JP3641362B2 - Cold storage method using cold clathrate, cold storage system, and cold storage agent - Google Patents

Cold storage method using cold clathrate, cold storage system, and cold storage agent Download PDF

Info

Publication number
JP3641362B2
JP3641362B2 JP06890198A JP6890198A JP3641362B2 JP 3641362 B2 JP3641362 B2 JP 3641362B2 JP 06890198 A JP06890198 A JP 06890198A JP 6890198 A JP6890198 A JP 6890198A JP 3641362 B2 JP3641362 B2 JP 3641362B2
Authority
JP
Japan
Prior art keywords
clathrate hydrate
cold storage
clathrate
aqueous solution
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06890198A
Other languages
Japanese (ja)
Other versions
JPH11264681A (en
Inventor
英雅 生越
信吾 高雄
繁則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP06890198A priority Critical patent/JP3641362B2/en
Publication of JPH11264681A publication Critical patent/JPH11264681A/en
Application granted granted Critical
Publication of JP3641362B2 publication Critical patent/JP3641362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷房などの空調設備や、食品等の冷却装置などに用いられる冷熱体の蓄冷方法、蓄冷システム、蓄冷剤に関する。
【0002】
【従来の技術】
この種の用途に使用される従来公知の蓄冷方法として以下のものがある。
(1)冷水の温度差による蓄冷
空調では、冷房用の冷水温度は5〜7℃であり、負荷の小さい時間に冷凍機により冷水を貯蔵タンク(蓄熱槽)に貯蔵する。冷水の比熱は1kcal/kgKであるため、利用温度差を7℃とすると、1kg冷水あたり7kcal/kgと単位重量当りの蓄冷量が少ないという欠点がある。
【0003】
(2)氷などの凝固・融解潜熱を用いた蓄冷
氷の融解潜熱は、約80kcal/kgであるため、氷水の一部を氷にして蓄冷することで、蓄熱密度は冷水より高くできる。例えば、冷水中の氷の体積割合を20%とすると、氷の潜熱及び冷水の顕熱(温度差12℃の場合)を含めた蓄熱密度は、約28kcal/kgとなる。
【0004】
しかし、氷を生成させるためには、冷水を0℃以下に冷却しなければならず、冷水を5℃に冷却するよりも冷凍機の動力は大きくなるのが欠点である。
(3)氷以外の固液相変化物質を用いた蓄冷
水や氷以外の冷熱蓄熱材として利用可能な物質として、LiClO2 ・3H2 OやNa2 SO4 ・10H2 O+NH4 Clなどの無機水和塩類や気体水和物が知られている(文献1.川崎、秋谷「基体水和物の冷熱蓄熱材への応用」:ケミカルエンジニアリングvol.27,No.8,603-608,1982、文献2.日本伝熱学会編「環境と省エネルギーのためのエネルギー新技術体系」p.802、参照)
しかし、LiClO2 ・3H2 OやNa2 SO4 ・10H2 O+NH4 Clなどの無機水和塩類は、比較的潜熱量は大きいものの、調和融点(後述)を持たず、無水塩の濃度によって水和物が変化する。このため、冷却・加熱過程で相分離をおこし、所定の蓄熱量が得られなくなる問題が生ずる。
【0005】
また、文献1に記載されている気体水和物は、R11やR12などのオゾン破壊係数の大きい物質であったり、また、大気圧下では気体であるため、加圧された密閉容器や配管を用いる必要があり、蓄冷装置が高価なものとなる。
【0006】
【発明が解決しようとする課題】
以上のように、今までに実用化あるいは提案されてきた蓄冷方法には、それぞれ問題点があった。
本発明は、これらの課題を解決すべくなされたもので、蓄冷材に求められる蓄熱密度(潜熱量)が大きく、安定した熱特性を有し、経済性、安全性があり取り扱いが容易である包接水和物を用いた蓄冷方法、蓄冷システムおよび蓄熱剤を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち本発明は、
(1)包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液であって、冷却すると包接水和物を生成しスラリ状となるものからなる蓄冷剤。
(2)包接水和物生成物質は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される1種又は2種以上であることを特徴とする(1)に記載の蓄冷剤。
(3)水溶液は、水よりも凝固点の低い物質を含むことを特徴とする(1)又は(2)に記載の蓄冷剤。
【0008】
(4)水分子で構成された籠状の包接格子内にゲスト分子が包み込まれて結晶化する包接水和物を生成する物質を含む水溶液であって、冷却すると包接水和物を生成しスラリ状となるものからなり、更に水よりも凝固点の低い物質とを含む水溶液からなる蓄冷剤。
(5)ゲスト分子は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される1種又は2種以上であることを特徴とする(4)に記載の蓄冷剤。
【0009】
(6)外部から輸送される蓄冷剤と水又は空気との間で熱交換を行う熱交換器であって、蓄冷剤は、包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して生成する包接水和物のスラリであることを特徴とする熱交換器。
(7)包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して生成する包接水和物のスラリと、水又は空気との間で熱交換を行う熱交換器。
【0010】
(8)(6)又は(7)に記載の熱交換器を備える蓄冷システム。
【0011】
(9)包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して包接水和物を生成させ、スラリ状にすることを特徴とする蓄冷方法。
【0012】
(10)包接水和物の調和融点を与える濃度未満の包接水和物生成物質と融点降下剤とを含む水溶液を冷却して包接水和物を生成させ、スラリ状にすることを特徴とする蓄冷方法。
【0013】
(11)包接水和物は、水分子で構成された籠状の包接格子内にゲスト分子が包み込まれて結晶化する化合物であることを特徴とする(9)又は(10)に記載の蓄熱方法。
(12)ゲスト分子は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される一種又は2種以上であることを特徴とする(11)に記載の蓄熱方法。
【0014】
(13)水分子で構成された籠状の包接格子内にゲスト分子が包み込まれて結晶化する包接水和物を生成する物質と水よりも凝固点の低い物質とを含む水溶液を冷却して包接水和物のスラリを生成させ、そのスラリを輸送又は貯蔵することを特徴とする蓄冷方法。
(14)包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して包接水和物のスラリを生成させ、そのスラリを輸送又は貯蔵することを特徴とする蓄冷方法。
【0015】
(15)水よりも凝固点の低い物質を(1)又は(2)の蓄冷剤に混入させることにより蓄冷剤の融点を変更することを特徴とする蓄冷剤の製造方法。
【0016】
【発明の実施の形態】
本発明に係る包接水和物とは、水分子(ホスト分子)で構成された籠状の包接格子内に以下の様なゲスト分子が包み込まれて結晶化する化合物をいう。ゲスト分子として、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラn−フォスフォニウム塩、トリiso−アミルサルフォニウム塩の例として、テトラn−ブチルアンモニウム塩としてフッ化テトラn−ブチルアンモニウム(n−C494 NF),塩化テトラn−ブチルアンモニウム((n−C494 NCl),臭化テトラn−ブチルアンモニウム((n−C494 NBr)などがある。
【0017】
これらF,Cl,Brの代わりに酢酸(CH3 CO2 ),重炭酸(HCO2 ),クロム酸(CrO4 ),タングステン酸(WO4 ),シュウ酸(C24 ),リン酸(HPO4 )でもよい。その他の上記塩も同様である。
【0018】
以下、臭化テトラn−ブチルアンモニウム((n−C494 NBr)を例にとり、本発明の蓄冷システムを説明する。
水溶液濃度と融点の関係を図1に示す。また、包接水和物が生成、分解するときの反応式を式(1)に示す。
【0019】
(n-C4 H 9 ) 4 NBr +n ・H 2 O ←→ (n-C4 H 9 ) 4 NBr ・n ・H 2 O
…式(1)
ここで、nは水和数で、その値はおよそ26で常に一定である。
【0020】
図1に示されるように、この包接水和物生成物質を含む水溶液は、水溶液濃度約40wt%で融点が極大値、11.8℃である。この水溶液濃度の融点は調和融点と呼ばれ、ここでは水溶液中の濃度と包接水和物中の塩分濃度が等しい。
【0021】
従って、調和融点を与える水溶液濃度(この例では常温における塩濃度が40wt%)に設定した水溶液を用いてこれを冷却すると、調和融点(11.8℃)で包接水和物が生成しはじめ、水溶液が全て包接水和物になるまでこの融点で一定になる。分解(融解)時も同様にこの融点一定で冷熱を放出する。なお、潜熱量は約46kcal/kgであり、利用上限温度を12℃とすると、水和物の体積割合が56%で蓄熱密度は26kcal/kgとなる。
【0022】
このようにこの蓄冷剤は、蓄熱密度が大きく、安定した熱特性を有する。また、従来は触媒として用いられているので容易に入手可能であり、経済的かつ安全である。
【0023】
また、調和融点を与える上記水溶液濃度より低い濃度に設定した水溶液(例えば常温で27.2wt%の水溶液)を用いて冷却すると、約9.4℃で水和物が生成しはじめ、次第に水溶液中の塩分濃度が低下していき、それにつれて水和物の生成温度も低下していく。すなわち、図1の曲線に沿って包接水和物の生成温度も下がる。空調に適する15℃程度の水・空気を作るために水溶液を5℃まで冷却すると、水溶液中の塩分濃度は約17wt%になる。このとき、水溶液の43%が水和物になる。また蓄熱量は、およそ26kcal/kgとなる(水和物の比熱を0.53kcal/kgK,水溶液の比熱を0.96kcal/kgKとした)。また、包接水和物の潜熱を利用する場合には常温で濃度4%以上の濃度にする必要がある。
【0024】
このように、調和融点を与える上記水溶液濃度より低い濃度に設定した水溶液を用いると、更に以下の利点を備える。
(1)融点(生成温度)が低温側に変化するため、低い温度の冷熱を蓄冷でき、その結果、所望の低い温度で取出することができる。
【0025】
(2)融点(生成温度)が低温側に変化していくため、水和物と水又は空気と熱交換させる場合、その温度差がほぼ一定でしかも大きい。このため熱交換効率が高く、熱交換器をコンパクトとすることができる。即ち、熱交換器で20℃の水または空気を冷却して15℃とするに際し、図2のaに示す調和融点濃度の場合、水又は空気の出側(蓄冷剤の入り側)の蓄冷剤の温度が11.8℃であり、その温度差が3.8℃しかないが、図2のbに示す調和融点濃度より低い場合、例えば水又は空気の出側(蓄冷剤の入り側)の蓄冷剤の温度が5℃であり、その温度差を10℃とすることができる。
【0026】
(3)ほぼ同じ利用上限温度で蓄熱密度が同じ場合、水溶液中の塩分濃度を低くできるため、その分低コストになる。
(4)ほぼ同じ利用上限温度で蓄熱密度が同じ場合、水和物の体積割合は小さくてすむため、水和物スラリの輸送や貯蔵のハンドリングが容易となる。顕熱分が大きくなる。即ち、蓄熱量は「潜熱」+「顕熱」で示されるが、蓄熱量を同じとした場合、調和融点より低い濃度の方が顕熱分が大きいため、水和物の体積割合が小さくてすむ。この試算を表1に示す。
【0027】
【表1】

Figure 0003641362
【0028】
次に本発明では、水溶液に水よりも凝固点の小さい物質を混入させて、包接水和物の生成温度(融点)を低下させることができる。
臭化テトラn−ブチルアンモニウム((n−C494 NBr)を例に取ると、その調和融点は、11.8℃であり、水溶液濃度と融点の関係は上述したように図1のようになる。
【0029】
この水溶液に、エチレングリコール、プロピレングリコールなど融点降下剤(水よりも融点の低い物質)を混入させると、水溶液の融点は、この物質の混入量によって低下する。そこで、用途により利用温度幅を下げる必要がある場合、これら物質を適量混入させることにより、任意の融点を持つ蓄冷剤を作ることができる。
【0030】
【発明の効果】
このように、本発明に係る蓄冷剤を用いれば、蓄熱密度が大きく、安定した熱特性を有する。また、従来は触媒として用いられており、容易に入手可能であり、経済的かつ安全である。特に、調和融点を与える上記水溶液濃度より低い濃度に設定した水溶液を用いると、所望の低い温度範囲で冷熱を蓄冷でき、その結果、低い温度で取出せる。そして、熱交換効率が高いので、熱交換器をコンパクトにでき、さらに、コストも安く、水和物スラリの輸送や貯蔵のハンドリングが容易となる。
【0031】
さらに、水より融点の低い物質を混入させることによって、同じ塩を用いた水溶液で任意の融点を持つ蓄冷剤を作ることができるため、汎用性が高く、コスト安にもなる。
【図面の簡単な説明】
【図1】包接水和物生成物質を含む水溶液濃度と融点との関係を示す図。
【図2】包接水和物生成物質を含む水溶液を蓄冷剤として用いた場合の熱交換器内の温度変化を示す説明図で、aは調和融点濃度の包接水和物生成物質を含む水溶液を蓄冷剤として用いた場合、bは調和融点濃度より低い包接水和物を含む水溶液を蓄冷剤として用いた場合をそれぞれ示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold storage method, a cold storage system, and a cold storage agent for a cold body used in air conditioning equipment such as cooling, a cooling device for foods, and the like.
[0002]
[Prior art]
Conventionally known cold storage methods used for this type of application include the following.
(1) In the cold storage air conditioning by the temperature difference of cold water, the cold water temperature for cooling is 5-7 degreeC, and cold water is stored in a storage tank (heat storage tank) with a refrigerator at the time of a small load. Since the specific heat of cold water is 1 kcal / kgK, there is a drawback that if the utilization temperature difference is 7 ° C., the amount of cold storage per unit weight is 7 kcal / kg per kg cold water.
[0003]
(2) Since the latent heat of fusion of the cold storage ice using solidification / melting latent heat of ice or the like is about 80 kcal / kg, the heat storage density can be made higher than that of the cold water by storing a part of the ice water as ice. For example, if the volume ratio of ice in cold water is 20%, the heat storage density including the latent heat of ice and the sensible heat of cold water (temperature difference of 12 ° C.) is about 28 kcal / kg.
[0004]
However, in order to generate ice, cold water must be cooled to 0 ° C. or lower, and the disadvantage is that the power of the refrigerator becomes larger than that of cooling cold water to 5 ° C.
(3) Inorganic materials such as LiClO 2 .3H 2 O and Na 2 SO 4 .10H 2 O + NH 4 Cl that can be used as cold storage water using solid-liquid phase change materials other than ice and cold heat storage materials other than ice Hydrated salts and gaseous hydrates are known (Reference 1. Kawasaki, Akiya “Application of Base Hydrate to Cold Heat Storage Material”: Chemical Engineering vol. 27, No. 8, 603-608, 1982, Reference 2 (Refer to “The New Energy Technology System for Environment and Energy Conservation” p. 802)
However, inorganic hydrated salts such as LiClO 2 .3H 2 O and Na 2 SO 4 .10H 2 O + NH 4 Cl have a relatively large amount of latent heat but do not have a harmonic melting point (described later). Japanese products change. For this reason, there arises a problem that phase separation is performed in the cooling / heating process, and a predetermined heat storage amount cannot be obtained.
[0005]
The gas hydrate described in Document 1 is a substance having a large ozone depletion coefficient such as R11 or R12, or is a gas under atmospheric pressure. It is necessary to use it, and a cool storage device becomes expensive.
[0006]
[Problems to be solved by the invention]
As described above, the cold storage methods that have been put to practical use or proposed so far have problems.
The present invention has been made to solve these problems, has a large heat storage density (latent heat amount) required for a cold storage material, has stable thermal characteristics, is economical, safe and easy to handle. An object is to provide a cold storage method, a cold storage system, and a heat storage agent using clathrate hydrate.
[0007]
[Means for Solving the Problems]
That is, the present invention
(1) A cold storage agent comprising an clathrate hydrate-forming substance having a concentration lower than the concentration that gives the harmonic melting point of clathrate hydrate, and which forms clathrate hydrate and becomes a slurry when cooled.
(2) The clathrate hydrate-forming substance is selected from the group of tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-butylphosphonium salt, and triiso-amylsulfonium salt The regenerator according to (1), which is one or more types.
(3) The cold storage agent according to (1) or (2), wherein the aqueous solution contains a substance having a freezing point lower than that of water.
[0008]
(4) An aqueous solution containing a substance that forms a clathrate hydrate in which a guest molecule is wrapped in a cage clathrate lattice composed of water molecules and crystallizes. A cold storage agent comprising an aqueous solution that is formed into a slurry and further contains a substance having a freezing point lower than that of water.
(5) The guest molecule is selected from the group consisting of tetra- n -butylammonium salt, tetraiso-amylammonium salt, tetra- n - butylphosphonium salt, and triiso-amylsulfonium salt, or The regenerator according to (4), wherein there are two or more kinds.
[0009]
(6) A heat exchanger for exchanging heat between a cold storage agent transported from the outside and water or air, and the cold storage agent is clathrate hydrate less than the concentration that gives the harmonic melting point of clathrate hydrate A heat exchanger characterized by being a clathrate hydrate slurry produced by cooling an aqueous solution containing a product-generating substance.
(7) Heat exchange between a clathrate hydrate slurry produced by cooling an aqueous solution containing a clathrate hydrate-forming substance having a concentration lower than the concentration giving the harmonic melting point of the clathrate hydrate, and water or air Do heat exchanger.
[0010]
(8) A cold storage system comprising the heat exchanger according to (6) or (7).
[0011]
(9) A cold storage method characterized by cooling an aqueous solution containing a clathrate hydrate-producing substance having a concentration lower than the concentration that gives the harmonic melting point of clathrate hydrate to produce clathrate hydrate to form a slurry. .
[0012]
(10) Cooling an aqueous solution containing a clathrate hydrate-producing substance and a melting point depressant having a concentration lower than the concentration that gives the harmonic melting point of the clathrate hydrate to produce a clathrate hydrate to form a slurry. Characterized cold storage method.
[0013]
(11) The clathrate hydrate is a compound in which a guest molecule is encapsulated in a cage-like clathrate lattice composed of water molecules and crystallizes. (9) or (10) Heat storage method.
(12) The guest molecule is one or two selected from the group consisting of tetra- n -butylammonium salt, tetraiso-amylammonium salt, tetra- n - butylphosphonium salt, and triiso-amylsulfonium salt. It is a seed | species or more, The heat storage method as described in (11) characterized by the above-mentioned.
[0014]
(13) Cooling an aqueous solution containing a substance that forms an clathrate hydrate in which a guest molecule is wrapped in a cage-like clathrate lattice composed of water molecules and crystallizes, and a substance that has a lower freezing point than water. A cold storage method characterized in that a clathrate hydrate slurry is produced and the slurry is transported or stored.
(14) Cooling an aqueous solution containing a clathrate hydrate-forming substance at a concentration that gives a harmonic melting point of the clathrate hydrate to produce a clathrate hydrate slurry, and transporting or storing the slurry. Characterized cold storage method.
[0015]
(15) A method for producing a regenerator, wherein a melting point of the regenerator is changed by mixing a substance having a freezing point lower than water in the regenerator (1) or (2).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The clathrate hydrate according to the present invention refers to a compound that crystallizes by encapsulating the following guest molecules in a cage-like clathrate composed of water molecules (host molecules). Examples of guest molecules include tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetran-phosphonium salt, triiso-amylsulfonium salt, tetra-n-butylammonium salt as tetra-n-butylammonium salt Butylammonium (n-C 4 H 9 ) 4 NF), tetra-n-butylammonium chloride ((n-C 4 H 9 ) 4 NCl), tetra-n-butylammonium bromide ((n-C 4 H 9 ) 4 NBr).
[0017]
Instead of these F, Cl and Br, acetic acid (CH 3 CO 2 ), bicarbonate (HCO 2 ), chromic acid (CrO 4 ), tungstic acid (WO 4 ), oxalic acid (C 2 O 4 ), phosphoric acid ( HPO 4 ) may also be used. The same applies to the other salts.
[0018]
Hereinafter, the cold storage system of the present invention will be described by taking tetra n-butylammonium bromide ((n-C 4 H 9 ) 4 NBr) as an example.
The relationship between the aqueous solution concentration and the melting point is shown in FIG. The reaction formula when the clathrate hydrate is generated and decomposed is shown in Formula (1).
[0019]
(nC 4 H 9 ) 4 NBr + n • H 2 O ← → (nC 4 H 9 ) 4 NBr • n • H 2 O
... Formula (1)
Here, n is a hydration number, and its value is approximately 26 and is always constant.
[0020]
As shown in FIG. 1, the aqueous solution containing the clathrate hydrate-forming substance has an aqueous solution concentration of about 40 wt% and a melting point at a maximum value of 11.8 ° C. The melting point of this aqueous solution concentration is called the harmonic melting point, and here, the concentration in the aqueous solution is equal to the salinity concentration in the clathrate hydrate.
[0021]
Therefore, when an aqueous solution set to a concentration of an aqueous solution giving a harmonic melting point (in this example, the salt concentration at room temperature is 40 wt%) is cooled, clathrate hydrate begins to form at the harmonic melting point (11.8 ° C.). The melting point remains constant until the aqueous solution is all clathrate hydrate. Similarly, at the time of decomposition (melting), cold heat is released with this constant melting point. The latent heat amount is about 46 kcal / kg. If the upper limit temperature of use is 12 ° C., the volume ratio of hydrate is 56% and the heat storage density is 26 kcal / kg.
[0022]
Thus, this cool storage agent has a large heat storage density and stable thermal characteristics. Further, since it is conventionally used as a catalyst, it can be easily obtained, and is economical and safe.
[0023]
Further, when cooling with an aqueous solution set to a concentration lower than the above aqueous solution concentration giving a harmonic melting point (for example, an aqueous solution of 27.2 wt% at room temperature), a hydrate begins to be formed at about 9.4 ° C., and gradually in the aqueous solution. As the salt concentration of the hydrate decreases, the hydrate formation temperature also decreases. That is, the production temperature of clathrate hydrate also decreases along the curve of FIG. When the aqueous solution is cooled to 5 ° C. in order to produce water / air at about 15 ° C. suitable for air conditioning, the salt concentration in the aqueous solution becomes about 17 wt%. At this time, 43% of the aqueous solution becomes a hydrate. The heat storage amount is approximately 26 kcal / kg (the specific heat of the hydrate is 0.53 kcal / kgK and the specific heat of the aqueous solution is 0.96 kcal / kgK). Further, when utilizing the latent heat of clathrate hydrate, it is necessary to make the concentration 4% or more at room temperature.
[0024]
Thus, when the aqueous solution set to a concentration lower than the concentration of the aqueous solution giving a harmonic melting point is used, the following advantages are further provided.
(1) Since the melting point (generation temperature) changes to the low temperature side, cold heat at a low temperature can be stored, and as a result, it can be taken out at a desired low temperature.
[0025]
(2) Since the melting point (generation temperature) changes to the low temperature side, when heat exchange is performed with hydrate and water or air, the temperature difference is substantially constant and large. For this reason, heat exchange efficiency is high and a heat exchanger can be made compact. That is, when the water or air at 20 ° C. is cooled to 15 ° C. with a heat exchanger, the regenerator on the outlet side of water or air (on the side of the regenerator) in the case of the harmonic melting point concentration shown in FIG. The temperature is 11.8 ° C. and the temperature difference is only 3.8 ° C., but if it is lower than the harmonic melting point concentration shown in FIG. 2b, for example, water or air exit side (cold storage agent entrance side) The temperature of the cold storage agent is 5 ° C., and the temperature difference can be 10 ° C.
[0026]
(3) When the heat storage density is the same at almost the same use upper limit temperature, the salinity concentration in the aqueous solution can be lowered, and the cost is reduced accordingly.
(4) When the heat storage density is the same at almost the same upper limit temperature of use, the volume ratio of the hydrate can be small, so that the hydrate slurry can be easily transported and handled. Sensible heat increases. That is, the amount of heat stored is expressed as “latent heat” + “sensible heat”, but when the amount of stored heat is the same, the sensible heat content is larger at a concentration lower than the harmonic melting point, so the volume ratio of the hydrate is small. I'm sorry. This trial calculation is shown in Table 1.
[0027]
[Table 1]
Figure 0003641362
[0028]
Next, in the present invention, a production temperature (melting point) of clathrate hydrate can be lowered by mixing a substance having a freezing point smaller than water in the aqueous solution.
Taking tetra n-butylammonium bromide ((n-C 4 H 9 ) 4 NBr) as an example, its harmonic melting point is 11.8 ° C. The relationship between the aqueous solution concentration and the melting point is as shown in FIG. become that way.
[0029]
When a melting point depressant (a substance having a melting point lower than that of water) such as ethylene glycol or propylene glycol is mixed in this aqueous solution, the melting point of the aqueous solution is lowered depending on the amount of this substance. Therefore, when it is necessary to lower the use temperature range depending on the application, a regenerator having an arbitrary melting point can be made by mixing an appropriate amount of these substances.
[0030]
【The invention's effect】
Thus, if the cool storage agent which concerns on this invention is used, a thermal storage density is large and it has the stable thermal characteristic. Moreover, it is conventionally used as a catalyst, is easily available, and is economical and safe. In particular, when an aqueous solution set to a concentration lower than the above aqueous solution concentration giving a harmonic melting point is used, cold energy can be stored in a desired low temperature range, and as a result, it can be taken out at a low temperature. Further, since the heat exchange efficiency is high, the heat exchanger can be made compact, the cost is low, and the transportation and storage handling of the hydrate slurry is facilitated.
[0031]
Further, by incorporating a substance having a melting point lower than that of water, a regenerator having an arbitrary melting point can be made with an aqueous solution using the same salt, so that the versatility is high and the cost is low.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the concentration of an aqueous solution containing a clathrate hydrate-forming substance and the melting point.
FIG. 2 is an explanatory view showing a temperature change in a heat exchanger when an aqueous solution containing a clathrate hydrate-generating substance is used as a cold storage agent, wherein a includes a clathrate hydrate-forming substance having a harmonic melting point concentration. When an aqueous solution is used as a cold storage agent, b shows the case where the aqueous solution containing the clathrate hydrate lower than a harmonic melting point density | concentration is used as a cold storage agent, respectively.

Claims (15)

包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液であって、冷却すると包接水和物を生成しスラリ状となるものからなる蓄冷剤。  A regenerative agent comprising an clathrate hydrate-forming substance having a concentration lower than a concentration that gives a harmonic melting point of clathrate hydrate, which forms a clathrate hydrate and becomes slurry when cooled. 包接水和物生成物質は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される1種又は2種以上であることを特徴とする請求項1記載の蓄冷剤。The clathrate hydrate-forming substance is selected from the group of tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-butylphosphonium salt, and triiso-amylsulfonium salt 1 The regenerator according to claim 1, which is a seed or two or more. 水溶液は、水よりも凝固点の低い物質を含むことを特徴とする請求項1又は2記載の蓄冷剤。  The cold storage agent according to claim 1 or 2, wherein the aqueous solution contains a substance having a freezing point lower than that of water. 水分子で構成された籠状の包接格子内にゲスト分子が包み込まれて結晶化する包接水和物を生成する物質を含む水溶液であって、冷却すると包接水和物を生成しスラリ状となるものからなり、更に水よりも凝固点の低い物質とを含む水溶液からなる蓄冷剤。  An aqueous solution containing a clathrate hydrate that forms a clathrate hydrate that crystallizes by enclosing guest molecules in a cage-like clathrate composed of water molecules. A cold storage agent comprising an aqueous solution containing a substance having a freezing point lower than that of water. ゲスト分子は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される1種又は2種以上であることを特徴とする請求項4記載の蓄冷剤。The guest molecule is one or more selected from the group consisting of tetra- n -butylammonium salt, tetraiso-amylammonium salt, tetra- n - butylphosphonium salt, and triiso-amylsulfonium salt. The cold storage agent according to claim 4, wherein 外部から輸送される蓄冷剤と水又は空気との間で熱交換を行う熱交換器であって、蓄冷剤は、包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して生成する包接水和物のスラリであることを特徴とする熱交換器。  A heat exchanger for exchanging heat between a cold storage agent transported from the outside and water or air, wherein the cold storage agent is a clathrate hydrate-generating substance having a concentration lower than that which gives a harmonic melting point of the clathrate hydrate A heat exchanger characterized by being a clathrate hydrate slurry produced by cooling an aqueous solution containing. 包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して生成する包接水和物のスラリと、水又は空気との間で熱交換を行う熱交換器。  Heat that exchanges heat between the clathrate hydrate slurry generated by cooling the aqueous solution containing the clathrate hydrate-forming substance at a concentration that gives the harmonic melting point of clathrate hydrate, and water or air Exchanger. 請求項6又は7記載の熱交換器を備える蓄冷システム。  A cold storage system comprising the heat exchanger according to claim 6 or 7. 包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して包接水和物を生成させ、スラリ状にすることを特徴とする蓄冷方法。A cold storage method, comprising cooling an aqueous solution containing a clathrate hydrate-forming substance having a concentration lower than a concentration that gives a harmonic melting point of clathrate hydrate to produce clathrate hydrate to form a slurry. 包接水和物の調和融点を与える濃度未満の包接水和物生成物質と融点降下剤とを含む水溶液を冷却して包接水和物を生成させ、スラリ状にすることを特徴とする蓄冷方法。A clathrate hydrate is formed by cooling an aqueous solution containing a clathrate hydrate-forming substance and a melting point depressant having a concentration lower than the concentration that gives the harmonic melting point of the clathrate hydrate to form a slurry. Cold storage method. 包接水和物は、水分子で構成された籠状の包接格子内にゲスト分子が包み込まれて結晶化する化合物であることを特徴とする請求項9又は10記載の蓄冷方法。The cold storage method according to claim 9 or 10, wherein the clathrate hydrate is a compound that crystallizes by encapsulating guest molecules in a cage-like clathrate composed of water molecules. ゲスト分子は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される一種又は2種以上であることを特徴とする請求項11記載の蓄冷方法。The guest molecule may be one or more selected from the group consisting of tetra- n -butylammonium salt, tetraiso-amylammonium salt, tetra- n - butylphosphonium salt, and triiso-amylsulfonium salt. The cold storage method according to claim 11, wherein: 水分子で構成された籠状の包接格子内にゲスト分子が包み込まれて結晶化する包接水和物を生成する物質と水よりも凝固点の低い物質とを含む水溶液を冷却して包接水和物のスラリを生成させ、そのスラリを輸送又は貯蔵することを特徴とする蓄冷方法。An aqueous solution containing a clathrate hydrate that crystallizes by enclosing guest molecules in a cage-like clathrate lattice composed of water molecules and a clathrate that has a lower freezing point than water are cooled and clathrated. A cold storage method characterized by producing a slurry of hydrate and transporting or storing the slurry. 包接水和物の調和融点を与える濃度未満の包接水和物生成物質を含む水溶液を冷却して包接水和物のスラリを生成させ、そのスラリを輸送又は貯蔵することを特徴とする蓄冷方法。A clathrate hydrate slurry is produced by cooling an aqueous solution containing a clathrate hydrate-forming substance at a concentration that gives a harmonic melting point of the clathrate hydrate, and the slurry is transported or stored. Cold storage method. 水よりも凝固点の低い物質を請求項1又は2の蓄冷剤に混入させることにより蓄冷剤の融点を変更することを特徴とする蓄冷剤の製造方法。  The manufacturing method of the cool storage agent characterized by changing the melting | fusing point of a cool storage agent by mixing the substance with a freezing point lower than water in the cool storage agent of Claim 1 or 2.
JP06890198A 1998-03-18 1998-03-18 Cold storage method using cold clathrate, cold storage system, and cold storage agent Expired - Lifetime JP3641362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06890198A JP3641362B2 (en) 1998-03-18 1998-03-18 Cold storage method using cold clathrate, cold storage system, and cold storage agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06890198A JP3641362B2 (en) 1998-03-18 1998-03-18 Cold storage method using cold clathrate, cold storage system, and cold storage agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004367878A Division JP4134982B2 (en) 2004-12-20 2004-12-20 Cold storage method, cold storage system, cold storage agent, and method of extracting cold

Publications (2)

Publication Number Publication Date
JPH11264681A JPH11264681A (en) 1999-09-28
JP3641362B2 true JP3641362B2 (en) 2005-04-20

Family

ID=13387032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06890198A Expired - Lifetime JP3641362B2 (en) 1998-03-18 1998-03-18 Cold storage method using cold clathrate, cold storage system, and cold storage agent

Country Status (1)

Country Link
JP (1) JP3641362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163045A (en) * 2005-12-14 2007-06-28 Jfe Engineering Kk Cold-insulating container for fresh seafood having cold insulator, and method for increasing number of times that cold insulator can be repeatedly used
US10703951B2 (en) 2015-06-19 2020-07-07 Daicel Corporation Heat-transport medium including latent heat storage material, mixture for heat transport, and heat transport method

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617548B2 (en) * 2000-08-15 2011-01-26 Jfeエンジニアリング株式会社 Hydrate slurry production method, hydrate slurry production apparatus and aqueous solution
WO2001038811A1 (en) 1999-11-26 2001-05-31 Nkk Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
JP4599733B2 (en) * 2001-03-09 2010-12-15 Jfeエンジニアリング株式会社 Hydrate slurry production equipment
JP2008238169A (en) * 2001-05-30 2008-10-09 Jfe Engineering Kk Method of adjusting concentration of solution containing hydrate slurry producing agent, and method of supplying hydrate slurry producing agent
JP4904646B2 (en) * 2001-08-20 2012-03-28 Jfeエンジニアリング株式会社 Refrigeration system
EP1510763B1 (en) 2002-05-31 2012-02-01 JFE Engineering Corporation Apparatus for producing hydrate slurry
WO2006132322A1 (en) 2005-06-08 2006-12-14 Jfe Engineering Corporation Heat storable substance, heat storage agent, heat storage material, heat transfer medium, low temperature insulation agent, low temperature insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, and process for production of main ingred
JP4893036B2 (en) * 2006-03-17 2012-03-07 Jfeエンジニアリング株式会社 Thermal storage agent and method for preparing thermal storage agent
JP4895007B2 (en) * 2006-04-10 2012-03-14 Jfeエンジニアリング株式会社 Preparation method of heat storage agent
JP2007051867A (en) * 2006-11-20 2007-03-01 Jfe Engineering Kk Method for preventing water line in hydrate slurry, method for discharging hydrate slurry, and storage tank
JP4984133B2 (en) * 2007-03-19 2012-07-25 Jfeエンジニアリング株式会社 Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds
JP5125316B2 (en) * 2007-08-24 2013-01-23 Jfeエンジニアリング株式会社 Raw material for clathrate hydrate production, method for producing clathrate hydrate or slurry thereof, and method for reducing pressure loss generated when cooling an aqueous solution for clathrate hydrate production
JP5104159B2 (en) * 2007-09-26 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP2009079159A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
JP5104160B2 (en) * 2007-09-26 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP5104636B2 (en) * 2008-08-06 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
CN101809113A (en) * 2007-09-26 2010-08-18 杰富意工程株式会社 Be used to form the aqueous solution, the heat-storage agent of clathrate hydrate, the method for preparing clathrate hydrate or its slurry, heat built-up and thermal-radiating method and preparation method in order to the aqueous solution of formation latent heat storage agent or its main ingredient
JP5186944B2 (en) * 2007-12-10 2013-04-24 Jfeエンジニアリング株式会社 Heat storage method, supercooling suppression method, and heat storage device
JP2009121811A (en) * 2009-03-09 2009-06-04 Jfe Engineering Corp Cold and heat transport method, cold and heat transport system, operating method for cold and heat transport system, storage deice, and hydrate manufacturing device
JP4835745B2 (en) * 2009-10-21 2011-12-14 Jfeエンジニアリング株式会社 Hydrate slurry production equipment
JP2012021087A (en) * 2010-07-15 2012-02-02 Ihi Corp Heat storage material and heat storage apparatus
CN104673191A (en) * 2014-08-01 2015-06-03 上海交通大学 Tetrabutylammonium bromide aqueous solution
US10584904B2 (en) 2017-03-27 2020-03-10 Rebound Technologies, Inc. Cycle enhancement methods, systems, and devices
JP6980460B2 (en) * 2017-09-04 2021-12-15 パナソニック株式会社 Heat storage material and heat storage device
WO2019165328A1 (en) * 2018-02-23 2019-08-29 Rebound Technologies, Inc. Freeze point suppression cycle control systems, methods, and devices
WO2020132467A1 (en) 2018-12-20 2020-06-25 Rebound Technologies, Inc. Thermo-chemical recuperation systems, devices, and methods
JP7275689B2 (en) * 2019-03-15 2023-05-18 パナソニックホールディングス株式会社 Cold storage material
JP7283194B2 (en) * 2019-04-12 2023-05-30 パナソニックホールディングス株式会社 Cold storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163045A (en) * 2005-12-14 2007-06-28 Jfe Engineering Kk Cold-insulating container for fresh seafood having cold insulator, and method for increasing number of times that cold insulator can be repeatedly used
US10703951B2 (en) 2015-06-19 2020-07-07 Daicel Corporation Heat-transport medium including latent heat storage material, mixture for heat transport, and heat transport method

Also Published As

Publication number Publication date
JPH11264681A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP3641362B2 (en) Cold storage method using cold clathrate, cold storage system, and cold storage agent
JP4134982B2 (en) Cold storage method, cold storage system, cold storage agent, and method of extracting cold
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
US7923112B2 (en) Latent heat storage material and process for manufacture of the latent heat storage material
CN101171318B (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, cold insulation agent, cold insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, heat storage agent, heat transfer medium and process for manufacturing any one of main agent of cool keeping agents
EP1990595A1 (en) Method of heat accumulation and heat accumulation system
EP0034164B1 (en) A method and apparatus for storing heat
US4595774A (en) Gaseous-solid reaction
CN106318330A (en) Preparation method of phase-change energy storage material and phase-change energy storage material
GB2192270A (en) Chemical heat pump utilizing clathrate formation reaction
US4360442A (en) Ethylene carbonate as a phase-change heat storage medium
JP6389891B2 (en) Strontium bromide phase change material
CN101254447A (en) Method for producing gas hydrated compound and device
WO2017135231A2 (en) Heat storage material, heat pack using same, constant-temperature container, and transport container
JP5136121B2 (en) Inclusion hydrate having latent heat storage performance, method and apparatus for manufacturing the same, latent heat storage medium, method for increasing latent heat storage amount of clathrate hydrate, and processing apparatus for increasing the amount
JP4304848B2 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JPH1135933A (en) Cold storage material utilizing latent heat
JP2002060739A5 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JP7137495B2 (en) Method for using heat storage material, heat storage material container, and heat storage material composition
JP2009051905A (en) Aqueous solution having property for forming clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest compound, slurry of the clathrate hydrate, method for producing clathrate hydrate, method for increasing rate of generating or growing clathrate hydrate, and method for preventing or reducing supercooling phenomenon caused when generating or growing clathrate hydrate
JPH08233393A (en) Reactant for thermochemical system and thermochemical systemfor utilizing such reactant
JPS5925159B2 (en) Heat release and storage method
JPS58215481A (en) Heat storage material
JP2006336018A5 (en) Cryogenic transport method, hydrate slurry transport device, and district cooling and heating system
JP3956556B2 (en) Method and apparatus for producing tetra n-butylammonium bromide hydrate heat storage material slurry

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

EXPY Cancellation because of completion of term