JP5499931B2 - Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system - Google Patents

Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system Download PDF

Info

Publication number
JP5499931B2
JP5499931B2 JP2010140162A JP2010140162A JP5499931B2 JP 5499931 B2 JP5499931 B2 JP 5499931B2 JP 2010140162 A JP2010140162 A JP 2010140162A JP 2010140162 A JP2010140162 A JP 2010140162A JP 5499931 B2 JP5499931 B2 JP 5499931B2
Authority
JP
Japan
Prior art keywords
water
soluble inorganic
inorganic salt
transport medium
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010140162A
Other languages
Japanese (ja)
Other versions
JP2012001678A (en
Inventor
啓二 戸村
英治 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010140162A priority Critical patent/JP5499931B2/en
Publication of JP2012001678A publication Critical patent/JP2012001678A/en
Application granted granted Critical
Publication of JP5499931B2 publication Critical patent/JP5499931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、冷熱輸送媒体または蓄冷材の精製方法、再生方法、空調装置の保全方法、冷熱輸送媒体または蓄冷材の精製装置、再生装置、空調システムに関するものである。   The present invention relates to a purification method, a regeneration method, a maintenance method for an air conditioning apparatus, a purification apparatus, a regeneration apparatus, and an air conditioning system for a cold transport medium or a cold storage material.

ビルの空調や地域冷暖房においては、夜間電力により蓄冷材を蓄冷しておき、この蓄冷熱を翌日の昼間に取り出して利用する蓄冷空調システムが開発されている。このシステムに用いられる潜熱蓄冷材として、第4級アンモニウム塩の水和物が知られている。第4級アンモニウム塩の水和物は、第4級アンモニウム塩の水溶液を冷却して生成され、比較的蓄冷量が大きく、パラフィンのように可燃性ではないため取り扱いも容易であり、非常に有用な蓄冷材であり、冷熱輸送媒体としても使用されている。   In building air conditioning and district air conditioning, cold storage air conditioning systems have been developed in which cold storage materials are stored using nighttime electricity, and the stored heat is taken out during the daytime of the next day. A quaternary ammonium salt hydrate is known as a latent heat storage material used in this system. Quaternary ammonium salt hydrate is produced by cooling an aqueous solution of quaternary ammonium salt, has a relatively large amount of cold storage, is not flammable like paraffin, is easy to handle and is very useful It is a cool regenerator and is also used as a cold transport medium.

このような第4級アンモニウム塩の水和物を冷熱輸送媒体または蓄冷材として使用する際に、その特性を調整するために添加剤を添加する場合がある。また、冷熱輸送媒体または蓄冷材として使用中に、混入物として無機塩類が混ざってくる場合がある。一定期間使用され、冷熱輸送媒体または蓄冷材としての役目を終えた材料は、廃棄されることなくリサイクル使用されることが望ましいが、そのためには前記の添加された添加剤から生成あるいは混入した無機塩類を、第4級アンモニウム塩の水溶液から分離除去する必要がある。
分離除去しなければならない無機塩類は限定されるものではないが、例えば、該水和物(あるいは、第4級アンモニウム塩の水溶液)を輸送する配管や貯留する容器の腐食を抑制するために添加される腐食抑制剤から生成する無機塩類が、挙げられる。腐食抑制剤としては、例えば、亜硫酸ナトリウムが挙げられる。
When such a quaternary ammonium salt hydrate is used as a cold transport medium or a cold storage material, an additive may be added in order to adjust the characteristics. In addition, during use as a cold transport medium or a cold storage material, inorganic salts may be mixed as contaminants. It is desirable that materials that have been used for a certain period of time and have finished serving as a cold transport medium or cold storage material be recycled without being discarded. For this purpose, inorganic materials generated or mixed from the above-mentioned additives are added. It is necessary to separate and remove the salts from the aqueous solution of the quaternary ammonium salt.
The inorganic salts that must be separated and removed are not limited, but for example, added to suppress corrosion of piping and storage containers for transporting the hydrate (or an aqueous solution of a quaternary ammonium salt). And inorganic salts produced from the corrosion inhibitors that are produced. Examples of the corrosion inhibitor include sodium sulfite.

亜硫酸ナトリウムは水溶液中の溶存酸素や、大気中から溶け込んでくる酸素と反応して硫酸ナトリウムとなり、水溶液中の溶存酸素濃度を低下させて配管材の腐食を抑制する。水溶液中の亜硫酸ナトリウム濃度を一定濃度以上に維持することにより腐食を抑制することができるが、配管系に酸素が侵入すると亜硫酸ナトリウムが消費されるため、亜硫酸ナトリウム濃度を維持するために亜硫酸ナトリウムの追加添加が必要な場合があり、設備の構成や運転の条件によっては、亜硫酸ナトリウムが追加されることがある。このため、次第に水溶液中の硫酸ナトリウム濃度が増加することになるが、水溶液中の硫酸ナトリウム濃度が増加し、これが過大となると、冷熱輸送媒体または蓄冷材としての性能が著しく低下する。この場合、冷熱輸送媒体または蓄冷材を全て入れ替えるか、冷熱輸送媒体または蓄冷材から硫酸ナトリウムを除去して再生することが必要となる。
しかしながら、空調設備に用いられている冷熱輸送媒体または蓄冷材を全て入れ替えることは費用が嵩み困難である。
Sodium sulfite reacts with dissolved oxygen in the aqueous solution or with oxygen dissolved from the atmosphere to become sodium sulfate, reducing the concentration of dissolved oxygen in the aqueous solution and suppressing corrosion of the piping material. Corrosion can be suppressed by maintaining the sodium sulfite concentration in the aqueous solution above a certain level. However, when oxygen enters the piping system, sodium sulfite is consumed, so the sodium sulfite concentration is maintained to maintain the sodium sulfite concentration. Additional additions may be required, and sodium sulfite may be added depending on the equipment configuration and operating conditions. For this reason, the sodium sulfate concentration in the aqueous solution gradually increases, but when the sodium sulfate concentration in the aqueous solution increases and becomes excessive, the performance as a cold heat transport medium or a cold storage material is significantly reduced. In this case, it is necessary to replace all of the cold transport medium or the cold storage material, or to remove and regenerate sodium sulfate from the cold heat transport medium or the cold storage material.
However, it is difficult and expensive to replace all the cold transport medium or the regenerator material used in the air conditioning equipment.

そこで、発明者らは冷熱輸送媒体または蓄冷材の再生方法を検討し、その一例として以下のものを提案した。
第4級アンモニウム塩水溶液を主成分とし添加された腐食抑制剤から生成した水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生方法であって、冷熱輸送媒体または蓄冷材から水を除去して濃縮し、第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離し、水層を除去するものである。(特許文献1参照)。
特開2007−182510号公報
Therefore, the inventors examined a method for regenerating a cold transport medium or a cold storage material, and proposed the following as an example.
A method for regenerating a cold transport medium or a cold storage material comprising a water-soluble inorganic salt produced from a corrosion inhibitor added with a quaternary ammonium salt aqueous solution as a main component, wherein water is removed from the cold transport medium or the cold storage material Concentrate and separate into two layers, a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water layer having a high specific gravity containing a water-soluble inorganic salt, and the aqueous layer is removed. (See Patent Document 1).
JP 2007-182510 A

しかしながら、特許文献1に開示された再生方法では、第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する際に、水溶性無機塩が析出しスラッジが生成し、二層分離することが困難となることがあるという問題がある。   However, in the regeneration method disclosed in Patent Document 1, when two layers are separated into a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water layer having a high specific gravity containing a water-soluble inorganic salt, There is a problem that salt may precipitate and sludge will be generated, making it difficult to separate the two layers.

本発明はかかる問題点を解決するためになされたものであり、水溶性無機塩の析出を抑制し、第4級アンモニウム塩水溶液を主成分とし、純度の高い冷熱輸送媒体または蓄冷材の精製方法及び装置を提供することを目的としている。
また、第4級アンモニウム塩水溶液を主成分とする冷熱輸送媒体または蓄冷材から、水溶性無機塩の析出を抑制し該冷熱輸送媒体または蓄冷材に含まれる水溶性無機塩からなる不純物を除去して再生する方法、装置を提供することを目的としている。
また、第4級アンモニウム塩水溶液を主成分とする冷熱輸送媒体または蓄冷材から、水溶性無機塩の析出を抑制し該冷熱輸送媒体または蓄冷材に含まれる水溶性無機塩からなる不純物を除去して再生することによって装置の保全を行う空調装置の保全方法を提供することを目的としている。
また、第4級アンモニウム塩水溶液を主成分とする冷熱輸送媒体または蓄冷材から、水溶性無機塩の析出を抑制し該冷熱輸送媒体または蓄冷材に含まれる水溶性無機塩からなる不純物を除去して再生することによって装置の保全を行う空調システムを提供することを目的としている。
The present invention has been made to solve such problems, and suppresses precipitation of a water-soluble inorganic salt, and a method for purifying a high-quality cold heat transport medium or regenerator material mainly composed of a quaternary ammonium salt aqueous solution. And to provide an apparatus.
Moreover, precipitation of water-soluble inorganic salt is suppressed from the cold transport medium or cold storage material mainly composed of a quaternary ammonium salt aqueous solution, and impurities consisting of the water-soluble inorganic salt contained in the cold heat transport medium or cold storage material are removed. It is an object of the present invention to provide a playback method and apparatus.
Moreover, precipitation of water-soluble inorganic salt is suppressed from the cold transport medium or cold storage material mainly composed of a quaternary ammonium salt aqueous solution, and impurities consisting of the water-soluble inorganic salt contained in the cold heat transport medium or cold storage material are removed. It aims at providing the maintenance method of the air-conditioner which maintains an apparatus by reproducing | regenerating.
Moreover, precipitation of water-soluble inorganic salt is suppressed from the cold transport medium or cold storage material mainly composed of a quaternary ammonium salt aqueous solution, and impurities consisting of the water-soluble inorganic salt contained in the cold heat transport medium or cold storage material are removed. It aims at providing the air-conditioning system which maintains an apparatus by reproducing | regenerating.

特許文献1に示されるように、臭化テトラnブチルアンモニウム等の第4級アンモニウム塩水溶液に硫酸ナトリウム等の水溶性無機塩が混入した水溶液から水を除去して濃縮することにより、水より軽い軽液層と水層の二層に分離し、軽液層には第4級アンモニウム塩が濃縮されており、水層には水溶性無機塩が濃縮されている。
発明者らは、第4級アンモニウム塩を主成分とし水溶性無機塩を含む水溶液を濃縮して、第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する際に、水溶性無機塩が析出しスラッジが生成し、二層分離することが困難になる状況について鋭意検討した結果、水溶液の温度を所定温度範囲に保持することにより、水溶性無機塩の析出を抑制することができることを見出した。以下に、詳しく説明する。
As shown in Patent Document 1, it is lighter than water by removing and concentrating water from an aqueous solution in which a water-soluble inorganic salt such as sodium sulfate is mixed in an aqueous solution of quaternary ammonium salt such as tetra-n-butylammonium bromide. The light liquid layer and the water layer are separated into two layers. The light liquid layer is concentrated with a quaternary ammonium salt, and the water layer is concentrated with a water-soluble inorganic salt.
The inventors concentrate an aqueous solution containing a quaternary ammonium salt as a main component and containing a water-soluble inorganic salt, and a light liquid layer having a light specific gravity containing a quaternary ammonium salt and water having a high specific gravity containing a water-soluble inorganic salt. As a result of diligent investigation on the situation where water-soluble inorganic salt precipitates and sludge is generated when separating into two layers, making it difficult to separate into two layers, the temperature of the aqueous solution is maintained within a predetermined temperature range. The inventors have found that precipitation of water-soluble inorganic salts can be suppressed. This will be described in detail below.

第4級アンモニウム塩としての臭化テトラnブチルアンモニウム水溶液への、水溶性無機塩としての硫酸ナトリウムの溶解度と、水溶液温度との関係を調べた。
図1は水溶液温度と硫酸ナトリウムの溶解度との関係(溶解度曲線)を示す図であり、横軸は水溶液温度を、縦軸は硫酸ナトリウムの溶解度(水溶液100gに溶解する重量)を示す。硫酸ナトリウムの溶解度は水溶液温度が35℃で最大となっており、35℃より低い温度では著しく減少し、35℃より高い温度ではほぼ横ばいか多少減少している。このように水溶液温度が35℃より低いと、硫酸ナトリウムの臭化テトラnブチルアンモニウム水溶液への溶解度は著しく小さいため、水溶液を濃縮し硫酸ナトリウムの濃度が高い場合には硫酸ナトリウムが析出しスラッジを生成しやすいことが判明した。
そこで、硫酸ナトリウムを含む臭化テトラnブチルアンモニウム水溶液の温度を35℃以上に保持することにより、硫酸ナトリウムの水溶液に対する溶解度を高く保持することができ、硫酸ナトリウムの析出を抑制しスラッジの生成を防ぐことできることを見出した。(35℃より低い温度では硫酸ナトリウム10水和物塩として析出し、35℃より高い温度では硫酸ナトリウム無水和物塩として溶解して溶解度が高く析出しにくいことが推察される。)
The relationship between the solubility of sodium sulfate as a water-soluble inorganic salt in an aqueous solution of tetra n-butylammonium bromide as a quaternary ammonium salt and the aqueous solution temperature was examined.
FIG. 1 is a graph showing the relationship (solubility curve) between the aqueous solution temperature and the solubility of sodium sulfate, the horizontal axis indicates the aqueous solution temperature, and the vertical axis indicates the solubility of sodium sulfate (weight dissolved in 100 g of aqueous solution). The solubility of sodium sulfate is maximum at an aqueous solution temperature of 35 ° C., and is markedly decreased at a temperature lower than 35 ° C., and is almost flat or slightly decreased at a temperature higher than 35 ° C. Thus, when the aqueous solution temperature is lower than 35 ° C., the solubility of sodium sulfate in the aqueous solution of tetra-n-butylammonium bromide is extremely small. Therefore, when the aqueous solution is concentrated and the concentration of sodium sulfate is high, sodium sulfate is precipitated and sludge is removed. It turned out to be easy to generate.
Therefore, by maintaining the temperature of the tetra-n-butylammonium bromide aqueous solution containing sodium sulfate at 35 ° C. or higher, the solubility of the sodium sulfate in the aqueous solution can be kept high, and the precipitation of sodium sulfate can be suppressed to generate sludge. I found that I can prevent it. (It is presumed that at a temperature lower than 35 ° C., it precipitates as sodium sulfate decahydrate salt, and at a temperature higher than 35 ° C., it dissolves as sodium sulfate anhydrate salt and has high solubility and is difficult to precipitate.)

