JP2016074025A - Control method and control device of rolling machine - Google Patents

Control method and control device of rolling machine Download PDF

Info

Publication number
JP2016074025A
JP2016074025A JP2014207713A JP2014207713A JP2016074025A JP 2016074025 A JP2016074025 A JP 2016074025A JP 2014207713 A JP2014207713 A JP 2014207713A JP 2014207713 A JP2014207713 A JP 2014207713A JP 2016074025 A JP2016074025 A JP 2016074025A
Authority
JP
Japan
Prior art keywords
rolling
rolled
model
value
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014207713A
Other languages
Japanese (ja)
Other versions
JP6222031B2 (en
Inventor
浅野 一哉
Kazuya Asano
一哉 浅野
修司 久山
Shuji Kuyama
修司 久山
繁 須佐
Shigeru Susa
繁 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014207713A priority Critical patent/JP6222031B2/en
Publication of JP2016074025A publication Critical patent/JP2016074025A/en
Application granted granted Critical
Publication of JP6222031B2 publication Critical patent/JP6222031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To control a roling machine based on an estimation result, by highly accurately estimating a rolling state of a rolled material even when the number of unknown rolling characteristic value is more than the number of equation constituted of a rolling model.SOLUTION: A control method of a rolling machine on the present invention includes a construction step of constructing the optimization problem composed of an evaluation function composed of a rolling model for predicting a rolling phenomenon of a rolled material S in a plurality of roling stands F1-F7 and a constraint expression on a variation in the rolling model, an estimation step of estimating an unknown variation included in the rolling model by solving the optimization problem constructed in the construction step by substituting a measured value in a measurable variation in the rolling model and a control step of controlling the rolling machine by using the unknown variation estimated in the estimation step.SELECTED DRAWING: Figure 1

Description

本発明は、被圧延材の圧延状態を推定し、推定結果に基づいて圧延機を制御する圧延機の制御方法及び制御装置に関する。   The present invention relates to a rolling mill control method and a control apparatus for estimating a rolling state of a material to be rolled and controlling the rolling mill based on the estimation result.

一般に、圧延設備では、被圧延材の搬送方向に沿って配置された複数の圧延スタンドを用いて熱間又は冷間で被圧延材が連続的に圧延される。このような圧延設備では、所望の寸法、形状、及び材質の圧延製品を製造するために、圧延開始前に圧延ロール開度、圧延ロール速度、及び冷却水量等の操作量の初期設定を行い、圧延が開始されて被圧延材の厚さ、幅、圧延荷重、及び温度等の制御量が測定できるようになると、制御量の実績値と目標値との偏差に基づいて操作量を制御するフィードバック制御が行われている。   In general, in a rolling facility, a material to be rolled is continuously rolled hot or cold using a plurality of rolling stands arranged along the conveying direction of the material to be rolled. In such a rolling facility, in order to produce a rolled product of a desired size, shape, and material, initial setting of the operation amount such as the rolling roll opening degree, the rolling roll speed, and the cooling water amount is performed before rolling, When the control amount such as the thickness, width, rolling load, and temperature of the material to be rolled can be measured after rolling is started, the feedback that controls the operation amount based on the deviation between the actual value of the control amount and the target value Control is taking place.

ここで、圧延ロール開度及び圧延ロール速度の初期設定では、与えられた圧延条件に基づいて圧延荷重、先進率(圧延スタンド出側における被圧延材の速度と圧延ロールの周速度との比から1を引いた値)、及び偏平ロール半径等を予測する圧延モデルを用いた設定計算が行われる。この圧延モデルには、被圧延材の変形抵抗や被圧延材と圧延ロールとの間の摩擦係数のような直接測定できない変数が含まれている。   Here, in the initial setting of the rolling roll opening and the rolling roll speed, the rolling load and the advanced rate (from the ratio of the speed of the material to be rolled and the peripheral speed of the rolling roll on the rolling stand exit side based on the given rolling conditions. 1) and a setting calculation using a rolling model that predicts the flat roll radius and the like. This rolling model includes variables that cannot be directly measured, such as the deformation resistance of the material to be rolled and the friction coefficient between the material to be rolled and the rolling roll.

また、圧延荷重は高精度に測定できるが、先進率は直接測定することは困難である。このため、圧延による予測値と実績値との合わせ込みによって圧延モデルの予測精度を向上させることは難しい。この結果、圧延モデルによる予測値と実績値との間に乖離が生じ、設定計算値が不適切な値になることによって、圧延製品の寸法が公差から外れて歩留が低下したり、被圧延材が圧延ロールを通過する際に支障が生じたりすることがある。   In addition, although the rolling load can be measured with high accuracy, it is difficult to directly measure the advanced rate. For this reason, it is difficult to improve the prediction accuracy of the rolling model by combining the predicted value and the actual value by rolling. As a result, there is a discrepancy between the predicted value and the actual value by the rolling model, and the setting calculation value becomes an inappropriate value, so that the dimensions of the rolled product are out of the tolerance and the yield is lowered. When the material passes through the rolling roll, trouble may occur.

そこで、実際の圧延設備では、圧延モデルの予測値と実績値とを合わせ込むために種々の学習が行われている。具体的には、設定計算では、被圧延材と圧延ロールとの間の摩擦係数を固定値として与え、圧延モデルの予測値を用いて設定計算を行うのが一般的である。しかしながら、圧延モデルの予測誤差は不可避であり、圧延荷重の実績値は圧延モデルによる予測値とは異なる。   Therefore, various learning is performed in an actual rolling facility in order to match the predicted value and the actual value of the rolling model. Specifically, in the setting calculation, the friction coefficient between the material to be rolled and the rolling roll is generally given as a fixed value, and the setting calculation is generally performed using the predicted value of the rolling model. However, the prediction error of the rolling model is unavoidable, and the actual value of the rolling load is different from the predicted value of the rolling model.

そこで、圧延荷重の実績値と予測値との比を被圧延材毎に求め、これを指数平滑した値を学習係数とし、次の設定計算時には圧延荷重の予測値に学習係数を乗じることによって圧延荷重の予測精度を向上させることが行われている。また、圧延モデルを用いて圧延荷重の実績値等から被圧延材と圧延ロールとの間の変形抵抗を逆算し、圧延モデルによる変形抵抗の予測値と逆算値との比を学習係数とすることもある。   Therefore, the ratio between the actual value and the predicted value of the rolling load is determined for each material to be rolled, and the value obtained by exponentially smoothing this is used as a learning coefficient. Improving load prediction accuracy has been performed. In addition, the deformation resistance between the material to be rolled and the rolling roll is calculated from the actual value of the rolling load using the rolling model, and the ratio between the predicted value and the calculated value of the deformation resistance based on the rolling model is used as the learning coefficient. There is also.

しかしながら、被圧延材と圧延ロールとの間の摩擦係数は、固定値であるために実態を反映しているとは限らない。また、圧延荷重の予測誤差には変形抵抗の予測誤差の影響等も含まれるが、上述の学習係数はそれらを一括して1つの係数で表すものであるから、個々の誤差の要因が圧延荷重の予測値に正しく反映されず、設定計算の誤差の原因となる。   However, since the coefficient of friction between the material to be rolled and the rolling roll is a fixed value, it does not always reflect the actual situation. In addition, the rolling load prediction error includes the influence of deformation resistance prediction error, etc., but since the learning coefficients described above are collectively represented by one coefficient, each error factor is the rolling load. This is not reflected correctly in the predicted value, and causes a setting calculation error.

このような背景から、特許文献1には、熱間仕上圧延機の上流側圧延スタンドにおいて圧延スタンドのロードセルオン信号を用いて先進率を測定し、先進率の測定値と圧延荷重の実績値とから被圧延材の変形抵抗及び圧延ロールと被圧延材との間の摩擦係数を算出する方法が提案されている。また、特許文献2には、測定データに基づいて構築された圧延方程式を解くことによって直接測定できない圧延特性値を推定する方法が提案されている。具体的には、特許文献2には、冷間タンデム圧延機の各圧延スタンドにおけるマスフローが一定であることを表す数式、圧延荷重予測式、及び先進率予測式を連立させ、これらの中の幾つかの変数(圧延特性値)を未知数として解くことによって、変数の値を推定する方法が記載されている。   From such a background, Patent Document 1 discloses that the advanced rate is measured using the load cell on signal of the rolling stand in the upstream rolling stand of the hot finish rolling mill, the measured value of the advanced rate, the actual value of the rolling load, A method for calculating the deformation resistance of the material to be rolled and the friction coefficient between the rolling roll and the material to be rolled has been proposed. Patent Document 2 proposes a method for estimating a rolling characteristic value that cannot be directly measured by solving a rolling equation constructed based on measurement data. Specifically, in Patent Document 2, a numerical expression indicating that the mass flow in each rolling stand of a cold tandem rolling mill is constant, a rolling load prediction expression, and an advanced rate prediction expression are combined, and some of them A method for estimating the value of a variable by solving the variable (rolling characteristic value) as an unknown is described.

特開平4−284909号公報JP-A-4-284909 特開平4−344812号公報JP-A-4-344812

しかしながら、特許文献1記載の方法では、被圧延材と圧延ロールとの間の摩擦係数は圧延スタンドによらず共通の値とされている。一般に、被圧延材と圧延ロールとの間の摩擦係数は、圧延ロールの粗さや潤滑状態等に応じて変化するために、圧延スタンド毎に設定すべきものである。このため、特許文献1記載の方法によれば、圧延モデルによる予測値と実績値との間に乖離が生じ、設定計算値が不適切な値になる可能性がある。   However, in the method described in Patent Document 1, the friction coefficient between the material to be rolled and the rolling roll is a common value regardless of the rolling stand. Generally, the coefficient of friction between the material to be rolled and the rolling roll changes according to the roughness of the rolling roll, the lubrication state, and the like, and should be set for each rolling stand. For this reason, according to the method described in Patent Document 1, there is a possibility that a deviation occurs between the predicted value and the actual value by the rolling model, and the set calculation value becomes an inappropriate value.

一方、特許文献2には、連立させる方程式の数と未知の圧延特性値との数が等しい場合及び連立させる方程式の数が未知の圧延特性値の数よりも多い場合(優決定系)における圧延特性値の算出方法が記載されている。しかしながら、実際の圧延設備では経済的及び技術的理由から圧延特性値を測定するセンサが設置されていない場合が多いために、未知の圧延特性値の数が多くなる。   On the other hand, in Patent Document 2, rolling is performed when the number of simultaneous equations and the number of unknown rolling characteristic values are equal, and when the number of simultaneous equations is greater than the number of unknown rolling characteristic values (dominant decision system). A characteristic value calculation method is described. However, in actual rolling equipment, there are many cases where sensors for measuring rolling characteristic values are not installed for economic and technical reasons, and thus the number of unknown rolling characteristic values increases.

また、特許文献2記載の実施例では既知として扱われている被圧延材の変形抵抗は、圧延荷重や先進率に大きく影響するが、被圧延材の温度や成分及びそれまでの圧延履歴等によって大きく変動する。このため、被圧延材の変形抵抗は未知の圧延特性値として扱うべきものである。   In addition, the deformation resistance of the material to be rolled, which is treated as known in the examples described in Patent Document 2, greatly affects the rolling load and the advanced rate, but depends on the temperature and components of the material to be rolled, the rolling history so far It fluctuates greatly. For this reason, the deformation resistance of the material to be rolled should be treated as an unknown rolling characteristic value.

さらに、被圧延材と圧延ロールとの間の摩擦係数は、圧延荷重や先進率に影響するが、直接測定できない物理量であり、十分な精度の予測モデルも得られない。このため、摩擦係数も未知の圧延特性値として扱う必要がある。   Furthermore, although the coefficient of friction between the material to be rolled and the rolling roll affects the rolling load and the advanced rate, it is a physical quantity that cannot be directly measured, and a predictive model with sufficient accuracy cannot be obtained. For this reason, it is necessary to treat the friction coefficient as an unknown rolling characteristic value.

これらの理由により、実際の圧延設備では、連立させる方程式の数よりも未知の圧延特性値の数の方が多くなる場合(劣決定系)が多くなる。しかしながら、特許文献2には、連立させる方程式の数よりも未知の圧延特性値の数の方が多くなる場合に有効な圧延特性値の算出方法が開示、示唆されていない。   For these reasons, in an actual rolling facility, the number of unknown rolling characteristic values is greater (underdetermined system) than the number of simultaneous equations. However, Patent Document 2 does not disclose or suggest a rolling property value calculation method that is effective when the number of unknown rolling property values is larger than the number of equations to be simultaneously provided.

本発明は、上記課題に鑑みてなされたものであって、その目的は、圧延モデルから構成された方程式の数よりも未知の圧延特性値の数が多い場合でも被圧延材の圧延状態を精度高く推定し、推定結果に基づいて圧延機を制御可能な圧延機の制御方法及び制御装置を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to accurately determine the rolling state of the material to be rolled even when the number of unknown rolling characteristic values is larger than the number of equations constructed from the rolling model. An object of the present invention is to provide a rolling mill control method and a control apparatus capable of performing high estimation and controlling the rolling mill based on the estimation result.

本発明に係る圧延機の制御方法は、被圧延材の搬送方向に配列された複数の圧延スタンドを備える圧延機の制御方法であって、複数の圧延スタンドにおける被圧延材の圧延現象を予測する圧延モデルからなる評価関数と圧延モデル中の変数に関する制約式とからなる最適化問題を構築する構築ステップと、前記圧延モデル中の測定可能な変数に測定値を代入して前記構築ステップにおいて構築された最適化問題を解くことにより、前記圧延モデルに含まれる未知変数を推定する推定ステップと、前記推定ステップにおいて推定された未知変数を用いて圧延機を制御する制御ステップと、を含むことを特徴とする。   A rolling mill control method according to the present invention is a rolling mill control method including a plurality of rolling stands arranged in a conveyance direction of a material to be rolled, and predicts a rolling phenomenon of the material to be rolled in the plurality of rolling stands. A construction step for constructing an optimization problem consisting of an evaluation function comprising a rolling model and a constraint equation relating to a variable in the rolling model; and construction in the construction step by substituting measurement values into measurable variables in the rolling model. An estimation step for estimating an unknown variable included in the rolling model by solving the optimization problem, and a control step for controlling the rolling mill using the unknown variable estimated in the estimation step. And

本発明に係る圧延機の制御方法は、上記発明において、前記構築ステップは、複数の圧延スタンドにおける圧延荷重及び先進率を予測する圧延モデルからなる評価関数と各圧延スタンドにおける圧延ロールと被圧延材との間の摩擦係数に関する制約式とからなる最適化問題を構築するステップを含み、前記推定ステップは、少なくとも各圧延スタンドの入側及び出側における被圧延材の厚さの測定値と各圧延スタンドの圧延ロール速度の測定値とを前記圧延モデルに入力して圧延荷重及び先進率の推定値を求め、これらの推定値と少なくとも圧延荷重の測定値とを用いて最適化問題を解くことにより、各圧延スタンドにおける被圧延材の変形抵抗、圧延ロールと被圧延材との間の摩擦係数、及び先進率を推定するステップを含むことを特徴とする。   In the control method of a rolling mill according to the present invention, in the above invention, the construction step includes an evaluation function comprising a rolling model for predicting rolling load and advance rate in a plurality of rolling stands, a rolling roll in each rolling stand, and a material to be rolled. An optimization problem consisting of a constraint equation relating to the friction coefficient between the rolling material and the estimation step comprising at least measuring the thickness of the material to be rolled on the entry side and the exit side of each rolling stand and each rolling By inputting the measured value of the rolling roll speed of the stand into the rolling model to obtain the estimated value of the rolling load and the advanced rate, and solving the optimization problem using these estimated value and at least the measured value of the rolling load. Including a step of estimating a deformation resistance of the material to be rolled in each rolling stand, a friction coefficient between the rolling roll and the material to be rolled, and an advanced rate. That.

本発明に係る圧延機の制御装置は、被圧延材の搬送方向に配列された複数の圧延スタンドを備える圧延機の制御装置であって、複数の圧延スタンドにおける被圧延材の圧延現象を予測する圧延モデルからなる評価関数と圧延モデル中の変数に関する制約式とからなる最適化問題を構築し、前記圧延モデル中の測定可能な変数に測定値を代入して前記構築ステップにおいて構築された最適化問題を解くことにより、前記圧延モデルに含まれる未知変数を推定する推定手段と、前記推定手段によって推定された未知変数を用いて圧延機を制御する制御手段と、を備えることを特徴とする。   A control device for a rolling mill according to the present invention is a control device for a rolling mill that includes a plurality of rolling stands arranged in a conveyance direction of the material to be rolled, and predicts a rolling phenomenon of the material to be rolled in the plurality of rolling stands. An optimization problem consisting of an evaluation function consisting of a rolling model and a constraint equation relating to a variable in the rolling model is constructed, and an optimization constructed in the construction step by substituting measured values into measurable variables in the rolling model It comprises an estimation means for estimating an unknown variable included in the rolling model by solving a problem, and a control means for controlling the rolling mill using the unknown variable estimated by the estimation means.

本発明に係る圧延機の制御方法及び制御装置によれば、圧延モデルから構成された方程式の数よりも未知の圧延特性値の数が多い場合でも被圧延材の圧延状態を精度高く推定し、推定結果に基づいて圧延機を制御することができる。   According to the control method and control device of a rolling mill according to the present invention, even when the number of unknown rolling characteristic values is larger than the number of equations configured from the rolling model, the rolling state of the material to be rolled is accurately estimated, The rolling mill can be controlled based on the estimation result.

図1は、本発明の一実施形態である圧延機の制御方法が適用される熱間仕上圧延機の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a hot finish rolling mill to which a rolling mill control method according to an embodiment of the present invention is applied. 図2は、評価関数の最小値と摩擦係数の値との関係を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the relationship between the minimum value of the evaluation function and the value of the friction coefficient. 図3は、被圧延材の圧延状態の推定例を示す図である。FIG. 3 is a diagram showing an example of estimating the rolling state of the material to be rolled. 図4は、被圧延材の圧延状態の推定例を示す図である。FIG. 4 is a diagram illustrating an example of estimating the rolling state of the material to be rolled.

以下、図面を参照して、本発明の一実施形態である圧延機の制御方法について説明する。   Hereinafter, with reference to drawings, the control method of the rolling mill which is one embodiment of the present invention is explained.

〔熱間仕上圧延機の構成〕
始めに、図1を参照して、本発明の一実施形態である圧延機の制御方法が適用される熱間仕上圧延機の構成について説明する。図1は、本発明の一実施形態である圧延機の制御方法が適用される熱間仕上圧延機の構成を示す模式図である。
[Configuration of hot finishing mill]
First, the configuration of a hot finish rolling mill to which a rolling mill control method according to an embodiment of the present invention is applied will be described with reference to FIG. FIG. 1 is a schematic diagram showing a configuration of a hot finish rolling mill to which a rolling mill control method according to an embodiment of the present invention is applied.

図1に示すように、本発明の一実施形態である圧延機の制御方法が適用される熱間仕上圧延機1は、7つの圧延スタンドF1〜F7を備えている。各圧延スタンドを構成する圧延ロールの圧下位置は圧下装置2a〜2gによって制御することができる。各圧延ロールは、ミルモータ3a〜3gによって回転駆動され、図示しないミルモータ速度制御系によって回転速度を制御することができる。   As shown in FIG. 1, a hot finish rolling mill 1 to which a rolling mill control method according to an embodiment of the present invention is applied includes seven rolling stands F1 to F7. The rolling position of the rolling rolls constituting each rolling stand can be controlled by the rolling devices 2a to 2g. Each rolling roll is driven to rotate by mill motors 3a to 3g, and the rotation speed can be controlled by a mill motor speed control system (not shown).

圧延ロールの圧延荷重は、ロードセル等によって構成される荷重検出器4a〜4gによって測定できる。被圧延材Sは、圧延スタンドF1〜F7を連続的に通過し、各圧延スタンドで圧下されることによって最終の圧延スタンドF7の出側において目標板厚まで圧延される。圧延スタンド間には、図示しないルーパ制御系に従って圧延中に被圧延材Sを下方から支持して被圧延材Sに張力を付与するルーパ5a〜5fが配設されている。また、圧延スタンドF4〜F7の出側には、被圧延材Sの板厚を測定する板厚計6a〜6dが配設されている。   The rolling load of the rolling roll can be measured by load detectors 4a to 4g configured by a load cell or the like. The material S to be rolled passes continuously through the rolling stands F1 to F7, and is rolled to the target plate thickness on the exit side of the final rolling stand F7 by being rolled down by each rolling stand. Between the rolling stands, loopers 5a to 5f for supporting the material to be rolled S from below and applying tension to the material to be rolled S during rolling according to a looper control system (not shown) are arranged. Further, on the exit side of the rolling stands F4 to F7, plate thickness meters 6a to 6d for measuring the plate thickness of the material S to be rolled are arranged.

〔圧延機の制御方法〕
次に、本発明の一実施形態である圧延機の制御方法について説明する。
[Rolling mill control method]
Next, the control method of the rolling mill which is one Embodiment of this invention is demonstrated.

本発明の一実施形態である圧延機の制御方法では、圧延モデルから構成された方程式の数よりも未知数の数が多い場合でも被圧延材Sの圧延状態を精度高く推定し、推定結果に基づいて熱間仕上圧延機1を制御する。以下では、本実施形態における圧延状態の推定方法について詳しく説明する。   In the rolling mill control method according to an embodiment of the present invention, the rolling state of the material to be rolled S is accurately estimated even when the number of unknowns is larger than the number of equations configured from the rolling model, and based on the estimation result. The hot finish rolling mill 1 is controlled. Below, the rolling state estimation method in the present embodiment will be described in detail.

本実施形態では、プロセスコンピュータ等の情報処理装置が、被圧延材Sの圧延状態に関わる変数の間に成り立つ関係を表す複数の圧延モデルを用いて被圧延材Sの圧延状態を推定する(詳しくは「板圧延の理論と実際」、日本鉄鋼協会、1984参照)。具体的には、圧延荷重予測モデルは以下に示す数式(1)により表される。ここで、数式(1)において、iは圧延スタンド番号(i=1〜7)を示し、Pはi番目の圧延スタンドにおける圧延荷重、Hはi番目の圧延スタンド入側における被圧延材Sの板厚(入側板厚)、hはi番目の圧延スタンド出側における被圧延材Sの板厚(出側板厚)、VRiはi番目の圧延スタンドの圧延ロール速度、tbiはi番目の圧延スタンドの後方張力、tfiはi番目の圧延スタンドの前方張力、Kはi番目の圧延スタンドにおける被圧延材Sの変形抵抗、μはi番目の圧延スタンドにおける圧延ロールと被圧延材Sとの間の摩擦係数を示す。 In the present embodiment, an information processing apparatus such as a process computer estimates the rolling state of the material to be rolled S using a plurality of rolling models that represent the relationship between the variables related to the rolling state of the material to be rolled S (details). (See Theory and Practice of Sheet Rolling, Japan Iron and Steel Institute, 1984). Specifically, the rolling load prediction model is expressed by the following mathematical formula (1). Here, in Equation (1), i denotes a rolling stand number (i = 1 to 7), P i is the rolling load at the i-th rolling stand, H i is the material to be rolled in the i-th rolling stand entry side The thickness of S (incoming side thickness), h i is the thickness (outside thickness) of the material S to be rolled on the i-th rolling stand outlet side, V Ri is the rolling roll speed of the i-th rolling stand, and t bi is The rear tension of the i-th rolling stand, t fi is the forward tension of the i-th rolling stand, K i is the deformation resistance of the material S to be rolled in the i-th rolling stand, and μ i is the rolling roll in the i-th rolling stand. The coefficient of friction with the material to be rolled S is shown.

Figure 2016074025
Figure 2016074025

また、先進率予測モデルは以下に示す数式(2)により表される。ここで、数式(2)において、fはi番目の圧延スタンドにおける被圧延材Sの先進率を示す。また、数式(2)において、Rdiは、i番目の圧延スタンドにおける偏平ロール半径(圧延荷重によりロールが変形した場合の実効的なロール半径)を示し、以下に示す数式(3)のように表される。 The advanced rate prediction model is expressed by the following mathematical formula (2). Here, in Equation (2), f i denotes the forward slip of the rolling material S in the i-th rolling stand. Moreover, in Formula (2), Rdi shows the flat roll radius (effective roll radius when a roll deform | transforms with a rolling load) in an i-th rolling stand, and it is like Formula (3) shown below. expressed.

Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025

また、熱間仕上圧延機1の定常状態では、各圧延スタンドにおいてマスフロー一定則が成り立つので、以下に示す数式(4)が成立する。ここで、数式(4)において、Cは圧延スタンドによらない固定値を表している。   Further, in the steady state of the hot finish rolling mill 1, since the mass flow constant law is established in each rolling stand, the following formula (4) is established. Here, in Formula (4), C represents a fixed value that does not depend on the rolling stand.

Figure 2016074025
Figure 2016074025

本実施形態では、上記の数式(1)〜(4)を圧延スタンドの数だけ連立させ、各圧延スタンドにおける被圧延材Sの変形抵抗K、圧延ロールと被圧延材Sとの間の摩擦係数μ、及び先進率fを未知数として求める。具体例として、図1に示す3つの圧延スタンドF5〜F7における被圧延材Sの変形抵抗K(i=5〜7)、圧延ロールと被圧延材Sとの間の摩擦係数μ(i=5〜7)、及び先進率f(i=5〜7)を求める場合を以下に示す。 In the present embodiment, the above mathematical formulas (1) to (4) are provided as many as the number of rolling stands, the deformation resistance K i of the material to be rolled S in each rolling stand, and the friction between the rolling roll and the material to be rolled S. The coefficient μ i and the advance rate f i are obtained as unknowns. As specific examples, the deformation resistance K i (i = 5 to 7) of the material to be rolled S in the three rolling stands F5 to F7 shown in FIG. 1 and the friction coefficient μ i (i between the rolling roll and the material to be rolled S). = 5-7), and shows a case of obtaining a forward slip f i (i = 5-7) below.

この場合、測定可能な変数は、荷重検出器4e〜4gによる圧延荷重Pの実測値Pmi(i=5〜7)、板厚計6a〜6cによる入側板厚Hの実測値Hmi(i=5〜7)、板厚計6b〜6dによる出側板厚hの実測値hmi(i=5〜7)、図示しないミルモータ速度制御系による圧延ロール速度VRiの実測値VRmi(i=5〜7)、図示しないルーパ制御系による後方張力tbiの実測値tbmi(i=5〜7)、及び図示しないルーパ制御系による前方張力tfiの実測値tfmi(i=5〜7)である。このため、以下の数式(5)〜(8)に示す方程式が得られる。なお、以下に示す数式(6)中の偏平ロール半径Rdiは数式(3)から以下に示す数式(9)のように表せるので、数式(9)を数式(3)に代入する。 In this case, the measurable variables are the actual measurement value P mi (i = 5 to 7) of the rolling load P i by the load detectors 4e to 4g, and the actual measurement value H mi of the entry side plate thickness H i by the plate thickness gauges 6a to 6c. (I = 5 to 7), measured value h mi (i = 5 to 7) of the delivery side plate thickness h i by the plate thickness gauges 6b to 6d, measured value V Rmi of the rolling roll speed V Ri by a mill motor speed control system (not shown). (i = 5 to 7), the measured value t bmi backward tension t bi by looper control system (not shown) (i = 5 to 7), and the measured value t fmi forward tension t fi by looper control system (not shown) (i = 5-7). For this reason, the equations shown in the following mathematical formulas (5) to (8) are obtained. Incidentally, the flat roll radius R di in Equation (6) below because expressed as Equation (3) Equation below from (9) is substituted for equation (9) into equation (3).

Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025

ここで、推定したい変数は、圧延スタンドF5〜F7における被圧延材Sの変形抵抗K(i=5〜7)、圧延ロールと被圧延材Sとの間の摩擦係数μ(i=5〜7)、及び先進率f(i=5〜7)の全部で9個ある。このため、方程式の数が変数の数より少ない劣決定系になるために、このままでは方程式を解くことができない。そこで、本実施形態では、変数に対して制約条件を与える。具体的には、本実施形態では、以下の数式(10)に示すように、圧延ロールと被圧延材Sとの間の摩擦係数μの値が図1に示す熱間仕上圧延機1の設定計算に用いられる経験的な値μsiに等しくなるという制約を設ける。 Here, the variables to be estimated are the deformation resistance K i (i = 5 to 7) of the material to be rolled S in the rolling stands F5 to F7, and the friction coefficient μ i (i = 5) between the rolling roll and the material to be rolled S. ˜7) and the advanced rate f i (i = 5 to 7) in total. For this reason, since the number of equations becomes an underdetermined system with fewer than the number of variables, the equations cannot be solved as they are. Therefore, in this embodiment, a constraint condition is given to the variable. Specifically, in this embodiment, as shown in the following formula (10), the value of the friction coefficient μ i between the rolling roll and the material to be rolled S is that of the hot finish rolling mill 1 shown in FIG. There is a constraint that it is equal to the empirical value μ si used for the setting calculation.

Figure 2016074025
Figure 2016074025

そして、上記数式(5)〜(10)を用いて以下の数式(11)に示す評価関数Jを最小化する制約条件付き最適化問題を構築し、構築した制約条件付き最適化問題を解くことによって変形抵抗K(i=5〜7)及び先進率f(i=5〜7)を求める。ここで、数式(11)において、α,βは重みを表している。 Then, using the above formulas (5) to (10), construct an optimization problem with constraints that minimizes the evaluation function J shown in the following formula (11), and solve the constructed optimization problems with constraints To determine the deformation resistance K i (i = 5 to 7) and the advanced rate f i (i = 5 to 7). Here, in Equation (11), α and β represent weights.

Figure 2016074025
Figure 2016074025

なお、制約条件付き最適化問題を解くためには、数式(10)を数式(5),(6)に代入し、評価関数Jを最小化する変形抵抗K(i=5〜7)及び先進率f(i=5〜7)を求めればよい。ここでは、数式(10)に示す制約条件を数式(11)に示す評価関数Jに代入することによって消去しているので、制約条件無しの最適化問題となり、公知の方法によって容易に解くことができる。 In order to solve the optimization problem with constraints, equation (10) is substituted into equations (5) and (6), and deformation resistance K i (i = 5 to 7) that minimizes evaluation function J and What is necessary is just to obtain | require the advanced rate fi (i = 5-7). Here, since the constraint condition shown in the equation (10) is eliminated by substituting it into the evaluation function J shown in the equation (11), it becomes an optimization problem without a constraint condition and can be easily solved by a known method. it can.

また、熱間仕上圧延機1において圧延ロールと被圧延材Sとの間の摩擦係数μを測定することは困難であり、また精度のよい摩擦係数予測モデルも存在しないため、設定計算に用いられている摩擦係数の値μsiは誤差を含んでいる。このため、数式(10)に示す制約条件が厳密に成立している場合は少なく、むしろ摩擦係数の値μsiを適当に変更することによって他の変数の推定精度が向上すると考えられる。すなわち、図2に示すように、評価関数Jを最小化する摩擦係数の値μは、必ずしも固定値μsiではなく、所定範囲(最小値μsimin〜最大値μsimax)内で変化すると考えられる。 In addition, it is difficult to measure the friction coefficient μ i between the rolling roll and the material to be rolled S in the hot finish rolling mill 1, and there is no accurate friction coefficient prediction model. The value of the friction coefficient μ si includes an error. For this reason, there are few cases where the constraint condition shown in Expression (10) is strictly established, and it is considered that the estimation accuracy of other variables is improved by appropriately changing the friction coefficient value μ si . That is, as shown in FIG. 2, it is considered that the friction coefficient value μ 0 that minimizes the evaluation function J is not necessarily a fixed value μ si but changes within a predetermined range (minimum value μ simin to maximum value μ simax ). It is done.

そこで、設定計算に用いられている摩擦係数の値μsiに以下の数式(12)に示すような範囲を設定し、数式(12)に示す摩擦係数の値μsiの範囲を制約条件として以下の数式(13)に示す評価関数Jを最小化する制約条件付き最適化問題を解くことによって、変形抵抗K(i=5〜7)及び先進率f(i=5〜7)を求めても良い。ここで、数式(13)において、γは重みを表している。 Therefore, to set the range as shown in Equation (12) below the value mu si friction coefficient used in the setting calculation, the following ranges of values mu si friction coefficients shown in equation (12) as a constraint condition The deformation resistance K i (i = 5 to 7) and the advanced rate f i (i = 5 to 7) are obtained by solving the optimization problem with constraints that minimizes the evaluation function J shown in Equation (13). May be. Here, in Expression (13), γ represents a weight.

Figure 2016074025
Figure 2016074025
Figure 2016074025
Figure 2016074025

このように、本実施形態によれば、圧延モデルから構成された方程式の数よりも未知数の数が多い場合でも直接測定することができない被圧延材Sの圧延状態を精度よく推定し、推定結果に基づいて熱間仕上圧延機1を制御することができる。特に本実施形態によれば、従来技術では不可能であった被圧延材Sの変形抵抗及び圧延ロールと被圧延材Sとの間の摩擦係数を圧延データに基づいて分離して求めることができる。このため、圧延ロールと被圧延材Sとの間の摩擦係数を仮定せずに推定値を用いることができるので、圧延モデルの学習精度を向上させることができる。   Thus, according to this embodiment, the rolling state of the material to be rolled S that cannot be directly measured even when the number of unknowns is larger than the number of equations formed from the rolling model is accurately estimated, and the estimation result The hot finish rolling mill 1 can be controlled based on the above. In particular, according to the present embodiment, the deformation resistance of the material to be rolled S and the friction coefficient between the rolling roll and the material to be rolled S, which were impossible with the prior art, can be obtained separately based on the rolling data. . For this reason, since the estimated value can be used without assuming the friction coefficient between the rolling roll and the material to be rolled S, the learning accuracy of the rolling model can be improved.

なお、本実施形態では被圧延材Sの変形抵抗、圧延ロールと被圧延材Sとの間の摩擦係数、及び先進率を推定したが、このうちの幾つかを与えて被圧延材の板厚を推定することもできる。これにより、推定した板厚を用いてフィードフォワード制御系又はフィードバック制御系を構成することにより、被圧延材Sの圧延精度を向上させることができる。また、圧延スタンド間の被圧延材Sの張力が圧延荷重や圧延トルクに影響することを利用し、圧延荷重や圧延トルクから張力を推定し、推定した張力に基づいて張力制御を行うこともできる。   In the present embodiment, the deformation resistance of the material to be rolled S, the friction coefficient between the rolling roll and the material to be rolled S, and the advanced rate were estimated. Can also be estimated. Thereby, the rolling precision of the to-be-rolled material S can be improved by comprising a feedforward control system or a feedback control system using the estimated plate | board thickness. Further, it is possible to estimate the tension from the rolling load or the rolling torque by using the influence of the tension of the material S to be rolled between the rolling stands on the rolling load or the rolling torque, and to perform the tension control based on the estimated tension. .

本実施例では、圧延スタンドF5〜F7における入側板厚H、出側板厚h、及び圧延ロール速度VRiの時系列データを用いて、圧延スタンドF5〜F7における被圧延材Sの変形抵抗K(i=5〜7)、圧延ロールと被圧延材Sとの間の摩擦係数μ(i=5〜7)、及び先進率f(i=5〜7)を推定した。圧延スタンドF5における推定結果を図3,図4に示す。なお、本実施例では、簡単のため、後方張力及び前方張力の圧延荷重に対する影響は無視した。 In this example, the deformation resistance of the material S to be rolled in the rolling stands F5 to F7 using time series data of the inlet side plate thickness H i , the outlet side plate thickness h i and the rolling roll speed V Ri in the rolling stands F5 to F7. K i (i = 5 to 7), friction coefficient μ i (i = 5 to 7) between the rolling roll and the material to be rolled S, and advanced rate f i (i = 5 to 7) were estimated. The estimation results in the rolling stand F5 are shown in FIGS. In this example, for the sake of simplicity, the influence of the rear tension and the front tension on the rolling load was ignored.

図3は、上記数式(11)を用いた被圧延材Sの圧延状態の推定結果を示し、圧延ロールと被圧延材Sとの間の摩擦係数μsiは設定計算に用いる値である0.22に固定されている。図4は、数式(13)を用いた被圧延材Sの圧延状態の推定結果を示し、圧延ロールと被圧延材Sとの間の摩擦係数μsiは少し変動し、平均値は設定計算に用いる値0.22よりわずかに大きくなっている。 FIG. 3 shows the estimation result of the rolling state of the material to be rolled S using the above formula (11), and the friction coefficient μ si between the rolling roll and the material to be rolled S is a value used for setting calculation. 22 is fixed. FIG. 4 shows the estimation result of the rolling state of the material to be rolled S using Equation (13), and the friction coefficient μ si between the rolling roll and the material to be rolled S slightly fluctuates, and the average value is calculated by setting. It is slightly larger than the used value of 0.22.

また、図4に示す被圧延材Sの変形抵抗Kや先進率fの変動は図3に示す場合と比べてわずかに大きい。但し、いずれの場合も被圧延材Sの変形抵抗Kは板厚及び圧延荷重と相関関係を示し、長手方向の変形抵抗Kの変化が板厚や荷重の変動をもたらしていることが表されている。また、圧延スタンドF7における先進率fは、コイラーのピンチロールの周速から求められた圧延スタンドF7における先進率と比較してよく一致することが確認された。 The variation of the deformation resistance K i and advanced rate f i of the rolled material S shown in FIG. 4 is slightly larger than in the case shown in FIG. However, in any case, the deformation resistance K i of the material S to be rolled shows a correlation with the plate thickness and the rolling load, and it is shown that the change in the deformation resistance K i in the longitudinal direction causes the variation of the plate thickness and the load. Has been. Also, forward slip f 7 in the rolling stand F7, it was confirmed that good agreement when compared with the forward slip of the rolling stand F7 obtained from the peripheral speed of the pinch rolls of the coiler.

なお、本実施例では、圧延ロールと被圧延材Sとの間の摩擦係数が設定計算に用いる値に等しいという制約を課したが、その代わりに以下に示す数式(14)から求められる摩擦係数を制約として用いてもよい。ここで、数式(14)においてa,bは変数である。数式(14)では、摩擦係数は熱間仕上圧延機内で線形に変化するものとし、各圧延スタンドの摩擦係数を求める代わりに線形的な変化の傾きaと切片bとを求めることになる。   In this embodiment, the constraint that the friction coefficient between the rolling roll and the material S to be rolled is equal to the value used for the setting calculation is imposed, but instead, the friction coefficient obtained from the following formula (14). May be used as a constraint. Here, in Equation (14), a and b are variables. In Equation (14), the friction coefficient is assumed to change linearly in the hot finish rolling mill, and instead of obtaining the friction coefficient of each rolling stand, the linear change gradient a and intercept b are obtained.

Figure 2016074025
Figure 2016074025

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 熱間仕上圧延機
2a〜2g 圧下装置
3a〜3g ミルモータ
4a〜4g 荷重検出器
5a〜5f ルーパ
6a〜6d 板厚計
F1〜F7 圧延スタンド
DESCRIPTION OF SYMBOLS 1 Hot finishing rolling mill 2a-2g Reduction device 3a-3g Mill motor 4a-4g Load detector 5a-5f Looper 6a-6d Thickness gauge F1-F7 Rolling stand

Claims (3)

被圧延材の搬送方向に配列された複数の圧延スタンドを備える圧延機の制御方法であって、
複数の圧延スタンドにおける被圧延材の圧延現象を予測する圧延モデルからなる評価関数と圧延モデル中の変数に関する制約式とからなる最適化問題を構築する構築ステップと、
前記圧延モデル中の測定可能な変数に測定値を代入して前記構築ステップにおいて構築された最適化問題を解くことにより、前記圧延モデルに含まれる未知変数を推定する推定ステップと、
前記推定ステップにおいて推定された未知変数を用いて圧延機を制御する制御ステップと、
を含むことを特徴とする圧延機の制御方法。
A control method for a rolling mill comprising a plurality of rolling stands arranged in the conveying direction of a material to be rolled,
A construction step for constructing an optimization problem consisting of an evaluation function comprising a rolling model for predicting a rolling phenomenon of a material to be rolled in a plurality of rolling stands and a constraint equation relating to a variable in the rolling model;
An estimation step for estimating an unknown variable included in the rolling model by substituting a measured value into a measurable variable in the rolling model and solving the optimization problem constructed in the construction step;
A control step of controlling the rolling mill using the unknown variable estimated in the estimation step;
A control method for a rolling mill, comprising:
前記構築ステップは、複数の圧延スタンドにおける圧延荷重及び先進率を予測する圧延モデルからなる評価関数と各圧延スタンドにおける圧延ロールと被圧延材との間の摩擦係数に関する制約式とからなる最適化問題を構築するステップを含み、
前記推定ステップは、少なくとも各圧延スタンドの入側及び出側における被圧延材の厚さの測定値と各圧延スタンドの圧延ロール速度の測定値とを前記圧延モデルに入力して圧延荷重及び先進率の推定値を求め、これらの推定値と少なくとも圧延荷重の測定値とを用いて最適化問題を解くことにより、各圧延スタンドにおける被圧延材の変形抵抗、圧延ロールと被圧延材との間の摩擦係数、及び先進率を推定するステップを含む
ことを特徴とする請求項1に記載の圧延機の制御方法。
The construction step is an optimization problem consisting of an evaluation function comprising a rolling model for predicting rolling load and advance rate in a plurality of rolling stands and a constraint equation regarding a friction coefficient between a rolling roll and a material to be rolled in each rolling stand. Including the steps of building
The estimation step inputs at least the measured value of the material to be rolled on the entry side and the exit side of each rolling stand and the measured value of the rolling roll speed of each rolling stand into the rolling model to input the rolling load and the advance rate. By solving these optimization values and at least the measurement value of the rolling load, the deformation resistance of the material to be rolled in each rolling stand, the difference between the rolling roll and the material to be rolled is obtained. The rolling mill control method according to claim 1, further comprising a step of estimating a friction coefficient and an advanced rate.
被圧延材の搬送方向に配列された複数の圧延スタンドを備える圧延機の制御装置であって、
複数の圧延スタンドにおける被圧延材の圧延現象を予測する圧延モデルからなる評価関数と圧延モデル中の変数に関する制約式とからなる最適化問題を構築し、前記圧延モデル中の測定可能な変数に測定値を代入して前記構築ステップにおいて構築された最適化問題を解くことにより、前記圧延モデルに含まれる未知変数を推定する推定手段と、
前記推定手段によって推定された未知変数を用いて圧延機を制御する制御手段と、
を備えることを特徴とする圧延機の制御装置。
A control device for a rolling mill comprising a plurality of rolling stands arranged in the conveying direction of the material to be rolled,
Establish an optimization problem consisting of an evaluation function consisting of a rolling model that predicts the rolling phenomenon of the material to be rolled in multiple rolling stands and a constraint equation related to variables in the rolling model, and measure the measurable variables in the rolling model By estimating the unknown variable included in the rolling model by substituting a value and solving the optimization problem constructed in the construction step,
Control means for controlling the rolling mill using the unknown variable estimated by the estimation means;
A control device for a rolling mill, comprising:
JP2014207713A 2014-10-09 2014-10-09 Rolling mill control method and control apparatus Active JP6222031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207713A JP6222031B2 (en) 2014-10-09 2014-10-09 Rolling mill control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207713A JP6222031B2 (en) 2014-10-09 2014-10-09 Rolling mill control method and control apparatus

Publications (2)

Publication Number Publication Date
JP2016074025A true JP2016074025A (en) 2016-05-12
JP6222031B2 JP6222031B2 (en) 2017-11-01

Family

ID=55949786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207713A Active JP6222031B2 (en) 2014-10-09 2014-10-09 Rolling mill control method and control apparatus

Country Status (1)

Country Link
JP (1) JP6222031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798727A (en) * 2022-04-14 2022-07-29 北京科技大学 Multi-objective optimization-based specification self-adaptive rolling method and device and electronic equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264208A (en) * 1987-04-22 1988-11-01 Mitsubishi Electric Corp Control method for shape of sheet stock
JPH04284909A (en) * 1991-03-08 1992-10-09 Sumitomo Metal Ind Ltd Method for controlling hot continuous rolling mill
JPH04344812A (en) * 1991-05-20 1992-12-01 Toshiba Corp Method for estimating rolling characteristic value
JP2005081357A (en) * 2003-09-04 2005-03-31 Kobe Steel Ltd Pass schedule determination method in tandem rolling mill, and tandem rolling mill
JP2006122980A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Method for predicting deformation resistance of rolling material and frictional coefficient between roll and rolling material in tandem cold rolling mill, and tandem cold rolling method
JP2009208115A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Method and device for calculating parameter of rolling control, and rolling simulation device
US20100326155A1 (en) * 2008-02-27 2010-12-30 Hans-Joachim Felkl Operating method for a multi-stand rolling mill train with strip thickness determination on the basis of the continuity equation
JP2013159457A (en) * 2012-02-06 2013-08-19 Nippon Steel & Sumitomo Metal Corp Shipment planning device, shipment planning method and computer program
JP2014130496A (en) * 2012-12-28 2014-07-10 Azbil Corp Optimization device and method, and control device and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264208A (en) * 1987-04-22 1988-11-01 Mitsubishi Electric Corp Control method for shape of sheet stock
JPH04284909A (en) * 1991-03-08 1992-10-09 Sumitomo Metal Ind Ltd Method for controlling hot continuous rolling mill
JPH04344812A (en) * 1991-05-20 1992-12-01 Toshiba Corp Method for estimating rolling characteristic value
JP2005081357A (en) * 2003-09-04 2005-03-31 Kobe Steel Ltd Pass schedule determination method in tandem rolling mill, and tandem rolling mill
JP2006122980A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Method for predicting deformation resistance of rolling material and frictional coefficient between roll and rolling material in tandem cold rolling mill, and tandem cold rolling method
US20100326155A1 (en) * 2008-02-27 2010-12-30 Hans-Joachim Felkl Operating method for a multi-stand rolling mill train with strip thickness determination on the basis of the continuity equation
JP2009208115A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Method and device for calculating parameter of rolling control, and rolling simulation device
JP2013159457A (en) * 2012-02-06 2013-08-19 Nippon Steel & Sumitomo Metal Corp Shipment planning device, shipment planning method and computer program
JP2014130496A (en) * 2012-12-28 2014-07-10 Azbil Corp Optimization device and method, and control device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798727A (en) * 2022-04-14 2022-07-29 北京科技大学 Multi-objective optimization-based specification self-adaptive rolling method and device and electronic equipment
CN114798727B (en) * 2022-04-14 2022-11-11 北京科技大学 Multi-objective optimization-based specification self-adaptive rolling method and device and electronic equipment

Also Published As

Publication number Publication date
JP6222031B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP4752764B2 (en) Material control method and apparatus for rolling, forging or straightening line
JP5685208B2 (en) Control device for hot rolling mill for thin plate and control method for hot rolling mill for thin plate
KR101782281B1 (en) Energy consumption predicting device for rolling line
JP6627740B2 (en) Thickness control device for tandem cold rolling mill
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
EP3031541B1 (en) Control system of tandem rolling mill and control method of tandem rolling mill
KR101592741B1 (en) Temperature distribution prediction apparatus
JPWO2015029171A1 (en) Thickness control device for rolling mill
JP4983589B2 (en) Control device for cold continuous rolling equipment
JP6222031B2 (en) Rolling mill control method and control apparatus
CN113133310B (en) Method for calculating sheet thickness list of tandem rolling mill and rolling equipment
JP2013252531A (en) Operation support system of heating furnace
JP5726018B2 (en) Rolling control method considering variation in rolling parameters
JP2015147249A (en) Rolling machine control method, rolling machine control apparatus, and manufacturing method of rolled material
JP6627609B2 (en) Cooling control method and cooling device
KR101462332B1 (en) Method and device for controlling speed of rolling mill
JP6210944B2 (en) Control device and control method for continuous rolling mill
JP4223344B2 (en) Thickness estimation method for continuous rolling mill and thickness control method using the estimation method
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
CN109563559A (en) The method for being used in the annealing furnace operation of the annealing of sheet metal strip
JP5824826B2 (en) Temperature distribution estimation device in plating bath, temperature distribution estimation method, and operation method of continuous molten metal plating process
WO2022049739A1 (en) Control system for tandem cold rolling mill
JPH0636929B2 (en) Method for controlling strip width of rolled material
KR101462334B1 (en) Device and method for predicting speed of steel plate in rolling process
KR101626604B1 (en) Temperature estimating apparatus and method of steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250