JP4983589B2 - Control device for cold continuous rolling equipment - Google Patents

Control device for cold continuous rolling equipment Download PDF

Info

Publication number
JP4983589B2
JP4983589B2 JP2007329153A JP2007329153A JP4983589B2 JP 4983589 B2 JP4983589 B2 JP 4983589B2 JP 2007329153 A JP2007329153 A JP 2007329153A JP 2007329153 A JP2007329153 A JP 2007329153A JP 4983589 B2 JP4983589 B2 JP 4983589B2
Authority
JP
Japan
Prior art keywords
rolling
particle size
rolled material
control model
laser ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007329153A
Other languages
Japanese (ja)
Other versions
JP2009148797A (en
Inventor
知昭 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2007329153A priority Critical patent/JP4983589B2/en
Publication of JP2009148797A publication Critical patent/JP2009148797A/en
Application granted granted Critical
Publication of JP4983589B2 publication Critical patent/JP4983589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

この発明は、冷間連続圧延設備において、レーザ超音波粒径センサによって測定された圧延材の粒径情報を、制御モデルに利用するための制御装置に関するものである。   The present invention relates to a control device for using, in a control model, particle size information of a rolled material measured by a laser ultrasonic particle size sensor in a cold continuous rolling facility.

冷間連続圧延設備は、ストリップを所定の形状、板厚、表面状態に作りこむことを目的としている。また、冷間圧延された圧延材は、圧延によって生じる転移組織強化により、高強度になっている。このため、冷間連続圧延設備では、後工程で焼鈍処理を行い、加工性を改善することが一般に行われている。そして、この焼鈍後に所定の再結晶集合組織を得るため、微視組織と冷延集合組織とを形成することも、冷間連続圧延設備の目的の一つとされている。   The cold continuous rolling equipment is intended to make a strip into a predetermined shape, thickness, and surface state. Moreover, the cold-rolled rolled material has high strength due to the strengthening of the transition structure generated by rolling. For this reason, in cold continuous rolling equipment, it is generally performed to improve workability by performing an annealing process in a subsequent process. And, in order to obtain a predetermined recrystallized texture after the annealing, forming a microstructure and a cold-rolled texture is also one of the purposes of the cold continuous rolling equipment.

このような目的のため、冷間連続圧延設備では、板厚を制御するための圧延制御モデルを作成し、更に、各種測定装置によって得られた実績値をフィードバックして、板厚制御を行っている。具体的に、上記圧延制御モデルには、圧延前の圧延材の板厚、板幅、鋼種、圧延後の圧延材の板厚、板幅等の情報が利用される。また、制御上のフィードバックデータとしては、各種測定装置によって得られた圧延荷重、張力、板厚、圧延速度等が活用される。   For such a purpose, the cold continuous rolling equipment creates a rolling control model for controlling the plate thickness, and feeds back the actual values obtained by various measuring devices to perform the plate thickness control. Yes. Specifically, the rolling control model uses information such as the sheet thickness, sheet width, steel type of the rolled material before rolling, the sheet thickness of the rolled material after rolling, and the sheet width. As the feedback data for control, rolling load, tension, sheet thickness, rolling speed, etc. obtained by various measuring devices are utilized.

また、従来技術として、焼鈍炉の途中或いは直後に粒径測定装置やr値測定装置を設置することにより、この粒径測定装置やr値測定装置の測定結果に基づいて焼鈍温度を適宜変化させ、所定の粒径或いはr値に制御するように構成したものが提案されている(例えば、特許文献1参照)。   In addition, as a conventional technique, by installing a particle size measuring device or an r value measuring device in the middle or immediately after the annealing furnace, the annealing temperature is appropriately changed based on the measurement result of the particle size measuring device or the r value measuring device. A configuration in which the particle size is controlled to a predetermined particle size or r value has been proposed (see, for example, Patent Document 1).

特開平5−171258号公報JP-A-5-171258

従来の冷間連続圧延設備では、圧延制御モデルを作成するために、圧延材の鋼種を、圧延材の材質を示すパラメータとして利用していた。しかし、圧延制御モデルで利用される他のパラメータである板厚や板幅の場合とは異なり、鋼種に関しては、冷間連続圧延設備内にその妥当性を確認する手段が存在していなかった。一方、同じ鋼種であっても材料の強度が必ずしも完全に一致する訳ではない。このため、圧延制御モデルによって算出された圧延荷重等の計算値には、上記鋼種に起因する誤差が存在し、計算値と実績値との間に差異が生じることとなっていた。   In conventional cold continuous rolling equipment, in order to create a rolling control model, the steel type of the rolled material is used as a parameter indicating the material of the rolled material. However, unlike the case of sheet thickness and sheet width, which are other parameters used in the rolling control model, there is no means for confirming the validity of the steel type in the cold continuous rolling facility. On the other hand, the strength of the material does not necessarily match completely even with the same steel type. For this reason, in the calculated values such as rolling load calculated by the rolling control model, there are errors due to the above steel types, and there is a difference between the calculated value and the actual value.

なお、従来の冷間連続圧延設備では、圧延制御モデルにより算出された計算値と実績値との差異を修正するために、この計算値と実績値との比から補正項を算出して、以後の圧延に反映させるような学習制御が行われていた。しかし、圧延材の材質情報を圧延制御モデルに反映することについては何等考慮されておらず、圧延制御モデルの予測精度の向上には限界があった。   In addition, in the conventional cold continuous rolling equipment, in order to correct the difference between the calculated value calculated by the rolling control model and the actual value, a correction term is calculated from the ratio between the calculated value and the actual value. The learning control was reflected in the rolling process. However, no consideration is given to reflecting the material information of the rolled material in the rolling control model, and there has been a limit to improving the prediction accuracy of the rolling control model.

一方、後工程の焼鈍処理では、所定の再結晶集合組織を得るため、加熱炉の温度を制御するための加熱炉温度制御モデルが作成され、この加熱炉温度制御モデルに基づいて温度制御が行われている。そして、従来では、この加熱炉温度制御モデルについても、圧延制御モデルの場合と同様に、圧延材の鋼種が、圧延材の材質を示すパラメータとして利用されていた。このため、焼鈍処理においても、鋼種に関して、冷間連続圧延設備内にその妥当性を確認する手段が存在していないといった問題があった。   On the other hand, in the subsequent annealing process, in order to obtain a predetermined recrystallization texture, a heating furnace temperature control model for controlling the temperature of the heating furnace is created, and temperature control is performed based on this heating furnace temperature control model. It has been broken. And conventionally, also about this heating furnace temperature control model, the steel type of a rolling material was utilized as a parameter which shows the material of a rolling material similarly to the case of a rolling control model. For this reason, even in the annealing treatment, there is a problem that there is no means for confirming the validity of the steel type in the cold continuous rolling equipment.

この発明は、上述のような課題を解決するためになされたもので、その目的は、圧延材の材質情報としてフェライト粒径等の粒径情報を測定し、その測定結果を制御モデルに反映させることにより、制御モデルの予測精度を大幅に向上させることができる冷間連続圧延設備の制御装置を提供することである。   The present invention has been made to solve the above-described problems, and its purpose is to measure particle diameter information such as ferrite particle diameter as material information of the rolled material, and to reflect the measurement result in the control model. Accordingly, it is an object of the present invention to provide a control device for cold continuous rolling equipment that can greatly improve the prediction accuracy of a control model.

この発明に係る冷間連続圧延設備の制御装置は、複数の圧延スタンドによって圧延材を圧延する圧延装置と、圧延装置の前段に設けられ、圧延装置によって圧延される前の圧延材の粒径情報を測定するレーザ超音波粒径センサと、圧延装置に関する圧延制御モデルを有し、圧延制御モデルの算出結果に基づいて圧延装置を制御することにより、圧延材の板厚制御を行う制御手段と、を備え、制御手段は、レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、圧延制御モデルによる算出を行うものである。   The control device for cold continuous rolling equipment according to the present invention includes a rolling device that rolls a rolled material by a plurality of rolling stands, and particle size information of the rolled material that is provided in a preceding stage of the rolling device and is rolled by the rolling device. A laser ultrasonic particle size sensor for measuring, a control unit for controlling the thickness of the rolled material by controlling the rolling device based on the calculation result of the rolling control model, and a rolling control model related to the rolling device; The control means performs calculation based on the rolling control model using the particle size information measured by the laser ultrasonic particle size sensor as one piece of input information.

また、この発明に係る冷間連続圧延設備の制御装置は、複数の圧延スタンドによって圧延材を圧延する圧延装置と、圧延装置の前段に設けられ、圧延装置によって圧延される前の圧延材の粒径情報を測定する第1レーザ超音波粒径センサと、圧延装置に関する圧延制御モデルを有し、圧延制御モデルの算出結果に基づいて圧延装置を制御することにより、圧延材の板厚制御を行う第1制御手段と、圧延装置の後段に設けられた焼鈍装置と、圧延装置の後段で且つ焼鈍装置の前段に設けられ、圧延装置によって圧延された後及び焼鈍装置によって加熱される前の圧延材の粒径情報を測定する第2レーザ超音波粒径センサと、焼鈍装置に関する加熱炉温度制御モデルを有し、加熱炉温度制御モデルの算出結果に基づいて焼鈍装置を制御することにより、圧延材の温度制御を行う第2制御手段と、を備え、第1制御手段は第1レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、また、第2制御手段は第2レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、圧延制御モデル及び加熱炉温度制御モデルによる算出を行うものである。   Further, a control device for cold continuous rolling equipment according to the present invention includes a rolling device that rolls a rolled material by a plurality of rolling stands, and a grain of the rolled material that is provided in a preceding stage of the rolling device and is not rolled by the rolling device. A first laser ultrasonic particle size sensor for measuring diameter information and a rolling control model related to the rolling device are provided, and the thickness of the rolled material is controlled by controlling the rolling device based on the calculation result of the rolling control model. A first control means, an annealing device provided in a subsequent stage of the rolling apparatus, a rolled material provided in the subsequent stage of the rolling apparatus and in the preceding stage of the annealing apparatus, after being rolled by the rolling apparatus and before being heated by the annealing apparatus The second laser ultrasonic particle size sensor for measuring the particle size information of the furnace and the furnace temperature control model for the annealing apparatus, and controlling the annealing apparatus based on the calculation result of the furnace temperature control model And a second control means for controlling the temperature of the rolled material, wherein the first control means uses the particle size information measured by the first laser ultrasonic particle size sensor as one input information, and also performs the second control. The means performs calculation based on the rolling control model and the heating furnace temperature control model using the particle size information measured by the second laser ultrasonic particle size sensor as one piece of input information.

また、この発明に係る冷間連続圧延設備の制御装置は、複数の圧延スタンドによって圧延材を圧延する圧延装置と、圧延装置の後段に設けられた焼鈍装置と、圧延装置の後段で且つ焼鈍装置の前段に設けられ、圧延装置によって圧延された後及び焼鈍装置によって加熱される前の圧延材の粒径情報を測定するレーザ超音波粒径センサと、焼鈍装置に関する加熱炉温度制御モデルを有し、加熱炉温度制御モデルの算出結果に基づいて焼鈍装置を制御することにより、圧延材の温度制御を行う制御手段と、を備え、制御手段は、レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、加熱炉温度制御モデルによる算出を行うものである。   Further, the control device for cold continuous rolling equipment according to the present invention includes a rolling device for rolling a rolled material by a plurality of rolling stands, an annealing device provided at a subsequent stage of the rolling device, and a subsequent stage of the rolling device and an annealing device. A laser ultrasonic particle size sensor that measures the particle size information of the rolled material after being rolled by the rolling device and before being heated by the annealing device, and a furnace temperature control model for the annealing device Control means for controlling the temperature of the rolled material by controlling the annealing apparatus based on the calculation result of the heating furnace temperature control model, and the control means has a particle size measured by a laser ultrasonic particle size sensor. The information is used as one piece of input information and is calculated using a furnace temperature control model.

この発明によれば、圧延材の材質情報としてフェライト粒径等の粒径情報を測定し、その測定結果を制御モデルに反映させることにより、制御モデルの予測精度を大幅に向上させることができるようになる。   According to the present invention, it is possible to greatly improve the prediction accuracy of the control model by measuring the grain size information such as ferrite grain size as the material information of the rolled material and reflecting the measurement result in the control model. become.

この発明をより詳細に説明するため、添付の図面に従ってこれを説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   In order to explain the present invention in more detail, it will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

実施の形態1.
図1はこの発明の実施の形態1における冷間連続圧延設備の制御装置を示す全体構成図である。図1において、1は第1圧延スタンドから第5圧延スタンドで構成される圧延装置である。圧延材2は、この圧延装置1によって圧延される。
Embodiment 1 FIG.
FIG. 1 is an overall configuration diagram showing a control device for cold continuous rolling equipment according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a rolling apparatus composed of a first rolling stand to a fifth rolling stand. The rolled material 2 is rolled by the rolling device 1.

冷間連続圧延設備の圧延装置1の前段及び後段(上流側及び下流側)には、レーザ超音波粒径センサ3及び4が設置されている。このレーザ超音波粒径センサ3及び4は、冷間連続圧延設備内を搬送される圧延材2のフェライト粒径を粒径情報として測定し、その測定結果を出力する。具体的に、圧延装置1の前段に設置されたレーザ超音波粒径センサ3は、圧延装置1によって圧延される前の圧延材2のフェライト粒径を測定する。また、圧延装置1の後段に設置されたレーザ超音波粒径センサ4は、圧延装置1によって圧延された後の圧延材2のフェライト粒径を測定する。   Laser ultrasonic particle size sensors 3 and 4 are installed in the former stage and the latter stage (upstream side and downstream side) of the rolling device 1 of the cold continuous rolling facility. The laser ultrasonic particle size sensors 3 and 4 measure the ferrite particle size of the rolled material 2 conveyed in the cold continuous rolling facility as particle size information, and output the measurement result. Specifically, the laser ultrasonic particle size sensor 3 installed at the front stage of the rolling device 1 measures the ferrite particle size of the rolled material 2 before being rolled by the rolling device 1. The laser ultrasonic particle size sensor 4 installed at the rear stage of the rolling device 1 measures the ferrite particle size of the rolled material 2 after being rolled by the rolling device 1.

冷間連続圧延設備内には、圧延材2に関する各種情報を採取するため、様々な測定装置が備えられている。例えば、圧延材2の板幅を測定する板幅測定器(図示せず)、圧延材2の板厚を測定する板厚測定器5乃至8、圧延材2の表面状態(平坦度等)を測定する平坦度測定器9、圧延材2の搬送速度を測定する速度測定器10乃至12等が、図1に示すように設置される。また、図示は省略されているが、圧延装置1等に設けられた圧延荷重測定器や張力測定器によって、圧延材2に作用する圧延荷重や張力が測定される。   In the cold continuous rolling facility, various measuring devices are provided in order to collect various information related to the rolled material 2. For example, a plate width measuring device (not shown) for measuring the plate width of the rolled material 2, plate thickness measuring devices 5 to 8 for measuring the plate thickness of the rolled material 2, and the surface state (flatness etc.) of the rolled material 2 A flatness measuring device 9 for measuring, speed measuring devices 10 to 12 for measuring a conveying speed of the rolled material 2, and the like are installed as shown in FIG. Moreover, although illustration is abbreviate | omitted, the rolling load and tension | tensile_strength which act on the rolling material 2 are measured by the rolling load measuring device and tension measuring device provided in the rolling apparatus 1 grade | etc.,.

13は冷間連続圧延設備電気室である。この冷間連続圧延設備電気室13には、圧延装置1を制御して圧延材2の板厚制御を行うための第1制御手段(図示せず)が備えられている。
以下に、図1及び図2に基づいて、上記第1制御手段の具体的な構成及び機能について説明する。図2はこの発明の実施の形態1における冷間連続圧延設備の制御装置を示す要部構成図である。
Reference numeral 13 denotes an electric room for cold continuous rolling equipment. The cold continuous rolling facility electrical chamber 13 is provided with first control means (not shown) for controlling the rolling device 1 to control the thickness of the rolled material 2.
Below, based on FIG.1 and FIG.2, the concrete structure and function of the said 1st control means are demonstrated. FIG. 2 is a main part configuration diagram showing a control device for a cold continuous rolling facility according to Embodiment 1 of the present invention.

第1制御手段は、例えば、冷間連続圧延設備電気室13に設置された上位計算機14とレベル1コントローラ15とにより構成される。上位計算機14には、圧延装置1に関する圧延制御モデルが格納されている。この圧延制御モデルは、図1に示すように、例えば、ロールの温度と摩耗に関するモデル、冷間圧延機の設定に関するモデル、圧延材2の形状設定に関するモデルといった複数のモデルによって構成され、上位計算機14は、これらの圧延制御モデルに種々の入力情報を適用させることによって、制御用パラメータを算出する。   A 1st control means is comprised by the high-order computer 14 and the level 1 controller 15 which were installed in the cold continuous rolling equipment electrical room 13, for example. The host computer 14 stores a rolling control model related to the rolling device 1. As shown in FIG. 1, this rolling control model is composed of a plurality of models, for example, a model relating to roll temperature and wear, a model relating to setting of a cold rolling mill, and a model relating to shape setting of the rolled material 2, 14 calculates control parameters by applying various input information to these rolling control models.

圧延制御モデルに対する入力情報としては、例えば、鋼種、板厚、板幅といった圧延材情報16や、板厚、板幅といった製品情報17が利用される。なお、圧延材情報16に関しては、圧延制御モデルによる算出精度を向上させるため、一般的に、圧延装置1の前段に設けられた各種測定装置の測定値が利用される。   As input information for the rolling control model, for example, rolling material information 16 such as steel type, sheet thickness, and sheet width and product information 17 such as sheet thickness and sheet width are used. In addition, regarding the rolling material information 16, in order to improve the calculation precision by a rolling control model, generally the measured value of the various measuring apparatuses provided in the front | former stage of the rolling apparatus 1 is utilized.

また、本発明では、レーザ超音波粒径センサ3によって測定されたフェライト粒径も、圧延制御モデルに対する入力情報の一つとして利用する。そして、圧延制御モデルでは、入力されたフェライト粒径を、圧延材2の材質に影響を受けるパラメータの補正に適用する。例えば、圧延材2の材質情報として鋼種を利用し、この鋼種から圧延材2の変形抵抗等を推定している場合には、鋼種から推定される変形抵抗を、レーザ超音波粒径センサ3によって測定されたフェライト粒径に基づいて補正し、実際の圧延に最適な制御パラメータを算出する。   In the present invention, the ferrite particle size measured by the laser ultrasonic particle size sensor 3 is also used as one of input information for the rolling control model. In the rolling control model, the input ferrite grain size is applied to correction of a parameter affected by the material of the rolled material 2. For example, when a steel type is used as the material information of the rolled material 2 and the deformation resistance of the rolled material 2 is estimated from this steel type, the deformation resistance estimated from the steel type is measured by the laser ultrasonic particle size sensor 3. Correction is made based on the measured ferrite grain size, and the optimum control parameter for actual rolling is calculated.

上記各入力情報に基づいて圧延制御モデルによって得られた制御用パラメータは、レベル1コントローラ15に対して送信される。レベル1コントローラ15では、この制御用パラメータと、各種測定装置からの実績値フェードバックとに基づいて圧延装置1を制御し、圧延材2の板厚制御を行う。なお、上記実績値としては、図2にも示すように、例えば、板厚、張力、圧延速度、圧延荷重等が利用される。   The control parameters obtained by the rolling control model based on each input information are transmitted to the level 1 controller 15. The level 1 controller 15 controls the rolling device 1 based on this control parameter and the actual value fade-back from various measuring devices to control the thickness of the rolled material 2. As the actual value, as shown in FIG. 2, for example, a plate thickness, a tension, a rolling speed, a rolling load, and the like are used.

次に、上記構成を有する冷間連続圧延設備の制御装置の作用について説明する。
一般的に、材料の強度の増加分は、粒径の1/2乗に反比例する性質があり、降伏強度(又は、引張強度)σyと粒径dとは、次式で示されることが経験的に知られている。
σy=σi+kyd(−1/2) (Hall−Petchの関係式)
ここで、σiは単結晶の平均降伏強度、kyは結晶粒界が降伏強度を高めるパラメータである。
Next, the operation of the control device for the cold continuous rolling equipment having the above configuration will be described.
In general, the increase in the strength of the material has a property that is inversely proportional to the 1/2 power of the grain size, and it is experienced that the yield strength (or tensile strength) σy and the grain size d are expressed by the following equations Known.
σy = σi + kyd (−1/2) (Hall-Petch relational expression)
Here, σi is an average yield strength of the single crystal, and ky is a parameter that increases the yield strength of the crystal grain boundary.

したがって、上位計算機14では、レーザ超音波粒径センサ3によって測定されたフェライト粒径に基づいて、圧延材2の降伏応力を算出する。そして、圧延材2の鋼種に基づき圧延制御モデルによって算出された圧延材2の変形抵抗を、上記算出した降伏応力を用いて補正する。かかる構成によれば、圧延材2の材質を正確に把握することができるようになり、圧延制御モデルの精度を向上させることが可能となる。   Therefore, the host computer 14 calculates the yield stress of the rolled material 2 based on the ferrite particle diameter measured by the laser ultrasonic particle diameter sensor 3. Then, the deformation resistance of the rolled material 2 calculated by the rolling control model based on the steel type of the rolled material 2 is corrected using the calculated yield stress. According to this configuration, the material of the rolled material 2 can be accurately grasped, and the accuracy of the rolling control model can be improved.

また、圧延装置1の後段には、圧延材2を加熱するための加熱炉を備えた焼鈍装置(図示せず)が設けられている。レーザ超音波粒径センサ4は、この焼鈍装置の前段に設置されており、焼鈍装置によって加熱される前の圧延材2のフェライト粒径を測定する。図1における18は焼鈍設備電気室である。この焼鈍設備電気室18には、焼鈍装置の加熱炉等を制御して圧延材2の温度制御を行うための第2制御手段(図示せず)が備えられている。
以下に、図1及び図3に基づいて、上記第2制御手段の具体的な構成及び機能について説明する。図3はこの発明の実施の形態1における冷間連続圧延設備の制御装置を示す要部構成図である。
Further, an annealing apparatus (not shown) provided with a heating furnace for heating the rolled material 2 is provided at the subsequent stage of the rolling apparatus 1. The laser ultrasonic particle size sensor 4 is installed in the front stage of this annealing device, and measures the ferrite particle size of the rolled material 2 before being heated by the annealing device. In FIG. 1, 18 is an electrical room for annealing equipment. The annealing equipment electrical chamber 18 is provided with second control means (not shown) for controlling the temperature of the rolled material 2 by controlling a heating furnace of the annealing apparatus.
Below, based on FIG.1 and FIG.3, the concrete structure and function of the said 2nd control means are demonstrated. FIG. 3 is a main part configuration diagram showing a control device for a cold continuous rolling facility according to Embodiment 1 of the present invention.

第2制御手段は、例えば、焼鈍設備電気室18に設置された上位計算機19と、図示しないコントローラとによって構成される。上位計算機19には、焼鈍装置に関する加熱炉温度制御モデルが格納され、この加熱炉温度制御モデルに種々の入力情報を適用させることによって、加熱炉温度や粒径予測値等を算出する。   The second control means includes, for example, a host computer 19 installed in the annealing facility electrical room 18 and a controller (not shown). The host computer 19 stores a heating furnace temperature control model relating to the annealing apparatus, and calculates the heating furnace temperature and the predicted particle size by applying various input information to the heating furnace temperature control model.

加熱炉温度制御モデルに対する入力情報としては、例えば、鋼種、板厚、板幅といった加熱材情報20の他に、レーザ超音波粒径センサ4によって測定されたフェライト粒径が利用される。このように、加熱炉温度制御モデルの入力情報としてレーザ超音波粒径センサ4の測定値を採用することにより、母材料の材質のより正確な把握が可能となり、加熱炉温度制御モデルの精度を向上させることができるようになる。即ち、幅広い母材料に対して、常に最適な加熱炉温度設定を実施することが可能となる。   As input information for the heating furnace temperature control model, for example, the ferrite particle size measured by the laser ultrasonic particle size sensor 4 is used in addition to the heating material information 20 such as the steel type, the plate thickness, and the plate width. As described above, by adopting the measured value of the laser ultrasonic particle size sensor 4 as input information of the heating furnace temperature control model, it becomes possible to more accurately grasp the material of the base material, and the accuracy of the heating furnace temperature control model is improved. Can be improved. That is, it is possible to always carry out optimum heating furnace temperature setting for a wide range of base materials.

なお、加熱炉温度制御モデルによって算出された粒径予測値と、焼鈍装置の後段に設けられたレーザ超音波粒径センサ(図示せず)によって測定されたフェライト粒径実績値とを学習制御手段21に比較させ、その比較結果をモデル補正値として加熱炉温度制御モデルに反映させることにより、更なる精度向上を図ることも可能である。   The grain size prediction value calculated by the furnace temperature control model and the ferrite grain size actual value measured by a laser ultrasonic grain size sensor (not shown) provided in the subsequent stage of the annealing apparatus are learned control means. 21, and the comparison result is reflected as a model correction value in the heating furnace temperature control model, so that the accuracy can be further improved.

この発明の実施の形態1によれば、圧延材2の材質情報としてフェライト粒径等の粒径情報を測定し、その測定結果を制御モデルに反映させることにより、制御モデルの予測精度を大幅に向上させることができるようになる。   According to Embodiment 1 of the present invention, the particle size information such as the ferrite particle size is measured as the material information of the rolled material 2, and the measurement result is reflected in the control model, thereby greatly improving the prediction accuracy of the control model. Can be improved.

この発明の実施の形態1における冷間連続圧延設備の制御装置を示す全体構成図である。It is a whole block diagram which shows the control apparatus of the cold continuous rolling equipment in Embodiment 1 of this invention. この発明の実施の形態1における冷間連続圧延設備の制御装置を示す要部構成図である。It is a principal part block diagram which shows the control apparatus of the cold continuous rolling equipment in Embodiment 1 of this invention. この発明の実施の形態1における冷間連続圧延設備の制御装置を示す要部構成図である。It is a principal part block diagram which shows the control apparatus of the cold continuous rolling equipment in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 圧延装置
2 圧延材
3、4 レーザ超音波粒径センサ
5、6、7、8 板厚測定器
9 平坦度測定器
10、11、12 速度測定器
13 冷間連続圧延設備電気室
14 上位計算機
15 レベル1コントローラ
16 圧延材情報
17 製品情報
18 焼鈍設備電気室
19 上位計算機
20 加熱材情報
21 学習制御手段
DESCRIPTION OF SYMBOLS 1 Rolling apparatus 2 Rolled material 3, 4 Laser ultrasonic particle size sensor 5, 6, 7, 8 Plate thickness measuring device 9 Flatness measuring device 10, 11, 12 Speed measuring device 13 Cold continuous rolling equipment electric room 14 Host computer 15 Level 1 controller 16 Rolled material information 17 Product information 18 Annealing equipment electrical room 19 High-order computer 20 Heating material information 21 Learning control means

Claims (4)

複数の圧延スタンドによって圧延材を圧延する圧延装置と、
前記圧延装置の前段に設けられ、前記圧延装置によって圧延される前の前記圧延材の粒径情報を測定するレーザ超音波粒径センサと、
前記圧延装置に関する圧延制御モデルを有し、前記圧延制御モデルの算出結果に基づいて前記圧延装置を制御することにより、前記圧延材の板厚制御を行う制御手段と、
を備え、
前記制御手段は、前記レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、前記圧延制御モデルによる算出を行うことを特徴とする冷間連続圧延設備の制御装置。
A rolling device for rolling the rolled material by a plurality of rolling stands;
A laser ultrasonic particle size sensor that is provided in a previous stage of the rolling device and measures particle size information of the rolled material before being rolled by the rolling device;
Control means for controlling the thickness of the rolled material by controlling the rolling device based on the calculation result of the rolling control model, having a rolling control model related to the rolling device;
With
The said control means performs the calculation by the said rolling control model by using the particle size information measured by the said laser ultrasonic particle size sensor as one input information, The control apparatus of the cold continuous rolling equipment characterized by the above-mentioned.
制御手段は、レーザ超音波粒径センサによって測定された粒径情報に基づいて圧延材の降伏強度を算出し、前記圧延材の鋼種に基づいて算出された前記圧延材の変形抵抗を、前記算出された降伏強度を用いて補正することを特徴とする請求項1に記載の冷間連続圧延設備の制御装置。   The control means calculates the yield strength of the rolled material based on the particle size information measured by the laser ultrasonic particle size sensor, and calculates the deformation resistance of the rolled material calculated based on the steel type of the rolled material. The control apparatus for cold continuous rolling equipment according to claim 1, wherein correction is performed by using the yield strength. 複数の圧延スタンドによって圧延材を圧延する圧延装置と、
前記圧延装置の前段に設けられ、前記圧延装置によって圧延される前の前記圧延材の粒径情報を測定する第1レーザ超音波粒径センサと、
前記圧延装置に関する圧延制御モデルを有し、前記圧延制御モデルの算出結果に基づいて前記圧延装置を制御することにより、前記圧延材の板厚制御を行う第1制御手段と、
前記圧延装置の後段に設けられた焼鈍装置と、
前記圧延装置の後段で且つ前記焼鈍装置の前段に設けられ、前記圧延装置によって圧延された後及び前記焼鈍装置によって加熱される前の前記圧延材の粒径情報を測定する第2レーザ超音波粒径センサと、
前記焼鈍装置に関する加熱炉温度制御モデルを有し、前記加熱炉温度制御モデルの算出結果に基づいて前記焼鈍装置を制御することにより、前記圧延材の温度制御を行う第2制御手段と、
を備え、
前記第1制御手段は前記第1レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、また、前記第2制御手段は前記第2レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、前記圧延制御モデル及び前記加熱炉温度制御モデルによる算出を行うことを特徴とする冷間連続圧延設備の制御装置。
A rolling device for rolling the rolled material by a plurality of rolling stands;
A first laser ultrasonic particle size sensor that is provided in a preceding stage of the rolling device and measures particle size information of the rolled material before being rolled by the rolling device;
A first control means for controlling the thickness of the rolled material by controlling the rolling device based on a calculation result of the rolling control model, the rolling control model relating to the rolling device;
An annealing apparatus provided at a subsequent stage of the rolling apparatus,
2nd laser ultrasonic particle which is provided in the back | latter stage of the said rolling apparatus and the front | former stage of the said annealing apparatus, and measures the particle size information of the said rolling material after rolling by the said rolling apparatus and before being heated by the said annealing apparatus. A diameter sensor;
A second control means for controlling the temperature of the rolled material by controlling the annealing apparatus based on a calculation result of the heating furnace temperature control model, having a heating furnace temperature control model related to the annealing apparatus;
With
The first control means uses the particle size information measured by the first laser ultrasonic particle size sensor as one input information, and the second control means measures the second laser ultrasonic particle size sensor. A control apparatus for a cold continuous rolling facility, characterized by performing calculation using the rolling control model and the heating furnace temperature control model using particle size information as one piece of input information.
複数の圧延スタンドによって圧延材を圧延する圧延装置と、
前記圧延装置の後段に設けられた焼鈍装置と、
前記圧延装置の後段で且つ前記焼鈍装置の前段に設けられ、前記圧延装置によって圧延された後及び前記焼鈍装置によって加熱される前の前記圧延材の粒径情報を測定するレーザ超音波粒径センサと、
前記焼鈍装置に関する加熱炉温度制御モデルを有し、前記加熱炉温度制御モデルの算出結果に基づいて前記焼鈍装置を制御することにより、前記圧延材の温度制御を行う制御手段と、
を備え、
前記制御手段は、前記レーザ超音波粒径センサによって測定された粒径情報を一つの入力情報として、前記加熱炉温度制御モデルによる算出を行うことを特徴とする冷間連続圧延設備の制御装置。
A rolling device for rolling the rolled material by a plurality of rolling stands;
An annealing apparatus provided at a subsequent stage of the rolling apparatus,
A laser ultrasonic particle size sensor that is provided in a subsequent stage of the rolling apparatus and in an upstream stage of the annealing apparatus, and measures particle diameter information of the rolled material after being rolled by the rolling apparatus and before being heated by the annealing apparatus. When,
A control means for controlling the temperature of the rolled material by controlling the annealing apparatus based on the calculation result of the heating furnace temperature control model, having a heating furnace temperature control model related to the annealing apparatus,
With
The said control means performs calculation by the said heating furnace temperature control model by using the particle size information measured by the said laser ultrasonic particle size sensor as one input information, The control apparatus of the cold continuous rolling equipment characterized by the above-mentioned.
JP2007329153A 2007-12-20 2007-12-20 Control device for cold continuous rolling equipment Active JP4983589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329153A JP4983589B2 (en) 2007-12-20 2007-12-20 Control device for cold continuous rolling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329153A JP4983589B2 (en) 2007-12-20 2007-12-20 Control device for cold continuous rolling equipment

Publications (2)

Publication Number Publication Date
JP2009148797A JP2009148797A (en) 2009-07-09
JP4983589B2 true JP4983589B2 (en) 2012-07-25

Family

ID=40918604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329153A Active JP4983589B2 (en) 2007-12-20 2007-12-20 Control device for cold continuous rolling equipment

Country Status (1)

Country Link
JP (1) JP4983589B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118783A1 (en) * 2010-03-26 2011-09-29 住友金属工業株式会社 Method and apparatus for manufacturing uoe steel pipe
CN103769415B (en) * 2013-07-04 2016-01-20 首钢总公司 A kind of processing method of chill belt steel thickness super thick
DE102014222827A1 (en) * 2014-11-07 2016-05-12 Sms Group Gmbh Method for controlling and / or regulating a metallurgical plant
CN105344721B (en) * 2015-10-10 2017-10-03 武汉钢铁(集团)公司 It is a kind of to obtain the method that coil of strip batches temporal information
KR101977504B1 (en) * 2017-12-20 2019-05-10 주식회사 포스코 Steel plate production facility and control method of the same
JP7311764B2 (en) * 2019-08-15 2023-07-20 日本製鉄株式会社 Cold tandem rolling equipment and cold tandem rolling method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051019A (en) * 1973-09-06 1975-05-07
JP2597986B2 (en) * 1985-12-28 1997-04-09 新日本製鐵株式会社 Manufacturing method of hot rolled steel
JPH0762447A (en) * 1993-08-25 1995-03-07 Nippon Steel Corp Manufacture of cold rolled steel sheet for high quality working
JP3260605B2 (en) * 1995-10-27 2002-02-25 新日本製鐵株式会社 Method of manufacturing cold rolled steel sheet with good uniformity of coil material
DE112004002759T5 (en) * 2004-10-14 2007-02-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method and apparatus for controlling material quality in a rolling, forging or leveling process

Also Published As

Publication number Publication date
JP2009148797A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP4983589B2 (en) Control device for cold continuous rolling equipment
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
JP4752764B2 (en) Material control method and apparatus for rolling, forging or straightening line
KR101214348B1 (en) Strip rolling mill and its control method
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
KR101782281B1 (en) Energy consumption predicting device for rolling line
JP6627740B2 (en) Thickness control device for tandem cold rolling mill
JP6229799B2 (en) Flatness control device
JP2013252531A (en) Operation support system of heating furnace
JP2006224177A (en) Method for predicting shape of metallic strip, method for judging shape on the basis of predicted shape and method for straightening shape
JP2010172925A (en) Method for estimating material constant and straightening state of material to be straightened under roller straightening, and operational method of roller leveler
JP2017042813A (en) Control method and control device of sizing press
KR101482468B1 (en) Apparatus and method of controlling bendor force of rolling mill
JP2007534493A (en) Method for improving process stability in hot rolling of steel plate or NE steel plate, especially absolute thickness accuracy and equipment stability
JP2016049553A (en) Device for and method of controlling temper rolling mill
JP6385847B2 (en) Thickness control method of rolling mill
KR101462332B1 (en) Method and device for controlling speed of rolling mill
JP6569655B2 (en) Reduction leveling control device and reduction leveling control method
JPWO2009013827A1 (en) Steel plate manufacturing method and manufacturing apparatus using the method
JP2016131975A (en) Plate thickness control method in thick plate rolling
JP2008183594A (en) Method and device for controlling interstand tension of continuous rolling mill
KR100711416B1 (en) Control bending method by finishing mill stand level setting
JP4213433B2 (en) Edge drop control device for rolling mill
JP6520864B2 (en) Method and apparatus for controlling plate thickness of rolling mill
JP2016074025A (en) Control method and control device of rolling machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250