また、第4級アンモニウム塩水溶液に硫酸ナトリウム等の水溶性無機塩が混入した水溶液から水を除去して濃縮する際に、図1に示す溶解度曲線より上側の濃度まで濃縮すると硫酸ナトリウム等の水溶性無機塩が析出するので、35℃以上の温度における溶解度曲線で示される濃度未満に濃縮することが必要である。   In addition, when water is removed from an aqueous solution in which a water-soluble inorganic salt such as sodium sulfate is mixed in a quaternary ammonium salt aqueous solution and concentrated, the aqueous solution such as sodium sulfate can be obtained by concentrating to a concentration above the solubility curve shown in FIG. Since the inorganic salt is precipitated, it is necessary to concentrate it below the concentration indicated by the solubility curve at a temperature of 35 ° C. or higher.

以上の検討から、濃縮した第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離させるためには、濃縮された冷熱輸送媒体または蓄冷材の温度を、水溶性無機塩が析出しない所定温度範囲に保持する必要があり、その前提として、濃縮の段階においては二層分離における前記所定温度範囲において前記水溶性無機塩が析出する濃度未満の濃度範囲で濃縮する必要があるとの知見を得た。
上記においては臭化テトラnブチルアンモニウムと硫酸ナトリウムを例に挙げて説明したが、他のテトラアルキルアンモニウム塩等の第4級アンモニウム塩と他の水溶性無機塩との場合でも同様に水溶液の温度を前記所定温度範囲に保持することにより水溶性無機塩の析出を抑制できることを確認している。
From the above examination, in order to separate into two layers, a light liquid layer having a light specific gravity containing concentrated quaternary ammonium salt and a water layer having a high specific gravity containing water-soluble inorganic salt, a concentrated cold transport medium or cold storage is required. It is necessary to maintain the temperature of the material within a predetermined temperature range in which the water-soluble inorganic salt does not precipitate, and as a premise, in the concentration stage, it is less than the concentration at which the water-soluble inorganic salt precipitates in the predetermined temperature range in the two-layer separation It was found that it was necessary to concentrate in the concentration range of.
In the above description, tetra-n-butylammonium bromide and sodium sulfate have been described as examples. However, even in the case of other quaternary ammonium salts such as tetraalkylammonium salts and other water-soluble inorganic salts, the temperature of the aqueous solution is the same. It is confirmed that the precipitation of water-soluble inorganic salt can be suppressed by maintaining the temperature within the predetermined temperature range.

なお、濃縮された第4級アンモニウム塩水溶液の温度は、第4級アンモニウム塩の変質を避け、また高温に保持することは加熱保持のためのエネルギーを消費することになるため、このような観点から上限値を設けることが好ましい。
水溶性無機塩が、硫酸ナトリウム又はリン酸水素二ナトリウムの場合には、好ましい所定温度範囲は35℃以上45℃以下であることを見出している。
The temperature of the concentrated aqueous solution of the quaternary ammonium salt avoids the alteration of the quaternary ammonium salt, and maintaining it at a high temperature consumes energy for heating and holding. It is preferable to set an upper limit value.
It has been found that when the water-soluble inorganic salt is sodium sulfate or disodium hydrogen phosphate, a preferable predetermined temperature range is 35 ° C. or higher and 45 ° C. or lower.

本発明は上述した検討から得られた知見に基づくものであり、具体的には以下の構成を有するものである。   The present invention is based on the knowledge obtained from the above-described studies, and specifically has the following configuration.

(1)本発明に係る冷熱輸送媒体または蓄冷材の精製方法は、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製方法であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮工程と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程とを備え、
前記二層分離工程は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記濃縮工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮することを特徴とするものである。
(1) A method for purifying a cold transport medium or a cold storage material according to the present invention is a method for purifying a cold heat transport medium or a cold storage material containing a water-soluble inorganic salt mainly composed of a quaternary ammonium salt aqueous solution,
A concentration step of removing water from the cold transport medium or the regenerator material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water-soluble inorganic A two-layer separation step of separating into two layers having a heavy specific gravity containing salt, and a water layer removal step of removing the water layer from the two-layer separated cold transport medium or cold storage material,
In the two-layer separation step , the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the concentrated heat transport medium or the regenerator material is measured, and the measured concentration of the water-soluble inorganic salt is first grasped. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. A heating and holding step to
The concentration step concentrates the cold transport medium or the cold storage material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(2)また、本発明に係る冷熱輸送媒体または蓄冷材の精製方法は、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製方法であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加工程と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程とを備え、
前記二層分離工程は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記水溶性無機塩添加工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加することを特徴とするものである。
(2) Moreover, the purification method of the cold transport medium or the cold storage material according to the present invention is a purification method of the cold heat transfer medium or the cold storage material containing a water-soluble inorganic salt mainly composed of a quaternary ammonium salt aqueous solution,
A water-soluble inorganic salt addition step of adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold heat transport medium or cold storage material added with the water-soluble inorganic salt A two-layer separation step for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material A process,
The two-layer separation step measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold heat transport medium or the cold storage material to which the water-soluble inorganic salt is added, Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding step for holding the sample at a temperature higher than the deposition start temperature ,
The water-soluble inorganic salt addition step is characterized in that the water-soluble inorganic salt is added in a concentration range below the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(3)また、本発明に係る冷熱輸送媒体または蓄冷材の精製方法は、上記(1)又は(2)に記載のものにおいて、前記水溶性無機塩は、硫酸ナトリウム又はリン酸水素二ナトリウムであり、前記加熱保持工程における保持温度は35℃以上45℃以下であることを特徴とするものである。
(3) Moreover, the purification method of the cold transport medium or the regenerator material according to the present invention is the one described in (1) or (2) above, wherein the water-soluble inorganic salt is sodium sulfate or disodium hydrogen phosphate. In addition, the holding temperature in the heating and holding step is 35 ° C. or higher and 45 ° C. or lower.

(4)また、本発明に係る冷熱輸送媒体または蓄冷材の再生方法は、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生方法であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮工程と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整工程とを備え、
前記二層分離工程は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記濃縮工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮すること特徴とするものである。
(4) Further, the method for regenerating a cold heat transport medium or a cold storage material according to the present invention is a method for regenerating a cold heat transfer medium or a cold storage material containing a water-soluble inorganic salt mainly composed of a quaternary ammonium salt aqueous solution,
A concentration step of removing water from the cold transport medium or the regenerator material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water-soluble inorganic A two-layer separation step for separating into two layers having a heavy specific gravity containing salt, a water layer removal step for removing the water layer from the two-layer separated cold transport medium or cold storage material, and the water layer was removed A concentration adjusting step for adjusting the concentration of the aqueous quaternary ammonium salt to a predetermined value by adding water to the light liquid,
In the two-layer separation step , the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the concentrated heat transport medium or the regenerator material is measured, and the measured concentration of the water-soluble inorganic salt is first grasped. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. A heating and holding step to
The concentration step concentrates the cold transport medium or the cold storage material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(5)また、本発明に係る冷熱輸送媒体または蓄冷材の再生方法は、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生方法であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加工程と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整工程とを備え、
前記二層分離工程は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記水溶性無機塩添加工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加すること特徴とするものである。
(5) Moreover, the regeneration method of the cold transport medium or the cold storage material according to the present invention is a regeneration method of the cold transport medium or the cold storage material containing a water-soluble inorganic salt mainly containing a quaternary ammonium salt aqueous solution,
A water-soluble inorganic salt addition step of adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold heat transport medium or cold storage material added with the water-soluble inorganic salt A two-layer separation step for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material And a concentration adjusting step of adjusting the quaternary ammonium salt aqueous solution concentration to a predetermined value by adding water to the light liquid from which the aqueous layer has been removed,
The two-layer separation step measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold heat transport medium or the cold storage material to which the water-soluble inorganic salt is added, Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding step for holding the sample at a temperature higher than the deposition start temperature ,
The water-soluble inorganic salt addition step is characterized in that the water-soluble inorganic salt is added in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(6)また、本発明に係る冷熱輸送媒体または蓄冷材の再生方法は、上記(4)又は(5)に記載のものにおいて、前記水溶性無機塩は、硫酸ナトリウム又はリン酸二水素ナトリウムであり、前記加熱保持工程における保持温度は35℃以上45℃以下であることを特徴とするものである。
(6) Moreover, the regeneration method of the cold transport medium or the regenerator material according to the present invention is as described in (4) or (5) above, wherein the water-soluble inorganic salt is sodium sulfate or sodium dihydrogen phosphate. In addition, the holding temperature in the heating and holding step is 35 ° C. or higher and 45 ° C. or lower.

(7)また、本発明に係る空調装置の保全方法は、冷熱輸送媒体または蓄冷材を用いる空調装置の保全方法であって、
空調装置から冷熱輸送媒体または蓄冷材を抜き出し、上記(4)乃至(6)に記載の冷熱輸送媒体または蓄冷材の再生方法により、冷熱輸送媒体または蓄冷材を再生して、空調装置に戻すことを特徴とするものである。
(7) Moreover, the maintenance method of the air conditioner which concerns on this invention is a maintenance method of the air conditioner using a cold transport medium or a cool storage material,
Extract the cold transport medium or the cold storage material from the air conditioner, regenerate the cold transport medium or the cold storage material and return it to the air conditioner by the method for regenerating the cold heat transport medium or the cold storage material described in (4) to (6) above. It is characterized by.

(8)また、本発明に係る冷熱輸送媒体または蓄冷材の精製装置は、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製装置であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮手段と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段とを備え、前記二層分離手段は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記濃縮手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮することを特徴とするものである。
(8) Moreover, the refining device for a cold transport medium or a cold storage material according to the present invention is a purification device for a cold transport medium or a cold storage material containing a water-soluble inorganic salt mainly composed of a quaternary ammonium salt aqueous solution,
Concentration means for removing water from the cold transport medium or cold storage material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt by standing the concentrated cold heat transport medium or cold storage material, and a water-soluble inorganic Two-layer separation means for separating two layers into a water layer having a heavy specific gravity containing salt, and two-layer separation means for removing the water layer from the two-layer separated cold transport medium or cold storage material, The means measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the concentrated cold transport medium or regenerator, and the concentration of the measured water-soluble inorganic salt is known in advance. Heat holding means for checking the relationship between the solubility of inorganic salt and the temperature, deriving the precipitation start temperature of the water-soluble inorganic salt, and maintaining the temperature of the concentrated cold transport medium or cold storage material at a temperature higher than the precipitation start temperature. Have
The concentration means concentrates the cold transport medium or the regenerator material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(9)また、本発明に係る冷熱輸送媒体または蓄冷材の精製装置は、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製装置であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加手段と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段とを備え、
前記二層分離手段は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記水溶性無機塩添加手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加することを特徴とするものである。
(9) Moreover, the refining device for the cold transport medium or the regenerator material according to the present invention is a refining device for the cool heat transport medium or the regenerator material containing a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A water-soluble inorganic salt addition means for adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold transport medium or cold storage material to which the water-soluble inorganic salt is added A two-layer separation means for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material Means and
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added, and measures the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding means for holding at a temperature higher than the precipitation start temperature ,
The water-soluble inorganic salt adding means is characterized in that the water-soluble inorganic salt is added in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(10)また、本発明に係る冷熱輸送媒体または蓄冷材の再生装置は、第4級アンモニウム塩水溶液を主成分とし水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生装置であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮手段と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整手段とを備え、
前記二層分離手段は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記濃縮手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮すること特徴とするものである。
(10) A regenerator for a cold transport medium or a regenerator material according to the present invention is a regenerator for a cold transport medium or a regenerator material containing a quaternary ammonium salt aqueous solution as a main component and a water-soluble inorganic salt,
Concentration means for removing water from the cold transport medium or cold storage material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt by standing the concentrated cold heat transport medium or cold storage material, and a water-soluble inorganic A two-layer separation means for separating into two layers into a heavy water layer containing salt, a water layer removal means for removing the water layer from the two-layer separated cold transport medium or cold storage material, and the water layer removed Concentration adjusting means for adjusting the quaternary ammonium salt aqueous solution concentration to a predetermined value by adding water to the light liquid,
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the cold heat transport medium or the regenerator material, and first grasps the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. Heating and holding means to
The concentrating means concentrates the cold transport medium or the regenerator material in a concentration range lower than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(11)また、本発明に係る冷熱輸送媒体または蓄冷材の再生装置は、第4級アンモニウム塩水溶液を主成分とし水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生装置であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加手段と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整手段とを備え、
前記二層分離手段は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記水溶性無機塩添加工程手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加すること特徴とするものである。
(11) A regenerator for a cold transport medium or a regenerator material according to the present invention is a regenerator for a cold transport medium or a regenerator material containing a quaternary ammonium salt aqueous solution as a main component and a water-soluble inorganic salt,
A water-soluble inorganic salt addition means for adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold transport medium or cold storage material to which the water-soluble inorganic salt is added A two-layer separation means for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material Means, and concentration adjusting means for adjusting the concentration of the aqueous quaternary ammonium salt solution to a predetermined value by adding water to the light liquid from which the aqueous layer has been removed,
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added, and measures the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding means for holding at a temperature higher than the precipitation start temperature ,
The water-soluble inorganic salt adding step means adds the water-soluble inorganic salt in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step .

(12)また、本発明に係る空調システムは、空調装置から冷熱輸送媒体または蓄冷材を抜き出す手段と、上記(10)又は(11)に記載の冷熱輸送媒体または蓄冷材の再生装置と、再生された冷熱輸送媒体または蓄冷材を前記空調装置に戻す手段とを備えたことを特徴とするものである。 (12) Further, an air conditioning system according to the present invention includes means for extracting a cold transport medium or a cold storage material from an air conditioner, a cold heat transport medium or a cold storage material regeneration device according to (10) or (11), and a regeneration. And a means for returning the cooled heat transport medium or the regenerator material to the air conditioner.

本発明における第4級アンモニウム塩は、ゲスト化合物として水分子に包接されて水和物を形成するものであって、親水基と親油基(疎水基)の両方を有する両親媒性分子である。具体的には、テトラアルキルアンモニウム−アニオン塩、トリアルキル・アルキルアンモニウム−アニオン塩が挙げられる。
また、アルキルとして、nブチル、nペンチル、isoペンチル、nプロピル、isoプロピル、エチル、メチルが挙げられる。
また、アニオンとして、Br、F、Cl、CHCOO、OH、CHCOO、HCOO、CHSO、CO、PO、HPO、WO、iCHCOO、OS(CH)SO、sCHCOO、NO、(CH)CH(NH)COO、nCHSO、CFCOO、CrOが挙げられる。
The quaternary ammonium salt in the present invention is an amphiphilic molecule which is included in a water molecule as a guest compound to form a hydrate, and has both a hydrophilic group and a lipophilic group (hydrophobic group). is there. Specific examples include tetraalkyl ammonium-anion salts and trialkyl / alkyl ammonium-anion salts.
Examples of alkyl include nbutyl, npentyl, isopentyl, npropyl, isopropyl, ethyl and methyl.
Further, as the anion, Br, F, Cl, C 2 H 5 COO, OH, CH 3 COO, HCOO, CH 3 SO 3, CO 3, PO 4, HPO 4, WO 4, iC 3 H 7 COO, O 3 S (CH 2) 2 SO 3 , sC 4 H 9 COO, NO 3, include (CH 3) 2 CH (NH 2) 2 COO, nC 3 H 7 SO 3, CF 3 COO, CrO 3.

また、テトラアルキルアンモニウム−アニオン塩として、テトラアルキル臭化アンモニウム、テトラアルキル弗化アンモニウム、テトラアルキル塩化アンモニウム、テトラアルキル硝酸アンモニウムが挙げられる。
さらに、テトラアルキル臭化アンモニウムの例としては、臭化テトラnブチルアンモニウムが挙げられる。
またさらに、トリアルキル・アルキルアンモニウム−アニオン塩の例としては、臭化トリnブチルnペンチルアンモニウム、塩化トリnブチルnペンチルアンモニウムが挙げられる。
Examples of tetraalkylammonium-anion salts include tetraalkylammonium bromide, tetraalkylammonium fluoride, tetraalkylammonium chloride, and tetraalkylammonium nitrate.
Further, examples of tetraalkyl ammonium bromide include tetra nbutyl ammonium bromide.
Still further, examples of the trialkyl / alkyl ammonium-anion salt include tri-n-butyl n-pentyl ammonium bromide and tri-n-butyl n-pentyl ammonium chloride.

また、水溶性無機塩としては、冷熱輸送媒体や蓄冷材に添加されるもの、または添加された化合物から生成されるものがある。具体的には、冷熱輸送媒体や蓄冷材に添加され溶存酸素を消費して腐食を抑制する腐食抑制剤として添加される亜硫酸塩、チオ硫酸塩から生成される硫酸塩、具体的には硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、硫酸リチウム、硫酸アンモニウムが挙げられる。
また、冷熱輸送媒体や蓄冷材に添加される水溶性無機塩としては、過冷却解除剤として添加されるリン酸水素二ナトリウムが挙げられる。
また、他の水溶性無機塩としては、冷熱輸送媒体や蓄冷材の製造過程や使用中に混入する無機塩が挙げられる。
Moreover, as water-soluble inorganic salt, there exists what is produced | generated from the compound added to the cold heat transport medium and the cool storage material, or the added compound. Specifically, sulfite added as a corrosion inhibitor added to a cold transport medium or cold storage material to suppress corrosion by consuming dissolved oxygen, sulfate generated from thiosulfate, specifically sodium sulfate , Potassium sulfate, calcium sulfate, lithium sulfate, and ammonium sulfate.
Moreover, disodium hydrogenphosphate added as a supercooling release agent is mentioned as a water-soluble inorganic salt added to a cold transport medium and a cool storage material.
Moreover, as other water-soluble inorganic salt, the inorganic salt mixed in the manufacturing process and use of a cold-heat transport medium or a cool storage material is mentioned.

本発明においては、第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製方法であって、前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮工程と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程とを備え、前記二層分離工程は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、前記濃縮工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮するようにしたので、二層分離工程において水溶性無機塩が析出することを抑制し、冷熱輸送媒体または蓄冷材に含まれる水溶性無機塩からなる不純物を効果的に除去して再生することができる。
従って本発明によれば、冷熱輸送媒体または蓄冷材に含まれる水溶性無機塩からなる不純物を効果的に除去することができる、冷熱輸送媒体または蓄冷材の精製及び再生に係る技術を実現することができ、また、空調装置で使用される冷熱輸送媒体または蓄冷材をそのように精製又は再生することにより当該空調装置を保全する技術、更にはそのように再生された冷熱輸送媒体または蓄冷材を使用する空調システムに係る技術を実現することができる。
In the present invention, a method for purifying a cold transport medium or a cold storage material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt, wherein the water is removed from the cold transport medium or the cold storage material and concentrated. Two layers are separated into a concentration step and a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water layer having a high specific gravity containing a water-soluble inorganic salt by allowing the concentrated cold transport medium or cold storage material to stand. A layer separation step and a water layer removal step of removing the water layer from the two-layer separated cold transport medium or cold storage material, wherein the two layer separation step is a fourth of the concentrated cold heat transport medium or cold storage material. Measure the concentration of the water-soluble inorganic salt in the aqueous solution of quaternary ammonium salt, and compare the measured concentration of the water-soluble inorganic salt with the relationship between the solubility of the water-soluble inorganic salt and the temperature previously determined. Derives and starts concentration of inorganic salt precipitation A heating holding step of holding the temperature of the cold heat transfer medium or cold storage material which at a temperature higher than the deposition starting temperature, the concentration step, the concentration of the water-soluble inorganic salts at the holding temperature in the heating and holding process is precipitated Since the cold transport medium or the cold storage material is concentrated in a concentration range of less than, the water soluble inorganic salt contained in the cold transport medium or the cold storage material is suppressed by suppressing the precipitation of the water soluble inorganic salt in the two-layer separation step. Thus, it is possible to effectively remove and regenerate the impurities.
Therefore, according to the present invention, it is possible to realize a technology related to purification and regeneration of a cold transport medium or a cold storage material that can effectively remove impurities composed of a water-soluble inorganic salt contained in the cold heat transport medium or the cold storage material. In addition, the technology for preserving the air conditioner by refining or regenerating the cold transport medium or regenerator material used in the air conditioner, and the regenerated cold transport medium or regenerator material. The technology relating to the air conditioning system to be used can be realized.

課題を解決するための手段を説明する説明図であり、臭化テトラnブチルアンモニウム水溶液への、水溶性無機塩としての硫酸ナトリウムの溶解度と、水溶液温度との関係を示すグラフである。It is explanatory drawing explaining the means for solving a subject, and is a graph which shows the relationship between the solubility of sodium sulfate as a water-soluble inorganic salt in aqueous solution of tetra n butylammonium bromide, and aqueous solution temperature. 本発明の一実施の形態に係る蓄冷空調システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the cool storage air conditioning system which concerns on one embodiment of this invention. 実施の形態1に係る冷熱輸送媒体再生装置の構成の説明図である。FIG. 3 is an explanatory diagram of a configuration of the cold transport medium reproducing device according to the first embodiment. 実施の形態2に係る冷熱輸送媒体再生装置の構成の説明図である。FIG. 6 is an explanatory diagram of a configuration of a cold transport medium reproducing device according to a second embodiment.

[実施の形態1]
図2は本発明の一実施の形態に係る蓄冷空調システムの構成の一例を示す図である。本実施の形態に係る蓄冷空調システムは、第4級アンモニウム塩水溶液および/またはその水和物のスラリを貯留する冷熱輸送媒体貯留槽1、冷熱輸送媒体貯留槽1に貯留されている第4級アンモニウム塩水溶液を冷却して水和物のスラリを製造するスラリ製造部3、冷熱輸送媒体貯留槽1に貯留されている水和物スラリの冷熱を利用する空調設備5、蓄冷空調システム内で循環使用されて冷熱輸送媒体貯留槽1に貯えられている第4級アンモニウム塩水溶液を抜き出して不純物を除去するための冷熱輸送媒体再生装置7を備えている。
[Embodiment 1]
FIG. 2 is a diagram showing an example of the configuration of a cold storage air conditioning system according to an embodiment of the present invention. The cold storage air conditioning system according to the present embodiment includes a quaternary ammonium salt aqueous solution and / or a chilled transport medium storage tank 1 for storing a slurry of its hydrate, and a quaternary stored in the cold transport medium storage tank 1. Circulating in the slurry production unit 3 that cools the aqueous ammonium salt solution to produce a hydrate slurry, the air conditioning equipment 5 that uses the cold heat of the hydrate slurry stored in the cold transport medium storage tank 1, and the cold storage air conditioning system A cold transport medium regenerator 7 for removing the impurities by extracting the aqueous quaternary ammonium salt solution that is used and stored in the cold transport medium storage tank 1 is provided.

スラリ製造部3は冷熱発生源である冷凍機9とこの冷凍機9から排出される冷熱媒体を流通させる冷却器11を備えている。そして、冷却器11と冷熱輸送媒体貯留槽1とは第4級アンモニウム塩水溶液の循環路を形成する配管13で連結され、配管13には循環ポンプ15が設けられている。
空調設備5と冷熱輸送媒体貯留槽1とは払い出し配管17および戻り配管19で連結されており、払い出し配管17には水和物スラリを空調設備5に払い出すポンプ21および開閉弁22が設けられている。
冷熱輸送媒体再生装置7には払い出し配管17から分岐して第4級アンモニウム塩水溶液を冷熱輸送媒体再生装置7に送る水溶液受入れ配管23と、冷熱輸送媒体再生装置7で再生された第4級アンモニウム塩水溶液を冷熱輸送媒体貯留槽1に返送するための水溶液返送配管25が接続されている。また、水溶液受入れ配管23には開閉弁26が設けられている。第4級アンモニウム塩水溶液は、戻り配管19から分岐する配管を設け冷熱輸送媒体再生装置7に抜き出しても良い。
The slurry manufacturing unit 3 includes a refrigerator 9 that is a source of cold heat and a cooler 11 that distributes the cold medium discharged from the refrigerator 9. The cooler 11 and the cold heat transport medium storage tank 1 are connected by a pipe 13 that forms a circulation path of the quaternary ammonium salt aqueous solution, and a circulation pump 15 is provided in the pipe 13.
The air conditioner 5 and the cold transport medium storage tank 1 are connected by a discharge pipe 17 and a return pipe 19, and the discharge pipe 17 is provided with a pump 21 and an on-off valve 22 for discharging hydrate slurry to the air conditioner 5. ing.
The cold heat transport medium regenerator 7 branches from the discharge pipe 17 to an aqueous solution receiving pipe 23 for sending an aqueous quaternary ammonium salt solution to the cold heat transport medium regenerator 7, and the quaternary ammonium regenerated by the cold heat transport medium regenerator 7. An aqueous solution return pipe 25 for returning the salt aqueous solution to the cold heat transport medium storage tank 1 is connected. The aqueous solution receiving pipe 23 is provided with an opening / closing valve 26. The aqueous quaternary ammonium salt solution may be extracted to the cold heat transport medium regenerator 7 by providing a pipe branched from the return pipe 19.

冷熱輸送媒体再生装置7は第4級アンモニウム塩水溶液の不純物含有度合いに応じて、適宜運転する装置であるが、蓄冷空調システムを稼働するシーズンを迎える時期、或いは、所定期間毎に運転し、第4級アンモニウム塩水溶液を清浄化するための装置である。
図3は本実施の形態に係る冷熱輸送媒体再生装置7の構成の説明図である。以下、図3に基づいて冷熱輸送媒体再生装置7の構成を説明する。
The cold heat transport medium regenerator 7 is an apparatus that operates as appropriate according to the impurity content of the quaternary ammonium salt aqueous solution, but operates at a time when the cold storage air conditioning system is in operation or every predetermined period. It is an apparatus for cleaning an aqueous quaternary ammonium salt solution.
FIG. 3 is an explanatory diagram of a configuration of the cold transport medium reproducing device 7 according to the present embodiment. Hereinafter, the structure of the cold transport medium reproducing device 7 will be described with reference to FIG.

冷熱輸送媒体再生装置7は、冷熱輸送媒体貯留槽1から抜き出された第4級アンモニウム塩水溶液中の錆等の非溶解性不純物を除去するろ過器27、第4級アンモニウム塩水溶液の水を蒸発させることで所定量の水の除去を行う水蒸発器31、水蒸発器31で所定量の水が除去されて濃縮された第4級アンモニウム塩水溶液を後述の液・液分離器35に送るための濃縮液送水管32、濃縮液送水管32の途中に設置されて濃縮液を冷却する冷却熱交換器33、冷却熱交換器33で冷却された第4級アンモニウム塩水溶液を、その温度を、水溶性無機塩が析出せずかつ第4級アンモニウム塩の変質が生じない所定温度範囲、例えば35℃以上45℃以下に保持し比重差によって二層状態に分離する液・液分離器35、液・液分離器35の水層38の液を抜き出して排水するための排水管37及び排水管37に設けられた排水ポンプ39、液・液分離器35の軽液層36の軽液を抜き出して調整槽40に送るための送液管41および送液管41に設けられた送液ポンプ43をそれぞれ備えている。   The cold transport medium regenerator 7 includes a filter 27 that removes insoluble impurities such as rust in the quaternary ammonium salt aqueous solution extracted from the cold heat transport medium storage tank 1, and water of the quaternary ammonium salt aqueous solution. A water evaporator 31 that removes a predetermined amount of water by evaporation, and a quaternary ammonium salt aqueous solution concentrated by removing a predetermined amount of water by the water evaporator 31 is sent to a liquid / liquid separator 35 described later. For the concentrated liquid feed pipe 32, the cooling heat exchanger 33 installed in the middle of the concentrated liquid feed pipe 32 for cooling the concentrated liquid, and the quaternary ammonium salt aqueous solution cooled by the cooling heat exchanger 33, A liquid / liquid separator 35 in which the water-soluble inorganic salt does not precipitate and the quaternary ammonium salt does not change in quality, for example, maintained at 35 ° C. or higher and 45 ° C. or lower and separated into a two-layer state by a difference in specific gravity; Water layer 3 of the liquid / liquid separator 35 A drain pipe 37 for extracting and draining the liquid of the liquid, a drain pump 39 provided in the drain pipe 37, and a liquid feed for extracting the light liquid of the light liquid layer 36 of the liquid / liquid separator 35 and sending it to the adjusting tank 40. A pipe 41 and a liquid feed pump 43 provided in the liquid feed pipe 41 are provided.

ろ過器27にはガラスフィルター、樹脂フィルター、布フィルター、沈殿槽、砂ろ過槽など、一般的なろ過器27を用いることができる。 ろ過により、1μm以上の非溶解性不純物を取り除くことが好ましい。   As the filter 27, a general filter 27 such as a glass filter, a resin filter, a cloth filter, a sedimentation tank, a sand filtration tank, or the like can be used. It is preferable to remove insoluble impurities of 1 μm or more by filtration.

液・液分離器35は、濃縮された第4級アンモニウム塩水溶液の温度を前記所定温度範囲、例えば35℃以上45℃以下に保持するための加熱保持手段を備えている。加熱保持手段の構成の一例を示すと、水溶液の温度を計測する温度センサ(図示せず)、加熱手段42としての熱媒を流通させ水溶液と熱交換させる伝熱菅又は液・液分離器35容器の周囲に設ける加熱ジャケット、ヒータ、温度センサにより計測された水溶液温度に基づき加熱手段42を制御する制御手段(図示せず)を備えて構成されている。   The liquid / liquid separator 35 includes heating and holding means for holding the temperature of the concentrated aqueous quaternary ammonium salt solution within the predetermined temperature range, for example, 35 ° C. or higher and 45 ° C. or lower. As an example of the configuration of the heating and holding means, a temperature sensor (not shown) for measuring the temperature of the aqueous solution, a heat transfer tank or a liquid / liquid separator 35 for circulating a heat medium as the heating means 42 and exchanging heat with the aqueous solution. A heating jacket, a heater, and a control means (not shown) for controlling the heating means 42 based on the temperature of the aqueous solution measured by a temperature sensor are provided.

また、冷熱輸送媒体再生装置7は、水蒸発器31に接続されて水蒸発器31で発生する水蒸気を取り出す水蒸気取り出し管45、水蒸気取り出し管45の途中に設けられて水蒸気を冷却して凝縮させる冷却熱交換器47、水蒸気取り出し管45に接続されて冷却熱交換器47で凝縮された凝縮水の気・液分離を行う気・液分離器49、気・液分離器49に接続されて気液分離器49の凝縮水を調整槽40に送る送水管51および送水管51に設けられた送水ポンプ53、気・液分離器49に接続されて気・液分離器49で発生するガスを取り出すガス取出し管55、ガス取出し管55に設けられた減圧ポンプ57をそれぞれ備えている。   The cold heat transport medium regenerator 7 is connected to the water evaporator 31 and is provided in the middle of the water vapor take-out pipe 45 for taking out water vapor generated in the water evaporator 31, and cools and condenses the water vapor. A gas / liquid separator 49 connected to the cooling heat exchanger 47 and the water vapor extraction pipe 45 to separate the condensed water condensed in the cooling heat exchanger 47 is connected to the gas / liquid separator 49. A water supply pipe 51 for sending the condensed water of the liquid separator 49 to the adjustment tank 40, a water supply pump 53 provided in the water supply pipe 51, and a gas / liquid separator 49 connected to the gas / liquid separator 49 are taken out. A gas extraction pipe 55 and a decompression pump 57 provided in the gas extraction pipe 55 are provided.

なお、水蒸発器31は臭化テトラnブチルアンモニウムなどの第4級アンモニウム塩の変質を避けるため、減圧フラッシュ方式等により80℃程度以下の温度で水を蒸発させる機能を有するものが好ましい。
また、調整槽40には軽液層36の濃縮された第4級アンモニウム塩水溶液と凝縮水が送られて所定の濃度に調整されるが、これらの他に外部から水および腐食抑制剤の亜硫酸ナトリウムを添加できるようになっている。
The water evaporator 31 preferably has a function of evaporating water at a temperature of about 80 ° C. or less by a reduced pressure flash method or the like in order to avoid alteration of a quaternary ammonium salt such as tetra-n-butylammonium bromide.
In addition, the quaternary ammonium salt aqueous solution and the condensed water concentrated in the light liquid layer 36 are sent to the adjustment tank 40 and adjusted to a predetermined concentration. In addition to these, water and sulfite as a corrosion inhibitor are externally supplied. Sodium can be added.

以上のように構成された本実施の形態の動作を説明する。
冷熱輸送媒体貯留槽1に貯留された第4級アンモニウム塩水溶液は循環ポンプ15によって配管13を介して冷却器11に送られ、冷却器11で冷却されて水和物スラリとなり、再び配管13を介して冷熱輸送媒体貯留槽1に送られて冷熱輸送媒体貯留槽1に貯留され、冷熱を蓄熱する。
空調運転時には冷熱輸送媒体貯留槽1に貯えられた水和物スラリは払い出しポンプ21によって抜き出され、空調設備5に送られる。空調設備5へ送られた水和物スラリは熱交換されて冷熱を放出して水溶液になり、戻り配管19を経由して冷熱輸送媒体貯留槽1へ戻される。
このように、第4級アンモニウム塩水溶液から生成した水和物スラリは蓄熱材として使用されると共に冷熱輸送媒体としても使用され、循環使用される。
The operation of the present embodiment configured as described above will be described.
The aqueous quaternary ammonium salt solution stored in the cold heat transport medium storage tank 1 is sent to the cooler 11 via the pipe 13 by the circulation pump 15, cooled by the cooler 11 to become a hydrate slurry, and again through the pipe 13. To the cold transport medium storage tank 1 and stored in the cold transport medium storage tank 1 to store the cold heat.
During the air conditioning operation, the hydrate slurry stored in the cold transport medium storage tank 1 is extracted by the discharge pump 21 and sent to the air conditioning equipment 5. The hydrate slurry sent to the air conditioning equipment 5 is heat-exchanged to release cold heat to become an aqueous solution, and is returned to the cold heat transport medium storage tank 1 via the return pipe 19.
Thus, the hydrate slurry produced from the quaternary ammonium salt aqueous solution is used as a heat storage material and also as a cold transport medium, and is used in a circulating manner.

前述したように、腐食抑制剤として添加される例えば亜硫酸ナトリウムが酸素と反応して生成する硫酸ナトリウムの量が過大になると、水和物スラリの蓄冷材および冷熱輸送媒体としての性能が著しく低下するため、冷熱輸送媒体再生装置7を稼動して第4級アンモニウム塩水溶液の再生を行なう。
第4級アンモニウム塩水溶液の再生を行なう場合には、払い出し配管17の開閉弁22を閉止し、水溶液受入れ配管23の開閉弁26を開放して、第4級アンモニウム塩水溶液を冷熱輸送媒体再生装置7側へ送るようにする。
As described above, for example, when sodium sulfite added as a corrosion inhibitor reacts with oxygen to generate an excessive amount of sodium sulfate, the performance of the hydrate slurry as a regenerator and cold transport medium is significantly reduced. Therefore, the cold heat transport medium regenerator 7 is operated to regenerate the quaternary ammonium salt aqueous solution.
When regenerating the quaternary ammonium salt aqueous solution, the on-off valve 22 of the discharge pipe 17 is closed, the on-off valve 26 of the aqueous solution receiving pipe 23 is opened, and the quaternary ammonium salt aqueous solution is regenerated as a cold transport medium regenerator. Send to 7 side.

冷熱輸送媒体再生装置7へ送られた第4級アンモニウム塩水溶液は、ろ過器27で錆等の非溶解性不純物が除去され、水蒸発器31で一定量の水が蒸発され濃縮される。
濃縮は、比重差に基づく二層分離が行われるために行うものであり、そのためには軽液層36と水層38の比重差が二層分離できる程度にまで大きくなるように第4級アンモニウム塩水溶液の濃度を所定の倍率以上に濃縮する必要がある。
もっとも、濃縮後における第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を高くしすぎると、液・液分離器35において温度調整をしても水溶性無機塩の析出を抑制できなくなってしまうので、濃縮後の水溶性無機塩の濃度には上限を設ける必要がある。
濃縮は、液・液分離器35において設定される所定温度範囲において水溶性無機塩が析出する濃度未満の濃度範囲で行うようにする。なお、所定温度範囲において水溶性無機塩が析出する濃度は、当該水溶性無機塩について、温度と溶解度との関係を予め求めておくことで把握することができる。
濃縮された第4級アンモニウム塩水溶液は、冷却熱交換器で冷却されて液・液分離器35に送られ、二層分離が行われる。
The aqueous solution of the quaternary ammonium salt sent to the cold heat transport medium regenerator 7 removes non-soluble impurities such as rust by the filter 27, and a certain amount of water is evaporated and concentrated by the water evaporator 31.
Concentration is performed because two-layer separation based on the difference in specific gravity is performed. For this purpose, quaternary ammonium is used so that the specific gravity difference between the light liquid layer 36 and the aqueous layer 38 is increased to such an extent that two-layer separation is possible. It is necessary to concentrate the concentration of the salt aqueous solution to a predetermined magnification or more.
However, if the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution after concentration is too high, precipitation of the water-soluble inorganic salt cannot be suppressed even if the temperature is adjusted in the liquid / liquid separator 35. Therefore, it is necessary to provide an upper limit for the concentration of the water-soluble inorganic salt after concentration.
The concentration is performed in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates within a predetermined temperature range set in the liquid / liquid separator 35. In addition, the density | concentration which water-soluble inorganic salt precipitates in a predetermined temperature range can be grasped | ascertained previously by calculating | requiring the relationship between temperature and solubility about the said water-soluble inorganic salt.
The concentrated aqueous quaternary ammonium salt solution is cooled by a cooling heat exchanger and sent to the liquid / liquid separator 35 to perform two-layer separation.

液・液分離器35では加熱保持手段により濃縮された第4級アンモニウム塩水溶液の温度が所定温度範囲、例えば35℃以上45℃以下に保持され静置されて、比重差に基づいて軽液層36と水層38の二層分離が行われる。水溶液の温度が所定温度範囲、例えば35℃以上45℃以下に保持されているため、水溶性無機塩が析出することなく、円滑に二層分離が行われる。
所定温度範囲は、冷熱輸送媒体または蓄冷材の主成分として用いる第4級アンモニウム塩(例えば臭化テトラnブチルアンモニウム)水溶液における水溶性無機塩(例えば腐食抑制剤として添加される例えば亜硫酸ナトリウムが酸素と反応して生成する硫酸ナトリウム)の溶解度と温度との関係を予め把握しておき、その溶解度と温度との関係を参照して、濃縮された第4級アンモニウム塩水溶液の温度を水溶性無機塩が析出しない温度範囲に決定する。これによって、水溶性無機塩の析出を抑制しスラッジの生成を防ぎ円滑に二層分離することができる。
In the liquid / liquid separator 35, the temperature of the aqueous solution of the quaternary ammonium salt concentrated by the heating and holding means is kept in a predetermined temperature range, for example, 35 ° C. or more and 45 ° C. or less, and is left to stand. Two-layer separation of 36 and the water layer 38 is performed. Since the temperature of the aqueous solution is maintained within a predetermined temperature range, for example, 35 ° C. or higher and 45 ° C. or lower, the two-layer separation is smoothly performed without precipitation of the water-soluble inorganic salt.
The predetermined temperature range is a water-soluble inorganic salt (for example, sodium sulfite added as a corrosion inhibitor, such as sodium sulfite) in an aqueous solution of a quaternary ammonium salt (for example, tetra-n-butylammonium bromide) used as a main component of a cold transport medium or a cold storage material. The relationship between the solubility and temperature of sodium sulfate produced by the reaction with water is known in advance, and the temperature of the concentrated aqueous quaternary ammonium salt solution is determined by referring to the relationship between the solubility and temperature. The temperature is determined so that no salt precipitates. Thereby, precipitation of water-soluble inorganic salt can be suppressed, sludge formation can be prevented, and two layers can be separated smoothly.

比重の軽い軽液層36には濃縮された第4級アンモニウム塩水溶液、例えば臭化テトラnブチルアンモニウム水溶液が分離され、比重の重い水層38には腐食抑制剤から生成した水溶性無機塩、例えば硫酸ナトリウムを含む水が分離される。そして、硫酸ナトリウムをほとんど含まない軽液層36の軽液は送液管41を介して調整槽40に送られる。また、水層38の硫酸ナトリウムを含む水は排水ポンプ39によって排水管37を介して排水される。   A concentrated liquid solution of a quaternary ammonium salt, such as an aqueous solution of tetra-n-butylammonium bromide, is separated from the light liquid layer 36 having a light specific gravity, and a water-soluble inorganic salt formed from a corrosion inhibitor is separated into a water layer 38 having a high specific gravity, For example, water containing sodium sulfate is separated. Then, the light liquid in the light liquid layer 36 containing almost no sodium sulfate is sent to the adjustment tank 40 via the liquid feeding pipe 41. Further, water containing sodium sulfate in the water layer 38 is drained through a drain pipe 37 by a drain pump 39.

水蒸発器31で発生する水蒸気は冷却熱交換器47で凝縮され、気・液分離器49で気・液分離される。そして、気・液分離器49で分離された凝縮水は調整槽40に送られる。
濃縮された第4級アンモニウム塩水溶液や凝縮水が送られて貯留される調整槽40では腐食抑制剤の亜硫酸ナトリウムや水が加えられて濃度調整が行われ再生されて、冷熱輸送媒体貯留槽1に戻される。
Water vapor generated in the water evaporator 31 is condensed in the cooling heat exchanger 47 and separated into gas and liquid in the gas / liquid separator 49. The condensed water separated by the gas / liquid separator 49 is sent to the adjustment tank 40.
In the adjustment tank 40 in which the concentrated quaternary ammonium salt aqueous solution and condensed water are sent and stored, the corrosion inhibitor sodium sulfite and water are added, the concentration is adjusted and regenerated, and the cold transport medium storage tank 1 Returned to

以上のように、本実施の形態においては、腐食抑制剤として添加された亜硫酸ナトリウムから生成した水溶性無機塩、例えば硫酸ナトリウムの量が過大となって水和物スラリの蓄冷材および冷熱輸送媒体としての性能が低下した第4級アンモニウム塩水溶液から水を蒸発させることによって水を除去し濃縮し、濃縮された第4級アンモニウム塩水溶液の温度を所定温度範囲、例えば35℃以上45℃以下に保持し静置して、水溶性無機塩の析出を抑制し、第4級アンモニウム塩水溶液を二層分離状態にして硫酸ナトリウムを除去するようにしたので、第4級アンモニウム塩水溶液の再生を確実に行なうことができる。   As described above, in the present embodiment, the amount of water-soluble inorganic salt generated from sodium sulfite added as a corrosion inhibitor, for example, sodium sulfate is excessive, and the hydrate slurry regenerator and cold transport medium As a result, the water is removed from the quaternary ammonium salt aqueous solution whose performance has been reduced by evaporating the water and concentrated, and the temperature of the concentrated quaternary ammonium salt aqueous solution is set within a predetermined temperature range, for example, 35 ° C to 45 ° C. Retained quaternary ammonium salt aqueous solution, because it was kept and allowed to stand to suppress precipitation of water-soluble inorganic salt, and the aqueous solution of quaternary ammonium salt was separated into two layers to remove sodium sulfate. Can be done.

上記では、冷熱輸送媒体または蓄冷材の主成分として用いる第4級アンモニウム塩水溶液における水溶性無機塩の溶解度と温度との関係を予め把握しておき、その溶解度と温度との関係を参照して、濃縮された第4級アンモニウム塩水溶液の温度を水溶性無機塩が析出しない所定温度範囲に保持する際の所定温度範囲を決定するようにした。
この場合、水溶性無機塩が例えば硫酸ナトリウムのように、その溶解度が所定温度(35℃)で最大となり所定温度以上では溶解度がほぼ一定のような場合には(図1参照)、水溶性無機塩が析出しない温度範囲として前記所定温度(35℃)以上に決定すればよい。
In the above, the relationship between the solubility and temperature of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution used as the main component of the cold transport medium or the cold storage material is grasped in advance, and the relationship between the solubility and temperature is referred to. The temperature range of the concentrated quaternary ammonium salt aqueous solution is determined in a predetermined temperature range in which the water-soluble inorganic salt is not precipitated.
In this case, when the water-soluble inorganic salt is, for example, sodium sulfate, the solubility is maximum at a predetermined temperature (35 ° C.) and the solubility is almost constant above the predetermined temperature (see FIG. 1), the water-soluble inorganic salt is used. What is necessary is just to determine more than the said predetermined temperature (35 degreeC) as a temperature range which salt does not precipitate.

また、水溶性無機塩が例えば硫酸カリウムのように、温度が高くなると溶解度が高くなる関係が認められる場合には、以下のようにしてもよい。
第4級アンモニウム塩水溶液における水溶性無機塩の溶解度と温度との関係を調べ、水溶性無機塩の溶解度と温度との関係を把握しておく。冷熱輸送媒体再生装置7へ送られ濃縮された第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し水溶性無機塩の析出開始温度を導きだす。濃縮された第4級アンモニウム塩水溶液を静置し比重差に基づいて二層分離する際に、その析出開始温度より高い温度以上に濃縮された第4級アンモニウム塩水溶液の温度を保持する。
これによって、二層分離の際に水溶性無機塩の析出を抑制しスラッジの生成を防ぐことができ防ぎ円滑に二層分離することができる。
Moreover, when the relationship which a solubility becomes high when temperature rises like water sulfate, for example, potassium sulfate, may be performed as follows.
The relationship between the solubility of the water-soluble inorganic salt and the temperature in the quaternary ammonium salt aqueous solution is examined, and the relationship between the solubility of the water-soluble inorganic salt and the temperature is grasped. The concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution sent to the cold heat transport medium regenerator 7 is measured, and the measured water-soluble inorganic salt concentration is previously known. The precipitation start temperature of the water-soluble inorganic salt is derived by checking the relationship between the solubility of salt and temperature. When the concentrated quaternary ammonium salt aqueous solution is allowed to stand and two layers are separated based on the difference in specific gravity, the temperature of the quaternary ammonium salt aqueous solution concentrated to a temperature higher than the precipitation start temperature is maintained.
This suppresses the precipitation of water-soluble inorganic salt during the two-layer separation, prevents the formation of sludge, and prevents the two-layer separation smoothly.

[実施の形態2]
上記の実施の形態1においては冷熱輸送媒体再生装置7として、第4級アンモニウム塩水溶液を二層分離させるために第4級アンモニウム塩水溶液から水を除去して濃縮する例を示した。しかし、本発明はこれに限られるものではなく、第4級アンモニウム塩水溶液に水溶性無機塩を添加することにより第4級アンモニウム塩水溶液中の水溶性無機塩濃度を高くして二層分離するようにしてもよい。
そこで、本実施の形態においては冷熱輸送媒体再生装置の他の例として、再生対象の第4級アンモニウム塩水溶液に水溶性無機塩を添加する装置について説明する。
[Embodiment 2]
In the first embodiment, the cold transport medium regenerator 7 shows an example in which water is removed from the quaternary ammonium salt aqueous solution and concentrated in order to separate the quaternary ammonium salt aqueous solution into two layers. However, the present invention is not limited to this, and by adding a water-soluble inorganic salt to a quaternary ammonium salt aqueous solution, the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution is increased to separate into two layers. You may do it.
Therefore, in the present embodiment, an apparatus for adding a water-soluble inorganic salt to a quaternary ammonium salt aqueous solution to be reproduced will be described as another example of the cold transport medium reproducing apparatus.

図4は本発明の実施の形態2に係る冷熱輸送媒体再生装置の説明図であり、実施の形態1で示した図3の装置と同一部分には同一の符号を付してある。
本実施の形態に係る冷熱輸送媒体再生装置は、冷熱輸送媒体貯留槽1の第4級アンモニウム塩水溶液を冷熱輸送媒体再生装置側に取り出す水溶液受入れ配管23に設けられて、冷熱輸送媒体貯留槽1から抜き出された第4級アンモニウム塩水溶液中の錆等の非溶解性不純物を除去するろ過器60、後述する高温の濃縮塩水溶液を供給された第4級アンモニウム塩水溶液を冷却する冷却熱交換器61、冷却熱交換器61で冷却された第4級アンモニウム塩水溶液を比重差によって二層状態に分離する液・液分離器63、液・液分離器63の軽液層64の軽液を抜き出して調整槽40に送るための送液管65および送液管65に設けられた送液ポンプ67を備えている。
FIG. 4 is an explanatory diagram of the cold transport medium reproducing device according to the second embodiment of the present invention. The same parts as those of the device of FIG. 3 shown in the first embodiment are denoted by the same reference numerals.
The cold transport medium regenerator according to the present embodiment is provided in the aqueous solution receiving pipe 23 for taking out the quaternary ammonium salt aqueous solution in the cold transport medium reservoir 1 to the cold transport medium regenerator side, and the cold transport medium reservoir 1 Filter 60 for removing non-soluble impurities such as rust in the quaternary ammonium salt aqueous solution extracted from the quaternary ammonium salt aqueous solution, cooling heat exchange for cooling the quaternary ammonium salt aqueous solution supplied with a high-temperature concentrated salt aqueous solution described later A liquid / liquid separator 63 for separating the aqueous solution of the quaternary ammonium salt cooled by the cooling unit 61 and the cooling heat exchanger 61 into a two-layer state based on the difference in specific gravity, and the light liquid in the light liquid layer 64 of the liquid / liquid separator 63 A liquid feed pipe 65 for extracting and feeding to the adjustment tank 40 and a liquid feed pump 67 provided in the liquid feed pipe 65 are provided.

液・液分離器63は、実施の形態1の液・液分離器35と同様に、濃縮された第4級アンモニウム塩水溶液の温度を所定温度範囲、例えば35℃以上45℃以下に保持するための加熱保持手段を備えている。加熱保持手段は実施の形態1で示した図3の装置における液・液分離器35に備えるものと同一である。   Similarly to the liquid / liquid separator 35 of the first embodiment, the liquid / liquid separator 63 maintains the temperature of the concentrated aqueous quaternary ammonium salt solution within a predetermined temperature range, for example, 35 ° C. or higher and 45 ° C. or lower. The heating and holding means is provided. The heating and holding means is the same as that provided in the liquid / liquid separator 35 in the apparatus of FIG. 3 shown in the first embodiment.

また、本実施の形態に係る冷熱輸送媒体再生装置は、液・液分離器63の水層66の液を抜き出して排水するための排水管69及び排水管69に設けられた排水ポンプ71を備えている。液・液分離器63の水層66の液には腐食抑制剤として添加された亜硫酸ナトリウムから生成した水溶性無機塩、例えば硫酸ナトリウムが含まれている。本実施の形態に係る冷熱輸送媒体再生装置は、この水層66の水を蒸発させることで水を除去して水溶性無機塩を濃縮する水蒸発器73、水蒸発器73によって濃縮された高温の濃縮塩水溶液を水溶液受入れ配管23を流れる第4級アンモニウム塩水溶液に供給する濃縮塩水溶液供給管75を備えている。   Further, the cold transport medium regenerator according to the present embodiment includes a drain pipe 69 for extracting and draining the liquid in the water layer 66 of the liquid / liquid separator 63 and a drain pump 71 provided in the drain pipe 69. ing. The liquid in the water layer 66 of the liquid / liquid separator 63 contains a water-soluble inorganic salt generated from sodium sulfite added as a corrosion inhibitor, such as sodium sulfate. The cold transport medium regeneration device according to the present embodiment removes water by evaporating the water in the water layer 66 to concentrate the water-soluble inorganic salt, and the high temperature concentrated by the water evaporator 73. The concentrated salt aqueous solution supply pipe 75 for supplying the concentrated salt aqueous solution to the quaternary ammonium salt aqueous solution flowing through the aqueous solution receiving pipe 23 is provided.

さらに、本実施の形態に係る冷熱輸送媒体再生装置は、水蒸発器73に接続されて水蒸発器73で発生する水蒸気を取り出す水蒸気取り出し管77、水蒸気取り出し管77の途中に設けられて水蒸気を冷却して凝縮させる冷却熱交換器79、水蒸気取り出し管77に接続されて冷却熱交換器79で凝縮された凝縮水の気・液分離を行う気・液分離器81、気液分離器81に接続されて気液分離器81の凝縮水を調整槽40に送る送水管83および送水管83に設けられた送水ポンプ85、気・液分離器81に接続されて気・液分離器81で発生するガスを取り出すガス取出し管87、をそれぞれ備えている。   Furthermore, the cold transport medium regenerator according to the present embodiment is connected to the water evaporator 73 and is provided in the middle of the water vapor take-out pipe 77 and the water vapor take-out pipe 77 for taking out the water vapor generated in the water evaporator 73. A cooling heat exchanger 79 that cools and condenses, a gas / liquid separator 81 that is connected to the water vapor extraction pipe 77 and separates condensed water condensed in the cooling heat exchanger 79, and a gas-liquid separator 81 Generated in the gas / liquid separator 81 connected to the gas / liquid separator 81 connected to the water supply pipe 83 and the gas / liquid separator 81 provided in the water supply pipe 83 and the water supply pipe 83 that are connected to send the condensed water of the gas / liquid separator 81 to the adjustment tank 40. The gas extraction pipe | tube 87 which takes out the gas to perform is each provided.

以上のように構成された本実施の形態の動作について、特に冷熱輸送媒体再生装置による第4級アンモニウム塩水溶液の再生に関して説明する。
第4級アンモニウム塩水溶液の再生を行なう場合には、実施の形態1と同様に図2に示す払い出し配管17の開閉弁22を閉止し、水溶液受入れ配管23の開閉弁26を開放して、第4級アンモニウム塩水溶液を冷熱輸送媒体再生装置7側へ送るようにする。
The operation of the present embodiment configured as described above will be described with respect to the regeneration of the aqueous quaternary ammonium salt solution by the cold transport medium regenerator.
When the aqueous quaternary ammonium salt solution is regenerated, the on-off valve 22 of the discharge pipe 17 shown in FIG. 2 is closed and the on-off valve 26 of the aqueous solution receiving pipe 23 is opened, as in the first embodiment. The aqueous quaternary ammonium salt solution is sent to the cold heat transport medium regenerator 7 side.

冷熱輸送媒体再生装置7へ送られた第4級アンモニウム塩水溶液は、ろ過器60で錆等の非溶解性不純物が除去され、濃縮塩水溶液が供給されることにより水溶性無機塩が添加され、冷却熱交換器61で冷却され、液・液分離器63に送られる。水溶性無機塩が添加されることで第4級アンモニウム塩水溶液は二層分離可能状態となる。そして、液・液分離器63では加熱保持手段により濃縮された第4級アンモニウム塩水溶液の温度が所定温度範囲、例えば35℃以上45℃以下に保持され静置されて、比重差に基づいて軽液層64と水層66の二層分離が行われる。水溶液の温度が所定温度範囲、例えば35℃以上45℃以下に保持されているため、水溶性無機塩が析出することなく、円滑に二層分離が行われる。比重の軽い軽液層64には濃縮された第4級アンモニウム塩水溶液、例えばTBAB水溶液が分離され、比重の重い水層66には腐食抑制剤として添加された亜硫酸ナトリウムから生成した水溶性無機塩、例えば硫酸ナトリウムを含む水が分離される。そして、硫酸ナトリウムをほとんど含まない濃縮された第4級アンモニウム塩水溶液である軽液層64の軽液は送液管65を介して調整槽40に送られる。また、水層66の硫酸ナトリウムを含む水は排水ポンプ71によって排水管69を介して水蒸発器73に送られる。   The aqueous solution of the quaternary ammonium salt sent to the cold heat transport medium regenerator 7 is added with a water-soluble inorganic salt by removing non-soluble impurities such as rust with a filter 60 and supplying a concentrated salt aqueous solution, It is cooled by the cooling heat exchanger 61 and sent to the liquid / liquid separator 63. By adding the water-soluble inorganic salt, the aqueous quaternary ammonium salt solution can be separated into two layers. In the liquid / liquid separator 63, the temperature of the quaternary ammonium salt aqueous solution concentrated by the heating and holding means is held in a predetermined temperature range, for example, 35 ° C. or higher and 45 ° C. or lower, and is allowed to stand. Two-layer separation of the liquid layer 64 and the aqueous layer 66 is performed. Since the temperature of the aqueous solution is maintained within a predetermined temperature range, for example, 35 ° C. or higher and 45 ° C. or lower, the two-layer separation is smoothly performed without precipitation of the water-soluble inorganic salt. A concentrated aqueous solution of a quaternary ammonium salt, for example, a TBAB aqueous solution, is separated from the light liquid layer 64 having a light specific gravity, and a water-soluble inorganic salt formed from sodium sulfite added as a corrosion inhibitor to the water layer 66 having a high specific gravity. For example, water containing sodium sulfate is separated. Then, the light liquid in the light liquid layer 64, which is a concentrated quaternary ammonium salt aqueous solution containing almost no sodium sulfate, is sent to the adjustment tank 40 via the liquid supply pipe 65. Further, water containing sodium sulfate in the water layer 66 is sent to the water evaporator 73 through the drain pipe 69 by the drain pump 71.

水蒸発器73では硫酸ナトリウムを含む水の加熱が行われ、水を蒸発させることで硫酸ナトリウムを含む水が濃縮され濃縮塩水溶液が生成される。この濃縮塩水溶液は濃縮塩水溶液供給管75を介して冷熱輸送媒体貯留槽1からの第4級アンモニウム塩水溶液に供給される。このように、一旦、液・液分離器63で二層分離が行われ水層66の液が抜き出された後は、濃縮塩水溶液を生成することによって、外部から水溶性無機塩を供給する必要がない。
水蒸発器73で発生する水蒸気は冷却熱交換器79で凝縮され、気・液分離器81で気・液分離される。そして、気・液分離器81で分離された凝縮水は調整槽40に送られる。
濃縮された第4級アンモニウム塩水溶液や凝縮水が送られて貯留される調整槽40では腐食抑制剤の亜硫酸ナトリウムや水が加えられて濃度調整が行われ再生されて、冷熱輸送媒体貯留槽1に戻される。
In the water evaporator 73, water containing sodium sulfate is heated, and by evaporating the water, the water containing sodium sulfate is concentrated to produce a concentrated salt aqueous solution. This concentrated salt aqueous solution is supplied to the quaternary ammonium salt aqueous solution from the cold transport medium storage tank 1 via the concentrated salt aqueous solution supply pipe 75. As described above, once the two-layer separation is performed by the liquid / liquid separator 63 and the liquid in the aqueous layer 66 is extracted, a water-soluble inorganic salt is supplied from the outside by generating a concentrated salt aqueous solution. There is no need.
The water vapor generated in the water evaporator 73 is condensed in the cooling heat exchanger 79 and separated in the gas / liquid separator 81. The condensed water separated by the gas / liquid separator 81 is sent to the adjustment tank 40.
In the adjustment tank 40 in which the concentrated quaternary ammonium salt aqueous solution and condensed water are sent and stored, the corrosion inhibitor sodium sulfite and water are added, the concentration is adjusted and regenerated, and the cold transport medium storage tank 1 Returned to

以上のように、本実施の形態においては、腐食抑制剤として添加された亜硫酸ナトリウムから生成した水溶性無機塩、例えば硫酸ナトリウムの量が過大となって水和物スラリの蓄冷材および冷熱輸送媒体としての性能が低下した第4級アンモニウム塩水溶液に水溶性無機塩を添加することによって、水溶性無機塩濃度を高くした第4級アンモニウム塩水溶液の温度を所定温度範囲、例えば35℃以上45℃以下に保持し静置して、水溶性無機塩の析出を抑制し、二層分離状態にして硫酸ナトリウムを除去するようにしたので、第4級アンモニウム塩水溶液の再生を確実に行なうことができる。
また、本実施の形態においては、液・液分離器63で分離された水層66の液から濃縮塩水溶液を生成し、これを冷熱媒体貯留槽1からの第4級アンモニウム塩水溶液に供給するようにしたので、外部から水溶性無機塩を供給する必要がなく、運転コストを低減できる。
As described above, in the present embodiment, the amount of water-soluble inorganic salt generated from sodium sulfite added as a corrosion inhibitor, for example, sodium sulfate is excessive, and the hydrate slurry regenerator and cold transport medium As a result of adding a water-soluble inorganic salt to a quaternary ammonium salt aqueous solution with reduced performance, the temperature of the quaternary ammonium salt aqueous solution having a high water-soluble inorganic salt concentration is set within a predetermined temperature range, for example, 35 ° C. or higher and 45 ° C. It was kept below and allowed to stand to suppress the precipitation of water-soluble inorganic salt, and the sodium sulfate was removed in a two-layer separated state, so that the quaternary ammonium salt aqueous solution can be reliably regenerated. .
Further, in the present embodiment, a concentrated salt aqueous solution is generated from the liquid in the aqueous layer 66 separated by the liquid / liquid separator 63 and supplied to the quaternary ammonium salt aqueous solution from the cold medium storage tank 1. Since it did in this way, it is not necessary to supply water-soluble inorganic salt from the outside, and an operating cost can be reduced.

本実施の形態において、水溶性無機塩濃度を高くした第4級アンモニウム塩水溶液の温度を所定温度範囲に保持し静置する際の所定温度範囲は、実施の形態1における濃縮した第4級アンモニウム塩水溶液の温度を保持する際に設定する所定温度範囲と同様にして設定する。このようにすることにより、水溶性無機塩の析出を抑制し、円滑に二層分離することができる。   In this embodiment, the predetermined temperature range when the temperature of the aqueous quaternary ammonium salt solution having a high water-soluble inorganic salt concentration is kept within the predetermined temperature range is set as the concentrated quaternary ammonium in the first embodiment. It sets similarly to the predetermined temperature range set when maintaining the temperature of the salt aqueous solution. By doing in this way, precipitation of water-soluble inorganic salt can be suppressed and two layers can be separated smoothly.

以下においては、第4級アンモニウム塩水溶液の例として臭化テトラnブチルアンモニウム(TBAB)水溶液を、腐食抑制剤から生成した水溶性無機塩として硫酸ナトリウムを、それぞれ例に挙げて二層分離による臭化テトラnブチルアンモニウム(TBAB)水溶液の不純物除去の実施例を説明する。   In the following, an aqueous solution of tetra-n-butylammonium bromide (TBAB) is used as an example of an aqueous quaternary ammonium salt, and sodium sulfate is used as an example of a water-soluble inorganic salt produced from a corrosion inhibitor. An example of removing impurities from an aqueous solution of tetra-n-butylammonium bromide (TBAB) will be described.

比較例Comparative example

臭化テトラnブチルアンモニウム(TBAB)15%水溶液に、硫酸ナトリウムを0.5%加えた水溶液について、減圧下40℃にて水を蒸発させた。 溶質(TBABおよび硫酸ナトリウム)の濃度が4.4倍となった時点で加熱を停止し、その濃縮された水溶液を液液分離器としての分液槽に移して10時間静置した。
分液槽は加熱されておらず、水溶液の温度は20〜30℃であった。10時間静置後には分液槽内にはスラッジが析出し、水溶液は二層に分離していなかった。原水溶液の組成と濃縮後の推定組成を表1に示す。
About the aqueous solution which added sodium sulfate 0.5% to the tetra n butyl ammonium bromide (TBAB) 15% aqueous solution, water was evaporated at 40 degreeC under pressure reduction. When the concentration of the solute (TBAB and sodium sulfate) reached 4.4 times, the heating was stopped, and the concentrated aqueous solution was transferred to a separation tank as a liquid-liquid separator and allowed to stand for 10 hours.
The separation tank was not heated, and the temperature of the aqueous solution was 20 to 30 ° C. After standing for 10 hours, sludge was deposited in the separation tank, and the aqueous solution was not separated into two layers. Table 1 shows the composition of the raw aqueous solution and the estimated composition after concentration.

Figure 0005499931
Figure 0005499931

臭化テトラnブチルアンモニウム(TBAB)15%水溶液に、硫酸ナトリウムを0.5%加えた水溶液について、減圧下40℃にて水を蒸発させた。溶質(TBABおよび硫酸ナトリウム)の濃度が4.4倍となった時点で加熱を停止し、その濃縮された水溶液を分液槽に移して10時間静置した。分液槽は加熱手段を備え水溶液の温度は40℃に保持されている。水溶液は二層に分離した。原水溶液の組成と水蒸発後の推定組成を表2に示す。   About the aqueous solution which added sodium sulfate 0.5% to the tetra n butyl ammonium bromide (TBAB) 15% aqueous solution, water was evaporated at 40 degreeC under pressure reduction. When the concentration of the solute (TBAB and sodium sulfate) reached 4.4 times, the heating was stopped, and the concentrated aqueous solution was transferred to a separating tank and allowed to stand for 10 hours. The separation tank is provided with heating means, and the temperature of the aqueous solution is maintained at 40 ° C. The aqueous solution separated into two layers. Table 2 shows the composition of the raw aqueous solution and the estimated composition after water evaporation.

Figure 0005499931
Figure 0005499931

二層に分離した軽液層と水層の組成を分析し、TBABと硫酸ナトリウムの軽液層と水層への分配率を求め、これを表3に示す。   The composition of the light liquid layer and the aqueous layer separated into two layers was analyzed, and the distribution ratio of TBAB and sodium sulfate to the light liquid layer and the aqueous layer was determined. This is shown in Table 3.

Figure 0005499931
Figure 0005499931

表3に示されるように、軽液層には臭化テトラnブチルアンモニウムが、水層には硫酸ナトリウムが濃縮されていることが判明した。軽液層への硫酸ナトリウムの残留率は3%であり、硫酸ナトリウムを十分に分離除去できた。   As shown in Table 3, it was found that tetra-n-butylammonium bromide was concentrated in the light liquid layer and sodium sulfate was concentrated in the aqueous layer. The residual rate of sodium sulfate in the light liquid layer was 3%, and the sodium sulfate was sufficiently separated and removed.

臭化テトラnブチルアンモニウム(TBAB)16%水溶液に、硫酸ナトリウムを4%加えた水溶液について、減圧下40℃にて水を蒸発させた。溶質(TBABおよび硫酸ナトリウム)の濃度が3.9倍となった時点で加熱を停止し、その濃縮された水溶液を分液槽に移して10時間静置した。分液槽は加熱手段を備え水溶液の温度は40℃に保持されている。水溶液は二層に分離した。原水溶液の組成と水蒸発後の推定組成を表4に示す。   Water was evaporated at 40 ° C. under reduced pressure for an aqueous solution obtained by adding 4% sodium sulfate to a 16% aqueous solution of tetra n-butylammonium bromide (TBAB). When the concentration of the solute (TBAB and sodium sulfate) reached 3.9 times, the heating was stopped, and the concentrated aqueous solution was transferred to a separation tank and allowed to stand for 10 hours. The separation tank is provided with heating means, and the temperature of the aqueous solution is maintained at 40 ° C. The aqueous solution separated into two layers. Table 4 shows the composition of the raw aqueous solution and the estimated composition after water evaporation.

Figure 0005499931
Figure 0005499931

二層に分離した軽液層と水層の組成を分析し、TBABと硫酸ナトリウムの軽液層と水層への分配率を求め、これを表5に示す。   The compositions of the light liquid layer and the aqueous layer separated into two layers were analyzed, and the distribution ratio of TBAB and sodium sulfate to the light liquid layer and the aqueous layer was determined. This is shown in Table 5.

Figure 0005499931
Figure 0005499931

表5に示されるように軽液層には臭化テトラnブチルアンモニウムが、水層には硫酸ナトリウムが濃縮されていることが判明した。軽液層への硫酸ナトリウムの残留率は1%であり、硫酸ナトリウムを十分に分離除去できた。特に、TBABについてはほぼ完全に分離されている。   As shown in Table 5, it was found that tetra-n-butylammonium bromide was concentrated in the light liquid layer and sodium sulfate was concentrated in the aqueous layer. The residual rate of sodium sulfate in the light liquid layer was 1%, and the sodium sulfate was sufficiently separated and removed. In particular, TBAB is almost completely separated.

また、第4級アンモニウム塩水溶液の他の例として臭化トリnブチルnペンチルアンモニウム(TBPAB)水溶液、塩化トリnブチルnペンチルアンモニウム(TBPACl)水溶液を、水溶性無機塩として硫酸ナトリウム、リン酸水素ニナトリウムを、それぞれ例に挙げて二層分離による不純物除去の実施例を説明する。   Other examples of the quaternary ammonium salt aqueous solution include tri-n-butyl-n-pentylammonium bromide (TBPAB) aqueous solution and tri-n-butyl-n-pentylammonium chloride (TBPACl) aqueous solution, and sodium sulfate and hydrogen phosphate as water-soluble inorganic salts. Examples of impurity removal by two-layer separation will be described by taking disodium as an example.

臭化トリnブチルnペンチルアンモニウム(TBPAB)15%水溶液に、硫酸ナトリウムを0.5%加えた水溶液について、減圧下40℃にて水を蒸発させた。溶質(TBPABおよび硫酸ナトリウム)の濃度が4.6倍となった時点で加熱を停止し、その濃縮された水溶液を分液槽に移して10時間静置した。分液槽は加熱手段を備え水溶液の温度は40℃に保持されている。水溶液は二層に分離した。原水溶液の組成と水蒸発後の推定組成を表6に示す。   For an aqueous solution obtained by adding 0.5% sodium sulfate to a 15% aqueous solution of tri-n-butyl-n-pentylammonium bromide (TBPAB), water was evaporated at 40 ° C. under reduced pressure. When the concentration of the solute (TBPAB and sodium sulfate) reached 4.6 times, the heating was stopped, and the concentrated aqueous solution was transferred to a separating tank and allowed to stand for 10 hours. The separation tank is provided with heating means, and the temperature of the aqueous solution is maintained at 40 ° C. The aqueous solution separated into two layers. Table 6 shows the composition of the raw aqueous solution and the estimated composition after water evaporation.

Figure 0005499931
Figure 0005499931

二層に分離した軽液層と水層の組成を分析し、TBPABと硫酸ナトリウムの軽液層と水層への分配率を求め、これを表7に示す。   The composition of the light liquid layer and the aqueous layer separated into two layers was analyzed, and the distribution ratio of TBPAB and sodium sulfate to the light liquid layer and the water layer was determined.

Figure 0005499931
Figure 0005499931

表7に示されるように軽液層には臭化トリnブチルnペンチルアンモニウムが、水層には硫酸ナトリウムが濃縮されていることが判明した。軽液層への硫酸ナトリウムの残留率は3%であり、硫酸ナトリウムを十分に分離除去できた。   As shown in Table 7, it was found that tri-n-butyl-n-pentylammonium bromide was concentrated in the light liquid layer, and sodium sulfate was concentrated in the aqueous layer. The residual rate of sodium sulfate in the light liquid layer was 3%, and the sodium sulfate was sufficiently separated and removed.

塩化テトラnブチルアンモニウム(TBPACl)15%水溶液に、硫酸ナトリウムを1%加えた水溶液について、減圧下40℃にて水を蒸発させた。溶質(TBPAClおよび硫酸ナトリウム)の濃度が4.3倍となった時点で加熱を停止し、その濃縮された水溶液を分液槽に移して10時間静置した。分液槽は加熱手段を備え水溶液の温度は40℃に保持されている。水溶液は二層に分離した。原水溶液の組成と水蒸発後の推定組成を表8に示す。   For an aqueous solution obtained by adding 1% sodium sulfate to a 15% aqueous solution of tetra n-butylammonium chloride (TBPACI), water was evaporated at 40 ° C. under reduced pressure. When the concentration of the solute (TBPACl and sodium sulfate) reached 4.3 times, the heating was stopped, and the concentrated aqueous solution was transferred to a separating tank and allowed to stand for 10 hours. The separation tank is provided with heating means, and the temperature of the aqueous solution is maintained at 40 ° C. The aqueous solution separated into two layers. Table 8 shows the composition of the raw aqueous solution and the estimated composition after water evaporation.

Figure 0005499931
Figure 0005499931

二層に分離した軽液層と水層の組成を分析し、TBPAClと硫酸ナトリウムの軽液層と水層への分配率を求め、これを表9に示す。   The composition of the light liquid layer and the water layer separated into two layers was analyzed, and the distribution ratio of TBPACl and sodium sulfate to the light liquid layer and the water layer was determined.

Figure 0005499931
Figure 0005499931

表9に示されるように軽液層には塩化トリnブチルnペンチルアンモニウムが、水層には硫酸ナトリウムが濃縮されていることが判明した。軽液層への硫酸ナトリウムの残留率は3%であり、硫酸ナトリウムを十分に分離除去できた。   As shown in Table 9, it was found that tri-n-butyl-n-pentylammonium chloride was concentrated in the light liquid layer, and sodium sulfate was concentrated in the aqueous layer. The residual rate of sodium sulfate in the light liquid layer was 3%, and the sodium sulfate was sufficiently separated and removed.

臭化テトラnブチルアンモニウム(TBAB)15%水溶液に、過冷却解除剤として用いるリン酸水素ニナトリウムを0.5%加えた水溶液について、減圧下40℃にて水を蒸発させた。溶質(TBABおよびリン酸水素ニナトリウム)の濃度が4.5倍となった時点で加熱を停止し、その濃縮された水溶液を分液槽に移して10時間静置した。分液槽は加熱手段を備え水溶液の温度は40℃に保持されている。水溶液は二層に分離した。原水溶液の組成と水蒸発後の推定組成を表10に示す。   Water was evaporated at 40 ° C. under reduced pressure with respect to an aqueous solution obtained by adding 0.5% of disodium hydrogenphosphate used as a supercooling release agent to a 15% aqueous solution of tetra n-butylammonium bromide (TBAB). When the concentration of the solute (TBAB and disodium hydrogen phosphate) reached 4.5 times, the heating was stopped, and the concentrated aqueous solution was transferred to a separation tank and allowed to stand for 10 hours. The separation tank is provided with heating means, and the temperature of the aqueous solution is maintained at 40 ° C. The aqueous solution separated into two layers. Table 10 shows the composition of the raw aqueous solution and the estimated composition after water evaporation.

Figure 0005499931
Figure 0005499931

二層に分離した軽液層と水層の組成を分析し、TBABとリン酸水素ニナトリウムの軽液層と水層への分配率を求めたところ、軽液層には臭化テトラnブチルアンモニウムが、水層にはリン酸水素ニナトリウムが濃縮されていることが判明した。軽液層への硫酸ナトリウムの残留率は4%であり、リン酸水素ニナトリウムを十分に分離除去できた。
The composition of the light liquid layer and the aqueous layer separated into two layers was analyzed, and the distribution ratio of TBAB and disodium hydrogen phosphate to the light liquid layer and the aqueous layer was determined . It was found that ammonium was concentrated in the aqueous layer and disodium hydrogen phosphate in the aqueous layer. The residual rate of sodium sulfate in the light liquid layer was 4%, and disodium hydrogen phosphate was sufficiently separated and removed.

臭化テトラnブチルアンモニウム(TBAB)16%水溶液に、硫酸ナトリウムを4%加えた水溶液について、さらにこの水溶液に硫酸ナトリウムを10%添加した。この硫酸ナトリウムをさらに添加された水溶液を分液槽に移して10時間静置した。分液槽は加熱手段を備え水溶液の温度は40℃に保持されている。水溶液は二層に分離した。原水溶液の組成と硫酸ナトリウムを10%添加した後の推定組成を表12に示す。   Regarding an aqueous solution obtained by adding 4% sodium sulfate to a 16% aqueous solution of tetra n-butylammonium bromide (TBAB), 10% sodium sulfate was further added to this aqueous solution. The aqueous solution further added with sodium sulfate was transferred to a separation tank and allowed to stand for 10 hours. The separation tank is provided with heating means, and the temperature of the aqueous solution is maintained at 40 ° C. The aqueous solution separated into two layers. Table 12 shows the composition of the raw aqueous solution and the estimated composition after adding 10% sodium sulfate.

Figure 0005499931
Figure 0005499931

二層に分離した軽液層と水層の組成を分析し、TBABと硫酸ナトリウムの軽液層と水層への分配率を求め、これを表13に示す。   The composition of the light liquid layer and the aqueous layer separated into two layers was analyzed, and the distribution ratio of TBAB and sodium sulfate to the light liquid layer and the aqueous layer was determined. This is shown in Table 13.

Figure 0005499931
Figure 0005499931

表13に示されるように軽液層には臭化テトラnブチルアンモニウムが、水層には硫酸ナトリウムが濃縮されていることが判明した。軽液層への硫酸ナトリウムの残留率は5%であり、硫酸ナトリウムを十分に分離除去できた。   As shown in Table 13, it was found that tetra-n-butylammonium bromide was concentrated in the light liquid layer and sodium sulfate was concentrated in the aqueous layer. The residual rate of sodium sulfate in the light liquid layer was 5%, and the sodium sulfate was sufficiently separated and removed.

1 冷熱輸送媒体貯留槽、3 スラリ製造部、5 空調設備、7 冷熱輸送媒体再生装置
31 水蒸発器、35 液・液分離器、36 軽液層、38 水層、40 調整槽
63 液・液分離器、73 水蒸発器、64 軽液層、66 水層。
DESCRIPTION OF SYMBOLS 1 Cold transport medium storage tank, 3 Slurry manufacturing part, 5 Air conditioning equipment, 7 Cold transport medium reproduction | regeneration apparatus 31 Water evaporator, 35 Liquid / liquid separator, 36 Light liquid layer, 38 Water layer, 40 Adjustment tank 63 Liquid / liquid Separator, 73 water evaporator, 64 light liquid layer, 66 water layer.

Claims (12)

第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製方法であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮工程と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程とを備え、
前記二層分離工程は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記濃縮工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮することを特徴とする冷熱輸送媒体または蓄冷材の精製方法。
A method for purifying a cold transport medium or a regenerator material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A concentration step of removing water from the cold transport medium or the regenerator material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water-soluble inorganic A two-layer separation step of separating into two layers having a heavy specific gravity containing salt, and a water layer removal step of removing the water layer from the two-layer separated cold transport medium or cold storage material,
In the two-layer separation step , the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the concentrated heat transport medium or the regenerator material is measured, and the measured concentration of the water-soluble inorganic salt is first grasped. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. A heating and holding step to
The concentration step concentrates the cold transport medium or the cold storage material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. Method.
第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製方法であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加工程と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程とを備え、
前記二層分離工程は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記水溶性無機塩添加工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加することを特徴とする冷熱輸送媒体または蓄冷材の精製方法。
A method for purifying a cold transport medium or a regenerator material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A water-soluble inorganic salt addition step of adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold heat transport medium or cold storage material added with the water-soluble inorganic salt A two-layer separation step for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material A process,
The two-layer separation step measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold heat transport medium or the cold storage material to which the water-soluble inorganic salt is added, Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding step for holding the sample at a temperature higher than the deposition start temperature ,
The water-soluble inorganic salt addition step comprises adding the water-soluble inorganic salt in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. Purification method.
前記水溶性無機塩は、硫酸ナトリウム又はリン酸水素二ナトリウムであり、前記加熱保持工程における保持温度は35℃以上45℃以下であることを特徴とする請求項1又は2に記載の冷熱輸送媒体または蓄冷材の精製方法。 The cold transport medium according to claim 1 or 2, wherein the water-soluble inorganic salt is sodium sulfate or disodium hydrogen phosphate, and the holding temperature in the heating and holding step is 35 ° C or higher and 45 ° C or lower. Or a regenerator purification method. 第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生方法であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮工程と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整工程とを備え、
前記二層分離工程は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記濃縮工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮すること特徴とする冷熱輸送媒体または蓄冷材の再生方法。
A method for regenerating a cold transport medium or a cold storage material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A concentration step of removing water from the cold transport medium or the regenerator material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt and a water-soluble inorganic A two-layer separation step for separating into two layers having a heavy specific gravity containing salt, a water layer removal step for removing the water layer from the two-layer separated cold transport medium or cold storage material, and the water layer was removed A concentration adjusting step for adjusting the concentration of the aqueous quaternary ammonium salt to a predetermined value by adding water to the light liquid,
In the two-layer separation step , the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the concentrated heat transport medium or the regenerator material is measured, and the measured concentration of the water-soluble inorganic salt is first grasped. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. A heating and holding step to
The concentrating step concentrates the cold transport medium or the cold storage material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. .
第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生方法であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加工程と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離工程と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去工程と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整工程とを備え、
前記二層分離工程は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持工程を有し、
前記水溶性無機塩添加工程は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加すること特徴とする冷熱輸送媒体または蓄冷材の再生方法。
A method for regenerating a cold transport medium or a cold storage material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A water-soluble inorganic salt addition step of adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold heat transport medium or cold storage material added with the water-soluble inorganic salt A two-layer separation step for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material And a concentration adjusting step of adjusting the quaternary ammonium salt aqueous solution concentration to a predetermined value by adding water to the light liquid from which the aqueous layer has been removed,
The two-layer separation step measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold heat transport medium or the cold storage material to which the water-soluble inorganic salt is added, Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding step for holding the sample at a temperature higher than the deposition start temperature ,
The water-soluble inorganic salt addition step includes adding the water-soluble inorganic salt in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. Playback method.
前記水溶性無機塩は、硫酸ナトリウム又はリン酸二水素ナトリウムであり、前記加熱保持工程における保持温度は35℃以上45℃以下であることを特徴とする請求項4又は5に記載の冷熱輸送媒体または蓄冷材の再生方法。 The cold transport medium according to claim 4 or 5, wherein the water-soluble inorganic salt is sodium sulfate or sodium dihydrogen phosphate, and the holding temperature in the heating and holding step is 35 ° C or higher and 45 ° C or lower. Or the method of regenerating cold storage materials. 冷熱輸送媒体または蓄冷材を用いる空調装置の保全方法であって、
空調装置から冷熱輸送媒体または蓄冷材を抜き出し、請求項4乃至6のいずれか一項に記載の冷熱輸送媒体または蓄冷材の再生方法により、冷熱輸送媒体または蓄冷材を再生して、空調装置に戻すことを特徴とする空調装置の保全方法。
A maintenance method for an air conditioner using a cold transport medium or a cold storage material,
The cold transport medium or the cold storage material is extracted from the air conditioner, and the cold transport medium or the cold storage material is regenerated by the method for regenerating a cold transport medium or the cold storage material according to any one of claims 4 to 6 to be used in the air conditioner. A method for maintaining an air conditioner characterized by returning the air conditioner.
第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製装置であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮手段と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段とを備え、
前記二層分離手段は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記濃縮手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮することを特徴とする冷熱輸送媒体または蓄冷材の精製装置。
An apparatus for purifying a cold transport medium or a regenerator material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
Concentration means for removing water from the cold transport medium or cold storage material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt by standing the concentrated cold heat transport medium or cold storage material, and a water-soluble inorganic A two-layer separation means for separating into two layers into a heavy water layer containing salt and a water layer removal means for removing the water layer from the two-layer separated cold transport medium or cold storage material,
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the cold heat transport medium or the regenerator material, and first grasps the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. Heating and holding means to
The concentration means concentrates the cold transport medium or the cold storage material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. apparatus.
第4級アンモニウム塩水溶液を主成分とし、水溶性無機塩を含む冷熱輸送媒体または蓄冷材の精製装置であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加手段と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段とを備え、
前記二層分離手段は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記水溶性無機塩添加手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加することを特徴とする冷熱輸送媒体または蓄冷材の精製装置。
An apparatus for purifying a cold transport medium or a regenerator material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A water-soluble inorganic salt addition means for adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold transport medium or cold storage material to which the water-soluble inorganic salt is added A two-layer separation means for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material Means and
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added, and measures the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding means for holding at a temperature higher than the precipitation start temperature ,
The water-soluble inorganic salt addition means adds the water-soluble inorganic salt in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. Purification equipment.
第4級アンモニウム塩水溶液を主成分とし水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生装置であって、
前記冷熱輸送媒体または蓄冷材から水を除去して濃縮する濃縮手段と、濃縮された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整手段とを備え、
前記二層分離手段は、濃縮された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、濃縮された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記濃縮手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記冷熱輸送媒体または蓄冷材を濃縮すること特徴とする冷熱輸送媒体または蓄冷材の再生装置。
A regenerative apparatus for a cold transport medium or a regenerator material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
Concentration means for removing water from the cold transport medium or cold storage material and concentrating, a light liquid layer having a light specific gravity containing a quaternary ammonium salt by standing the concentrated cold heat transport medium or cold storage material, and a water-soluble inorganic A two-layer separation means for separating into two layers into a heavy water layer containing salt, a water layer removal means for removing the water layer from the two-layer separated cold transport medium or cold storage material, and the water layer removed Concentration adjusting means for adjusting the quaternary ammonium salt aqueous solution concentration to a predetermined value by adding water to the light liquid,
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the concentrated quaternary ammonium salt aqueous solution of the cold heat transport medium or the regenerator material, and first grasps the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility of water-soluble inorganic salt and the temperature, the precipitation start temperature of the water-soluble inorganic salt is derived, and the temperature of the concentrated cold transport medium or cold storage material is maintained at a temperature higher than the above-described precipitation start temperature. Heating and holding means to
The concentrating means concentrates the cold transport medium or the cold storage material in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. .
第4級アンモニウム塩水溶液を主成分とし水溶性無機塩を含む冷熱輸送媒体または蓄冷材の再生装置であって、
前記冷熱輸送媒体または蓄冷材に水溶性無機塩を添加する水溶性無機塩添加手段と、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材を静置して第4級アンモニウム塩を含む比重の軽い軽液層と水溶性無機塩を含む比重の重い水層とに二層分離する二層分離手段と、二層分離された冷熱輸送媒体または蓄冷材から前記水層を除去する水層除去手段と、水層が除去された軽液に水を加えて第4級アンモニウム塩水溶液濃度を所定値に調整する濃度調整手段とを備え、
前記二層分離手段は、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の第4級アンモニウム塩水溶液中の水溶性無機塩の濃度を計測し、計測した水溶性無機塩の濃度を、先に把握しておいた水溶性無機塩の溶解度と温度との関係に照合し、水溶性無機塩の析出開始温度を導きだし、水溶性無機塩を添加された冷熱輸送媒体または蓄冷材の温度を前記析出開始温度より高い温度に保持する加熱保持手段を有し、
前記水溶性無機塩添加工程手段は、前記加熱保持工程における保持温度において前記水溶性無機塩が析出する濃度未満の濃度範囲で前記水溶性無機塩を添加すること特徴とする冷熱輸送媒体または蓄冷材の再生装置。
A regenerative apparatus for a cold transport medium or a regenerator material comprising a quaternary ammonium salt aqueous solution as a main component and containing a water-soluble inorganic salt,
A water-soluble inorganic salt addition means for adding a water-soluble inorganic salt to the cold transport medium or cold storage material, and a specific gravity containing a quaternary ammonium salt by standing the cold transport medium or cold storage material to which the water-soluble inorganic salt is added A two-layer separation means for separating a light light liquid layer and a heavy water layer containing a water-soluble inorganic salt into two layers, and an aqueous layer removal for removing the water layer from the two-layer separated cold transport medium or cold storage material Means, and concentration adjusting means for adjusting the concentration of the aqueous quaternary ammonium salt solution to a predetermined value by adding water to the light liquid from which the aqueous layer has been removed,
The two-layer separation means measures the concentration of the water-soluble inorganic salt in the quaternary ammonium salt aqueous solution of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added, and measures the measured concentration of the water-soluble inorganic salt. Compared to the relationship between the solubility and temperature of the water-soluble inorganic salt previously known, the temperature at which the water-soluble inorganic salt is precipitated is derived, and the temperature of the cold transport medium or cold storage material to which the water-soluble inorganic salt is added. Having a heating and holding means for holding at a temperature higher than the precipitation start temperature ,
The water-soluble inorganic salt adding step means adds the water-soluble inorganic salt in a concentration range less than the concentration at which the water-soluble inorganic salt precipitates at the holding temperature in the heating and holding step. Playback device.
空調装置から冷熱輸送媒体または蓄冷材を抜き出す手段と、請求項10又は11に記載の冷熱輸送媒体または蓄冷材の再生装置と、再生された冷熱輸送媒体または蓄冷材を前記空調装置に戻す手段とを備えたことを特徴とする空調システム。
Means for extracting a cold transport medium or a cold storage material from the air conditioner, a regenerative apparatus for the cold transport medium or the cold storage material according to claim 10 or 11, and a means for returning the regenerated cold transport medium or the cold storage material to the air conditioner. An air conditioning system characterized by comprising
JP2010140162A 2010-06-21 2010-06-21 Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system Expired - Fee Related JP5499931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140162A JP5499931B2 (en) 2010-06-21 2010-06-21 Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140162A JP5499931B2 (en) 2010-06-21 2010-06-21 Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system

Publications (2)

Publication Number Publication Date
JP2012001678A JP2012001678A (en) 2012-01-05
JP5499931B2 true JP5499931B2 (en) 2014-05-21

Family

ID=45534024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140162A Expired - Fee Related JP5499931B2 (en) 2010-06-21 2010-06-21 Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system

Country Status (1)

Country Link
JP (1) JP5499931B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094411B2 (en) * 2013-07-17 2017-03-15 株式会社デンソー Thermal storage device and thermal storage control method
CN104633776B (en) * 2015-02-05 2018-04-06 周志杰 A kind of multifunctional indoor air processing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046855A (en) * 2005-08-11 2007-02-22 Jfe Engineering Kk Hydrate slurry thermal storage device and thermal storage method
JP4736809B2 (en) * 2006-01-10 2011-07-27 Jfeエンジニアリング株式会社 Cryogenic transport medium or cold storage material impurity removal method, regeneration method, purification method, cold storage air conditioner maintenance method, cold transport medium or cold storage material impurity removal device, regeneration device, cold storage air conditioning system
JP4984133B2 (en) * 2007-03-19 2012-07-25 Jfeエンジニアリング株式会社 Concentration method, concentration separation method, concentration recovery method, and regeneration method of guest molecules of inclusion compounds
JP4984132B2 (en) * 2007-03-19 2012-07-25 Jfeエンジニアリング株式会社 Method for promoting phase separation of clathrate compound or guest molecule in solution
JP5104159B2 (en) * 2007-09-26 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof

Also Published As

Publication number Publication date
JP2012001678A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US20090020264A1 (en) Method of heat accumulation and heat accumulation system
US20020083720A1 (en) Air conditioning and thermal storage systems using clathrate hydrate slurry
JP6186240B2 (en) Method for evaporating aqueous solution
Luis et al. Technical viability and exergy analysis of membrane crystallization: Closing the loop of CO2 sequestration
EP0034164B1 (en) A method and apparatus for storing heat
KR20130103395A (en) Method of operating an absorption heat pump
JP5499931B2 (en) Cryogenic transport medium or regenerator purification method, regeneration method, air conditioner maintenance method, refrigeration transport medium or regenerator purifier, regenerator, air conditioning system
CN107106950A (en) Osmotic drive membranous system and processing for improving brine strength
JP4736809B2 (en) Cryogenic transport medium or cold storage material impurity removal method, regeneration method, purification method, cold storage air conditioner maintenance method, cold transport medium or cold storage material impurity removal device, regeneration device, cold storage air conditioning system
JP3663634B2 (en) Operation method of circulating cooling water system
JP6808192B2 (en) Method for producing dry water electrolytic gas and its equipment
US11499761B2 (en) Thermochemical heat pump and method for redistributing heat energy with variable power
JPH11351775A (en) Thermal storage apparatus
AU2012356110B2 (en) Method and system for processing a stream comprising glycol based and kinetic hydrate inhibitors
JP4513230B2 (en) Chilled heat storage system and cooling medium regeneration method
Ameri Thermodynamic analysis of single and multi-effect freeze desalination
JP2010216705A (en) Method of cooling product in electrolysis plant
CN113754120B (en) Method for enhancing scale precipitation by negative pressure on thermal spring well
JPH0650686A (en) Latent heat accumulator
CN111348665A (en) Membrane method freezing denitration method and production device
JP5125316B2 (en) Raw material for clathrate hydrate production, method for producing clathrate hydrate or slurry thereof, and method for reducing pressure loss generated when cooling an aqueous solution for clathrate hydrate production
CN215886685U (en) Negative pressure reinforced scale separating device on hot spring well
JP2013180912A (en) Geothermal utilization system, method for synthesizing silicalite, and method for recovering lithium carbonate
KR101971601B1 (en) Method for controlling and purifying boron for the chemical and volume control system using crystallization
JP2022077352A (en) Method for using energy and energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees