JP4983174B2 - Diode element and inspection method of diode element - Google Patents

Diode element and inspection method of diode element Download PDF

Info

Publication number
JP4983174B2
JP4983174B2 JP2006248927A JP2006248927A JP4983174B2 JP 4983174 B2 JP4983174 B2 JP 4983174B2 JP 2006248927 A JP2006248927 A JP 2006248927A JP 2006248927 A JP2006248927 A JP 2006248927A JP 4983174 B2 JP4983174 B2 JP 4983174B2
Authority
JP
Japan
Prior art keywords
electrode
diode element
inspection
pad
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006248927A
Other languages
Japanese (ja)
Other versions
JP2008071918A (en
Inventor
晃久 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006248927A priority Critical patent/JP4983174B2/en
Publication of JP2008071918A publication Critical patent/JP2008071918A/en
Application granted granted Critical
Publication of JP4983174B2 publication Critical patent/JP4983174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

本発明は,半導体素子およびその半導体素子の検査方法に関する。さらに詳細には,半導体素子内部の微小欠陥を基板組付け工程の前の段階で検出可能な半導体素子およびその半導体素子の検査方法に関するものである。   The present invention relates to a semiconductor element and a method for inspecting the semiconductor element. More specifically, the present invention relates to a semiconductor element capable of detecting minute defects inside a semiconductor element at a stage prior to a substrate assembling process and a method for inspecting the semiconductor element.

高耐圧・大電流が要求されるパワーエレクトロニクス(またはパワーモジュール)に使用されるダイオード素子は,概ね図8に示すダイオード素子製造工程によって作製される。また,ハイブリッド車等に車載されるパワーモジュールは,概ね図9に示すパワーモジュール製造工程によって作製され,その後のIPM(Intelligent Power Module)組付工程およびPCU(Power Control Unit)組付工程を経て車両工場へ送られる。   Diode elements used in power electronics (or power modules) that require high withstand voltage and large current are generally manufactured by the diode element manufacturing process shown in FIG. A power module mounted on a hybrid vehicle or the like is generally manufactured by a power module manufacturing process shown in FIG. 9, and then passes through an IPM (Intelligent Power Module) assembly process and a PCU (Power Control Unit) assembly process. Sent to the factory.

半導体素子の不良は,半導体素子製造工程中のウェハテストや,パワーモジュール製造工程中の耐圧検査にて検出する。図10に,ダイオード素子を検査する際における,ウェハテスト工程と耐圧検査工程とに共通するリーク測定回路の一例を示す。本回路のように,ダイオード素子に逆バイアスを印加し,アノード−カソード間のリーク電流を測定し,リーク電流の大きさによって良否を判断する。   The defect of the semiconductor element is detected by a wafer test during the semiconductor element manufacturing process or a withstand voltage inspection during the power module manufacturing process. FIG. 10 shows an example of a leak measurement circuit common to the wafer test process and the withstand voltage test process when inspecting the diode element. As in this circuit, a reverse bias is applied to the diode element, the leakage current between the anode and the cathode is measured, and the quality is judged by the magnitude of the leakage current.

また,半導体素子製造工程中やパワーモジュール製造工程中において,半導体素子(本明細書では,半導体領域およびその表面に形成された電極を含めて「半導体素子」とする。)の表面あるいは内部にクラック等の微小欠陥が生じることが問題となっている。例えば,図11に示すように,P型半導体領域1,N型半導体領域2,アノード電極11,カソード電極21によって構成されるダイオード素子90の内部に微小欠陥4が生じることがある。微小欠陥4は,半導体領域内に限らず,電極内にも生じる。   In addition, during the semiconductor element manufacturing process and the power module manufacturing process, cracks are formed on the surface or inside of the semiconductor element (in this specification, the semiconductor region and the electrode formed on the surface thereof are referred to as “semiconductor element”). The problem is that minute defects such as the above occur. For example, as shown in FIG. 11, a minute defect 4 may occur inside a diode element 90 constituted by a P-type semiconductor region 1, an N-type semiconductor region 2, an anode electrode 11, and a cathode electrode 21. The minute defect 4 occurs not only in the semiconductor region but also in the electrode.

半導体素子に微小欠陥が生じる原因として,以下の2つが考えられる。
(1)半導体素子製造工程中のウェハテストにおけるプロービングや,パワーモジュール製造工程中のワイヤボンディングによって,素子表面にクラックが生じる。そして,そのクラックが半導体素子内部にまで達する。
(2)半導体素子に加わる圧力や歪みにより,半導体素子内部にクラックが生じる。
There are two possible causes for the occurrence of minute defects in the semiconductor element.
(1) Probing in a wafer test during a semiconductor element manufacturing process and wire bonding during a power module manufacturing process cause cracks on the element surface. The crack reaches the inside of the semiconductor element.
(2) Cracks are generated inside the semiconductor element due to pressure and strain applied to the semiconductor element.

半導体素子内の微小欠陥は,図10に示したようなアノード−カソード間のリーク電流を測定するだけの回路では検出できない。そこで,パワーモジュール製造後のIPM組付工程中のIPM機能検査にて熱スクリーニング(エージング)試験を行うことで不具合品の流出を防止している。   Microdefects in the semiconductor element cannot be detected by a circuit that only measures the leakage current between the anode and the cathode as shown in FIG. Therefore, the outflow of defective products is prevented by performing a thermal screening (aging) test in the IPM function inspection during the IPM assembly process after manufacturing the power module.

なお,微小欠陥を検出する技術としては,例えば特許文献1に開示された半導体装置がある。この半導体装置では,1対のダミー電極を所定の間隔で隣接配置し,両電極間に所定の電圧を印加し,両電極間のリーク電流を検出することで両電極間の微小欠陥による不良を検出することができるとしている。
特許第3496523号公報
As a technique for detecting minute defects, for example, there is a semiconductor device disclosed in Patent Document 1. In this semiconductor device, a pair of dummy electrodes are arranged adjacent to each other at a predetermined interval, a predetermined voltage is applied between the two electrodes, and a leak current between the two electrodes is detected, so that a defect due to a minute defect between the two electrodes is eliminated. It can be detected.
Japanese Patent No. 3396523

しかしながら,前記した従来の検査方法では,次のような問題があった。すなわち,IPM機能検査での不良検出は,IPM基板の組み付け後である。そのため,不良品の検出までに時間がかかるとともに仕損費が大きい。   However, the conventional inspection method described above has the following problems. That is, the defect detection in the IPM function inspection is after the assembly of the IPM board. For this reason, it takes time to detect defective products and the cost of waste is large.

また,熱スクリーニング試験では,高電圧を印加し,大電流を通電する。そのため,不良品の検出時には大きな破裂音や閃光を伴う危険があり,作業環境や検査装置への悪影響が懸念される。   In the thermal screening test, a high voltage is applied and a large current is applied. For this reason, there is a risk of a large plosive sound or flash when detecting a defective product, and there is a concern about adverse effects on the work environment and inspection equipment.

また,特許文献1の半導体装置の微小欠陥検出方法では,ダミー電極間のリーク電流を検出するに過ぎない。そのため,半導体素子や電極の内部に潜む微小欠陥の有無は判断できない。また,横方向の絶縁性評価であるため,縦型の半導体装置の欠損を判定できない。   In addition, in the method for detecting a minute defect of a semiconductor device disclosed in Patent Document 1, only a leakage current between dummy electrodes is detected. For this reason, it is impossible to determine the presence or absence of microdefects hidden inside semiconductor elements or electrodes. Moreover, since the insulation is evaluated in the horizontal direction, it is not possible to determine whether the vertical semiconductor device is defective.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,半導体素子や電極の微小欠陥を基板組付け工程の前の段階で検出可能な半導体素子およびその半導体素子の検査方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, an object of the present invention is to provide a semiconductor element capable of detecting a minute defect of a semiconductor element or an electrode at a stage prior to the substrate assembling process and an inspection method for the semiconductor element.

この課題の解決を目的としてなされた半導体素子は,半導体領域と,半導体領域と接し電極パッドが形成される電極領域とを備えたダイオード素子であって,ダイオード素子内に埋め込まれ,電極パッドのパッド面の下方に位置する検査電極と,検査電極を覆う絶縁膜と,検査電極と電気的に接続し,配線部材を接合する第2の電極パッドとを備えることを特徴としている。 A semiconductor element has been made for the purpose of solving this problem is a diode element having a semiconductor region, and an electrode region where the electrode pad is formed in contact with the semiconductor region, embedded in the diode element, the electrode pad pad It is characterized by comprising an inspection electrode located below the surface, an insulating film covering the inspection electrode, and a second electrode pad that is electrically connected to the inspection electrode and joins the wiring member.

本発明のダイオード素子は,電極パッドのパッド面の下方に,絶縁膜に被覆された検査電極が埋め込まれている。検査電極は,電極パッドのパッド面の下方に位置し,すなわち基板厚さ方向から見てパッド面内に位置していればよく,半導体領域内であっても電極領域内であってもよい。なお,パッド面とは,ウェハテストにおけるプロービングや,ワイヤボンドにおけるボンディングが行われる露出面のことを意味する。ダイオード素子の微小欠陥を検査する際には,電極領域のパッド面と,検査電極の第2のパッド面とを介して,電極領域と,ダイオード素子内に埋め込まれた検査電極との間に検査バイアスを印加する。 In the diode element of the present invention, a test electrode covered with an insulating film is embedded below the pad surface of the electrode pad. The inspection electrode may be located below the pad surface of the electrode pad, that is, in the pad surface as viewed from the substrate thickness direction, and may be in the semiconductor region or the electrode region. The pad surface means an exposed surface on which probing in wafer test or bonding in wire bonding is performed. When inspecting a minute defect of the diode element, the inspection is performed between the electrode region and the inspection electrode embedded in the diode element via the pad surface of the electrode region and the second pad surface of the inspection electrode. Apply a bias.

電極パッドの表面にクラックが生じていると,そのクラックが製造工程中の外圧によって成長しつつパッド内部に侵入する。そして,そのクラックは,電極パッドのパッド面の下方に位置する検査電極の周辺にまで達し,検査電極を覆う絶縁膜を破損させる。すなわち,微小欠陥が生じていると,絶縁膜が破損するため,検査バイアスを印加したときに電極領域と検査電極との間に許容値以上のリーク電流が流れる。これにより,ダイオード素子内に微小欠陥が存在しているか否かを判断することができる。特に,パッド表面から半導体領域に向かって成長するような有害なクラックの場合には,絶縁膜が必ず破壊される。そのため,このような有害なクラックを早期に検出することが可能となる。 If a crack is generated on the surface of the electrode pad, the crack enters the pad while growing due to an external pressure during the manufacturing process. The crack reaches the periphery of the inspection electrode located below the pad surface of the electrode pad, and breaks the insulating film covering the inspection electrode. That is, if a minute defect occurs, the insulating film is damaged, and therefore, when an inspection bias is applied, a leakage current exceeding an allowable value flows between the electrode region and the inspection electrode. Thereby, it can be determined whether or not a minute defect exists in the diode element. In particular, in the case of a harmful crack that grows from the pad surface toward the semiconductor region, the insulating film is necessarily destroyed. Therefore, it is possible to detect such harmful cracks at an early stage.

本発明のダイオード素子では,電極領域と検査電極との間に検査バイアスを印加することができる回路を構成することで微小欠陥の有無を判断することができる。すなわち,ダイオード素子製造工程内での検査,あるいはモジュール製造工程内での検査が可能である。そのため,早期に不良品を検出することができる。また,検査が基板組付け前であることから仕損費が小さい。また,微小電流の検査であるため,安全であり,作業環境や検査装置への影響が小さい。 In the diode element of the present invention, it is possible to determine the presence / absence of a micro defect by configuring a circuit capable of applying an inspection bias between the electrode region and the inspection electrode. That is, an inspection in the diode element manufacturing process or an inspection in the module manufacturing process is possible. Therefore, defective products can be detected at an early stage. In addition, since the inspection is before assembling the board, the cost of waste is small. In addition, since it is an inspection of a minute current, it is safe and has little influence on the work environment and inspection apparatus.

また,検査電極は,電極領域内に埋め込まれていることとするとよりよい。すなわち,パッド面に生じた微小欠陥を検出するためには,検査電極をよりパッド面に近い位置に設けることが望ましい。そのため,検査電極が電極領域内に埋め込まれていることで,より確実にパッド面に生じた微小欠陥を検出することができる。また,検査電極をダイオード素子内に埋め込む際にも,半導体領域内よりも電極領域内の方が容易に埋め込むことができる。 Further, it is better that the inspection electrode is embedded in the electrode region. That is, in order to detect a micro defect generated on the pad surface, it is desirable to provide the inspection electrode at a position closer to the pad surface. Therefore, since the inspection electrode is embedded in the electrode region, it is possible to detect a minute defect generated on the pad surface more reliably. Also, when the test electrode is embedded in the diode element, the electrode region can be embedded more easily than in the semiconductor region.

また,本発明は,本発明のダイオード素子を被検体とするダイオード素子の検査方法であって,電極領域と検査電極との間に検査バイアスを印加し,その際に電極領域と検査電極との間に流れたリーク電流を検出することを特徴とするダイオード素子の検査方法を含んでいる。 Further, the present invention relates to the use of the present invention a diode element method of inspecting a diode element according to the subject, a test bias between the test electrode and the electrode region is applied, and the inspection electrode and the electrode region in the It includes a method for inspecting a diode element, characterized by detecting a leak current flowing between them.

本発明では,電極領域と,半導体素子内に埋め込まれた検査電極との間に流れたリーク電流により,微小欠陥の有無を判断できている。よって,本発明によれば,半導体素子や電極の微小欠陥を基板組付け工程の前の段階で検出可能な半導体素子およびその半導体素子の検査方法が実現されている。   In the present invention, it is possible to determine the presence or absence of a micro defect based on a leakage current flowing between the electrode region and the inspection electrode embedded in the semiconductor element. Therefore, according to the present invention, a semiconductor element capable of detecting a minute defect of a semiconductor element or an electrode at a stage before the substrate assembling process and a method for inspecting the semiconductor element are realized.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,パワーモジュールに利用されるダイオード素子に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, the present invention is applied to a diode element used in a power module.

[ダイオード素子]
図1に本形態のダイオード素子100の単位セル10の断面図を示す。図2にダイオード素子100の上面図を示す。本形態のダイオード素子100は,図2に示すように,複数のセル10が並列に組み込まれた構成となっている。ダイオード素子100の単位セル10は,図1に示すように,上面側に位置するP型半導体領域1と,下面側に位置するN型半導体領域2とを有し,両領域が対峙することによってダイオードを構成している。また,P型半導体領域1上にはアノード電極11が形成され,N型半導体領域2上にはカソード電極21が形成されている。また,アノード電極11の露出面は,ワイヤボンディングあるいははんだ付けに供するパッド15(アノード電極用パッド15)となる。ダイオード素子100の単位セル幅は約40μmであり,アノード電極11表面からカソード電極21表面までの高さは約300μmである。
[Diode element]
FIG. 1 shows a cross-sectional view of a unit cell 10 of a diode element 100 of the present embodiment. FIG. 2 shows a top view of the diode element 100. As shown in FIG. 2, the diode element 100 of this embodiment has a configuration in which a plurality of cells 10 are incorporated in parallel. As shown in FIG. 1, the unit cell 10 of the diode element 100 has a P-type semiconductor region 1 located on the upper surface side and an N-type semiconductor region 2 located on the lower surface side. It constitutes a diode. An anode electrode 11 is formed on the P-type semiconductor region 1, and a cathode electrode 21 is formed on the N-type semiconductor region 2. The exposed surface of the anode electrode 11 serves as a pad 15 (anode electrode pad 15) used for wire bonding or soldering. The unit cell width of the diode element 100 is about 40 μm, and the height from the surface of the anode electrode 11 to the surface of the cathode electrode 21 is about 300 μm.

また,アノード電極11には,破壊検出電極31が内蔵されている。絶縁破壊電極31は,アノード電極用パッド15のパッド面の下方に位置している。すなわち,絶縁破壊電極31は,基板厚さ方向から見てアノード電極用パッド15のパッド面内に位置している。破壊検出電極31は,絶縁膜3によって被覆されており,アノード電極11やP型半導体領域1から絶縁されている。本形態では,破壊検出電極31の厚さは約500nmであり,絶縁膜3の膜厚は約1μmである。   The anode electrode 11 has a built-in breakdown detection electrode 31. The dielectric breakdown electrode 31 is located below the pad surface of the anode electrode pad 15. That is, the dielectric breakdown electrode 31 is located in the pad surface of the anode electrode pad 15 when viewed from the substrate thickness direction. The breakdown detection electrode 31 is covered with the insulating film 3 and insulated from the anode electrode 11 and the P-type semiconductor region 1. In this embodiment, the thickness of the breakdown detection electrode 31 is about 500 nm, and the thickness of the insulating film 3 is about 1 μm.

また,本形態のダイオード素子100の上面には,図2に示すように,複数のアノード電極用パッド15が並置された状態であり,さらに破壊検出電極31と電気的に接続するパッド35(破壊検出電極用パッド35)が隣接配置されている。これらのパッドにワイヤボンディングやはんだ付け等を行うことにより,それぞれの電極への電気的導通が確保される。なお,破壊検出電極31を備えたダイオード素子100の等価回路を図3に示す。   In addition, as shown in FIG. 2, a plurality of anode electrode pads 15 are juxtaposed on the upper surface of the diode element 100 of the present embodiment, and the pads 35 (destructions) that are electrically connected to the destructive detection electrode 31 are further provided. Detection electrode pads 35) are arranged adjacent to each other. By conducting wire bonding, soldering, or the like on these pads, electrical conduction to the respective electrodes is ensured. An equivalent circuit of the diode element 100 provided with the breakdown detection electrode 31 is shown in FIG.

ダイオード素子100は,アノード電極11内に破壊検出電極31を組み込むことによって次のような特性を有する。   The diode element 100 has the following characteristics by incorporating the breakdown detection electrode 31 in the anode electrode 11.

すなわち,ダイオード素子製造工程やパワーモジュール製造工程の際に,プロービングやワイヤボンディングによってアノード電極用パッド15の表面にクラック等の微小欠陥が生じることがある。この微小欠陥は,その後の製造プロセス中における外圧,特に基板厚さ方向への圧力や歪みによって成長し,アノード電極用パッド15内に入り込む。そして,アノード電極用パッド15のパッド面の下方に位置する絶縁膜3に達し,その絶縁膜3を破壊する。このような不良状態のダイオード素子100に対して,破壊検出電極31とアノード電極11との間に所定の検査バイアスを印加すると,両電極間に閾値以上のリーク電流が検出されることになる。そのため,ダイオード素子製造工程中のウェハテストやパワーモジュール製造工程中での耐圧検査にてアノード電極11内に入り込んだ微小欠陥の検出が可能となる。   That is, in the diode element manufacturing process and the power module manufacturing process, a micro defect such as a crack may occur on the surface of the anode electrode pad 15 by probing or wire bonding. These minute defects grow due to an external pressure during the subsequent manufacturing process, particularly pressure and strain in the substrate thickness direction, and enter the anode electrode pad 15. Then, it reaches the insulating film 3 located below the pad surface of the anode electrode pad 15 and destroys the insulating film 3. When a predetermined inspection bias is applied between the breakdown detection electrode 31 and the anode electrode 11 for such a defective diode element 100, a leak current exceeding the threshold value is detected between the two electrodes. Therefore, it is possible to detect a minute defect that has entered the anode electrode 11 by a wafer test in the diode element manufacturing process or a withstand voltage test in the power module manufacturing process.

なお,破壊検出電極31は,アノード電極11内に限らず,カソード電極21内に配置してもよい。これにより,カソード電極21内に生じた微小欠陥を検出することが可能になる。   The breakage detection electrode 31 is not limited to the anode electrode 11 and may be disposed in the cathode electrode 21. Thereby, it is possible to detect a minute defect generated in the cathode electrode 21.

また,破壊検出電極31は,両表面の電極内に限らず,P型半導体領域1あるいはN型半導体領域2内に配置してもよい。すなわち,半導体領域内に破壊検出電極31を設けてもよい。半導体領域内に破壊検出電極31があれば,製造プロセス中の外圧や歪みによって半導体領域内にクラックが生じた場合にも,電極内に生じる微小欠陥と同様にその微小欠陥の検出が可能になる。   Further, the breakdown detection electrode 31 is not limited to the electrodes on both surfaces, but may be disposed in the P-type semiconductor region 1 or the N-type semiconductor region 2. That is, the breakdown detection electrode 31 may be provided in the semiconductor region. If there is a breakdown detection electrode 31 in the semiconductor region, even if a crack is generated in the semiconductor region due to an external pressure or strain during the manufacturing process, the micro defect can be detected in the same manner as the micro defect generated in the electrode. .

[パワーモジュール]
図4に本形態のダイオード素子100を組み込んだパワーモジュール110全体の上面図を示す。また,図5は,図4に示したパワーモジュール110の一部を抜粋し,パワーモジュール110の主要部分の概略構成を示した図である。パワーモジュール110は,アノード導体61およびカソード導体62を内蔵する絶縁基板60と,モジュールハウジング側のパッド70(モジュールボンディング用パッド70)とを備え,絶縁基板60上にダイオード素子100とIGBT素子80とが配置されている。
[Power module]
FIG. 4 shows a top view of the entire power module 110 incorporating the diode element 100 of this embodiment. FIG. 5 is a diagram showing a schematic configuration of a main part of the power module 110 extracted from a part of the power module 110 shown in FIG. The power module 110 includes an insulating substrate 60 incorporating the anode conductor 61 and the cathode conductor 62, and a pad 70 (module bonding pad 70) on the module housing side. On the insulating substrate 60, the diode element 100 and the IGBT element 80 are provided. Is arranged.

詳細には,IGBT素子80とダイオード素子100とは,カソード導体62上にはんだ付けによって固着されている。また,アノード導体61とダイオード素子100のアノード電極用パッド15,およびアノード電極用パッド15とIBGT素子80のエミッタ電極用パッド85とは,太線のボンディングワイヤ50によって結線されている。また,ダイオード素子100の破壊検出電極用パッド35とモジュールボンディング用パッド70とは,細線のボンディングワイヤ51によって結線されている。   Specifically, the IGBT element 80 and the diode element 100 are fixed onto the cathode conductor 62 by soldering. The anode conductor 61 and the anode electrode pad 15 of the diode element 100, and the anode electrode pad 15 and the emitter electrode pad 85 of the IBGT element 80 are connected by a thick bonding wire 50. Further, the destruction detection electrode pad 35 and the module bonding pad 70 of the diode element 100 are connected by a thin bonding wire 51.

モジュールボンディング用パッド70には,破壊検出電極用パッド35の他,IGBT素子80のゲート電極用パッドや温度検出電極用パッド等にボンディングワイヤ51によって結線されている。また,モジュールボンディング用パッド70は,モジュールハウジング内部にてモジュールターミナルピンと電気的に接続している。   The module bonding pad 70 is connected to the gate electrode pad of the IGBT element 80, the temperature detection electrode pad, and the like by the bonding wire 51 in addition to the breakdown detection electrode pad 35. The module bonding pads 70 are electrically connected to the module terminal pins inside the module housing.

パワーモジュール110では,ワイヤボンディング等によってアノード電極用パッド15の表面に微小欠陥が生じることがある。この微小欠陥は,その後の製造プロセス中における外圧により,ダイオード素子100のアノード電極用パッド内に入り込む。そして,ダイオード素子100中の破壊検出電極を被覆する絶縁膜が破壊され,破壊検出電極とアノード電極との間にリーク電流が検出されることになる。よって,パワーモジュール製造工程中の耐圧検査にて,破壊検出電極用パッド35に導通するモジュールターミナルピンと,ダイオード素子100のアノード電極用パッドに導通するアノード導体61との間のリーク電流を検査することで,ダイオード素子100のアノード電極内に入り込んだ微小欠陥の検出が可能となる。   In the power module 110, minute defects may occur on the surface of the anode electrode pad 15 due to wire bonding or the like. This minute defect enters the anode electrode pad of the diode element 100 due to an external pressure during the subsequent manufacturing process. Then, the insulating film covering the breakdown detection electrode in the diode element 100 is destroyed, and a leak current is detected between the breakdown detection electrode and the anode electrode. Therefore, the leakage current between the module terminal pin conducting to the destruction detecting electrode pad 35 and the anode conductor 61 conducting to the anode electrode pad of the diode element 100 is inspected in the withstand voltage test during the power module manufacturing process. Thus, it is possible to detect a minute defect that has entered the anode electrode of the diode element 100.

[リーク検査装置]
図6にリーク電流検査装置の測定回路120を示す。図6中の破線で囲まれた部分が本形態のダイオード素子100に相当する(図3参照)。測定回路120では,図6に示すように,破壊検出端子とアノード電極との間に直流バイアスを印加し,微小電流計によってリーク電流を測定する。
[Leak inspection device]
FIG. 6 shows a measurement circuit 120 of the leak current inspection apparatus. A portion surrounded by a broken line in FIG. 6 corresponds to the diode element 100 of this embodiment (see FIG. 3). In the measurement circuit 120, as shown in FIG. 6, a DC bias is applied between the breakdown detection terminal and the anode electrode, and the leakage current is measured by a microammeter.

予備的実験として,破壊検出端子とアノード電極との間に50Vの直流バイアスを印加した。その結果,良品の場合はリーク電流が3μA以下であった。一方,アノード電極内に微小欠陥を有する不良品の場合は100μA以上のリーク電流が測定された。これにより,10μA〜100μAの間に閾値を設定することで微小欠陥の有無を容易に判断することができることがわかった。   As a preliminary experiment, a DC bias of 50 V was applied between the breakdown detection terminal and the anode electrode. As a result, in the case of a good product, the leakage current was 3 μA or less. On the other hand, a leak current of 100 μA or more was measured in the case of a defective product having minute defects in the anode electrode. Thus, it was found that the presence or absence of micro defects can be easily determined by setting a threshold value between 10 μA and 100 μA.

なお,図7に示すように,測定回路120にダイオード素子のアノード電極とカソード電極との間に逆バイアスを印加できる回路を追加し,アノード−カソード間のリーク電流測定と,破壊検出端子−アノード間のリーク電流測定との切り替えを行うことが可能な測定回路121を構成してもよい。すなわち,従来のアノード−カソード間のリーク電流検査と,本形態の破壊検出端子−アノード間のリーク電流検査とを切り替えることができるようにしてもよい。このように回路を構成することで,1つの検査装置で複数の試験項目を検査することが可能になる。   As shown in FIG. 7, a circuit capable of applying a reverse bias between the anode electrode and the cathode electrode of the diode element is added to the measurement circuit 120 to measure the leakage current between the anode and the cathode, and the breakdown detection terminal-anode. A measurement circuit 121 capable of switching between leak current measurement between the two may be configured. That is, the conventional leakage current inspection between the anode and the cathode and the leakage current inspection between the breakdown detection terminal and the anode of this embodiment may be switched. By configuring the circuit in this way, it is possible to inspect a plurality of test items with one inspection device.

以上詳細に説明したように本形態のダイオード素子100は,アノード電極用パッド15のパッド面の下方に,絶縁膜3に被覆された破壊検出電極31を埋め込むこととしている。破壊検出電極31を被覆する絶縁膜3は,アノード電極用パッド15のパッド面やダイオード素子100内部に生じた微小欠陥が成長することで破壊される。このことから,微小欠陥が存在していると,アノード電極11と破壊検出電極31との間に検査バイアスを印加した際に,許容値以上のリーク電流が流れる。これにより,ダイオード素子100内に微小欠陥が存在しているか否かを判断することができる。   As described above in detail, in the diode element 100 of this embodiment, the breakdown detection electrode 31 covered with the insulating film 3 is embedded below the pad surface of the anode electrode pad 15. The insulating film 3 covering the breakdown detection electrode 31 is destroyed by the growth of minute defects generated on the pad surface of the anode electrode pad 15 or inside the diode element 100. For this reason, if a micro defect exists, when an inspection bias is applied between the anode electrode 11 and the breakdown detection electrode 31, a leak current exceeding an allowable value flows. Thereby, it can be determined whether or not a minute defect exists in the diode element 100.

本形態のダイオード素子100では,アノード電極11と破壊検出電極31の間に検査バイアスが印加できる回路を構成し,検査バイアスの印加時の微小電流を検出することで微小欠陥の有無を判断することができる。すなわち,ダイオード素子単体での検査,あるいはパワーモジュールでの検査によって微小欠陥を検出することができる。換言すると,基板組付け前の段階で不良品を検出することができる。そのため,早期に不良品を検出することができる。また,検査が基板組付け前であることから仕損費が小さい。また,微小電流の検査であるため,安全であり,作業環境や検査装置への影響が小さい。   In the diode element 100 of this embodiment, a circuit that can apply an inspection bias is formed between the anode electrode 11 and the breakdown detection electrode 31, and the presence or absence of a micro defect is determined by detecting a micro current when the inspection bias is applied. Can do. That is, a micro defect can be detected by an inspection with a single diode element or an inspection with a power module. In other words, a defective product can be detected at a stage before the board is assembled. Therefore, defective products can be detected at an early stage. In addition, since the inspection is before assembling the board, the cost of waste is small. In addition, since it is an inspection of a minute current, it is safe and has little influence on the work environment and inspection apparatus.

また,破壊検出電極31は,アノード電極11内に埋め込まれている。すなわち,破壊検出電極31がアノード電極用パッド15のパッド面に近い位置に設けられている。そのため,アノード電極用パッド15のパッド面に生じた微小欠陥,特にパッド面からパッド内部に向けて成長するような有害なクラックを,絶縁膜3が必ず破壊されることによって確実に検出することができる。また,半導体領域内よりも電極領域内の方が破壊検査電極31を容易に埋め込むことができる。   Further, the breakage detection electrode 31 is embedded in the anode electrode 11. That is, the breakdown detection electrode 31 is provided at a position close to the pad surface of the anode electrode pad 15. Therefore, minute defects generated on the pad surface of the anode electrode pad 15, particularly harmful cracks that grow from the pad surface toward the inside of the pad, can be reliably detected by the destruction of the insulating film 3. it can. Further, the destructive inspection electrode 31 can be embedded more easily in the electrode region than in the semiconductor region.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,本実施の形態では,ダイオード素子の電極内に破壊検出電極を設けているがこれに限るものではない。すなわち,IGBT,MOSFET,サイリスタ等の半導体素子であってもよい。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, in the present embodiment, the breakdown detection electrode is provided in the electrode of the diode element, but the present invention is not limited to this. That is, it may be a semiconductor element such as an IGBT, MOSFET, or thyristor.

なお,被検体の半導体素子として,ダイオード素子を適用することは有意義である。すなわち,IGBT素子やMOSFET素子では,絶縁膜に被覆されるスイッチング用電極の配置によっては,そのスイッチング用電極が破壊検出電極(検査電極)を兼ねることが考えられる。しかし,ダイオード素子では,通常,スイッチング用電極のような他の領域から絶縁された電極は作りこまれない。そのため,ダイオード素子単体では微小欠陥の検出ができない。本発明は,ダイオード素子のようなシンプルな構造を有する半導体素子であっても微小欠陥の検出を可能にしている。   It is significant to apply a diode element as the semiconductor element of the subject. That is, in the IGBT element and the MOSFET element, depending on the arrangement of the switching electrode covered with the insulating film, it can be considered that the switching electrode also serves as a breakdown detection electrode (inspection electrode). However, in a diode element, an electrode insulated from other regions such as a switching electrode is usually not formed. For this reason, a small defect cannot be detected with a single diode element. The present invention enables detection of minute defects even in a semiconductor element having a simple structure such as a diode element.

また,実施の形態では,縦型の半導体素子を被検体としているが,横型の半導体素子にも適用可能である。   In the embodiment, a vertical semiconductor element is used as a subject, but it can also be applied to a horizontal semiconductor element.

実施の形態にかかるダイオード素子(単位セル)の断面を示す図である。It is a figure which shows the cross section of the diode element (unit cell) concerning Embodiment. 実施の形態にかかるダイオード素子の上面を示す図である。It is a figure which shows the upper surface of the diode element concerning embodiment. 実施の形態にかかるダイオード素子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the diode element concerning embodiment. 実施の形態にかかるパワーモジュールの構造を示す図(全体)である。It is a figure (whole) which shows the structure of the power module concerning embodiment. 実施の形態にかかるパワーモジュールの構造を示す図(一部拡大)である。It is a figure (partially enlarged) which shows the structure of the power module concerning embodiment. 実施の形態にかかるリーク電流検査装置の測定回路を示す図である。It is a figure which shows the measurement circuit of the leakage current test | inspection apparatus concerning embodiment. リーク電流検査装置の応用例の測定回路を示す図である。It is a figure which shows the measurement circuit of the application example of a leak current test | inspection apparatus. ダイオード素子の製造工程を示す図である。It is a figure which shows the manufacturing process of a diode element. パワーモジュールの製造からPCU組付けまでの工程を示す図である。It is a figure which shows the process from manufacture of a power module to PCU assembly | attachment. ダイオード素子のリーク測定回路を示す図である。It is a figure which shows the leak measurement circuit of a diode element. ダイオード素子の内部に潜む微小欠陥のイメージを示す図である。It is a figure which shows the image of the micro defect which hides inside a diode element.

符号の説明Explanation of symbols

1 P型半導体領域(半導体領域)
2 N型半導体領域
11 アノード電極(電極領域)
15 アノード電極用パッド(電極パッド)
21 カソード電極
3 絶縁膜
31 破壊検出電極(検査電極)
35 破壊検出電極用パッド(第2の電極パッド)
4 微小欠陥
100 ダイオード素子(半導体素子)
110 パワーモジュール
120 測定回路
1 P-type semiconductor region (semiconductor region)
2 N-type semiconductor region 11 Anode electrode (electrode region)
15 Anode electrode pad (electrode pad)
21 Cathode electrode 3 Insulating film 31 Destruction detection electrode (inspection electrode)
35 Destruction detection electrode pad (second electrode pad)
4 Small defects 100 Diode element (semiconductor element)
110 Power Module 120 Measurement Circuit

Claims (3)

半導体領域と,前記半導体領域と接し電極パッドが形成される電極領域とを備えたダイオード素子において,
ダイオード素子内に埋め込まれ,前記電極パッドのパッド面の下方に位置する検査電極と,
前記検査電極を覆う絶縁膜と,
前記検査電極と電気的に接続し,配線部材を接合する第2の電極パッドとを備えることを特徴とするダイオード素子。
In a diode element comprising a semiconductor region and an electrode region in contact with the semiconductor region and where an electrode pad is formed,
A test electrode embedded in the diode element and located below the pad surface of the electrode pad;
An insulating film covering the inspection electrode;
A diode element comprising: a second electrode pad electrically connected to the inspection electrode and joined to a wiring member.
請求項1に記載するダイオード素子において,
前記検査電極は,前記電極領域内に埋め込まれていることを特徴とするダイオード素子。
The diode element according to claim 1,
The diode element, wherein the inspection electrode is embedded in the electrode region.
請求項1または請求項2に記載のダイオード素子を被検体とするダイオード素子の検査方法において,
前記電極領域と前記検査電極との間に検査バイアスを印加し,その際に前記電極領域と前記検査電極との間に流れたリーク電流を検出することを特徴とするダイオード素子の検査方法。
In the inspection method of the diode element which uses the diode element of Claim 1 or Claim 2 as a subject,
An inspection method of a diode element, wherein an inspection bias is applied between the electrode region and the inspection electrode, and a leak current flowing between the electrode region and the inspection electrode is detected at that time.
JP2006248927A 2006-09-14 2006-09-14 Diode element and inspection method of diode element Expired - Fee Related JP4983174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248927A JP4983174B2 (en) 2006-09-14 2006-09-14 Diode element and inspection method of diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248927A JP4983174B2 (en) 2006-09-14 2006-09-14 Diode element and inspection method of diode element

Publications (2)

Publication Number Publication Date
JP2008071918A JP2008071918A (en) 2008-03-27
JP4983174B2 true JP4983174B2 (en) 2012-07-25

Family

ID=39293261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248927A Expired - Fee Related JP4983174B2 (en) 2006-09-14 2006-09-14 Diode element and inspection method of diode element

Country Status (1)

Country Link
JP (1) JP4983174B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861822B2 (en) * 2011-10-27 2016-02-16 富士電機株式会社 Semiconductor device and test method thereof
JP2015095518A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Electrode body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094945B2 (en) * 1997-05-14 2000-10-03 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3496523B2 (en) * 1998-06-24 2004-02-16 三菱電機株式会社 Semiconductor device, evaluation method thereof, and method of manufacturing semiconductor element

Also Published As

Publication number Publication date
JP2008071918A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
KR100810550B1 (en) Method and apparatus for testing electrical characteristics of object under test
JPS59134841A (en) On-line inspecting method and system for bonding to electronic part
JP2014225607A (en) Testing device and testing method for semiconductor chip
JP5817361B2 (en) Semiconductor element characteristic test apparatus and semiconductor element characteristic test method using the apparatus
JP4983174B2 (en) Diode element and inspection method of diode element
JP2010281625A (en) Inspection method of semiconductor chip
US10845405B2 (en) Integrated circuit intended for insulation defect detection and having a conductive armature
JP5618662B2 (en) Method for measuring characteristics of semiconductor element and method for manufacturing semiconductor device
JP2005150426A (en) Manufacturing method and testing method of semiconductor device
JP2008028274A (en) Manufacturing method for semiconductor device
JP4661601B2 (en) Semiconductor device and inspection method thereof
JP3575073B2 (en) Insulation-isolated semiconductor device inspection method and insulation-isolated semiconductor device
JP5861822B2 (en) Semiconductor device and test method thereof
JP2008281466A (en) Semiconductor inspection device
JPS649731B2 (en)
JP2008141111A (en) Semiconductor device and method of inspecting chip crack of semiconductor device
US11887901B2 (en) Semiconductor device and test apparatus and method thereof
US11942471B2 (en) Semiconductor chip, semiconductor device and manufacturing method of semiconductor device
JP7109581B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2585556B2 (en) Semiconductor integrated circuit device
JPS6376340A (en) Device for detecting defect in outer periphery of integrated circuit chip
Bejo et al. Failure Analysis Techniques for Detection of Copper Migration in Die Attach Film
JP5266899B2 (en) Inspection method for insulated gate bipolar transistor
JP2005251829A (en) Semiconductor device and its inspection method
JP2020109379A (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R151 Written notification of patent or utility model registration

Ref document number: 4983174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees