JP2015147249A - Rolling machine control method, rolling machine control apparatus, and manufacturing method of rolled material - Google Patents

Rolling machine control method, rolling machine control apparatus, and manufacturing method of rolled material Download PDF

Info

Publication number
JP2015147249A
JP2015147249A JP2015000297A JP2015000297A JP2015147249A JP 2015147249 A JP2015147249 A JP 2015147249A JP 2015000297 A JP2015000297 A JP 2015000297A JP 2015000297 A JP2015000297 A JP 2015000297A JP 2015147249 A JP2015147249 A JP 2015147249A
Authority
JP
Japan
Prior art keywords
rolling
rolled
friction coefficient
deformation resistance
rolling stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015000297A
Other languages
Japanese (ja)
Other versions
JP6036857B2 (en
Inventor
繁 須佐
Shigeru Susa
繁 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014002338 priority Critical
Priority to JP2014002338 priority
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015000297A priority patent/JP6036857B2/en
Publication of JP2015147249A publication Critical patent/JP2015147249A/en
Application granted granted Critical
Publication of JP6036857B2 publication Critical patent/JP6036857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simultaneously estimate at low cost, deformation resistance and a friction coefficient between a rolled target material and a pressure roll, and to suppress, in rolling, dimensional defects of the rolled material from occurring and rolling efficiency from deteriorating.SOLUTION: In a rolling machine control apparatus 1 as an embodiment of the present invention, an estimation unit 6 solves an optimization problem of calculating deformation resistance k of a rolled target material S and a friction coefficient μ between the rolled target material and a pressure roll, in which an evaluation function J satisfies a predetermined condition, thereby calculates the deformation resistance k of the rolled target material S and the friction coefficient μ between the rolled target material S and the pressure roll. By this, the deformation resistance k and the friction coefficient μ between the rolled target material and the pressure roll can be simultaneously and highly accurately calculated at low cost, and occurrence of dimensional defects of the rolled material and deterioration of rolling efficiency can be suppressed during rolling.

Description

本発明は、圧延機の制御方法、圧延機の制御装置、及び圧延材の製造方法に関する。   The present invention relates to a rolling mill control method, a rolling mill control device, and a rolled material manufacturing method.

圧延工程においては、圧下量、圧延速度、圧延荷重等の様々な制約下において、被圧延材を所望の仕上寸法及び形状に圧延しなければならない。このため、圧延工程では、被圧延材が圧延機に進入する前に被圧延材の材料諸元に基づいて圧延機の設定計算(セットアップ計算)を実行し、圧延機の圧延荷重やロール周速度等の設定値を適切な値に設定しなければならない。   In the rolling process, the material to be rolled must be rolled to a desired finish size and shape under various constraints such as reduction amount, rolling speed, and rolling load. Therefore, in the rolling process, the rolling mill setting calculation (setup calculation) is performed based on the material specifications of the rolled material before the rolled material enters the rolling mill, and the rolling load and roll peripheral speed of the rolling mill are executed. Etc. must be set to appropriate values.

圧延機の設定計算は、被圧延材の材料諸元によって決まる値である被圧延材の変形抵抗及び被圧延材と圧延ロールとの間の摩擦係数(以下、変形抵抗及び摩擦係数と略記)を用いて、圧延モデル式を解くことにより実行される。このため、変形抵抗及び摩擦係数が誤差を含んでいる場合、この誤差が圧延機の設定値に影響し、圧延時の被圧延材の寸法不良や圧延能率の低下の原因となる。   The rolling mill setting calculation is based on the deformation resistance of the material to be rolled and the friction coefficient between the material to be rolled and the rolling roll (hereinafter abbreviated as deformation resistance and friction coefficient), which is a value determined by the material specifications of the material to be rolled. Used to solve the rolling model equation. For this reason, when the deformation resistance and the friction coefficient include an error, the error affects the set value of the rolling mill, and causes a dimensional defect of the material to be rolled during rolling and a reduction in rolling efficiency.

従って、圧延時の被圧延材の寸法不良や圧延能率の低下を抑制するためには、変形抵抗及び摩擦係数を正確に測定する必要がある。しかしながら、変形抵抗及び摩擦係数は、直接測定することができない値である。このような背景から、圧延荷重や被圧延材の板厚等の直接測定することができる値を用いて変形抵抗及び摩擦係数を推定する技術が提案されている。   Therefore, it is necessary to accurately measure the deformation resistance and the friction coefficient in order to suppress the dimension failure of the material to be rolled during rolling and the reduction in rolling efficiency. However, the deformation resistance and the coefficient of friction are values that cannot be directly measured. From such a background, a technique for estimating a deformation resistance and a friction coefficient using values that can be directly measured such as a rolling load and a thickness of a material to be rolled has been proposed.

具体的には、特許文献1には、圧延機の出側に設置された板速計を利用して先進率を測定し、測定された先進率から摩擦係数を推定する技術が記載されている。また、特許文献2には、圧延荷重及び圧延機の出側における被圧延材の板厚から変形抵抗を推定する技術が記載されている。また、特許文献3には、圧延速度の状態に応じて変形抵抗及び摩擦係数を推定する技術が記載されている。   Specifically, Patent Document 1 describes a technique for measuring the advanced rate using a plate speedometer installed on the exit side of the rolling mill and estimating the friction coefficient from the measured advanced rate. . Patent Document 2 describes a technique for estimating the deformation resistance from the rolling load and the thickness of the material to be rolled on the exit side of the rolling mill. Patent Document 3 describes a technique for estimating the deformation resistance and the friction coefficient in accordance with the rolling speed state.

特開平2−20605号公報JP-A-2-20605 特開平9−164412号公報Japanese Patent Laid-Open No. 9-16412 特開平8−281312号公報Japanese Patent Application Laid-Open No. 8-283121

しかしながら、特許文献1記載の技術によれば、板速計は高価であり、圧延機周辺という悪環境下で板速計の測定精度を維持することは難しいために、摩擦係数を推定するために多くの費用を要する。また、特許文献2記載の技術によれば、摩擦係数には固定値が用いられているために、摩擦係数が誤差を含んでいる場合、その誤差が変形抵抗の推定誤差として扱われてしまう。また、特許文献3記載の技術によれば、圧延速度が変化している場合は摩擦係数を一定として、摩擦係数が変化している場合は圧延速度を一定として圧延速度と摩擦係数とを分離して推定しているため、変形抵抗及び摩擦係数を同時に推定することはできない。   However, according to the technique described in Patent Document 1, the plate speedometer is expensive, and it is difficult to maintain the measurement accuracy of the plate speedometer in a bad environment around the rolling mill. It costs a lot of money. According to the technique described in Patent Document 2, since a fixed value is used for the friction coefficient, if the friction coefficient includes an error, the error is treated as an estimation error of the deformation resistance. Further, according to the technique described in Patent Document 3, when the rolling speed is changed, the friction coefficient is made constant, and when the friction coefficient is changed, the rolling speed is made constant and the rolling speed and the friction coefficient are separated. Therefore, the deformation resistance and the friction coefficient cannot be estimated at the same time.

本発明は、上記課題に鑑みてなされたものであって、その目的は、多くのコストを要することなく被圧延材の変形抵抗及び被圧延材と圧延ロールとの間の摩擦係数を同時に精度高く推定し、圧延時の被圧延材の寸法不良や圧延能率の低下を抑制可能な圧延機の制御方法及び制御装置を提供することにある。また、本発明の他の目的は、圧延時の被圧延材の寸法不良や圧延能率の低下を抑制し、歩留まりを向上させることが可能な圧延材の製造方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to simultaneously improve the deformation resistance of the material to be rolled and the coefficient of friction between the material to be rolled and the rolling roll without much cost. An object of the present invention is to provide a rolling mill control method and a control apparatus that can estimate and suppress a dimensional defect of a material to be rolled during rolling and a reduction in rolling efficiency. Another object of the present invention is to provide a method for producing a rolled material that can suppress a dimensional defect of the material to be rolled during rolling and a decrease in rolling efficiency and can improve the yield.

本発明に係る圧延機の制御方法は、圧延機を構成する各圧延スタンドの出側における被圧延材の板厚と各圧延スタンドのロール周速度及び圧延荷重とを測定する測定ステップと、前記測定ステップにおいて測定された各圧延スタンドの出側における被圧延材の板厚を用いて、少なくとも被圧延材の変形抵抗、被圧延材と圧延ロールとの間の摩擦係数、及び各圧延スタンドの入側及び出側における被圧延材の板厚を変数として含む圧延モデル式を解くことにより、各圧延スタンドの圧延荷重及び先進率を算出すると共に、マスフロー量一定則に従って前記測定ステップにおいて測定された各圧延スタンドの出側における被圧延材の板厚及びロール周速度と先進率とを用いて各圧延スタンドのマスフロー量を算出する算出ステップと、前記測定ステップにおいて測定された各圧延スタンドの圧延荷重と前記算出ステップにおいて算出された各圧延スタンドの圧延荷重との誤差を示す項と、前記算出ステップにおいて算出されたマフフロー量の各圧延スタンド間での誤差を表す項と、を少なくとも含む評価関数が所定条件を満足する前記変形抵抗及び前記摩擦係数を求める最適化問題を解くことにより、前記変形抵抗及び前記摩擦係数を算出する最適化ステップと、前記最適化ステップにおいて算出された前記変形抵抗及び前記摩擦係数を用いて圧延機による被圧延材の圧延処理を制御する制御ステップと、を含むことを特徴とする。   The rolling mill control method according to the present invention includes a measuring step of measuring a sheet thickness of a material to be rolled on a delivery side of each rolling stand constituting the rolling mill, a roll peripheral speed and a rolling load of each rolling stand, and the measurement Using the plate thickness of the material to be rolled at the exit side of each rolling stand measured in the step, at least the deformation resistance of the material to be rolled, the friction coefficient between the material to be rolled and the rolling roll, and the entry side of each rolling stand And calculating the rolling load and the advance rate of each rolling stand by solving the rolling model formula including the sheet thickness of the material to be rolled on the exit side as a variable, and each rolling measured in the measurement step according to the constant mass flow rule A calculating step for calculating a mass flow amount of each rolling stand using a plate thickness of the material to be rolled and a roll peripheral speed and an advance rate on the exit side of the stand; A term indicating an error between the rolling load of each rolling stand measured in the step and the rolling load of each rolling stand calculated in the calculating step, and the muff flow amount calculated in the calculating step between the rolling stands. An optimization step for calculating the deformation resistance and the friction coefficient by solving an optimization problem for obtaining the deformation resistance and the friction coefficient, wherein the evaluation function including at least an evaluation function that satisfies a predetermined condition; And a control step of controlling a rolling process of the material to be rolled by a rolling mill using the deformation resistance and the friction coefficient calculated in the optimization step.

本発明に係る圧延機の制御装置は、圧延機を構成する各圧延スタンドの出側における被圧延材の板厚と各圧延スタンドのロール周速度及び圧延荷重とを測定する測定手段と、前記測定手段によって測定された各圧延スタンドの出側における被圧延材の板厚を用いて、少なくとも被圧延材の変形抵抗、被圧延材と圧延ロールとの間の摩擦係数、及び各圧延スタンドの入側及び出側における被圧延材の板厚を変数として含む圧延モデル式を解くことにより、各圧延スタンドの圧延荷重及び先進率を算出すると共に、マスフロー量一定則に従って前記測定手段によって測定された各圧延スタンドの出側における被圧延材の板厚及びロール周速度と先進率とを用いて各圧延スタンドのマスフロー量を算出する算出手段と、前記測定手段によって測定された各圧延スタンドの圧延荷重と前記算出手段によって算出された各圧延スタンドの圧延荷重との誤差を示す項と、前記算出手段によって算出されたマフフロー量の各圧延スタンド間での誤差を表す項と、を少なくとも含む評価関数が所定条件を満足する前記変形抵抗及び前記摩擦係数を求める最適化問題を解くことにより、前記変形抵抗及び前記摩擦係数を算出する最適化手段と、前記最適化手段によって算出された前記変形抵抗及び前記摩擦係数を用いて圧延機による被圧延材の圧延処理を制御する制御手段と、を備えることを特徴とする。   The control device for a rolling mill according to the present invention includes a measuring means for measuring a thickness of a material to be rolled on a delivery side of each rolling stand constituting the rolling mill, a roll peripheral speed and a rolling load of each rolling stand, and the measurement Using the thickness of the material to be rolled on the exit side of each rolling stand measured by the means, at least the deformation resistance of the material to be rolled, the coefficient of friction between the material to be rolled and the rolling roll, and the entry side of each rolling stand And calculating the rolling load and the advanced rate of each rolling stand by solving the rolling model formula including the sheet thickness of the material to be rolled on the exit side as a variable, and each rolling measured by the measuring means according to the constant mass flow amount rule The calculation means for calculating the mass flow amount of each rolling stand using the plate thickness of the material to be rolled and the roll peripheral speed and the advance rate on the exit side of the stand, and the measurement means A term indicating an error between the rolling load of each rolling stand and the rolling load of each rolling stand calculated by the calculating unit, and a term indicating an error between the rolling stands of the muff flow amount calculated by the calculating unit; , An evaluation function including at least a predetermined condition satisfying a predetermined condition, an optimization means for calculating the deformation resistance and the friction coefficient by solving the optimization problem, and the optimization means calculating the deformation resistance and the friction coefficient Control means for controlling a rolling process of the material to be rolled by a rolling mill using the deformation resistance and the friction coefficient.

本発明に係る圧延材の製造方法は、本発明に係る圧延材の制御装置を備える圧延機を利用して圧延材を製造するステップを含むことを特徴とする。   The method for manufacturing a rolled material according to the present invention includes a step of manufacturing the rolled material using a rolling mill including the rolled material control device according to the present invention.

本発明に係る圧延機の制御方法及び制御装置によれば、多くのコストを要することなく被圧延材の変形抵抗及び被圧延材と圧延ロールとの間の摩擦係数を同時に精度高く推定し、圧延時の被圧延材の寸法不良や圧延能率の低下を抑制することができる。本発明に係る圧延材の製造方法によれば、圧延時の被圧延材の寸法不良や圧延能率の低下を抑制し、歩留まりを向上させることができる。   According to the control method and control device for a rolling mill according to the present invention, the deformation resistance of the material to be rolled and the friction coefficient between the material to be rolled and the rolling roll are estimated simultaneously with high accuracy without much cost, and rolling is performed. It is possible to suppress a dimensional defect of the material to be rolled and a reduction in rolling efficiency. According to the method for manufacturing a rolled material according to the present invention, it is possible to suppress a dimensional defect of the material to be rolled at the time of rolling and a decrease in rolling efficiency, and to improve the yield.

図1は、本発明の一実施形態である圧延機の制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a rolling mill control apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態である変形抵抗及び摩擦係数の推定処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of deformation resistance and friction coefficient estimation processing according to an embodiment of the present invention. 図3は、被圧延材の出側板厚、圧延荷重、及びロール周速度の実績値と本発明を用いて推定した被圧延材の長手方向の変形抵抗、摩擦係数、及び先進率とを示す図である。FIG. 3 is a diagram showing actual values of the exit side plate thickness, rolling load, and roll peripheral speed of the material to be rolled, and the longitudinal deformation resistance, the friction coefficient, and the advanced rate of the material to be rolled estimated using the present invention. It is.

以下、図面を参照して、本発明の一実施形態である圧延機の制御装置について詳細に説明する。   Hereinafter, a rolling mill control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.

〔構成〕
始めに、図1を参照して、本発明の一実施形態である圧延機の制御装置の構成について説明する。
〔Constitution〕
First, with reference to FIG. 1, the structure of the control apparatus of the rolling mill which is one Embodiment of this invention is demonstrated.

図1は、本発明の一実施形態である圧延機の制御装置の構成を示すブロック図である。図1に示すように、本発明の一実施形態である圧延機の制御装置1は、N台の圧延スタンドを利用して被圧延材Sを圧延する圧延処理を制御する装置である。制御装置1は、板厚計2、荷重測定装置3、ロール周速度測定装置4、実績値収集部5、推定部6、設定計算部7、及び制御部8を備えている。   FIG. 1 is a block diagram showing a configuration of a rolling mill control apparatus according to an embodiment of the present invention. As shown in FIG. 1, the control apparatus 1 of the rolling mill which is one Embodiment of this invention is an apparatus which controls the rolling process which rolls the to-be-rolled material S using N rolling stands. The control device 1 includes a thickness gauge 2, a load measuring device 3, a roll peripheral speed measuring device 4, an actual value collection unit 5, an estimation unit 6, a setting calculation unit 7, and a control unit 8.

板厚計2は、各圧延スタンドの被圧延材Sの搬送方向下流側(以下、出側と表記)に設置され、各圧延スタンドで圧延された被圧延材Sの板厚を測定する装置である。   The plate thickness meter 2 is an apparatus that is installed on the downstream side in the conveying direction of the material to be rolled S of each rolling stand (hereinafter referred to as the outlet side) and measures the plate thickness of the material to be rolled S rolled at each rolling stand. is there.

荷重測定装置3は、各圧延スタンドの圧延荷重を測定する装置である。   The load measuring device 3 is a device that measures the rolling load of each rolling stand.

ロール周速度測定装置4は、各圧延スタンドの圧延ロールの周速度を測定する装置である。   The roll peripheral speed measuring device 4 is a device that measures the peripheral speed of the rolling roll of each rolling stand.

実績値収集部5は、板厚計2、荷重測定装置3、及びロール周速度測定装置4の測定値を収集し、収集した測定値を被圧延材Sの板厚、圧延荷重、及びロール周速度の実績値として推定部6に出力する装置である。   The actual value collecting unit 5 collects the measured values of the plate thickness meter 2, the load measuring device 3, and the roll peripheral speed measuring device 4, and uses the collected measured values as the plate thickness, rolling load, and roll circumference of the material S to be rolled. It is a device that outputs to the estimation unit 6 as an actual speed value.

推定部6は、実績値収集部5から出力された被圧延材Sの板厚、圧延荷重、及びロール周速度の実績値を用いて、被圧延材Sの変形抵抗及び被圧延材Sと各圧延スタンドの圧延ロールとの間の摩擦係数(以下、変形抵抗及び摩擦係数と略記)を推定する装置である。推定部6は、推定された変形抵抗及び摩擦係数のデータを設定計算部7に出力する。   The estimation unit 6 uses the actual values of the sheet thickness, rolling load, and roll peripheral speed of the material to be rolled S output from the result value collecting unit 5, and the deformation resistance of the material to be rolled S, the material to be rolled S, and each of the materials. It is an apparatus for estimating a friction coefficient (hereinafter abbreviated as deformation resistance and friction coefficient) between the rolling rolls of a rolling stand. The estimation unit 6 outputs the estimated deformation resistance and friction coefficient data to the setting calculation unit 7.

設定計算部7は、変形抵抗及び摩擦係数のデータを用いて圧延モデル式を解くことによって、圧延荷重やロール周速度等の各圧延スタンドの設定値を計算し、計算された各圧延スタンドの設定値を制御部8に出力する装置である。   The setting calculation unit 7 calculates setting values of each rolling stand such as a rolling load and a roll peripheral speed by solving the rolling model formula using the data of the deformation resistance and the friction coefficient, and sets the calculated setting of each rolling stand. It is a device that outputs a value to the control unit 8.

制御部8は、設定計算部7から出力された各圧延スタンドの設定値に基づいて各圧延スタンドにおける被圧延材Sの圧延処理を制御する装置である。   The control unit 8 is a device that controls the rolling process of the material to be rolled S in each rolling stand based on the set value of each rolling stand output from the setting calculation unit 7.

このような構成を有する圧延機の制御装置1では、推定部6が以下に示す推定処理を実行することによって、変形抵抗及び摩擦係数を同時に推定する。以下、この推定処理を実行する際の推定部6の動作について詳しく説明する。   In the control apparatus 1 of the rolling mill having such a configuration, the estimation unit 6 executes the estimation process shown below, thereby simultaneously estimating the deformation resistance and the friction coefficient. Hereinafter, the operation of the estimation unit 6 when executing this estimation process will be described in detail.

〔推定処理〕
一般に、圧延荷重P及び先進率fは、以下の数式(1),(2)に示すような被圧延材Sの変形抵抗k、被圧延材Sと圧延ロールとの間の摩擦係数μ、被圧延材Sの入側板厚H、及び被圧延材Sの出側板厚h等のパラメータを用いた非線形関数として表すことができる。
[Estimation process]
In general, the rolling load P and the advance rate f are expressed by the deformation resistance k of the material to be rolled S as shown in the following formulas (1) and (2), the friction coefficient μ between the material to be rolled S and the rolling roll, It can be expressed as a nonlinear function using parameters such as the entry side thickness H of the rolled material S and the exit side thickness h of the material to be rolled S.

また、以下の数式(3)により表されるマスフロー量MSについては、各圧延スタンドの入側及び出側でマスフロー量が一定であるとするマスフロー量一定則が成り立つ。但し、数式(3)中、i(=1〜N)は圧延スタンド番号、Vは圧延スタンドのロール周速度を示している。 Further, for the mass flow amount MS i represented by the following mathematical formula (3), the mass flow amount constant law is assumed that the mass flow amount is constant on the entry side and the exit side of each rolling stand. In Equation (3), i (= 1 to N) is a rolling stand number, and V is a roll peripheral speed of the rolling stand.

数式(3)で表されるマスフロー量MSを計算するためには、数式(2)で表される先進率fが必要になる。ここで、圧延荷重P、入側板厚H、出側板厚h、及びロール周速度Vは実測な可能な値である。このため、圧延荷重P、入側板厚H、出側板厚h、及びロール周速度Vの実績値を用いて数式(1),(2)に示す圧延モデル式を解くことによって、実測不可能な変形抵抗k及び摩擦係数μを推定することはできる。 In order to calculate the mass flow amount MS i represented by Equation (3), the advanced rate f represented by Equation (2) is required. Here, the rolling load P, the entry side plate thickness H, the exit side plate thickness h, and the roll peripheral speed V are values that can be measured. For this reason, it is impossible to actually measure by solving the rolling model formulas shown in the formulas (1) and (2) using the actual values of the rolling load P, the entry side thickness H, the exit side thickness h, and the roll peripheral speed V. The deformation resistance k and the friction coefficient μ can be estimated.

しかしながら、数式(1)〜(3)で与えられる関係式の数より未知の変数の数が上回るため、数式(1)〜(3)を解くことによって変形抵抗k及び摩擦係数μを導出することはできない。そこで、本実施形態では、以下の数式(4)で表される評価関数Jを定義し、変形抵抗k及び摩擦係数μを導出する問題を評価関数Jの値を最小にする変形抵抗k及び摩擦係数μを導出する最適化問題として考える。最適化問題の解法としては、粒子群最適化手法や遺伝的アルゴリズム等を利用することができる。但し、数式(4)中、Pact、Pcalはそれぞれ圧延荷重Pの実績値及び計算値、Nは圧延スタンド数、w,w,wは重み係数、gは拘束条件を示す。 However, since the number of unknown variables exceeds the number of relational expressions given by the mathematical expressions (1) to (3), the deformation resistance k and the friction coefficient μ are derived by solving the mathematical expressions (1) to (3). I can't. Therefore, in the present embodiment, an evaluation function J expressed by the following formula (4) is defined, and the problem of deriving the deformation resistance k and the friction coefficient μ is a deformation resistance k and friction that minimizes the value of the evaluation function J. Consider it as an optimization problem to derive the coefficient μ. As a solution to the optimization problem, a particle swarm optimization technique, a genetic algorithm, or the like can be used. In Equation (4), P act and P cal are actual values and calculated values of the rolling load P, N is the number of rolling stands, w 1 , w 2 and w 3 are weighting factors, and g is a constraint condition.

数式(4)の右辺第1項は、圧延荷重Pの実績値Pactと数式(1)により求められる圧延荷重Pの計算値Pcalとの誤差を評価したものである。また、右辺第2項は、数式(3)により求められるマスフロー量MSの各圧延スタンド間での誤差を評価したもの、すなわち数式(2)により求められる先進率fの誤差を評価したものである。また、右辺第3項は、評価関数Jの拘束条件である。拘束条件を導入することによって、評価関数Jを最小にする解(変形抵抗k及び摩擦係数μ)を限定することができる。これら各項に重み係数を設け、どの項に誤差を多く分散させるかを決定する。 The first term on the right side of Equation (4) evaluates an error between the actual value Pact of the rolling load P and the calculated value Pcal of the rolling load P obtained by Equation (1). Further, the second term on the right side is an evaluation of the error between the rolling stands of the mass flow amount MS i obtained by Equation (3), that is, the error of the advanced rate f obtained by Equation (2). is there. The third term on the right side is a constraint condition for the evaluation function J. By introducing the constraint condition, the solution (the deformation resistance k and the friction coefficient μ) that minimizes the evaluation function J can be limited. A weighting coefficient is provided for each of these terms, and it is determined to which term the error is to be distributed.

拘束条件としては、例えば以下に示す数式(5)のように被圧延材Sの長さ方向の微小区間では摩擦係数μの変化が微小であるとの条件を例示することができる。但し、数式(5)中、kは被圧延材Sの長さ方向の任意のサンプル点を示している。長さ方向の微小区間で局所的に摩擦係数μが等しいとすることによって、評価関数Jを最小にする解を限定することができる。   As a constraint condition, for example, a condition that the change in the friction coefficient μ is minute in a minute section in the length direction of the material S to be rolled can be exemplified as in the following formula (5). However, in Formula (5), k has shown the arbitrary sample points of the length direction of the to-be-rolled material S. FIG. The solution that minimizes the evaluation function J can be limited by assuming that the friction coefficient μ is locally equal in a minute section in the length direction.

上述の推定処理の流れをまとめると図2に示すフローチャートのようになる。すなわち、図2に示すように、本発明の一実施形態である推定処理では、始めに、推定部6が、変形抵抗k及び摩擦係数μの任意の初期解を用意し(ステップS1)、変形抵抗k及び摩擦係数μの任意の初期解と圧延荷重P、入側板厚H、出側板厚h、及びロール周速度Vの実績値とを用いて圧延モデル式により圧延荷重Pcal、先進率f、及びマスフロー量MSを計算する(ステップS2)。次に、推定部6は、圧延荷重P、入側板厚H、出側板厚h、及びロール周速度Vの実績値と圧延荷重Pcal、先進率f、及びマスフロー量MSとを用いて評価関数Jの値を算出する(ステップS3)。 The flow of the above estimation process is summarized as a flowchart shown in FIG. That is, as shown in FIG. 2, in the estimation process according to an embodiment of the present invention, first, the estimation unit 6 prepares arbitrary initial solutions of the deformation resistance k and the friction coefficient μ (step S <b> 1). Rolling load P cal , advanced rate f by rolling model formula using arbitrary initial solution of resistance k and friction coefficient μ, rolling load P, inlet side plate thickness H, outlet side plate thickness h, and actual value of roll peripheral speed V And the mass flow amount MS i are calculated (step S2). Then, the estimating unit 6, using rolling load P, thickness at entrance side H, delivery side thickness h, and actual values and rolling load P cal roll peripheral speed V, forward slip f, and the mass flow quantity MS i Rating The value of function J is calculated (step S3).

次に、推定部6は、ステップS3の処理によって算出された評価関数Jの値が所定の閾値Th以上であるか否かを判別する(ステップS4)。判別の結果、評価関数Jの値が所定の閾値Th以上である場合、推定部6は、ステップS2の処理において用いた変形抵抗k及び摩擦係数μの値を修正した後(ステップS5)、推定処理をステップS2の処理に戻す。一方、評価関数Jの値が所定の閾値Th未満である場合には、推定部6は、ステップS2の処理において用いた変形抵抗k及び摩擦係数μの値を最適解として設定計算部7に出力する(ステップS6)。これにより、一連の推定処理は終了する。   Next, the estimation unit 6 determines whether or not the value of the evaluation function J calculated by the process of step S3 is equal to or greater than a predetermined threshold Th (step S4). As a result of determination, when the value of the evaluation function J is equal to or greater than the predetermined threshold Th, the estimation unit 6 corrects the values of the deformation resistance k and the friction coefficient μ used in the process of Step S2 (Step S5), and then estimates. The process returns to the process of step S2. On the other hand, when the value of the evaluation function J is less than the predetermined threshold Th, the estimation unit 6 outputs the values of the deformation resistance k and the friction coefficient μ used in the process of step S2 to the setting calculation unit 7 as optimum solutions. (Step S6). Thereby, a series of estimation processes is completed.

以上の説明から明らかなように、本発明の一実施形態である圧延機の制御装置1では、推定部6が、数式(4)に示す評価関数Jを最小にする変形抵抗k及び摩擦係数μを求める最適化問題を解くことにより、変形抵抗k及び摩擦係数μを算出するので、多くのコストを要することなく変形抵抗k及び摩擦係数μを同時に精度高く推定し、圧延時の被圧延材の寸法不良や圧延能率の低下を抑制することができる。   As is apparent from the above description, in the rolling mill control apparatus 1 according to an embodiment of the present invention, the estimation unit 6 has a deformation resistance k and a friction coefficient μ that minimize the evaluation function J shown in Equation (4). Since the deformation resistance k and the friction coefficient μ are calculated by solving the optimization problem, the deformation resistance k and the friction coefficient μ are estimated with high accuracy at the same time without requiring much cost. Dimensional defects and reduction in rolling efficiency can be suppressed.

なお、本実施形態では、評価関数Jを最小にする変形抵抗k及び摩擦係数μを求めることとしたが、本発明は本実施形態に限定されることはなく、評価関数Jの最小値近傍の変形抵抗k及び摩擦係数μを求めるようにしてもよい。すなわち、変形抵抗k及び摩擦係数μを求めるための評価関数Jの条件は、評価関数Jの形態や各種制約条件に応じて適宜変更することができる。   In the present embodiment, the deformation resistance k and the friction coefficient μ that minimize the evaluation function J are obtained. However, the present invention is not limited to the present embodiment, and is near the minimum value of the evaluation function J. The deformation resistance k and the friction coefficient μ may be obtained. That is, the condition of the evaluation function J for obtaining the deformation resistance k and the friction coefficient μ can be changed as appropriate according to the form of the evaluation function J and various constraint conditions.

図3は、仕上厚2.8mm、仕上幅1340mmの被圧延材を熱間圧延ラインの仕上圧延機で圧延した際の第7圧延スタンドでの(a)被圧延材の出側板厚h、(b)圧延荷重P、及び(c)ロール周速度Vの実績値と、本発明を用いて推定した被圧延材の長手方向の(d)変形抵抗k、(e)摩擦係数μ、及び(f)先進率fと、を示す図である。   FIG. 3 shows (a) an exit side plate thickness h of a material to be rolled in a seventh rolling stand when a material to be rolled having a finishing thickness of 2.8 mm and a finishing width of 1340 mm is rolled by a finishing rolling mill of a hot rolling line. b) Actual value of rolling load P and (c) Roll peripheral speed V, (d) Deformation resistance k in the longitudinal direction of the rolled material estimated using the present invention, (e) Friction coefficient μ, and (f ) Is a diagram showing the advanced rate f.

本実施例では、数式(4)に示す評価関数Jに含まれる重み係数w,w,wの値は全て1とし、拘束条件として数式(5)に示す拘束条件を用いた。また、評価関数Jの閾値Thは0.0003とし、最適化問題の解法として粒子群最適化手法を用いた。図3に示すように、本発明によれば、被圧延材の長手方向に沿って変形抵抗kと摩擦係数μとを同時に推定できることが確認された。 In the present embodiment, the values of the weighting factors w 1 , w 2 , and w 3 included in the evaluation function J shown in Equation (4) are all 1, and the constraint condition shown in Equation (5) is used as the constraint condition. Further, the threshold value Th of the evaluation function J was set to 0.0003, and the particle swarm optimization method was used as a solution to the optimization problem. As shown in FIG. 3, according to the present invention, it was confirmed that the deformation resistance k and the friction coefficient μ can be estimated simultaneously along the longitudinal direction of the material to be rolled.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 制御装置
2 板厚計
3 荷重測定装置
4 圧延ロール周速測定装置
5 実績値収集部
6 推定部
7 設定計算部
8 制御部
DESCRIPTION OF SYMBOLS 1 Control apparatus 2 Sheet thickness meter 3 Load measuring apparatus 4 Rolling roll peripheral speed measuring apparatus 5 Actual value collection part 6 Estimation part 7 Setting calculation part 8 Control part

Claims (5)

圧延機を構成する各圧延スタンドの出側における被圧延材の板厚と各圧延スタンドのロール周速度及び圧延荷重とを測定する測定ステップと、
前記測定ステップにおいて測定された各圧延スタンドの出側における被圧延材の板厚を用いて、少なくとも被圧延材の変形抵抗、被圧延材と圧延ロールとの間の摩擦係数、及び各圧延スタンドの入側及び出側における被圧延材の板厚を変数として含む圧延モデル式を解くことにより、各圧延スタンドの圧延荷重及び先進率を算出すると共に、マスフロー量一定則に従って前記測定ステップにおいて測定された各圧延スタンドの出側における被圧延材の板厚及びロール周速度と先進率とを用いて各圧延スタンドのマスフロー量を算出する算出ステップと、
前記測定ステップにおいて測定された各圧延スタンドの圧延荷重と前記算出ステップにおいて算出された各圧延スタンドの圧延荷重との誤差を示す項と、前記算出ステップにおいて算出されたマフフロー量の各圧延スタンド間での誤差を表す項と、を少なくとも含む評価関数が所定条件を満足する前記変形抵抗及び前記摩擦係数を求める最適化問題を解くことにより、前記変形抵抗及び前記摩擦係数を算出する最適化ステップと、
前記最適化ステップにおいて算出された前記変形抵抗及び前記摩擦係数を用いて圧延機による被圧延材の圧延処理を制御する制御ステップと、
を含むことを特徴とする圧延機の制御方法。
A measuring step for measuring the thickness of the material to be rolled on the exit side of each rolling stand constituting the rolling mill, the roll peripheral speed of each rolling stand, and the rolling load;
Using the plate thickness of the material to be rolled on the exit side of each rolling stand measured in the measuring step, at least the deformation resistance of the material to be rolled, the friction coefficient between the material to be rolled and the rolling roll, and each rolling stand The rolling load equation and the advanced rate of each rolling stand are calculated by solving the rolling model formula including the sheet thickness of the material to be rolled on the entry side and the exit side as a variable, and measured in the measurement step according to the mass flow amount constant law. A calculation step for calculating the mass flow amount of each rolling stand using the sheet thickness and roll peripheral speed and the advance rate of the material to be rolled on the exit side of each rolling stand,
A term indicating an error between the rolling load of each rolling stand measured in the measuring step and the rolling load of each rolling stand calculated in the calculating step, and between each rolling stand of the muff flow amount calculated in the calculating step An optimization step for calculating the deformation resistance and the friction coefficient by solving an optimization problem for obtaining the deformation resistance and the friction coefficient, wherein an evaluation function including at least an evaluation function that satisfies a predetermined condition,
A control step of controlling a rolling process of the material to be rolled by a rolling mill using the deformation resistance and the friction coefficient calculated in the optimization step;
A control method for a rolling mill, comprising:
前記最適化ステップは、被圧延材の長さ方向の微小区間では摩擦係数の変化が微小であるとの拘束条件を用いて前記最適化問題を解くステップを含むことを特徴とする請求項1に記載の圧延機の制御方法。   The optimization step includes a step of solving the optimization problem using a constraint condition that a change in a friction coefficient is minute in a minute section in a length direction of the material to be rolled. The rolling mill control method described. 前記所定条件は、前記評価関数の値が最小になることであることを特徴とする請求項1又は2に記載の圧延機の制御方法。   The rolling mill control method according to claim 1 or 2, wherein the predetermined condition is that the value of the evaluation function is minimized. 圧延機を構成する各圧延スタンドの出側における被圧延材の板厚と各圧延スタンドのロール周速度及び圧延荷重とを測定する測定手段と、
前記測定手段によって測定された各圧延スタンドの出側における被圧延材の板厚を用いて、少なくとも被圧延材の変形抵抗、被圧延材と圧延ロールとの間の摩擦係数、及び各圧延スタンドの入側及び出側における被圧延材の板厚を変数として含む圧延モデル式を解くことにより、各圧延スタンドの圧延荷重及び先進率を算出すると共に、マスフロー量一定則に従って前記測定手段によって測定された各圧延スタンドの出側における被圧延材の板厚及びロール周速度と先進率とを用いて各圧延スタンドのマスフロー量を算出する算出手段と、
前記測定手段によって測定された各圧延スタンドの圧延荷重と前記算出手段によって算出された各圧延スタンドの圧延荷重との誤差を示す項と、前記算出手段によって算出されたマフフロー量の各圧延スタンド間での誤差を表す項と、を少なくとも含む評価関数が所定条件を満足する前記変形抵抗及び前記摩擦係数を求める最適化問題を解くことにより、前記変形抵抗及び前記摩擦係数を算出する最適化手段と、
前記最適化手段によって算出された前記変形抵抗及び前記摩擦係数を用いて圧延機による被圧延材の圧延処理を制御する制御手段と、
を備えることを特徴とする圧延機の制御装置。
Measuring means for measuring the sheet thickness of the material to be rolled on the exit side of each rolling stand constituting the rolling mill, the roll peripheral speed of each rolling stand, and the rolling load;
Using the plate thickness of the material to be rolled on the exit side of each rolling stand measured by the measuring means, at least the deformation resistance of the material to be rolled, the friction coefficient between the material to be rolled and the rolling roll, and each rolling stand The rolling load equation and the advanced rate of each rolling stand were calculated by solving the rolling model formula including the sheet thickness of the material to be rolled on the entry side and the exit side as a variable, and measured by the measuring means according to the constant mass flow amount rule. Calculation means for calculating the mass flow amount of each rolling stand using the sheet thickness and roll peripheral speed and the advance rate of the material to be rolled on the exit side of each rolling stand,
A term indicating an error between the rolling load of each rolling stand measured by the measuring means and the rolling load of each rolling stand calculated by the calculating means, and between each rolling stand of the muff flow amount calculated by the calculating means An optimization means for calculating the deformation resistance and the friction coefficient by solving an optimization problem for obtaining the deformation resistance and the friction coefficient, wherein the evaluation function including at least an evaluation function that satisfies a predetermined condition,
Control means for controlling the rolling process of the material to be rolled by a rolling mill using the deformation resistance and the friction coefficient calculated by the optimization means;
A control device for a rolling mill, comprising:
請求項4に記載の圧延材の制御装置を備える圧延機を利用して圧延材を製造するステップを含むことを特徴とする圧延材の製造方法。   A method for producing a rolled material, comprising the step of producing a rolled material using a rolling mill comprising the rolling material control device according to claim 4.
JP2015000297A 2014-01-09 2015-01-05 Rolling mill control method, rolling mill control device, and rolled material manufacturing method Active JP6036857B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014002338 2014-01-09
JP2014002338 2014-01-09
JP2015000297A JP6036857B2 (en) 2014-01-09 2015-01-05 Rolling mill control method, rolling mill control device, and rolled material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000297A JP6036857B2 (en) 2014-01-09 2015-01-05 Rolling mill control method, rolling mill control device, and rolled material manufacturing method

Publications (2)

Publication Number Publication Date
JP2015147249A true JP2015147249A (en) 2015-08-20
JP6036857B2 JP6036857B2 (en) 2016-11-30

Family

ID=53891077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000297A Active JP6036857B2 (en) 2014-01-09 2015-01-05 Rolling mill control method, rolling mill control device, and rolled material manufacturing method

Country Status (1)

Country Link
JP (1) JP6036857B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015010A (en) * 1983-07-05 1985-01-25 Nippon Steel Corp Control method suitable for rolling
JPS61222618A (en) * 1985-03-29 1986-10-03 Hitachi Ltd Adaptive controlling method in rolling mill
JP2009208115A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Method and device for calculating parameter of rolling control, and rolling simulation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015010A (en) * 1983-07-05 1985-01-25 Nippon Steel Corp Control method suitable for rolling
JPS61222618A (en) * 1985-03-29 1986-10-03 Hitachi Ltd Adaptive controlling method in rolling mill
JP2009208115A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Method and device for calculating parameter of rolling control, and rolling simulation device

Also Published As

Publication number Publication date
JP6036857B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
CN104942019B (en) A kind of cold rolling of strip steel process Automatic control method of width
JP5685208B2 (en) Control device for hot rolling mill for thin plate and control method for hot rolling mill for thin plate
JP6229799B2 (en) Flatness control device
JP2005118840A (en) Plate shape control method in cold rolling
JP2014117743A (en) Meandering control method of rolled material, meandering control device of rolled material, meandering control program of rolled material and manufacturing method of rolled material
JP6438753B2 (en) Tandem rolling mill control device and tandem rolling mill control method
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
JP6036857B2 (en) Rolling mill control method, rolling mill control device, and rolled material manufacturing method
JP6102650B2 (en) Plate temperature control method and plate temperature control device in continuous line
KR100641755B1 (en) Control apparatus for width margin in hot strip mill and its method
JP5418244B2 (en) Control method for cold tandem rolling mill
US10843247B2 (en) Material property value estimating method, material property value estimating device, and steel-strip manufacturing method
JP6222031B2 (en) Rolling mill control method and control apparatus
JP2013039608A (en) Rolling control method in consideration of variation in rolling parameter
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
JP2014000578A (en) Roll shape determination device and roll shape determination method
JP6627609B2 (en) Cooling control method and cooling device
JPH11192505A (en) Method for correcting sheet width change prediction equation in hot rolling and sheet width control method
JP6210944B2 (en) Control device and control method for continuous rolling mill
JP2019181500A (en) Hot rolling line control device
JP2004050257A (en) Method for calculating forward slip in rolling mill
JP3553552B2 (en) On-line identification method of strip width deformation model in hot finishing mill
JP2004034032A (en) Method for controlling edge drop in tandem cold- rolling
JP2021058895A (en) Method for production of hot rolled steel sheet and rolling machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250