JP4904646B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP4904646B2
JP4904646B2 JP2001249446A JP2001249446A JP4904646B2 JP 4904646 B2 JP4904646 B2 JP 4904646B2 JP 2001249446 A JP2001249446 A JP 2001249446A JP 2001249446 A JP2001249446 A JP 2001249446A JP 4904646 B2 JP4904646 B2 JP 4904646B2
Authority
JP
Japan
Prior art keywords
hydrate slurry
refrigerator
heat density
load
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001249446A
Other languages
Japanese (ja)
Other versions
JP2003055650A (en
Inventor
繁則 松本
信吾 高雄
英雅 生越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001249446A priority Critical patent/JP4904646B2/en
Publication of JP2003055650A publication Critical patent/JP2003055650A/en
Application granted granted Critical
Publication of JP4904646B2 publication Critical patent/JP4904646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水和物スラリを冷熱輸送媒体として利用する冷熱利用システムに関する。
【0002】
【従来の技術】
冷房や産業用の冷熱利用システムの分野において、冷熱媒体の輸送熱密度を増大させることにより、流送量を減少させ、輸送ポンプ動力の低減、輸送配管の小口径化を図り、配管コスト・工事費を低減することが試みられている。冷熱媒体の輸送熱密度を増大させる手段として、顕熱に加えて固液相変化時の潜熱を利用する冷熱輸送媒体を用いる技術が知られている。たとえば現在、水の顕熱と氷の融解潜熱を利用する氷水スラリが、高い熱密度を持つ冷熱輸送媒体として試みられている。
【0003】
冷房や産業用の冷熱利用システムに、顕熱と潜熱を利用でき高い熱密度を持つ冷熱輸送媒体を用いる場合、冷熱負荷に見合った冷熱量で冷熱輸送媒体を供給することが望まれる。その手段として、氷水スラリを冷熱輸送媒体とする場合に、輸送冷熱量を低くするには、冷凍機の能力を制御して部分負荷運転とし、氷水スラリ中の氷の割合を低下させて冷熱の輸送熱密度を小さくする方法が考えられている。
【0004】
しかし、氷のように相変化時の温度が一定である冷熱輸送媒体を用いる場合、冷凍機の部分負荷運転時においても冷凍機を構成する蒸発器の冷媒蒸発温度は一定のままに維持する必要がある。このため、蒸発器の冷媒蒸発温度を上げて冷凍機の成績係数(COP)を向上させるという運転方法を採用することができず、部分負荷運転に起因するCOPの低下が生じるだけである。
【0005】
【発明が解決しようとする課題】
本発明の目的は、顕熱と潜熱を利用でき高い熱密度を持つ冷熱輸送媒体として水和物スラリを用い、その水和物スラリを製造するための冷凍機の成績係数を向上できる冷熱利用システムを提供することにある。
【0006】
【課題を解決するための手段】
本発明に係る冷熱利用システムは、水和物を生成するゲスト化合物の水溶液を冷却して水和物スラリを製造する冷凍機と、前記冷凍機と冷熱を利用する負荷側機器とを連通する配管系とを有する冷熱利用システムであって、前記冷凍機から負荷側機器への配管に設けられた第1の熱密度計と、負荷側機器から前記冷凍機への配管に設けられた第2の熱密度計と、前記第1および第2の熱密度計から得られる水和物スラリの熱密度の差から冷熱負荷を計測し、前記冷熱負荷に応じて水和物スラリの熱密度を変化させて製造するように冷凍機の運転を制御する装置とを具備したことを特徴とする。
【0007】
一つの態様において、上記冷熱利用システムは、前記第1および第2の熱密度計のそれぞれが、水和物スラリの固相率が変化した場合に流量指示値が連動して変化する第1の流量計と、水和物スラリの固相率が変化しても流量指示値が変化しない第2の流量計と、水和物スラリの温度を測定する温度計と、前記第1および第2の流量計のそれぞれからの実測流量指示値および前記温度計により計測された温度に基づいて、水和物スラリの熱密度を算出する演算器とを具備することを特徴とする。
【0008】
他の態様において、上記冷熱利用システムは、前記第1および第2の熱密度計のそれぞれが、オリフィスおよび該オリフィスの上流側に備えられた第1の圧力計および該オリフィスの下流側に備えられた第2の圧力計を具備する圧損測定部と、前記圧損測定部の上流側に設けられた、水和物スラリの流量を測定する流量計および水和物スラリの温度を測定する温度計と、前記第1および第2の圧力計、前記流量計および前記温度計からの計測値に基づいて、水和物スラリの熱密度を算出する演算器とを具備することを特徴とする。
【0009】
上記の冷熱利用システムにおける冷凍機の運転を制御する装置は、たとえば冷凍機を構成する蒸発器の冷媒蒸発温度を制御する装置を備えている。
【0010】
【発明の実施の形態】
以下、本発明をより詳細に説明する。
テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩、トリiso−アミルスルホニウム塩などのゲスト化合物の水溶液を冷却すると、0℃以上の温度でゲスト化合物の水和物が生成し、水溶液中に水和物が分散した水和物スラリとなる。このような水和物スラリは、ゲスト化合物が溶解した水溶液から冷却によって水和物の固体が生成する固液相変化時に潜熱を持つため高い熱密度を持つ冷熱輸送媒体として利用できる。
【0011】
図1に、水和物スラリの代表例として、テトラn−ブチルアンモニウムブロマイド(TBAB)水和物スラリについて、スラリ温度12℃を基準とした温度と比エンタルピとの関係を示す。この図に示されるように、水和物スラリはある温度域で潜熱を持つという特徴を有する。すなわち、水和物スラリの温度が高いと熱密度が小さく、水和物スラリの温度が低いと熱密度が大きい。このため、冷熱利用システムの冷熱輸送媒体として水和物スラリを用いる場合、負荷側機器の冷熱負荷が小さいときには、潜熱を利用できる範囲で水和物スラリの温度を高くすることにより熱密度を小さくすることが可能である。このことは、冷熱負荷が小さいときには、水和物スラリの温度を上げるように、たとえばゲスト化合物の水溶液を冷却する冷凍機の蒸発器の冷媒蒸発温度を上げて運転できることを意味する。
【0012】
したがって、冷熱負荷が小さいときには、冷熱負荷に応じて小さな熱密度を持つ水和物スラリを製造するように、冷凍機の蒸発器の冷媒蒸発温度を上げて水和物スラリの温度を上げ、熱密度を小さくする。一方、冷熱負荷が大きいときには、大きな熱密度を持つ水和物スラリを製造するように、冷凍機の蒸発器の冷媒蒸発温度を下げて水和物スラリの温度を下げ、熱密度を大きくする。また、冷熱負荷が大きくなったり小さくなったりする場合には、水和物スラリの熱密度を小さくしたり大きくするように、冷凍機の蒸発器の冷媒蒸発温度を上げたり下げたりする。冷熱負荷が小さいままか、大きいままの場合は水和物スラリの熱密度を小さいままか大きいままに維持するように、冷凍機の蒸発器の冷媒蒸発温度を上げたままか下げたままに維持する。
【0013】
冷凍機は蒸発器の冷媒蒸発温度が高いほど成績係数(COP)が向上するので、以上のように冷熱負荷に合わせて冷凍機の蒸発器の冷媒蒸発温度を制御して運転することにより、冷凍機の消費電力を低減して成績係数を向上させることができる。
【0014】
図2に本発明の一実施形態に係る冷熱利用システムの系統図を示す。冷凍機1で製造された水和物スラリは、輸送ポンプ2によって配管3を通して負荷側機器4へ送られ、負荷側機器4から配管5を通して冷凍機1へ戻るように循環する。冷凍機1は、冷媒たとえばフロン系R134a、R22などを蒸発器、圧縮機、凝縮器および膨張弁を循環させることにより冷却し、冷媒とゲスト化合物を含む水溶液との熱交換により水溶液を冷却して水和物を生成させ水和物スラリを製造するものである。
【0015】
冷凍機1から負荷側機器4への配管3には第1の熱密度計6が設けられ、負荷側機器4から冷凍機1への配管5には第2の熱密度計7が設けられている。第1の熱密度計6の測定値と第2の熱密度計7の測定値の差に質量流量を乗じた値が負荷側機器4で消費された冷熱量(冷熱負荷)に相当する。第1の熱密度計6の測定値と第2の熱密度計7の測定値は制御装置8に入力され、冷熱負荷が小さいときには制御装置8により冷凍機1を構成する蒸発器の冷媒蒸発温度を上げるように制御し、冷熱負荷に応じて変化させた熱密度を持つ水和物スラリを製造する。このように、冷熱負荷が小さいときには冷凍機1を構成する蒸発器の冷媒蒸発温度を上げることができるので、冷凍機1のCOPを向上させ、冷凍機1の運転での省エネルギー化を図ることができる。
【0016】
本発明の冷熱利用システムにおいて用いられる熱密度計測方法を図3および図4を参照して説明する。水和物スラリは潜熱を持つ水和物粒子と冷却によって水和物を生成する水溶液とからなる固液混相流体で、水和物スラリの熱密度は基準温度に達するまでに保有している単位質量あたりの熱量を意味し、水和物の持つ潜熱量と水和物ならびに水溶液の顕熱量の和で表される。顕熱量は温度に比例し直線近似できるが、潜熱量は水和物スラリ中の水和物の割合と水和物の潜熱の積によって求まる。ここで水和物スラリ中の水和物の割合を固相率という。このように水和物スラリの熱密度は、温度と固相率を計測することにより求めることができる。
【0017】
図3に示す第1の熱密度計測方法に用いる熱密度計は以下のように構成されている。たとえば配管3に、水和物スラリの固相率が変化した場合に流量指示値が連動して変化する第1の流量計(たとえば電磁式流量計)11と、水和物スラリの固相率が変化しても流量指示値が実質的に変化しない第2の流量計(たとえば質量流量計または体積流量計)12とが直列に配置されている。ここで、第1の流量計11による流量指示値と第2の流量計12による流量指示値と、所定濃度の水溶液から製造された水和物スラリの固相率との関係が予め求められ、検量線が作成されている。図3に示す演算器13には検量線データが記憶されており、第1の流量計11からの実測流量指示値と第2の流量計12からの実測流量指示値が入力され、検量線データに当てはめて水和物スラリの固相率が求められる。また、配管3に水和物スラリの温度を計測する温度計14が配置されている。
【0018】
次に、水和物スラリの固相率と温度から水和物スラリの熱密度を求める方法を説明する。TBABの水和物には潜熱量の相違する第一水和物(水和数36)と第二水和物(水和数26)の2種類が存在する。第一水和物スラリと第二水和物スラリそれぞれの温度と固相率との関係を予め求めておき、温度計14により計測した水和物スラリの温度と、上記により求めた水和物スラリの固相率から、水和物スラリ中の第一水和物と第二水和物の比率が求められる。
【0019】
さらに、予め測定されている水和物スラリの固相成分すなわち第一水和物と第一水和物の潜熱量および顕熱量ならびに水溶液成分の顕熱量と、上記のようにして求められた固相率および水和物スラリ中の第一水和物と第二水和物の比率とから、水和物スラリの熱密度が算出される。
【0020】
上記の方法により水和物スラリの熱密度を計測する熱密度計が冷熱利用システムの負荷側機器の上流側と下流側に設けられ、計測した熱密度の差から冷熱負荷を計測する。
【0021】
図4に示す第2の熱密度計測方法に用いる熱密度計は以下のように構成されている。たとえば配管5の途中には圧損測定部21が形成されており、この圧損測定部21内に圧損要素としてオリフィス22が設けられている。圧損測定部21の上流側には、水和物スラリの流量を測定する流量計23および水和物スラリの温度を測定する温度計24が設けられている。また、圧損測定部21のオリフィス22の上流側と下流側にはそれぞれ圧力計25,26が設けられており、オリフィス22を通過する水和物スラリの圧損(圧力低下)が検出される。これらの流量計23、温度計24、圧力計25,26からの計測値は演算器27に送られる。この演算器27ではこれらの計測値に基づいて水和物スラリの熱密度がオンラインで連続的に算出される。
【0022】
ここで、水和物スラリの圧力損失は流速と水和物スラリの粘性とに関係するが、圧力損失と粘性の関係が予め求められている。また、所定濃度の水溶液から製造された水和物スラリの固相率と粘性の関係が予め求められる。したがって、流量計23により水和物スラリの流量を測定するとともに、圧力計25,26によりオリフィス22を通過する水和物スラリの圧損を測定することにより、水和物スラリの粘性が求められ、さらに固相率が求められる。
【0023】
求めた水和物スラリの温度と固相率から第1の熱密度計測方法と同様に水和物スラリの熱密度が算出される。
【0024】
上記の方法により、水和物スラリの熱密度を計測する熱密度計が図2に示すように冷熱利用システムの負荷側機器の上流側と下流側に設けられ、計測した熱密度の差から冷熱負荷を計測する。
【0025】
なお、上記の説明では図4に示す熱密度計を配管5の途中に設けたが、配管5の枝管に設けて設置してもよい。
【0026】
冷熱負荷に応じて水和物スラリの熱密度を変化させるように、水和物スラリの温度を変化させて製造するために冷凍機の蒸発器の冷媒蒸発温度を制御する方法の実施例を図5に示す。図5に示すように、冷凍機1は冷媒を蒸発器101、蒸発圧力制御弁102、圧縮機103、凝縮器104および膨張弁105を循環させることにより冷却する。このとき、蒸発圧力制御弁102の開度を制御することにより、蒸発器101内の圧力を変化させ、冷媒蒸発温度を制御する。図2と同様に、蒸発器101内の冷媒とゲスト化合物を含む水溶液との熱交換により水溶液を冷却して水和物を生成させ水和物スラリが製造され、製造された水和物スラリは輸送ポンプ2によって配管3を通して負荷側機器4へ送られ、負荷側機器4から配管5を通して冷凍機1へ戻るように循環する。また、冷凍機1から負荷側機器4への配管3には第1の熱密度計6が設けられ、負荷側機器4から冷凍機1への配管5には第2の熱密度計7が設けられている。シーケンサー110内の2つの演算器13、13によってそれぞれ計測された第1の熱密度計6の測定値と第2の熱密度計7の測定値に基づいて、冷熱負荷演算器111により冷熱負荷が演算される。冷熱負荷が小さいときには水和物スラリの温度を高くし熱密度を小さくするように、蒸発器101の冷媒蒸発温度を上げるように制御する。冷熱負荷の演算結果が、蒸発圧力制御弁制御器120に入力されて蒸発圧力制御弁102の開度をPID制御し、上述したように蒸発器101内の圧力を変化させ、冷媒蒸発温度を制御する。このように冷熱負荷が小さいときは蒸発器101の冷媒蒸発温度を上げることができるので、冷凍機1のCOPを向上させ省エネルギーを図ることができる。
【0027】
蒸発圧力制御弁制御器120は冷凍機1と一体となす場合や、冷凍機1と分離されている場合があるが、シーケンサ110とともに冷凍機の運転を制御する装置を構成している。また、蒸発圧力制御弁制御器120が冷凍機1の一部である場合、シーケンサ110が冷凍機の運転を制御する装置を構成する。
【0028】
【発明の効果】
以上詳述したように本発明によれば、顕熱と潜熱を利用でき高い熱密度を持つ冷熱輸送媒体として水和物スラリを用いた冷熱利用システムで、負荷に見合った熱密度を持つ水和物スラリを製造することにより冷凍機を高い成績係数で運転でき、省エネルギー化を図ることができる。
【図面の簡単な説明】
【図1】TBAB水和物スラリについて、温度と比エンタルピとの関係を示す図。
【図2】本発明の一実施形態に係る冷熱利用システムを示す系統図。
【図3】本発明において用いられる熱密度計の一例を示す構成図。
【図4】本発明において用いられる熱密度計の他の例を示す構成図。
【図5】本発明における冷凍機の蒸発器の冷媒蒸発温度を制御する機構の一例を示す系統図。
【符号の説明】
1…冷凍機
2…輸送ポンプ
3,5…配管
4…負荷側機器
6…第1の熱密度計
7…第2の熱密度計
8…制御装置
11…第1の流量計
12…第2の流量計
13…演算器
14…温度計
21…圧損測定部
22…オリフィス
23…流量計
24…温度計
25,26…圧力計
27…演算器
101…蒸発器
102…蒸発圧力制御弁
103…圧縮機
104…凝縮器
105…膨張弁
110…シーケンサー
111…冷熱負荷演算器
120…蒸発圧力制御弁制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold utilization system utilizing hydrate slurry as cold transport medium.
[0002]
[Prior art]
In the field of cooling and industrial refrigeration systems, by increasing the transport heat density of the refrigeration medium, the flow rate is reduced, the transport pump power is reduced, the transport pipe power is reduced, and the piping cost and construction are reduced. Attempts have been made to reduce costs. As a means for increasing the transport heat density of a cold medium, a technique using a cold transport medium that utilizes latent heat during a solid-liquid phase change in addition to sensible heat is known. For example, an ice-water slurry using sensible heat of water and latent heat of melting of ice is currently being tried as a cold transport medium having a high heat density.
[0003]
When a refrigeration transport medium having a high heat density that can use sensible heat and latent heat is used in a cooling or industrial refrigeration system, it is desired to supply the chill transport medium with a cold amount corresponding to the cold load. As a means for this, when ice water slurry is used as a cold transport medium, in order to reduce the amount of transport cold heat, the capacity of the refrigerator is controlled to perform partial load operation, and the proportion of ice in the ice water slurry is reduced to reduce the amount of cold heat. A method of reducing the transport heat density has been considered.
[0004]
However, when using a cold transport medium that has a constant temperature at the time of phase change, such as ice, it is necessary to keep the refrigerant evaporation temperature of the evaporator constituting the refrigerator constant even during partial load operation of the refrigerator. There is. For this reason, the operation method of raising the refrigerant | coolant evaporation temperature of an evaporator and improving the coefficient of performance (COP) of a refrigerator cannot be employ | adopted, but the fall of COP resulting from partial load operation only arises.
[0005]
[Problems to be solved by the invention]
An object of the present invention, sensible heat and latent using hydrate slurry as cold transport medium having a high heat density available, cold heat that can improve the performance coefficient of the refrigeration for the production of the hydrate slurry The purpose is to provide a usage system.
[0006]
[Means for Solving the Problems]
The cold energy utilization system according to the present invention includes a refrigerator that cools an aqueous solution of a guest compound that produces a hydrate to produce a hydrate slurry, and a pipe that communicates the refrigerator and a load-side device that utilizes cold energy. A first heat density meter provided in a pipe from the refrigerator to a load side device, and a second heat density meter provided in a pipe from the load side device to the refrigerator. The cold load is measured from the difference in heat density between the heat density meter and the hydrate slurry obtained from the first and second heat density meters, and the heat density of the hydrate slurry is changed according to the cold load. And a device for controlling the operation of the refrigerator as manufactured.
[0007]
In one embodiment, the cold energy utilization system includes a first heat density meter, a first flow rate indicator, and a flow rate instruction value that changes in conjunction with a change in a solid phase ratio of the hydrate slurry. A flow meter, a second flow meter in which the flow rate indication value does not change even if the solid fraction of the hydrate slurry changes, a thermometer that measures the temperature of the hydrate slurry, and the first and second And a calculator for calculating the heat density of the hydrate slurry based on the measured flow rate instruction value from each of the flow meters and the temperature measured by the thermometer.
[0008]
In another aspect, in the cold utilization system, each of the first and second heat density meters is provided on an orifice and a first pressure gauge provided on the upstream side of the orifice and on a downstream side of the orifice. A pressure loss measuring unit comprising a second pressure gauge, a flow meter for measuring the flow rate of the hydrate slurry, and a thermometer for measuring the temperature of the hydrate slurry, provided upstream of the pressure loss measuring unit. And an arithmetic unit for calculating the heat density of the hydrate slurry based on the measured values from the first and second pressure gauges, the flowmeter and the thermometer.
[0009]
An apparatus for controlling the operation of the refrigerator in the cold energy utilization system includes, for example, an apparatus for controlling the refrigerant evaporation temperature of an evaporator constituting the refrigerator.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
When an aqueous solution of a guest compound such as tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt, triiso-amylsulfonium salt is cooled, the hydrate of the guest compound is formed at a temperature of 0 ° C. or higher. It forms and becomes a hydrate slurry in which a hydrate is dispersed in an aqueous solution. Such a hydrate slurry has a latent heat at the time of a solid-liquid phase change in which a hydrate solid is generated by cooling from an aqueous solution in which a guest compound is dissolved, and thus can be used as a cold transport medium having a high heat density.
[0011]
FIG. 1 shows the relationship between the temperature based on a slurry temperature of 12 ° C. and the specific enthalpy for tetra n-butylammonium bromide (TBAB) hydrate slurry as a representative example of hydrate slurry. As shown in this figure, the hydrate slurry has the characteristic of having latent heat in a certain temperature range. That is, when the temperature of the hydrate slurry is high, the heat density is low, and when the temperature of the hydrate slurry is low, the heat density is high. For this reason, when using a hydrate slurry as a cold transport medium for a cold energy utilization system, when the load on the load side equipment is small, the heat density is reduced by increasing the temperature of the hydrate slurry within the range where latent heat can be used. Is possible. This means that when the cooling load is small, operation can be performed by increasing the refrigerant evaporation temperature of the evaporator of the refrigerator that cools the aqueous solution of the guest compound, for example, so as to increase the temperature of the hydrate slurry.
[0012]
Therefore, when the cooling load is small, the refrigerant evaporation temperature of the evaporator of the refrigerator is increased to increase the temperature of the hydrate slurry so as to produce a hydrate slurry having a small heat density according to the cooling load. Reduce the density. On the other hand, when the cold load is large, the refrigerant evaporation temperature of the evaporator of the refrigerator is lowered to lower the temperature of the hydrate slurry so as to produce a hydrate slurry having a large heat density, thereby increasing the heat density. Further, when the cooling load is increased or decreased, the refrigerant evaporation temperature of the evaporator of the refrigerator is increased or decreased so as to decrease or increase the heat density of the hydrate slurry. Keep the refrigeration evaporator's refrigerant evaporation temperature either raised or lowered so that the thermal density of the hydrate slurry remains small or large if the cold load remains small or large To do.
[0013]
Since the coefficient of performance (COP) of a refrigerator increases as the refrigerant evaporation temperature of the evaporator increases, the refrigerant is operated by controlling the refrigerant evaporation temperature of the evaporator of the refrigerator according to the cooling load as described above. The coefficient of performance can be improved by reducing the power consumption of the machine.
[0014]
FIG. 2 shows a system diagram of a cold energy utilization system according to an embodiment of the present invention. The hydrate slurry produced by the refrigerator 1 is sent to the load side device 4 through the pipe 3 by the transport pump 2 and circulates back from the load side device 4 to the refrigerator 1 through the pipe 5. The refrigerator 1 cools the refrigerant, for example, chlorofluorocarbons R134a and R22 by circulating the evaporator, the compressor, the condenser, and the expansion valve, and cools the aqueous solution by heat exchange between the refrigerant and the aqueous solution containing the guest compound. Hydrate is produced to produce a hydrate slurry.
[0015]
The pipe 3 from the refrigerator 1 to the load side device 4 is provided with a first heat density meter 6, and the pipe 5 from the load side device 4 to the refrigerator 1 is provided with a second heat density meter 7. Yes. A value obtained by multiplying the difference between the measurement value of the first heat density meter 6 and the measurement value of the second heat density meter 7 by the mass flow rate corresponds to the amount of cooling energy (cooling load) consumed by the load side device 4. The measurement value of the first heat density meter 6 and the measurement value of the second heat density meter 7 are input to the control device 8, and when the cooling load is small, the refrigerant evaporation temperature of the evaporator constituting the refrigerator 1 by the control device 8. A hydrate slurry having a heat density that is controlled according to the cooling load is produced. As described above, when the cooling load is small, the refrigerant evaporation temperature of the evaporator constituting the refrigerator 1 can be raised, so that the COP of the refrigerator 1 can be improved and energy saving in the operation of the refrigerator 1 can be achieved. it can.
[0016]
A heat density measurement method used in the cold energy utilization system of the present invention will be described with reference to FIGS. Hydrate slurry is a solid-liquid mixed phase fluid consisting of hydrate particles with latent heat and an aqueous solution that produces hydrates by cooling, and the thermal density of the hydrate slurry is the unit held by the time it reaches the reference temperature. It means the amount of heat per mass, and is expressed as the sum of the latent heat amount of the hydrate and the sensible heat amount of the hydrate and aqueous solution. The amount of sensible heat is proportional to the temperature and can be linearly approximated, but the amount of latent heat is determined by the product of the ratio of the hydrate in the hydrate slurry and the latent heat of the hydrate. Here, the ratio of the hydrate in the hydrate slurry is called the solid phase ratio. Thus, the heat density of the hydrate slurry can be determined by measuring the temperature and the solid fraction.
[0017]
The heat density meter used in the first heat density measuring method shown in FIG. 3 is configured as follows. For example, in the pipe 3, when the solid phase ratio of the hydrate slurry changes, the first flow meter (for example, an electromagnetic flow meter) 11 in which the flow rate indication value changes in conjunction with the solid phase ratio of the hydrate slurry, A second flow meter (for example, a mass flow meter or a volumetric flow meter) 12 in which the flow rate instruction value does not substantially change even when the value changes is arranged in series. Here, the relationship between the flow rate instruction value by the first flow meter 11, the flow rate instruction value by the second flow meter 12, and the solid phase ratio of the hydrate slurry produced from the aqueous solution having a predetermined concentration is obtained in advance. A calibration curve has been created. Calibration curve data is stored in the calculator 13 shown in FIG. 3, and the actual flow rate instruction value from the first flow meter 11 and the actual flow rate instruction value from the second flow meter 12 are input, and the calibration curve data is input. To determine the solid phase ratio of the hydrate slurry. Further, a thermometer 14 for measuring the temperature of the hydrate slurry is disposed in the pipe 3.
[0018]
Next, a method for obtaining the heat density of the hydrate slurry from the solid phase ratio and temperature of the hydrate slurry will be described. There are two types of TBAB hydrates: a first hydrate (hydration number 36) and a second hydrate (hydration number 26) having different latent heat amounts. The relationship between the temperature and the solid phase ratio of each of the first hydrate slurry and the second hydrate slurry is determined in advance, and the hydrate slurry temperature measured by the thermometer 14 and the hydrate determined as described above. From the solid phase ratio of the slurry, the ratio of the first hydrate and the second hydrate in the hydrate slurry is obtained.
[0019]
Further, the solid phase component of the hydrate slurry, that is, the latent heat amount and the sensible heat amount of the first hydrate and the first hydrate, and the sensible heat amount of the aqueous solution component, and the solid amount obtained as described above are measured. The thermal density of the hydrate slurry is calculated from the phase ratio and the ratio of the first hydrate and the second hydrate in the hydrate slurry.
[0020]
A heat density meter for measuring the heat density of the hydrate slurry by the above method is provided on the upstream side and the downstream side of the load side device of the cold energy utilization system, and the cold load is measured from the difference of the measured heat density.
[0021]
The heat density meter used in the second heat density measuring method shown in FIG. 4 is configured as follows. For example, a pressure loss measuring unit 21 is formed in the middle of the pipe 5, and an orifice 22 is provided as a pressure loss element in the pressure loss measuring unit 21. A flow meter 23 that measures the flow rate of the hydrate slurry and a thermometer 24 that measures the temperature of the hydrate slurry are provided on the upstream side of the pressure loss measurement unit 21. In addition, pressure gauges 25 and 26 are provided on the upstream side and the downstream side of the orifice 22 of the pressure loss measuring unit 21, respectively, and the pressure loss (pressure drop) of the hydrate slurry passing through the orifice 22 is detected. Measurement values from the flow meter 23, the thermometer 24, and the pressure gauges 25 and 26 are sent to the calculator 27. In this calculator 27, the heat density of the hydrate slurry is continuously calculated on-line based on these measured values.
[0022]
Here, the pressure loss of the hydrate slurry is related to the flow velocity and the viscosity of the hydrate slurry, but the relationship between the pressure loss and the viscosity is obtained in advance. Further, the relationship between the solid phase ratio and viscosity of a hydrate slurry produced from an aqueous solution having a predetermined concentration is obtained in advance. Therefore, by measuring the flow rate of the hydrate slurry with the flow meter 23 and measuring the pressure loss of the hydrate slurry passing through the orifice 22 with the pressure meters 25 and 26, the viscosity of the hydrate slurry is obtained, Furthermore, the solid phase ratio is required.
[0023]
The heat density of the hydrate slurry is calculated from the obtained temperature and solid fraction of the hydrate slurry in the same manner as in the first heat density measurement method.
[0024]
With the above method, a heat density meter for measuring the heat density of the hydrate slurry is provided on the upstream side and the downstream side of the load side equipment of the cold energy utilization system as shown in FIG. Measure the load.
[0025]
In the above description, the heat density meter shown in FIG. 4 is provided in the middle of the pipe 5, but it may be provided in a branch pipe of the pipe 5.
[0026]
An example of a method for controlling the refrigerant evaporation temperature of the evaporator of a refrigerator to produce by changing the temperature of the hydrate slurry so as to change the heat density of the hydrate slurry according to the cold load. As shown in FIG. As shown in FIG. 5, the refrigerator 1 cools the refrigerant by circulating it through an evaporator 101, an evaporation pressure control valve 102, a compressor 103, a condenser 104, and an expansion valve 105. At this time, by controlling the opening degree of the evaporation pressure control valve 102, the pressure in the evaporator 101 is changed to control the refrigerant evaporation temperature. As in FIG. 2, a hydrate slurry is produced by cooling the aqueous solution by heat exchange between the refrigerant in the evaporator 101 and the aqueous solution containing the guest compound to produce a hydrate slurry, and the produced hydrate slurry is It is sent to the load side device 4 through the pipe 3 by the transport pump 2 and circulates back from the load side device 4 to the refrigerator 1 through the pipe 5. The pipe 3 from the refrigerator 1 to the load side device 4 is provided with a first heat density meter 6, and the pipe 5 from the load side device 4 to the refrigerator 1 is provided with a second heat density meter 7. It has been. Based on the measured value of the first heat density meter 6 and the measured value of the second heat density meter 7 respectively measured by the two calculators 13 and 13 in the sequencer 110, the cooling load is calculated by the cooling load calculator 111. Calculated. When the cooling load is small, control is performed to raise the refrigerant evaporation temperature of the evaporator 101 so as to increase the temperature of the hydrate slurry and reduce the heat density. The calculation result of the cooling load is input to the evaporation pressure control valve controller 120, the opening degree of the evaporation pressure control valve 102 is PID-controlled, and the pressure in the evaporator 101 is changed as described above to control the refrigerant evaporation temperature. To do. Thus, when the cooling load is small, the refrigerant evaporation temperature of the evaporator 101 can be raised, so that the COP of the refrigerator 1 can be improved and energy saving can be achieved.
[0027]
The evaporation pressure control valve controller 120 may be integrated with the refrigerator 1 or may be separated from the refrigerator 1, but constitutes a device that controls the operation of the refrigerator together with the sequencer 110. Further, when the evaporation pressure control valve controller 120 is a part of the refrigerator 1, the sequencer 110 constitutes an apparatus for controlling the operation of the refrigerator.
[0028]
【Effect of the invention】
As described above in detail, according to the present invention, a refrigeration system using a hydrate slurry as a refrigeration transport medium that can utilize sensible heat and latent heat and has a high heat density, hydration having a heat density corresponding to the load. By manufacturing the material slurry, the refrigerator can be operated with a high coefficient of performance, and energy saving can be achieved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between temperature and specific enthalpy for a TBAB hydrate slurry.
FIG. 2 is a system diagram showing a cold energy utilization system according to an embodiment of the present invention.
FIG. 3 is a configuration diagram showing an example of a heat density meter used in the present invention.
FIG. 4 is a configuration diagram showing another example of a heat density meter used in the present invention.
FIG. 5 is a system diagram showing an example of a mechanism for controlling the refrigerant evaporation temperature of the evaporator of the refrigerator according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refrigerator 2 ... Transport pump 3, 5 ... Pipe 4 ... Load side apparatus 6 ... 1st heat density meter 7 ... 2nd heat density meter 8 ... Control apparatus 11 ... 1st flow meter 12 ... 2nd Flow meter 13 ... Calculator 14 ... Thermometer 21 ... Pressure loss measuring unit 22 ... Orifice 23 ... Flow meter 24 ... Thermometer 25, 26 ... Pressure gauge 27 ... Calculator 101 ... Evaporator 102 ... Evaporation pressure control valve 103 ... Compressor 104 ... Condenser 105 ... Expansion valve 110 ... Sequencer 111 ... Cold load calculator 120 ... Evaporation pressure control valve controller

Claims (3)

水和物を生成するゲスト化合物の水溶液を冷却して水和物スラリを製造する冷凍機と、前記冷凍機と冷熱を利用する負荷側機器とを連通する配管系とを有する冷熱利用システムであって、前記冷凍機から負荷側機器への配管に設けられた第1の熱密度計と、負荷側機器から前記冷凍機への配管に設けられた第2の熱密度計と、前記第1および第2の熱密度計から得られる水和物スラリの熱密度の差から冷熱負荷を計測し、前記冷熱負荷に応じて水和物スラリの熱密度を変化させて製造するように冷凍機の運転を制御する装置とを具備し
前記第1および第2の熱密度計はそれぞれ、水和物スラリの固相率が変化した場合に流量指示値が連動して変化する第1の流量計と、水和物スラリの固相率が変化しても流量指示値が変化しない第2の流量計と、水和物スラリの温度を測定する温度計と、前記第1および第2の流量計のそれぞれからの実測流量指示値および前記温度計により計測された温度に基づいて、水和物スラリの熱密度を算出する演算器とを具備することを特徴とする冷熱利用システム。
A cold energy utilization system comprising a refrigerator that cools an aqueous solution of a guest compound that forms a hydrate to produce a hydrate slurry, and a piping system that communicates the refrigerator with a load-side device that utilizes cold energy. A first heat density meter provided in a pipe from the refrigerator to a load side device, a second heat density meter provided in a pipe from the load side device to the refrigerator, the first and Operation of the refrigerator so as to measure the cold load from the difference in heat density of the hydrate slurry obtained from the second heat density meter, and to produce by changing the heat density of the hydrate slurry according to the cold load. ; and a control device,
Each of the first and second heat density meters includes a first flow meter in which the flow rate indication value changes in conjunction with a change in the solid fraction of the hydrate slurry, and a solid fraction of the hydrate slurry. The flow rate instruction value does not change even if the flow rate changes, the thermometer that measures the temperature of the hydrate slurry, the actual flow rate instruction value from each of the first and second flow meters, and the A cold energy utilization system comprising: an arithmetic unit that calculates a heat density of a hydrate slurry based on a temperature measured by a thermometer .
水和物を生成するゲスト化合物の水溶液を冷却して水和物スラリを製造する冷凍機と、前記冷凍機と冷熱を利用する負荷側機器とを連通する配管系とを有する冷熱利用システムであって、前記冷凍機から負荷側機器への配管に設けられた第1の熱密度計と、負荷側機器から前記冷凍機への配管に設けられた第2の熱密度計と、前記第1および第2の熱密度計から得られる水和物スラリの熱密度の差から冷熱負荷を計測し、前記冷熱負荷に応じて水和物スラリの熱密度を変化させて製造するように冷凍機の運転を制御する装置とを具備し
前記第1および第2の熱密度計はそれぞれ、オリフィスおよび該オリフィスの上流側に備えられた第1の圧力計および該オリフィスの下流側に備えられた第2の圧力計を具備する圧損測定部と、前記圧損測定部の上流側に設けられた、水和物スラリの流量を測定する流量計および水和物スラリの温度を測定する温度計と、前記第1および第2の圧力計、前記流量計および前記温度計からの計測値に基づいて、水和物スラリの熱密度を算出する演算器とを具備することを特徴とする冷熱利用システム。
A cold energy utilization system comprising a refrigerator that cools an aqueous solution of a guest compound that forms a hydrate to produce a hydrate slurry, and a piping system that communicates the refrigerator with a load-side device that utilizes cold energy. A first heat density meter provided in a pipe from the refrigerator to a load side device, a second heat density meter provided in a pipe from the load side device to the refrigerator, the first and Operation of the refrigerator so as to measure the cold load from the difference in heat density of the hydrate slurry obtained from the second heat density meter, and to produce by changing the heat density of the hydrate slurry according to the cold load. ; and a control device,
Each of the first and second heat density meters includes an orifice, a first pressure gauge provided on the upstream side of the orifice, and a second pressure gauge provided on the downstream side of the orifice. A flow meter for measuring the flow rate of the hydrate slurry, a thermometer for measuring the temperature of the hydrate slurry, the first and second pressure meters, provided on the upstream side of the pressure loss measuring unit, A cold utilization system comprising: a flow meter and an arithmetic unit that calculates a heat density of the hydrate slurry based on a measured value from the thermometer .
前記冷凍機の運転を制御する装置が、冷凍機を構成する蒸発器の冷媒蒸発温度を制御する装置を備えることを特徴とする請求項1又は2に記載の冷熱利用システム。The cold energy utilization system according to claim 1 or 2 , wherein the device that controls the operation of the refrigerator includes a device that controls a refrigerant evaporation temperature of an evaporator constituting the refrigerator.
JP2001249446A 2001-08-20 2001-08-20 Refrigeration system Expired - Fee Related JP4904646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249446A JP4904646B2 (en) 2001-08-20 2001-08-20 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249446A JP4904646B2 (en) 2001-08-20 2001-08-20 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2003055650A JP2003055650A (en) 2003-02-26
JP4904646B2 true JP4904646B2 (en) 2012-03-28

Family

ID=19078448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249446A Expired - Fee Related JP4904646B2 (en) 2001-08-20 2001-08-20 Refrigeration system

Country Status (1)

Country Link
JP (1) JP4904646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078143A (en) * 2015-10-22 2017-04-27 国立研究開発法人産業技術総合研究所 Heat storage medium, heat storage method, heat storage device, and method for producing tetrabutylammonium bromide hydrate of hydration number 26 containing gaseous molecule

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510888B2 (en) * 1990-03-20 1996-06-26 高砂熱学工業株式会社 How to operate an ice storage air conditioning system
JPH1019321A (en) * 1996-07-02 1998-01-23 Chubu Electric Power Co Inc Control method of heat transportation system
JP3641362B2 (en) * 1998-03-18 2005-04-20 Jfeエンジニアリング株式会社 Cold storage method using cold clathrate, cold storage system, and cold storage agent

Also Published As

Publication number Publication date
JP2003055650A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
EP0895038A1 (en) A digital controller for a cooling and heating plant having near-optimal global set point control strategy
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
US8132420B2 (en) Variable evaporator water flow compensation for leaving water temperature control
CN100587368C (en) Control of refrigeration circuit with internal heat exchanger
WO2012057263A1 (en) Heat source apparatus
CN101646911A (en) Optimization of air cooled chiller system operation
US7841195B2 (en) Refrigeration apparatus and method for controlling the same
JP2011169588A (en) Air conditioning optimal control system
CN105378392A (en) Air-conditioning device
JP5013974B2 (en) Method and apparatus for estimating cooling water temperature
JP2018004097A (en) Heat source system and control method thereof
JP2003294290A (en) Unit number control device of heat source and unit number control method
JP6017374B2 (en) Heat source system
CN103573632B (en) A kind of slide valve position determination method for screw unit compressor
JP4986701B2 (en) Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device
JP5044251B2 (en) Building air conditioning optimum control system and building air conditioning optimum control device
JP4904646B2 (en) Refrigeration system
Gong et al. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions
Albieri et al. Advanced control systems for single compressor chiller units
Lee Thermodynamic Modeling and Experimental Validation of Screw Liquid Chillers.
EP1025404B1 (en) Method for supplying make-up water and refrigeration system carrying out the method
JP3125246U (en) Cooling tower that automatically adjusts cooling water flow rate and cooling air flow rate according to load change
JP2717716B2 (en) refrigerator
Tang et al. Performance investigation on a precision air conditioning system with a condensation heat recovery unit under varying operating conditions
CN107218700B (en) Air-conditioning system efficient heat, the calculation method of efficiency and energy flow chart display methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees