱を行い、当該特定領域とは別の領域では別の手法の蓄熱(例えば、ホスト分子の濃度が相対的に低いことを利用した顕熱蓄熱)を行うという複合的な蓄熱を実現することも可能になる。   Here, when the concentration of guest molecules is relatively high in a specific region of the raw material solution, a particular technical value is recognized. For example, if the guest molecule of the clathrate compound is unevenly distributed in a specific region in the raw material solution, a high concentration region is formed in the specific region, and the concentration of the guest molecule can be relatively increased, it is different from the specific region. Guest molecules can be separated at a high concentration by removing the raw material solution in the region, and guest molecules can be recovered at a high concentration by removing the raw material solution in the high concentration region. It becomes possible to reuse the molecules as the main component or composition of the heat storage material. Furthermore, when a heat exchanger is installed in a specific region of a raw material solution having a relatively high concentration of guest molecules, latent heat storage of the clathrate compound is performed in the specific region, and another method is performed in a region other than the specific region. It is also possible to realize composite heat storage in which heat storage (for example, sensible heat storage utilizing the relatively low concentration of host molecules) is performed.

目的の如何を問わず、原料溶液の特定領域におけるゲスト分子の濃度が相対的に高いという状態を実現しようとする場合や、結果の如何を問わず、そのような状態が実現される場合には、包接化合物のゲスト分子の濃縮技術又は濃縮現象がその基礎又は前提となる。その一例が、包接水和物を生成する薬剤(当該包接水和物のゲスト分子)の水溶液から不純物を除去するための水溶液再生技術である(特許文献4)。この水溶液再生技術では、不純物を含む原料溶液とその原料溶液中に配置される熱交換器を備える処理槽を用意し、熱交換器に冷却用熱媒体を流すことで熱交換器の周りに包接水和物の結晶を生成させ、その結晶が生成した後に残った水溶液を処理槽外に排出することで不純物を除去し、次いで熱交換器に加熱用熱媒体を流すことで包接水和物の結晶を融解し、不純物が除去された原料溶液、更にはその原料溶液を加熱・濃縮等してゲスト分子の析出物を得ている。
特開2005−41908号公報 特公昭57−35224号公報 特許3641362号公報 特開2002−333168号公報
When trying to realize a state where the concentration of guest molecules in a specific region of the raw material solution is relatively high regardless of the purpose, or when such a state is realized regardless of the result The concentration technique or concentration phenomenon of the guest molecule of the clathrate compound is the basis or premise thereof. One example is an aqueous solution regeneration technique for removing impurities from an aqueous solution of a drug that generates clathrate hydrate (a guest molecule of the clathrate hydrate) (Patent Document 4). In this aqueous solution regeneration technology, a treatment tank comprising a raw material solution containing impurities and a heat exchanger disposed in the raw material solution is prepared, and a cooling heat medium is passed through the heat exchanger to wrap around the heat exchanger. Impurities are removed by generating crystals of the wet hydrate, draining the aqueous solution remaining after the crystals are formed, and then supplying the heating medium to the heat exchanger for inclusion hydration The crystal of the product is melted, the raw material solution from which impurities are removed, and further, the raw material solution is heated and concentrated to obtain a guest molecule precipitate.
JP 2005-41908 A Japanese Patent Publication No.57-35224 Japanese Patent No. 3641362 JP 2002-333168 A

しかし、冷却用熱媒体が流れる熱交換器の周りに包接化合物が生成して厚みを増すにつれて伝熱抵抗が大きくなるため、その冷却用熱媒体による冷却の効果が水溶液に及ばなくなってくる。このことは、特許文献4記載の技術において、熱交換器の周りに包接水和物の結晶を生成させても、結晶にならないまま水溶液中にゲスト分子が残り、不純物とともに処理槽外に排出されてしまうことを意味している。それ故、特許文献4記載の技術は、これにより包接化合物のゲスト分子の濃縮が可能になるとはいえ、未だ効率的なものとはいえない。また、前記の従来技術では、包接化合物とそのゲスト分子を溶質として含む原料溶液との密度差と、包接化合物の濃縮との関係について、全く考慮されておらず、技術的な示唆も見当たらない。   However, since the heat transfer resistance increases as the clathrate compound is generated around the heat exchanger through which the cooling heat medium flows and the thickness increases, the cooling effect by the cooling heat medium does not reach the aqueous solution. This is because, in the technique described in Patent Document 4, even if the clathrate hydrate crystals are generated around the heat exchanger, the guest molecules remain in the aqueous solution without forming crystals, and are discharged out of the treatment tank together with impurities. It means that it will be. Therefore, the technique described in Patent Document 4 is not yet efficient, although it enables concentration of guest molecules of the inclusion compound. Further, in the above prior art, the relationship between the density difference between the clathrate compound and the raw material solution containing the guest molecule as a solute and the concentration of the clathrate compound is not taken into consideration at all, and technical suggestions are also found. Absent.

本発明は、以上の事情に鑑みて、原料溶液からより効率的にゲスト分子を濃縮することができる技術を提供することを課題としている。   This invention makes it a subject to provide the technique which can concentrate a guest molecule more efficiently from a raw material solution in view of the above situation.

前記課題を解決するための、本発明の第1の形態に係る包接化合物のゲスト分子の濃縮方法は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差に従って前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程とを有することを特徴としている。   The method for concentrating a guest molecule of a clathrate compound according to the first aspect of the present invention for solving the above-described problem includes a host molecule of the clathrate compound as a solvent and a guest molecule as a solute, and the density of the clathrate compound and the clathrate compound A first step of generating the inclusion compound on the outer surface of a heat exchanger disposed in a different solution and growing it into a mass, and melting a part of the mass from the side of the outer surface, By repeating the second step of detaching the unmelted portion of the massive body from the outer surface, the first step and the second step at least once, the undissolved portion according to the density difference between the inclusion compound and the solution is obtained. And a third step in which the melting part is unevenly distributed in a specific region in the solution, and the concentration of the guest molecules in the specific region is relatively increased.

本発明の第2の形態に係る包接化合物のゲスト分子の濃縮方法は、第1の形態に係る濃縮方法であって、前記第1工程が、前記包接化合物の潜熱により熱エネルギーを蓄積する工程であり、前記第2工程が、前記熱交換器により前記塊状体の一部から熱エネルギーを取り出す工程であることを特徴としている。   The method for concentrating a guest molecule of an inclusion compound according to the second aspect of the present invention is the concentration method according to the first aspect, wherein the first step accumulates thermal energy due to the latent heat of the inclusion compound. It is a process, and the second process is a process of taking out heat energy from a part of the lump by the heat exchanger.

本発明の第3の形態に係る包接化合物のゲスト分子の濃縮方法は、第2の形態に係る濃縮方法であって、この第3工程が、前記特定領域にて、前記未融解部から熱エネルギーを取り出す工程であることを特徴としている。   The method for concentrating a guest molecule of an inclusion compound according to the third aspect of the present invention is the concentration method according to the second aspect, wherein the third step is performed by heat from the unmelted portion in the specific region. It is a process for extracting energy.

本発明の第4の形態に係る包接化合物のゲスト分子の濃縮分離方法は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器が収容されている容器内で前記熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程と、前記特定領域とは別の領域から前記溶液を前記容器外に取り出す第4工程とを有することを特徴としている。   The method for concentrating and separating a guest molecule of an inclusion compound according to a fourth aspect of the present invention includes a host molecule of the inclusion compound as a solvent and the guest molecule as a solute, and is disposed in a solution having a density different from that of the inclusion compound. A first step of generating the clathrate compound on the outer surface of the heat exchanger in a container in which the heat exchanger is accommodated and growing it into a lump, and part of the lump on the outer surface A second step of melting from the side and releasing the unmelted portion of the massive body from the outer surface, and repeating the first step and the second step at least once, whereby the inclusion compound and the solution A third step in which the unmelted portion is unevenly distributed in a specific region in the solution based on the density difference, and the concentration of the guest molecule in the specific region is relatively increased, and from a region different from the specific region, Remove the solution from the container. It is characterized by a fourth step of issuing.

本発明の第5の形態に係る包接化合物のゲスト分子の濃縮回収方法は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器が収容されている容器内で前記熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程と、前記特定領域から前記溶液を前記容器外に取り出す第4工程とを有することを特徴としている。   The method for concentrating and recovering the guest molecule of the clathrate compound according to the fifth aspect of the present invention is arranged in a solution containing a host molecule of the clathrate compound as a solvent and the guest molecule as a solute and having a density different from that of the clathrate compound. A first step of generating the clathrate compound on the outer surface of the heat exchanger in a container in which the heat exchanger is accommodated and growing it into a lump, and part of the lump on the outer surface A second step of melting from the side and releasing the unmelted portion of the massive body from the outer surface, and repeating the first step and the second step at least once, whereby the inclusion compound and the solution A third step in which the unmelted portion is unevenly distributed in a specific region in the solution based on the density difference, and the concentration of the guest molecule in the specific region is relatively increased; and the solution is removed from the specific region outside the container. 4th work to be taken out It is characterized by having and.

本発明の第6の形態に係る包接化合物のゲスト分子の濃縮回収方法は、第5の形態に係る濃縮回収方法であって、前記第4工程が、前記特定領域とは別の領域から前記溶液を前記容器外に取り出した後、前記特定領域から前記溶液を前記容器外に取り出す工程であることを特徴としている。   The method for concentrating and recovering a guest molecule of an inclusion compound according to a sixth aspect of the present invention is the method for concentrating and recovering a guest molecule according to the fifth aspect, wherein the fourth step is performed from a region different from the specific region. After the solution is taken out of the container, the solution is a step of taking the solution out of the container from the specific region.

本発明の第7の形態に係る包接化合物のゲスト分子の再生方法は、使用済の包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器が収容されている容器内で前記熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程と、前記特定領域から前記容器外に前記溶液を取り出す第4工程と、前記容器から取り出された前記溶液中に含まれるゲスト分子を再使用する第5工程とを有することを特徴としている。   The method for regenerating the guest molecule of the clathrate compound according to the seventh aspect of the present invention comprises a solution containing a host molecule of a used clathrate compound as a solvent and a guest molecule as a solute and having a density different from that of the clathrate compound. A first step of generating the clathrate compound on the outer surface of the heat exchanger in a container in which the heat exchanger disposed in the container is accommodated and growing it into a lump, and a part of the lump as the outside The inclusion compound and the solution are melted from the surface side and the second step of releasing the unmelted portion of the mass from the outer surface, and the first step and the second step are repeated at least once. And the third step of unevenly distributing the unmelted portion in a specific region in the solution based on the density difference between the solution and the relative concentration of the guest molecule in the specific region, and from the specific region to the outside of the container. Removing the solution A step, is characterized by having a fifth step of re-using the guest molecule contained in the solution taken out from the container.

なお、本発明において、ゲスト分子の濃縮の目的には特に制限はない。特に第1乃至第3の形態では、ゲスト分子の濃縮目的は問わず、結果的にゲスト分子が濃縮していれば足りる。しかし強いていえば、第4の形態では、ゲスト分子を不純物から分離することを目的としており、第5乃至第6の各形態では、ゲスト分子を回収することを目的としており、本発明の第7の形態では、或る目的のために再使用することを目的としているといえる。   In the present invention, the purpose of concentrating guest molecules is not particularly limited. In particular, in the first to third embodiments, the purpose of concentrating the guest molecules is not limited, and as a result, the guest molecules need only be concentrated. However, strictly speaking, in the fourth embodiment, the purpose is to separate the guest molecules from the impurities, and in each of the fifth to sixth embodiments, the purpose is to collect the guest molecules. In this form, it can be said that it is intended to be reused for a certain purpose.

本発明は、原料溶液の中に配置された熱交換器の外表面に包接化合物を生成させ、塊状体に成長させる工程と、その塊状体の一部を熱交換器の外表面の側から融解させ、その外表面から未融解部を離脱させる工程とを少なくとも1回繰り返すことにより、包接化合物と原料溶液との密度差にもとづいて未融解部を原料溶液の中の特定領域に偏在させ、その特定領域におけるゲスト分子の濃度を相対的に高めることを基本構成とする。熱交換器の外表面に生成した包接化合物をその外表面の側から融解させると、融解した部分は原料溶液に戻るので、次の包接化合物の生成に供することができ、無駄が少ない。また、未融解部は包接化合物と原料溶液との密度差にもとづいて原料溶液の中で浮揚又は沈降するので、次に包接化合物を生成させる際には、熱交換器の外表面に原料溶液への伝熱を妨げる包接化合物が存在しない又は殆ど存在しない状態を実現することができ、故に熱交換器による熱交換の効果を高いまま維持することができる。しかも、未融解部は包接化合物と原料溶液との密度差にもとづいて原料溶液の中で浮揚又は沈降し、原料溶液の中の特定領域(原料溶液中で未溶解部が浮揚する場合には、原料溶液の上方の領域;原料溶液中で未溶解部が沈降する場合には、原料溶液の下方の領域)に集まり、そこに偏在することになるので、当該特定領域におけるゲスト分子の濃度を相対的に高めることができ、故にゲスト分子を濃縮することができる。   The present invention includes a step of generating an inclusion compound on the outer surface of a heat exchanger disposed in a raw material solution and growing it into a lump, and a part of the lump from the outer surface side of the heat exchanger. The process of melting and detaching the unmelted part from the outer surface is repeated at least once so that the unmelted part is unevenly distributed in a specific region in the raw material solution based on the density difference between the clathrate compound and the raw material solution. The basic configuration is to relatively increase the concentration of guest molecules in the specific region. When the clathrate compound produced on the outer surface of the heat exchanger is melted from the outer surface side, the melted portion returns to the raw material solution, and can be used for the production of the next clathrate compound. In addition, since the unmelted portion floats or settles in the raw material solution based on the density difference between the clathrate compound and the raw material solution, the next time the clathrate compound is generated, the raw material is placed on the outer surface of the heat exchanger. A state in which there is no or almost no inclusion compound that hinders heat transfer to the solution can be realized, so that the effect of heat exchange by the heat exchanger can be kept high. Moreover, the unmelted part floats or settles in the raw material solution based on the density difference between the clathrate compound and the raw material solution, and a specific region in the raw material solution (when the undissolved part floats in the raw material solution) When the undissolved part settles in the raw material solution, it is concentrated in the lower region of the raw material solution and is unevenly distributed there. It can be relatively increased and thus the guest molecules can be concentrated.

また、包接化合物の生成と融解を複数回繰り返すと、前記の作用効果が繰り返される。即ち、生成した包接化合物を融解する際には、融解した部分は原料溶液に戻るので、次の包接化合物の生成に供されることになり、無駄に除去されるゲスト分子が少なくなる。また、未融解部は包接化合物と原料溶液との密度差にもとづいて原料溶液の中の特定領域に集まり、ゲスト分子の濃度を相対的に更に高めることができ、その特定領域においてゲスト分子を更に濃縮することができる。なお、原料溶液におけるゲスト分子の濃度は低下し、熱交換器の外表面に生成させることができる包接化合物の量が漸減して行くが、包接化合物を生成させる際には、熱交換器の外表面に包接化合物は存在せず又は殆ど存在せず、当該外表面から原料溶液への伝熱性は高いまま維持されるので、ゲスト分子の濃度が低い原料溶液からであっても包接化合物を生成させることができる。   Further, when the generation and melting of the clathrate compound are repeated a plurality of times, the above-mentioned effects are repeated. That is, when the clathrate compound is melted, the melted portion returns to the raw material solution, which is used for the generation of the next clathrate compound, and less guest molecules are removed in vain. Further, the unmelted portion gathers in a specific region in the raw material solution based on the density difference between the clathrate compound and the raw material solution, and the concentration of the guest molecule can be relatively further increased. Further concentration is possible. The concentration of guest molecules in the raw material solution decreases, and the amount of clathrate compound that can be generated on the outer surface of the heat exchanger gradually decreases. Since there is almost no inclusion compound on the outer surface of the material and the heat transfer from the outer surface to the raw material solution remains high, the inclusion is possible even from a raw material solution with a low concentration of guest molecules. Compounds can be generated.

かくして、本発明によれば、包接化合物の生成と融解を複数回繰り返すことにより、原料溶液からゲスト分子を累積的に濃縮することができ、ゲスト分子の効率的な濃縮技術を実現することができる。本発明では、包接化合物の生成と融解を複数回繰り返すことが、より奏効的であり好ましい。   Thus, according to the present invention, by repeatedly generating and melting the clathrate compound, guest molecules can be cumulatively concentrated from the raw material solution, and an efficient concentration technique for guest molecules can be realized. it can. In the present invention, it is more effective and preferable to repeat the generation and melting of the clathrate compound a plurality of times.

なお、未融解部が包接化合物と原料溶液との密度差にもとづいて原料溶液の中で浮揚又は沈降する際には、当該未融解部の一部が原料溶液の中に分散又は懸濁して包接化合物のスラリーとなる場合があるが、このスラリーも浮沈又は沈降して原料溶液の中の特定領域に偏在して、当該特定領域におけるゲスト分子の濃度の相対的増加、延いてはゲスト分子の濃縮に寄与する。   When the unmelted part floats or settles in the raw material solution based on the density difference between the clathrate compound and the raw material solution, a part of the unmelted part is dispersed or suspended in the raw material solution. In some cases, a slurry of the clathrate compound is formed, but this slurry also floats or sinks and is unevenly distributed in a specific region in the raw material solution, thereby causing a relative increase in the concentration of guest molecules in the specific region, and thus guest molecules. Contributes to the concentration of

本発明の各形態が奏する個別的な作用効果は以下のとおりである。   The individual effects produced by the embodiments of the present invention are as follows.

本発明の第1の形態によれば、原料溶液からゲスト分子を無駄なく濃縮することが可能な効率的な濃縮方法を実現することができる。   According to the first aspect of the present invention, it is possible to realize an efficient concentration method capable of concentrating guest molecules from a raw material solution without waste.

本発明の第2の形態によれば、包接化合物の潜熱により熱エネルギーを蓄積し、熱交換器により熱エネルギーを取り出すという蓄熱・放熱の過程でゲスト分子の濃縮を実現することができる。このことは、包接化合物を蓄熱材として用いる蓄熱装置(例えば内融式の蓄熱装置)をゲスト分子の濃縮装置に転用することができるということを意味している。   According to the second aspect of the present invention, the concentration of guest molecules can be realized in the process of heat storage and heat dissipation in which heat energy is accumulated by the latent heat of the clathrate compound and heat energy is taken out by the heat exchanger. This means that a heat storage device that uses the clathrate compound as a heat storage material (for example, an internal fusion heat storage device) can be diverted to a guest molecule concentrating device.

本発明の第3の形態によれば、原料溶液の中の特定領域にゲスト分子を偏在させて濃縮させると同時に未融解部から熱エネルギーを取り出すことができる。このような作用効果は、原料溶液の中の特定領域に未融解部を塊状体として偏在させることが事後の処理(例えば、ゲスト分子の分離や回収)に支障を来たすおそれがあり、予め融解させておくことが好ましい場合や、包接化合物を蓄熱材として用いる蓄熱装置をゲスト分子の濃縮装置として代替又は兼用する場合に役に立つ。   According to the 3rd form of this invention, a thermal energy can be taken out from an unmelted part simultaneously with making a guest molecule unevenly distribute and concentrate in the specific area | region in a raw material solution. Such an effect may cause problems in subsequent processing (for example, separation and recovery of guest molecules) if the unmelted portion is unevenly distributed as a lump in a specific region in the raw material solution. It is useful when it is preferable to keep the heat storage device, or when the heat storage device using the clathrate compound as the heat storage material is used instead of or as a guest molecule concentrating device.

本発明の第4の形態によれば、容器に収容されている原料溶液の中の特定領域にゲスト分子を偏在させ、濃縮させた後に、当該特定領域とは別の領域の原料溶液、即ちゲスト分子の濃度が相対的に低い原料溶液を容器外に取り出すので、当該容器内に濃縮されたゲスト分子を分離して残すことが可能なゲスト分子の濃縮分離方法を実現することができる。なお、包接化合物の生成と融解を複数回繰り返した方がゲスト分子が効率的に濃縮されることは第1の形態の場合と同様である。それ故、第4の形態によりゲスト分子を効率的に容器内に残すためには、包接化合物の生成と融解を複数回繰り返す方が好ましい。   According to the fourth aspect of the present invention, after the guest molecules are unevenly distributed in a specific region in the raw material solution contained in the container and concentrated, the raw material solution in a region different from the specific region, that is, the guest Since the raw material solution having a relatively low molecular concentration is taken out of the container, it is possible to realize a method for concentrating and separating guest molecules capable of separating and leaving the guest molecules concentrated in the container. In addition, it is the same as in the case of the first embodiment that the guest molecules are more efficiently concentrated by repeating the generation and melting of the clathrate compound a plurality of times. Therefore, in order to efficiently leave the guest molecule in the container according to the fourth embodiment, it is preferable to repeat the generation and melting of the clathrate compound a plurality of times.

本発明の第5の形態によれば、容器に収容されている原料溶液の中の特定領域にゲスト分子を偏在させ、濃縮させた後に、当該特定領域にある原料溶液、即ちゲスト分子の濃度が相対的に高い原料溶液を容器外に取り出すので、当該容器内に濃縮されたゲスト分子を容器外に取り出して回収することが可能なゲスト分子の濃縮回収方法を実現することができる。なお、包接化合物の生成と融解を複数回繰り返した方がゲスト分子が効率的に濃縮されることは第1の形態の場合と同様である。それ故、第5の形態によりゲスト分子を効率的に容器外に取り出すためには、包接化合物の生成と融解を複数回繰り返す方が好ましい。また、第6の形態により、容器内に濃縮されたゲスト分子を容器外に取り出す前に、ゲスト分子が濃縮された結果ゲスト分子が相対的に低濃度になった領域(当該特定領域とは別の領域にある低濃度領域)の原料溶液を容器外に取り出すことにしてもよい。   According to the fifth aspect of the present invention, after the guest molecules are unevenly distributed in a specific region in the raw material solution accommodated in the container and concentrated, the concentration of the raw material solution in the specific region, that is, the guest molecule is Since a relatively high raw material solution is taken out of the container, it is possible to realize a method for concentrating and recovering guest molecules that allows the guest molecules concentrated in the container to be taken out of the container and recovered. In addition, it is the same as in the case of the first embodiment that the guest molecules are more efficiently concentrated by repeating the generation and melting of the clathrate compound a plurality of times. Therefore, in order to efficiently take out guest molecules from the container according to the fifth embodiment, it is preferable to repeat the generation and melting of the clathrate compound a plurality of times. In addition, according to the sixth embodiment, before the guest molecule concentrated in the container is taken out of the container, the guest molecule is concentrated to a region where the guest molecule becomes relatively low (separate from the specific region). The low concentration region raw material solution in the region may be taken out of the container.

本発明の第7の形態によれば、第5又は第6の形態に係るゲスト分子の濃縮回収方法を用いて、ある目的のために使用された包接化合物のホスト分子及びゲスト分子をそれぞれ溶媒及び溶質として含む溶液から、当該ゲスト分子を回収して、その目的のために再使用することができ、資源の再利用という点で非常に経済的である。なお、当該目的が蓄熱材の組成物としての利用にある場合には、包接化合物を蓄熱材として用いる蓄熱装置をゲスト分子の濃縮装置として代替又は兼用することができるという長所もある。   According to the seventh aspect of the present invention, using the method for concentrating and recovering guest molecules according to the fifth or sixth aspect, the host molecule and guest molecule of the clathrate compound used for a certain purpose are respectively used as solvents. The guest molecules can be recovered from the solution containing the solute and reused for that purpose, which is very economical in terms of resource reuse. In addition, when the said objective exists in utilization as a composition of a thermal storage material, there also exists an advantage that the thermal storage apparatus which uses an inclusion compound as a thermal storage material can be substituted or combined as a concentration apparatus of a guest molecule.

以下、図面にもとづき本発明の実施の形態について説明する。本実施形態では、包接化合物の具体例を包接水和物として説明するが、当該具体例が包接水和物であるからといって、本発明から包接水和物以外の包接化合物が除外されることではなく、包接水和物以外の包接化合物でも本発明を実施できる。また、包接水和物は原料溶液に比べて密度が大きく、未融解の包接化合物の塊状体(未融解部)が原料溶液中を沈降する場合について説明するが、密度が小さい場合は未融解部が原料溶液中を浮上する挙動を示す点で異なるだけであり、基本的な構成は同様になる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a specific example of the clathrate compound will be described as a clathrate hydrate. However, just because the specific example is a clathrate hydrate, the clathrate other than the clathrate hydrate is used in the present invention. The present invention can be practiced with inclusion compounds other than inclusion hydrates, not excluding compounds. In addition, the clathrate hydrate has a higher density than the raw material solution, and an explanation will be given of a case where a lump (unmelted portion) of the unmelted clathrate compound settles in the raw material solution. The only difference is that the melting part exhibits the behavior of floating in the raw material solution, and the basic configuration is the same.

図1は、包接水和物を生成して蓄熱し、これを融解して放熱する装置の概要説明図である。この図1において、原料溶液Lが貯留されている貯留槽1内に熱交換器(伝熱管)2が配設されている。   FIG. 1 is a schematic explanatory diagram of an apparatus that generates clathrate hydrate, stores heat, melts this, and dissipates heat. In FIG. 1, a heat exchanger (heat transfer tube) 2 is disposed in a storage tank 1 in which a raw material solution L is stored.

本実施形態に係る装置では、包接水和物の潜熱により熱エネルギーを蓄積し、熱交換器により熱エネルギーを取り出すという蓄熱・放熱の過程でゲスト分子の濃縮を実現することができる。すなわち、包接水和物を蓄熱材として用いる蓄熱装置をゲスト分子の濃縮装置に転用する。   In the apparatus according to the present embodiment, the concentration of guest molecules can be realized in the process of heat storage and heat dissipation in which heat energy is accumulated by the latent heat of clathrate hydrate and the heat energy is taken out by the heat exchanger. That is, a heat storage device using clathrate hydrate as a heat storage material is diverted to a guest molecule concentrating device.

熱交換器2は蓄熱槽1内で水平方向に蛇行し高さ方向に複数段をなしていて、該熱交換器2内を熱媒体が流通している。この熱交換器2は、水平方向の蛇行によらずとも、上下方向に蛇行していてもよい。前記原料溶液Lは、そのゲスト分子の濃度が調和融点を与える濃度(調和融点濃度)であっても、それ未満あるいはそれより高い濃度であってもよい。   The heat exchanger 2 meanders in the horizontal direction in the heat storage tank 1 and has a plurality of stages in the height direction, and a heat medium is circulated in the heat exchanger 2. The heat exchanger 2 may meander in the up-down direction without depending on the meandering in the horizontal direction. The raw material solution L may have a concentration of guest molecules that gives a harmonic melting point (harmonic melting point concentration), or a concentration lower than or higher than that.

図1に示した装置は、蓄熱装置にたとえれば所謂内融式蓄熱装置と実質的に同じである。そしてこの装置において、熱エネルギーを蓄積するための蓄熱工程と蓄積された熱エネルギーを放出する又は取り出すための放熱工程とを実行することにより、換言すれば、蓄熱工程を実現するための蓄熱運転と放熱工程を実現するための放熱運転を行うことにより、包接水和物の存在比率又はそのゲスト分子の濃度が相対的に高い領域と低い領域とに分離させる。   The apparatus shown in FIG. 1 is substantially the same as a so-called inner-melting type heat storage apparatus if compared to a heat storage apparatus. And in this device, by executing a heat storage step for storing thermal energy and a heat release step for releasing or taking out the stored thermal energy, in other words, a heat storage operation for realizing the heat storage step By performing a heat dissipation operation for realizing the heat dissipation process, the clathrate hydrate abundance ratio or the concentration of the guest molecule is separated into a relatively high region and a low region.

かかる本実施形態に係る装置では、蓄熱工程と放熱工程とが行われる。   In the apparatus according to this embodiment, a heat storage process and a heat dissipation process are performed.

<蓄熱工程(蓄熱運転)>
熱交換器(伝熱管)2に、包接水和物生成温度より低温の熱媒体が流通され、熱交換器2の外表面で原料溶液Lが熱交換して冷却され包接水和物L1が生成される。包接水和物L1は、図1に見られるように、熱交換器2の外表面に付着し堆積して、該熱交換器2の周囲に包接水和物L1の塊状体が形成される。
<Heat storage process (heat storage operation)>
A heat medium having a temperature lower than the clathrate hydrate formation temperature is circulated through the heat exchanger (heat transfer tube) 2, and the raw material solution L is heat-exchanged and cooled on the outer surface of the heat exchanger 2 to be clathrate hydrate L1. Is generated. As shown in FIG. 1, the clathrate hydrate L1 adheres to and accumulates on the outer surface of the heat exchanger 2, and a mass of the clathrate hydrate L1 is formed around the heat exchanger 2. The

<放熱工程(放熱運転)>
熱交換器2に、包接水和物の融解温度より高温の熱媒体が流通され熱交換器2の外表面で包接水和物L1と熱交換して、熱媒体が冷却されて冷熱エネルギーが取出される。包接水和物L1は熱交換器2の外表面に接している部分から融解し、その融解によりできる原料溶液Lは、その包接水和物L1の融点よりも高温なので貯留槽1の上方に移動し、貯留槽1の上方に偏在する。他方、未融解のまま残る包接水和物L1の塊状体(未融解部)は熱交換器2の表面から離脱し、包接水和物L1と原料溶液Lとの密度差に応じて、従って重力により下方に沈降する。
<Heat dissipation process (heat dissipation operation)>
A heat medium having a temperature higher than the melting temperature of the clathrate hydrate is circulated through the heat exchanger 2 to exchange heat with the clathrate hydrate L1 on the outer surface of the heat exchanger 2, and the heat medium is cooled to cool energy. Is taken out. The clathrate hydrate L1 melts from the portion in contact with the outer surface of the heat exchanger 2, and the raw material solution L formed by the melting is higher than the melting point of the clathrate hydrate L1, so And is unevenly distributed above the storage tank 1. On the other hand, the mass of the clathrate hydrate L1 that remains unmelted (unmelted portion) is detached from the surface of the heat exchanger 2, and according to the density difference between the clathrate hydrate L1 and the raw material solution L, Therefore, it sinks downward by gravity.

この未融解部は、包接水和物の塊状体の一部であるので、包接水和物のスラリーと異なり、溶媒への分散性は比較的小さく、溶媒の中での凝集性も比較的小さい。それ故、スラリーよりも迅速に、包接水和物と原料溶液との密度差に従って下方に沈降してゆく。その過程で、未融解部の一部は原料溶液に分散又は懸濁してスラリーとなり、比較的遅い速度で沈降してゆく。こうして未融解部は、塊状体、スラリーといった形態で貯留槽1の下方の領域に偏在することになる。また、貯留槽1の下方の領域に偏在するに至った未融解部が融解すると、上方の原料溶液Lと拡散混合するに足るだけの長時間が経過しない限り又は上方の領域と下方の領域との間で強制的な攪拌を行わない限り、当初の原料溶液Lのゲスト分子の濃度より高い濃度の原料溶液となり滞留する。かくして、図2のように貯留槽1の下方には高濃度領域Aが、上方には低濃度領域Bが形成される。   Since this unmelted part is a part of the clathrate hydrate lump, unlike the clathrate hydrate slurry, the dispersibility in the solvent is relatively small, and the cohesiveness in the solvent is also compared. Small. Therefore, it settles down more rapidly than the slurry according to the density difference between the clathrate hydrate and the raw material solution. In the process, a part of the unmelted part is dispersed or suspended in the raw material solution to become a slurry, and settles at a relatively slow rate. Thus, the unmelted portion is unevenly distributed in the region below the storage tank 1 in the form of a lump or slurry. Further, when the unmelted portion that has been unevenly distributed in the lower region of the storage tank 1 is melted, as long as a long time sufficient to diffusely mix with the upper raw material solution L has not passed, or the upper region and the lower region Unless the forcible stirring is performed between the two, the raw material solution having a concentration higher than the concentration of the guest molecules in the original raw material solution L is retained. Thus, as shown in FIG. 2, a high concentration region A is formed below the storage tank 1, and a low concentration region B is formed above.

<蓄熱工程と放熱工程の繰返し>
原料溶液Lの中に配置された熱交換器2の外表面に包接水和物L1を生成させ塊状体に成長させる工程(蓄熱工程)と、その塊状体の一部を熱交換器2の外表面の側から融解させ、その外表面から未融解部を離脱させる工程(放熱工程)とを少なくとも1回繰り返すと、包接水和物L1と原料溶液Lとの密度差に起因して未融解部を原料溶液の中の特定領域に偏在させることとなり、その特定領域における包接水和物の存在比率が相対的に高まり、また未融解部が融解して現れるゲスト分子の濃度が相対的に高まる。その結果、その特定領域におけるゲスト分子の濃度を相対的に高めることになる。
<Repetition of heat storage process and heat dissipation process>
A step of generating clathrate hydrate L1 on the outer surface of the heat exchanger 2 disposed in the raw material solution L and growing it into a lump (heat storage step), and a part of the lump is transferred to the heat exchanger 2 When the process of melting from the outer surface side and detaching the unmelted part from the outer surface (heat dissipation process) is repeated at least once, the density difference between the clathrate hydrate L1 and the raw material solution L is not increased. The melting part is unevenly distributed in a specific region in the raw material solution, the abundance ratio of clathrate hydrate in the specific region is relatively increased, and the concentration of guest molecules that appear when the unmelted part is melted is relatively high. To increase. As a result, the concentration of guest molecules in the specific region is relatively increased.

ここで、未融解部は、包接水和物の塊状体の一部であるので、包接水和物のスラリーと異なり、溶媒への分散性は比較的小さく、溶媒の中での凝集性も比較的小さい。それ故、スラリーよりも迅速に、包接水和物と原料溶液との密度差に従って下方に沈降する。その過程で未融解部の一部は原料溶液に分散又は懸濁してスラリーとなり、比較的遅い速度で沈降してゆく。こうして未融解部は、塊状体やスラリーといった形態で貯留槽1の下方の領域に偏在することになる。また、貯留槽1の下方の領域に偏在するに至った未融解部が融解すると、例えば上方の原料溶液Lと拡散混合するに足るだけの長時間が経過しない限り又は上方の領域と下方の領域との間で強制的な攪拌を行わない限り、当初の原料溶液Lのゲスト分子の濃度より高い濃度の原料溶液となり滞留する。更に、下方の領域に滞留するに至った未融解部分、スラリー及び原料溶液は、蓄熱工程と放熱工程の繰返しの過程で、例えば上方の領域と下方の領域との間で強制的な攪拌を行わない限り、あたかも当該下方の領域に閉じ込められた状態になる。かくして、貯留槽1の上方には低濃度領域が、下方には高濃度領域がそれぞれ形成される。   Here, since the unmelted part is a part of the clathrate hydrate lump, unlike the clathrate hydrate slurry, the dispersibility in the solvent is relatively small, and the cohesiveness in the solvent Is also relatively small. Therefore, it settles downward according to the density difference between the clathrate hydrate and the raw material solution more rapidly than the slurry. In the process, a part of the unmelted portion is dispersed or suspended in the raw material solution to become a slurry, and settles at a relatively low speed. Thus, the unmelted portion is unevenly distributed in the region below the storage tank 1 in the form of a lump or slurry. Further, when the unmelted portion that has been unevenly distributed in the lower region of the storage tank 1 is melted, for example, unless a long time sufficient for diffusing and mixing with the upper raw material solution L has passed, or the upper region and the lower region Unless the forcible stirring is performed, the raw material solution has a concentration higher than the concentration of the guest molecules in the original raw material solution L and stays there. Further, the unmelted portion, slurry and raw material solution that have stayed in the lower region are subjected to forcible agitation between the upper region and the lower region, for example, in the process of repeated heat storage and heat release. As long as there is not, it will be in the state confined to the said lower area | region. Thus, a low concentration region is formed above the storage tank 1, and a high concentration region is formed below.

それ故、本発明によれば、原料溶液の中で、包接水和物の生成と融解を少なくとも1回繰り返すことにより、原料溶液の中の特定領域におけるゲスト分子の濃度を相対的に高めることを促進させることができる。   Therefore, according to the present invention, the concentration of guest molecules in a specific region in the raw material solution is relatively increased by repeating the generation and melting of clathrate hydrate at least once in the raw material solution. Can be promoted.

また、包接水和物の生成と融解を繰り返すと、その繰返しのたびに熱交換器の外表面に付着していた包接水和物が融解するとともに、未融解部が熱交換器の外表面から離脱して行く。すると、未融解部が包接水和物と原料溶液との密度差に起因して原料溶液中の特定領域(包接水和物の方が原料溶液よりも密度が高い場合には、下方の領域)に集まり、包接水和物の存在比率又はゲスト分子の濃度が漸増し、当該特定領域に高濃度領域が形成され、それと同時に、当該特定領域とは別の領域の原料溶液における包接水和物の存在比率又はゲスト分子の濃度は漸減する。この結果、熱交換器の外表面の周囲は低濃度領域となり、包接水和物が生成しにくい環境となる。   In addition, when the clathrate hydrate is repeatedly generated and melted, the clathrate hydrate adhering to the outer surface of the heat exchanger is melted each time the clathrate hydrate is repeated, and the unmelted portion is outside the heat exchanger. Get away from the surface. Then, due to the density difference between the clathrate hydrate and the raw material solution, the unmelted part is a specific region in the raw material solution (if the clathrate hydrate has a higher density than the raw material solution, The concentration of clathrate hydrate or the concentration of guest molecules gradually increases, and a high concentration region is formed in the specific region, and at the same time, the inclusion in the raw material solution in a region other than the specific region The abundance ratio of hydrate or the concentration of guest molecules decreases gradually. As a result, the periphery of the outer surface of the heat exchanger becomes a low-concentration region, and an environment in which clathrate hydrates are difficult to be generated.

ところが、熱交換器の外表面に付着していた包接水和物が融解するとともに、未融解部が熱交換器の外表面から離脱して行くと、その熱交換器の外表面は原料溶液への熱伝熱を妨げる包接水和物が存在しない又は殆ど存在しない状態になるので、熱交換器による熱交換の効果は高いまま維持され、故に低濃度領域の環境下であっても引き続き包接水和物の生成が起こる。勿論、包接水和物の存在比率又はゲスト分子の濃度が漸減すると、熱交換器の外表面に生成する包接水和物の量も漸減するが、熱交換器の外表面の熱伝達性が低下しない分だけより多くの包接水和物が生成し、塊状体となる。   However, when the clathrate hydrate adhering to the outer surface of the heat exchanger is melted and the unmelted part is detached from the outer surface of the heat exchanger, the outer surface of the heat exchanger becomes the raw material solution. Since there is no or almost no clathrate hydrate that hinders heat transfer to the heat exchanger, the heat exchange effect by the heat exchanger remains high, and therefore continues even in the low concentration region environment. Formation of clathrate hydrate occurs. Of course, when the inclusion ratio of the clathrate hydrate or the concentration of the guest molecule decreases gradually, the amount of clathrate hydrate generated on the outer surface of the heat exchanger also decreases, but the heat transferability of the outer surface of the heat exchanger More clathrate hydrates are produced by the amount that does not decrease, resulting in lumps.

かくして、包接水和物の生成と融解を繰り返すことにより、熱交換器の外表面の周囲は低濃度領域となり、包接水和物が生成しにくい環境になっても、原料溶液中の特定領域に高濃度領域が形成され、同時に当該特定領域とは別の領域に低濃度領域が形成され、これが繰り返される。   Thus, by repeating the generation and melting of clathrate hydrate, the surroundings of the outer surface of the heat exchanger will be in a low concentration region, and even in an environment where clathrate hydrate is difficult to be generated, it is possible to identify in the raw material solution. A high concentration region is formed in the region, and at the same time, a low concentration region is formed in a region other than the specific region, and this is repeated.

それ故、本発明によれば、原料溶液の中で、包接水和物の生成と融解を複数回繰り返しても、原料溶液から包接水和物又はそのゲスト分子を下方の領域に累積的に偏在させることができ、包接水和物の存在比率又はそのゲスト分子の濃度が相対的に高い領域と相対的に低い領域とに速やかに、しかも効率的に、またゲスト分子の濃度の高低差がより明確になるように分離させることができ、原料溶液の中の特定領域におけるゲスト分子の濃度を相対的に高め、濃縮することを促進させることができる。   Therefore, according to the present invention, even if the generation and melting of clathrate hydrate are repeated several times in the raw material solution, the clathrate hydrate or its guest molecule is cumulatively accumulated in the lower region from the raw material solution. Can be unevenly distributed, and the inclusion hydrate content ratio or the concentration of the guest molecule can be quickly and efficiently changed into a region where the concentration of the guest molecule is relatively high and a region where the concentration of the guest molecule is relatively low. The separation can be performed so that the difference becomes clearer, and the concentration of the guest molecules in a specific region in the raw material solution can be relatively increased and the concentration can be facilitated.

なお、上述のとおり、熱交換器の外表面に付着していた包接水和物が融解するとともに、未融解部が熱交換器の外表面から離脱して行くと、熱交換器による熱交換の効果は高いまま維持され、故に低濃度領域の環境下であっても引き続き包接水和物の生成が起こる。このことは、本発明によれば、ゲスト分子の濃度が低い原料溶液からも当該ゲスト分子を速やかに、効率的に分離することができることを意味している。このような本発明の効果は、使用済みの原料溶液から包接化合物のゲスト分子を回収又は濃縮してこれを蓄熱材組成物としての再利用を企図する場合に特に有益である。   As mentioned above, when the clathrate hydrate adhering to the outer surface of the heat exchanger is melted and the unmelted part is detached from the outer surface of the heat exchanger, heat exchange by the heat exchanger is performed. This effect remains high, so that clathrate hydrate continues to be produced even in a low-concentration environment. This means that according to the present invention, the guest molecules can be quickly and efficiently separated from the raw material solution having a low concentration of guest molecules. Such an effect of the present invention is particularly beneficial when a guest molecule of an inclusion compound is recovered or concentrated from a used raw material solution and intended to be reused as a heat storage material composition.

また、熱交換器2の外表面において融解する包接水和物の量に比べて、その融解の結果、当該外表面から離脱して下方に沈降する未融解部における包接水和物の量の方が多いのが普通である。特に、熱交換器が伝熱管の場合には、包接水和物の塊状体は重力の影響を受けて、伝熱管の上方にある包接水和物の塊状体の限られた部分(伝熱管の直上又はその近傍の部分)のみが融解し易くなり、従ってより多くの未融解部が下方に沈降し易くなる。このような場合、特に熱交換器が伝熱管である場合には、包接水和物の存在比率又はゲスト分子の濃度の高低差がより明確になり易くなり、低濃度領域と高濃度領域の形成も効率的且つ迅速に起こり易くなるので、蓄熱工程と放熱工程とを繰り返すと否とに拘らず、本発明の実施形態として好ましい。   In addition, compared to the amount of clathrate hydrate that melts on the outer surface of the heat exchanger 2, the amount of clathrate hydrate in the unmelted part that separates from the outer surface and settles downward as a result of the melting. Usually there are more. In particular, when the heat exchanger is a heat transfer tube, the clathrate hydrate lump is affected by gravity and a limited portion of the clathrate hydrate lump above the heat transfer tube (transfer Only the portion immediately above or in the vicinity of the heat tube is likely to melt, and thus more unmelted portions are likely to settle downward. In such a case, particularly when the heat exchanger is a heat transfer tube, the difference in the clathrate hydrate abundance or the concentration of the guest molecule is more easily clarified, and the low concentration region and the high concentration region Since the formation is likely to occur efficiently and quickly, it is preferable as an embodiment of the present invention regardless of whether the heat storage step and the heat release step are repeated.

図3は、包接水和物のゲスト分子として臭化テトラnブチルアンモニウム(TBAB)の調和融点濃度未満である30wt%の水溶液を原料溶液として、図1の包接水和物を生成して蓄熱し、これを融解して放熱する装置により、包接水和物の生成と融解を複数回繰り返した後における貯留槽1内の原料溶液中のTBAB濃度の高さ方向の分布を示したものである。ここで横軸は、原料溶液中のTBAB濃度、縦軸は、貯留槽1内の原料溶液の液面高さを1とした高さ比を示している。図3によると、TBABの包接水和物の密度は原料溶液より大きいが、下部にTBAB濃度の相対的に高い領域、上部にTBAB濃度の相対的に低い領域として分離していることが分かる。   FIG. 3 shows that the clathrate hydrate of FIG. 1 is produced using a 30 wt% aqueous solution that is less than the harmonic melting point concentration of tetra-n-butylammonium bromide (TBAB) as the guest molecule of the clathrate hydrate. The distribution of TBAB concentration in the raw material solution in the storage tank 1 after the generation and melting of clathrate hydrate was repeated a plurality of times by a device that stores heat and melts and dissipates it. It is. Here, the horizontal axis indicates the TBAB concentration in the raw material solution, and the vertical axis indicates the height ratio where the liquid surface height of the raw material solution in the storage tank 1 is 1. According to FIG. 3, the density of the TBAB clathrate hydrate is larger than that of the raw material solution, but it is separated as a region having a relatively high TBAB concentration at the bottom and a region having a relatively low TBAB concentration at the top. .

本実施形態では、種々の観点から、例えば、以下のごとく、さらに改善を加えることができる。   In the present embodiment, further improvements can be made from various viewpoints, for example, as follows.

(i)放熱工程の効率向上
図2において貯留槽1の下部に包接水和物の存在比率が高い領域が形成されている。この図2では水平方向に蛇行し高さ方向に連続して複数段を構成している一つの熱交換器の例を示しているが、貯留槽1の上方すなわち包接水和物の存在比率が低い領域(低濃度領域)と、下方すなわち包接水和物の存在比率が高い領域とに別々に熱交換器を設けて、放熱工程では、主に包接水和物の存在比率が高い領域(高濃度領域)に設けられた熱交換器により熱エネルギーを取り出すようにすれば効率的に、そして包接水和物の存在比率が高い領域に熱エネルギーを取り出すための熱交換器を密に設けるようにすればより効率的に、熱エネルギーを取り出すことができる。
(I) Improvement of efficiency of heat dissipation process In FIG. 2, the area | region where the existence ratio of clathrate hydrate is high is formed in the lower part of the storage tank 1. In FIG. FIG. 2 shows an example of one heat exchanger meandering in the horizontal direction and continuously forming a plurality of stages in the height direction. The heat exchanger is provided separately in the low region (low concentration region) and the lower region, that is, the region where the clathrate hydrate is high, and in the heat dissipation process, the clathrate hydrate is mainly present in the high proportion If heat energy is taken out by a heat exchanger provided in the region (high concentration region), the heat exchanger for taking out heat energy efficiently and in a region where the clathrate hydrate content is high If it is provided, the heat energy can be taken out more efficiently.

(ii)ゲスト分子の濃度の低い領域からの原料溶液の取出し
図4に見られるように、貯留槽1に収容されている原料溶液の中の特定領域にゲスト分子を偏在させて濃縮させ、包接水和物の存在比率又はゲスト分子の濃度が相対的に高い領域(高濃度領域)Aを形成した後に、包接水和物の存在比率又はゲスト分子の濃度が相対的に低い領域(低濃度領域)Bからこの低濃度領域Bの原料溶液をポンプ3によって貯留槽1外に取り出す。これにより、貯留槽1内に濃縮されたゲスト分子を分離して残すことが可能なゲスト分子の濃縮分離方法を実現することができる。なお、包接水和物の生成と融解を複数回繰り返した方がゲスト分子が効率的に濃縮されることは、図2の場合と同様である。それ故、図4に示す形態によりゲスト分子を効率的に濃縮して容器内に残すためには、包接水和物の生成と融解を複数回繰り返す方が好ましい。
(Ii) Extraction of the raw material solution from the region where the concentration of guest molecules is low As shown in FIG. 4, the guest molecules are concentrated and concentrated in a specific region in the raw material solution stored in the storage tank 1. After forming the region A having a relatively high inclusion hydrate ratio or guest molecule concentration (high concentration region) A, a region having a relatively low inclusion hydrate concentration or guest molecule concentration (low) The raw material solution in the low concentration region B is taken out of the storage tank 1 from the concentration region (B) by the pump 3. Thereby, the concentration separation method of the guest molecule which can isolate | separate and leave the guest molecule concentrated in the storage tank 1 is realizable. In addition, it is the same as that of the case of FIG. 2 that a guest molecule is more efficiently concentrated by repeating the production | generation and melting | fusing of clathrate hydrate several times. Therefore, in order to efficiently concentrate the guest molecule in the form shown in FIG. 4 and leave it in the container, it is preferable to repeat the generation and melting of the clathrate hydrate a plurality of times.

なお、低濃度領域Bから原料溶液をポンプなどで貯留槽1外に取り出す際には、高濃度領域Aに存在する包接水和物やスラリーや原料溶液と低濃度領域Bに存在する原料溶液が対流によって混合するのを防ぎ効率的な濃縮分離をするために、原料溶液吸い込み口を複数箇所設けて低流速で吸い込むようにすることや、原料溶液吸い込み口を低濃度領域Bの液面に浮遊するような機構にすること等が考えられる。   In addition, when taking out the raw material solution from the low concentration region B to the outside of the storage tank 1 with a pump or the like, the clathrate hydrate or slurry existing in the high concentration region A or the raw material solution existing in the low concentration region B In order to prevent mixing by convection and to perform efficient concentration and separation, a plurality of raw material solution suction ports are provided at a low flow rate, or the raw material solution suction ports are placed on the liquid surface in the low concentration region B. For example, a floating mechanism may be considered.

(iii)ゲスト分子の濃度の高い領域からの原料溶液の取出し
図5に見られるように、貯留槽1に収容されている原料溶液の中の特定領域にゲスト分子を偏在させ、濃縮させ、包接水和物の存在比率又はゲスト分子の濃度が相対的に高い領域(高濃度領域)Aを形成した後に、高濃度領域Aからこの高濃度領域Aの原料溶液をポンプ4によって貯留槽1外に取り出す。これにより、貯留槽1内に濃縮されたゲスト分子を貯留槽1外に取り出して回収することが可能なゲスト分子の濃縮回収方法を実現することができる。なお、包接水和物の生成と融解を複数回繰り返した方がゲスト分子が効率的に濃縮されることは、図2の場合と同様である。それ故、図5に示す形態によりゲスト分子を効率的に容器外に取り出すためには、包接水和物の生成と融解を複数回繰り返す方が好ましい。
(Iii) Extraction of raw material solution from a region having a high concentration of guest molecules As shown in FIG. 5, the guest molecules are unevenly distributed in a specific region in the raw material solution stored in the storage tank 1, concentrated, and wrapped. After forming a region (high concentration region) A in which the abundance ratio of the wet hydrate or the concentration of guest molecules is relatively high, the raw material solution of the high concentration region A is extracted from the high concentration region A by the pump 4 outside the storage tank 1. Take out. Thereby, the concentration collection method of the guest molecule which can take out and collect the guest molecule concentrated in the storage tank 1 out of the storage tank 1 is realizable. In addition, it is the same as that of the case of FIG. 2 that a guest molecule is more efficiently concentrated by repeating the production | generation and melting | fusing of clathrate hydrate several times. Therefore, in order to efficiently take out guest molecules from the container in the form shown in FIG. 5, it is preferable to repeat the generation and melting of clathrate hydrate a plurality of times.

なお、高濃度領域Aから原料溶液をポンプなどで貯留槽1外に取り出す際には、高濃度領域Aに存在する包接水和物やスラリーや原料溶液と低濃度領域Bに存在する原料溶液が対流によって混合するのを防ぎ効率的な濃縮分離をするために、原料溶液吸い込み口を複数箇所設けて低流速で吸い込むようにすること等が考えられる。また、原料溶液吸い込み口の開口方向を包接水和物やスラリーがより多く存在する方向(蓄熱槽の底部方向)にすること、原料溶液吸い込み口の口径を包接水和物の塊状体の未融解部を吸込み易いように大きくすることにより、ゲスト分子の濃度の高い原料溶液を取り出すことができ、効率的な濃縮分離が可能になる。   In addition, when taking out the raw material solution from the high concentration region A to the outside of the storage tank 1 with a pump or the like, the clathrate hydrate or slurry existing in the high concentration region A or the raw material solution existing in the low concentration region B In order to prevent mixing by convection and to perform efficient concentration and separation, it is conceivable to provide a plurality of raw material solution inlets at a low flow rate. Also, the opening direction of the raw material solution suction port should be the direction in which more clathrate hydrate and slurry are present (the bottom direction of the heat storage tank), the diameter of the raw material solution suction port is the mass of the clathrate hydrate mass By enlarging the unmelted portion so as to be easily sucked, a raw material solution having a high concentration of guest molecules can be taken out, and efficient concentrated separation is possible.

(iv)ゲスト分子の濃度の低い領域からの原料溶液の取出し後の、ゲスト分子の濃度の高い領域からの原料溶液の取出し
図6に見られるように、貯留槽1に収容されている原料溶液の中の特定領域にゲスト分子を偏在させ、濃縮させ、包接水和物の存在比率(ゲスト分子の濃度)が相対的に高い領域(高濃度領域)Aを形成した後に、開閉弁6を開け(開閉弁7は閉)、包接水和物の存在比率(ゲスト分子の濃度)が相対的に低い領域(低濃度領域)Bからこの低濃度領域Bの原料溶液をポンプ5によって貯留槽1外に取り出した後、開閉弁7を開け(開閉弁6は閉)、高濃度領域Aからこの高濃度領域Aの原料溶液をポンプ5によって貯留槽1外に取り出す。これにより、貯留槽1内に濃縮されたゲスト分子を分離して残した後、貯留槽1内に濃縮され残されたゲスト分子を貯留槽1外に取り出して回収することが可能となり、濃縮度の高いゲスト分子の濃縮回収方法を実現することができる。
(Iv) Removal of the raw material solution from the high concentration region of the guest molecule after the extraction of the raw material solution from the low concentration region of the guest molecule As shown in FIG. 6, the raw material solution accommodated in the storage tank 1 After the guest molecules are unevenly distributed and concentrated in a specific region in the region, a region (high concentration region) A having a relatively high clathrate hydrate abundance ratio (guest molecule concentration) is formed. Opening (the on-off valve 7 is closed), the raw material solution of this low concentration region B from the region B (low concentration region) B in which the inclusion hydrate abundance ratio (guest molecule concentration) is relatively low is stored by the pump 5 After being taken out from 1, the on-off valve 7 is opened (the on-off valve 6 is closed), and the raw material solution in the high concentration region A is taken out from the high concentration region A to the outside of the storage tank 1 by the pump 5. As a result, after the guest molecules concentrated in the storage tank 1 are separated and left, the guest molecules concentrated and left in the storage tank 1 can be taken out of the storage tank 1 and recovered. It is possible to realize a method for concentrating and recovering guest molecules having a high density.

ポンプを低濃度領域Bの原料溶液の取り出し用と、高濃度領域Aの原料溶液の取り出し用に別に設けてもよい。   A pump may be provided separately for taking out the raw material solution in the low concentration region B and for taking out the raw material solution in the high concentration region A.

(v)再生方法
図7は、図4乃至図6に示す包接水和物のゲスト分子の濃縮回収方法を用いて、原料溶液からゲスト分子を濃縮回収して、さらに、ゲスト分子を再使用することができるように再生する装置を示している。
(V) Regeneration method FIG. 7 shows a method for concentrating and recovering guest molecules from a raw material solution using the method of concentrating and recovering guest molecules of clathrate hydrate shown in FIGS. Shows a playback device so that it can.

図7において、貯留槽(濃縮装置)1からゲスト分子の濃度が高い原料溶液(濃縮溶液)を抜出し、濃縮溶液貯槽9に貯留し、濃縮溶液を蒸発缶10にて加熱器11を用いて加熱することにより減水して高濃縮溶液を得て、これを高濃縮溶液貯槽12で貯留する。次に、晶析装置(分離器)13にて高濃縮溶液からゲスト分子を析出し、液と分離し、固体状のゲスト分子を得る。   In FIG. 7, a raw material solution (concentrated solution) having a high guest molecule concentration is extracted from a storage tank (concentrator) 1, stored in a concentrated solution storage tank 9, and the concentrated solution is heated using a heater 11 in an evaporator 10. Thus, the water is reduced to obtain a highly concentrated solution, which is stored in the highly concentrated solution storage tank 12. Next, guest molecules are precipitated from the highly concentrated solution by a crystallizer (separator) 13 and separated from the liquid to obtain solid guest molecules.

こうすることにより、濃縮溶液から不純物のない純度の高いゲスト分子を再生することができ、固体状で得ることができるので、貯蔵や輸送が容易になる。   By doing so, it is possible to regenerate a guest molecule having a high purity without impurities from the concentrated solution, and it can be obtained in a solid state, which facilitates storage and transportation.

本発明の一実施形態装置の概要図であり、蓄熱状態を示す。It is a schematic diagram of one embodiment device of the present invention, and shows a heat storage state. 図1に示す装置の放熱状態を示す。The heat dissipation state of the apparatus shown in FIG. 1 is shown. 原料溶液の相分離の様子を高さ方向に関して示す図である。It is a figure which shows the mode of the phase separation of a raw material solution regarding a height direction. 図1に示す装置の変形例を示す図である。It is a figure which shows the modification of the apparatus shown in FIG. 図1に示す装置の他の変形例を示す図である。It is a figure which shows the other modification of the apparatus shown in FIG. 図1に示す装置のさらに他の変形例を示す図である。It is a figure which shows the further another modification of the apparatus shown in FIG. 図4〜6に示す各装置を用いて包接水和物のゲスト分子の濃縮回収を行う装置を示す図である。It is a figure which shows the apparatus which performs concentration collection | recovery of the guest molecule of clathrate hydrate using each apparatus shown in FIGS.

符号の説明Explanation of symbols

1 貯留槽
2 熱交換器
L 原料溶液
L1 包接化合物(包接水和物)
1 Storage tank 2 Heat exchanger L Raw material solution L1 Inclusion compound (inclusion hydrate)

Claims (7)

包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、
前記塊状体の一部を前記外表面の側から融解させることにより、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、
前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程とを有することを特徴とする包接化合物のゲスト分子の濃縮方法。
The inclusion compound is generated on the outer surface of a heat exchanger that contains a host molecule of the inclusion compound as a solvent and the guest molecule as a solute and is disposed in a solution having a density different from that of the inclusion compound, and grows into a lump. A first step of
A second step of detaching the unmelted portion of the mass from the outer surface by melting a part of the mass from the outer surface side;
By repeating the first step and the second step at least once, the unmelted portion is unevenly distributed in a specific region in the solution based on the density difference between the inclusion compound and the solution, and the specific region And a third step of relatively increasing the concentration of the guest molecule in the method of concentrating guest molecules of an inclusion compound.
前記第1工程は、前記包接化合物の潜熱により熱エネルギーを蓄積する工程であり、前記第2工程は、前記熱交換器により前記塊状体の一部から熱エネルギーを取り出す工程であることとする請求項1に記載の包接化合物のゲスト分子の濃縮方法。   The first step is a step of accumulating thermal energy due to the latent heat of the clathrate compound, and the second step is a step of extracting thermal energy from a part of the lump by the heat exchanger. A method for concentrating guest molecules of the clathrate compound according to claim 1. 前記第3工程は、前記特定領域にて、前記未融解部から熱エネルギーを取り出す工程であることとする請求項2に記載の包接化合物のゲスト分子の濃縮方法。   The said 3rd process is a process of taking out heat energy from the said unmelted part in the said specific area | region, The concentration method of the guest molecule of the clathrate compound of Claim 2 characterized by the above-mentioned. 包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器が収容されている容器内で前記熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、
前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、
前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程と、
前記特定領域とは別の領域から前記溶液を前記容器外に取り出す第4工程とを有することを特徴とする包接化合物のゲスト分子の濃縮分離方法。
The outer surface of the heat exchanger is contained in a container containing a heat exchanger disposed in a solution having a host molecule of the inclusion compound as a solvent and a guest molecule as a solute and having a density different from that of the inclusion compound. A first step of generating the inclusion compound and growing it into a mass;
A second step of melting a part of the mass from the side of the outer surface and releasing an unmelted portion of the mass from the outer surface;
By repeating the first step and the second step at least once, the unmelted portion is unevenly distributed in a specific region in the solution based on the density difference between the inclusion compound and the solution, and the specific region A third step of relatively increasing the concentration of the guest molecule in
And a fourth step of extracting the solution from the region different from the specific region to the outside of the container.
包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器が収容されている容器内で前記熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、
前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、
前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程と、
前記特定領域から前記溶液を前記容器外に取り出す第4工程とを有することを特徴とする包接化合物のゲスト分子の濃縮回収方法。
The outer surface of the heat exchanger is contained in a container containing a heat exchanger disposed in a solution having a host molecule of the inclusion compound as a solvent and a guest molecule as a solute and having a density different from that of the inclusion compound. A first step of generating the inclusion compound and growing it into a mass;
A second step of melting a part of the mass from the side of the outer surface and releasing an unmelted portion of the mass from the outer surface;
By repeating the first step and the second step at least once, the unmelted portion is unevenly distributed in a specific region in the solution based on the density difference between the inclusion compound and the solution, and the specific region A third step of relatively increasing the concentration of the guest molecule in
And a fourth step of extracting the solution from the specific region to the outside of the container. A method for concentrating and recovering guest molecules of an inclusion compound.
前記第4工程は、前記特定領域とは別の領域から前記溶液を前記容器外に取り出した後、前記特定領域から前記溶液を前記容器外に取り出す工程であることとする請求項5に記載の包接化合物のゲスト分子の濃縮回収方法。   The said 4th process is a process of taking out the said solution out of the said container from the said specific area | region after taking out the said solution out of the said container from the area | region different from the said specific area | region. A method for concentrating and recovering guest molecules of an inclusion compound. 使用済の包接化合物のホスト分子を溶媒としゲスト分子を溶質として含み且つ前記包接化合物と密度が異なる溶液の中に配置された熱交換器が収容されている容器内で前記熱交換器の外表面に前記包接化合物を生成させ、塊状体に成長させる第1工程と、
前記塊状体の一部を前記外表面の側から融解させ、前記塊状体の未融解部を前記外表面から離脱させる第2工程と、
前記第1工程及び前記第2工程を少なくとも1回繰り返すことにより、前記包接化合物と前記溶液との密度差にもとづいて前記未融解部を前記溶液の中の特定領域に偏在させ、その特定領域における前記ゲスト分子の濃度を相対的に高める第3工程と、
前記特定領域から前記容器外に前記溶液を取り出す第4工程と、
前記容器から取り出された前記溶液中に含まれるゲスト分子を再使用する第5工程とを有することを特徴とする包接化合物のゲスト分子の再生方法。
The heat exchanger is disposed in a container containing a heat exchanger disposed in a solution containing a host molecule of a used clathrate compound as a solvent and a guest molecule as a solute and having a density different from that of the clathrate compound. Generating the inclusion compound on the outer surface and growing it into a lump,
A second step of melting a part of the mass from the side of the outer surface and releasing an unmelted portion of the mass from the outer surface;
By repeating the first step and the second step at least once, the unmelted portion is unevenly distributed in a specific region in the solution based on the density difference between the inclusion compound and the solution, and the specific region A third step of relatively increasing the concentration of the guest molecule in
A fourth step of taking the solution out of the container from the specific area;
And a fifth step of reusing the guest molecules contained in the solution taken out of the container. A method for regenerating a guest molecule of an inclusion compound.
JP2007069823A 2007-03-19 2007-03-19 Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds Expired - Fee Related JP4984133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069823A JP4984133B2 (en) 2007-03-19 2007-03-19 Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069823A JP4984133B2 (en) 2007-03-19 2007-03-19 Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds

Publications (2)

Publication Number Publication Date
JP2008230989A JP2008230989A (en) 2008-10-02
JP4984133B2 true JP4984133B2 (en) 2012-07-25

Family

ID=39904228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069823A Expired - Fee Related JP4984133B2 (en) 2007-03-19 2007-03-19 Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds

Country Status (1)

Country Link
JP (1) JP4984133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984132B2 (en) * 2007-03-19 2012-07-25 Jfeエンジニアリング株式会社 Method for promoting phase separation of clathrate compound or guest molecule in solution
JP5499931B2 (en) * 2010-06-21 2014-05-21 Jfeエンジニアリング株式会社 Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system
CN110345542A (en) * 2019-07-03 2019-10-18 西安交通大学 A kind of composite material and heat reservoir based on microwave heating and its working method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641362B2 (en) * 1998-03-18 2005-04-20 Jfeエンジニアリング株式会社 Cold storage method using cold clathrate, cold storage system, and cold storage agent
JP2000205775A (en) * 1998-11-12 2000-07-28 Nkk Corp Manufacture of clathrate hydrate slurry
JP4513230B2 (en) * 2001-05-10 2010-07-28 Jfeエンジニアリング株式会社 Chilled heat storage system and cooling medium regeneration method
JP2008215655A (en) * 2007-02-28 2008-09-18 Jfe Engineering Kk Heat storage device and its operation method
JP4984132B2 (en) * 2007-03-19 2012-07-25 Jfeエンジニアリング株式会社 Method for promoting phase separation of clathrate compound or guest molecule in solution

Also Published As

Publication number Publication date
JP2008230989A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4984133B2 (en) Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds
JP2011157547A (en) System and method for pelletizing heavy hydrocarbon
AU2013202643B2 (en) Process for recovering valuable or harmful water-miscible liquids from slurries and an apparatus therefor
BR112016016510A2 (en) process for recycling by separating the constituents of aluminized and plasticized carton packs and their corresponding equipment
Murthy Evolution and present status of silicon carbide slurry recovery in silicon wire sawing
JP4984132B2 (en) Method for promoting phase separation of clathrate compound or guest molecule in solution
CN104478693B (en) A kind of preparation method of refining oxalic acid
US20130319461A1 (en) Recycling Method for Waste Ceramic Filters
CN206262143U (en) A kind of 4-propyl bromide crystallizer
JP5769112B2 (en) Gas separation method and apparatus and gas treatment method and apparatus
CN104368278B (en) A kind of filtering type sulfur melting kettle
JP2006110531A (en) Process for separating valuable materials from mixed plastics containing pvc(polyvinylidene chloride as well) and pet, and plastics/aluminum composite films
CN101795980B (en) Method for treatment of water comprising non-polar compounds
KR101733325B1 (en) Method for purifying silicon
US20140305873A1 (en) Systems and Methods For Separating Mine Tailings From Water-Absorbing Polymers and Regenerating the Separated Water-Absorbing Polymers
JPS598611A (en) Manufacture and apparatus for high purity silicon granule
US20110006014A1 (en) System and Method For Process and Waste Water Filtration
JP2009132970A (en) Method for granulating metal particle, and method for separating metal particle in molten salt
TW201406675A (en) Crucible and the method for purification of silicon using the same
JP6322100B2 (en) Gas separation device and gas separation method
Kim et al. Centrifugal separation of primary silicon crystal in solvent refining of silicon using Al‐30% Si alloy
JP2011117671A (en) Method of manufacturing hydrate and device for manufacturing the hydrate
TWI488808B (en) Addition of sodium carbonate to solvent metal
CN104641009A (en) Method to purify aluminum and use of purified aluminum to purify silicon
CN106977032A (en) A kind of band washs the strong brine Crystallization Separation device of leg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees