JP4982731B2 - Surface shape measuring device - Google Patents

Surface shape measuring device Download PDF

Info

Publication number
JP4982731B2
JP4982731B2 JP2005124052A JP2005124052A JP4982731B2 JP 4982731 B2 JP4982731 B2 JP 4982731B2 JP 2005124052 A JP2005124052 A JP 2005124052A JP 2005124052 A JP2005124052 A JP 2005124052A JP 4982731 B2 JP4982731 B2 JP 4982731B2
Authority
JP
Japan
Prior art keywords
surface shape
sample
error
measurement
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005124052A
Other languages
Japanese (ja)
Other versions
JP2006300778A (en
Inventor
偉 高
篤史 澁谷
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005124052A priority Critical patent/JP4982731B2/en
Publication of JP2006300778A publication Critical patent/JP2006300778A/en
Application granted granted Critical
Publication of JP4982731B2 publication Critical patent/JP4982731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、走査系の運動誤差を除去した形で高精度にマイクロ非球面形状を計測できる形状計測装置に関するものである。   The present invention relates to a shape measuring apparatus capable of measuring a micro aspherical shape with high accuracy in a form in which a movement error of a scanning system is removed.

変位センサを走査して形状を測定する走査型測定法は、球面や平面のみならず、非球面のような多様な被測定形状に対応できる。走査型測定は、さらに接触法と非接触法に大きく分けられる。
非接触法には、主に光プローブが用いられ、光学部品表面などを測定する際、表面を傷つけることなく測定することが可能であるが、傾斜角変化の大きい形状からの反射光が受け取りにくいことから、50度以上の傾斜角変化を持つ次世代マイクロ非球面測定には適していない。
一方、接触法は、プローブが接触する限り、原理的に傾斜角変化の大きい形状も計測が可能である。被測定表面を走査する際、その測定圧により表面を傷つける恐れがあるが、測定対象としてガラスや金型などの十分に硬い被測定表面などを選択すると、高横分解能、低測定力の変位センサを用いることで、十分に適用可能である。このようなことから、高横分解能、低測定力の接触式変位センサを用いる走査型測定は、次世代マイクロ非球面形状の精密ナノ測定に最適の計測法であることが分かる。
A scanning measurement method that measures a shape by scanning a displacement sensor can cope with various measured shapes such as an aspherical surface as well as a spherical surface and a flat surface. Scanning measurement is further divided into a contact method and a non-contact method.
In the non-contact method, an optical probe is mainly used, and when measuring the surface of an optical component, etc., it is possible to measure without damaging the surface, but it is difficult to receive reflected light from a shape with a large change in tilt angle. Therefore, it is not suitable for next-generation micro aspherical measurement having a tilt angle change of 50 degrees or more.
On the other hand, in the contact method, as long as the probe comes into contact, in principle, a shape having a large change in tilt angle can be measured. When scanning the surface to be measured, the surface may be damaged by the measurement pressure, but if a sufficiently hard surface such as glass or mold is selected as the measurement target, a displacement sensor with high lateral resolution and low measurement force By using, it is fully applicable. From this, it can be seen that scanning measurement using a contact displacement sensor with high lateral resolution and low measurement force is an optimal measurement method for precise nano-measurement of the next-generation micro-aspherical shape.

±10nmの精度で次世代高精度マイクロ非球面形状を計測するためには、いろいろな試みがなされている。
(1)線形誤差の自律ナノ校正
高分解能のセンサに対応して、線形誤差の自律校正法について、本発明の発明者らが提案している(特許文献1参照)。これによって、高精度な構成基準を用いずに、変位センサの線形誤差を±5nmの精度で校正し、補正することができる。
Various attempts have been made to measure the next-generation high-precision micro aspherical shape with an accuracy of ± 10 nm.
(1) Autonomous nano-calibration of linear errors The inventors of the present invention have proposed an auto-calibration method of linear errors corresponding to a high-resolution sensor (see Patent Document 1). Thus, the linear error of the displacement sensor can be calibrated and corrected with an accuracy of ± 5 nm without using a highly accurate configuration standard.

(2)プローブ先端球形状誤差の自律ナノ計測補正
接触プローブを用いる走査型測定の精度限界を決める重要なファクターとして、接触を検知するプローブ先端球の形状の不確かさがある。基準球を用いて、先端球の形状誤差を補正する方法は広く行われているが、この方法では、基準球の形状誤差を取り除くことはできず、測定値にそのまま含まれてしまう。特に非球面形状などの傾斜角が大きく変化する形状においては、先端球の接触する境域が大きく変わり、無視することができない誤差を生じる原因となる。
本発明の発明者らは、基準球の形状等の影響を受けずに±5nmの精度でプローブ球の形状を得る方法を提案した(特許文献2参照)。
(2) Autonomous nano measurement correction of probe tip sphere shape error An important factor that determines the accuracy limit of scanning measurement using a contact probe is the uncertainty of the shape of the probe tip sphere that detects contact. A method for correcting the shape error of the tip sphere using the reference sphere is widely used, but with this method, the shape error of the reference sphere cannot be removed and is included in the measurement value as it is. In particular, in a shape such as an aspherical shape where the inclination angle changes greatly, the boundary area where the tip sphere contacts is greatly changed, which causes an error that cannot be ignored.
The inventors of the present invention have proposed a method for obtaining the probe sphere shape with an accuracy of ± 5 nm without being influenced by the shape of the reference sphere (see Patent Document 2).

(3)運動誤差の自律ナノ計測補正
走査に使用するスライドの運動誤差については、平面補助試料を利用して、2本の非接触式静電容量型変位計を用いて、発明者らが提案した2点法を改良した合成法(特許文献3参照)により、±5nm程度の精度まで補正可能である。
特開平10−332420号公報 特開2003−279345号公報 特開平9−210668号公報
(3) Autonomous nano measurement correction of motion error The inventors proposed a motion error of a slide used for scanning by using two non-contact capacitive displacement meters using a planar auxiliary sample. It is possible to correct to an accuracy of about ± 5 nm by a synthesis method (see Patent Document 3) improved from the two-point method.
Japanese Patent Laid-Open No. 10-332420 JP 2003-279345 A JP-A-9-210668

本発明の目的は、マイクロ非球面レンズ等の表面形状計測において、走査系の誤差、特にスピンドルの回転運動の誤差も除去できる表面形状計測装置を提供することである。   An object of the present invention is to provide a surface shape measuring apparatus capable of removing errors in a scanning system, particularly errors in rotational movement of a spindle in surface shape measurement of a micro aspheric lens or the like.

上記目的を達成するために、本発明は、計測試料とその周囲に配置した補助試料とを回転動作させるスピンドルと、直線運動を行うスライドとで構成した走査系と、前記計測試料の表面形状を計測する計測試料変位プローブと、前記補助試料の表面形状を計測する2台の運動誤差計測用変位センサとで構成した計測系とを備え、前記変位プローブと前記2台の変位センサとを、前記変位プローブを中に挟んで配置して前記スライド上に載せ、前記走査系を構成する前記スピンドルとスライドが動作して、前記計測試料と前記補助試料を走査して、前記変位プローブ及び前記2台の変位センサの出力をサンプリングして、予め求めた前記補助試料の表面形状を用いて、前記走査系の運動誤差を含まない、前記計測試料の表面形状を求めることを特徴とする表面形状計測装置である。
前記補助試料の表面形状を予め求めるため、前記2台の変位センサの1台で前記走査系の運動誤差を含む表面形状を計測し、次に、前記スピンドルを固定したまま補助試料を180度反転設置してから、前記2台の変位センサの他の1台で前記走査系の運動誤差を含む表面形状を計測し、予め前記計測試料変位プローブを前記スピンドルの中心に合わせて測定することで、前記スピンドルのアキシャルモーションと前記スライドのz軸方向真直度誤差の運動誤差を得て、計測した2つの変位センサの出力を前記得られた運動誤差で補正し、誤差を含まない前記補助試料の表面形状を求めることが望ましい。
また、前記変位プローブは、先端部が球状の接触式であり、前記計測試料に対して、垂直より傾けて接触させるとよい。
In order to achieve the above object, the present invention provides a scanning system composed of a spindle that rotates a measurement sample and an auxiliary sample arranged around the measurement sample, a slide that performs linear motion, and a surface shape of the measurement sample. A measurement system comprising a measurement sample displacement probe to be measured and two displacement sensors for measuring a movement error for measuring the surface shape of the auxiliary sample, and the displacement probe and the two displacement sensors are A displacement probe is interposed and placed on the slide, the spindle and the slide constituting the scanning system are operated, the measurement sample and the auxiliary sample are scanned, and the displacement probe and the two units are scanned. Sampling the output of the displacement sensor, and using the surface shape of the auxiliary sample obtained in advance, obtaining the surface shape of the measurement sample that does not include the movement error of the scanning system. A surface shape measuring apparatus according to symptoms.
In order to obtain the surface shape of the auxiliary sample in advance , the surface shape including the movement error of the scanning system is measured by one of the two displacement sensors, and then the auxiliary sample is inverted 180 degrees while the spindle is fixed. After installation , the surface shape including the movement error of the scanning system is measured with the other one of the two displacement sensors, and the measurement sample displacement probe is measured according to the center of the spindle in advance. The axial motion of the spindle and the motion error of the straightness error in the z-axis direction of the slide are obtained, and the outputs of the two displacement sensors measured are corrected with the obtained motion error, and the surface of the auxiliary sample not including the error It is desirable to determine the shape.
Further, the displacement probe is a contact type having a spherical tip, and is preferably brought into contact with the measurement sample while being inclined from the vertical.

本発明では、試料外周部に設けた補助試料を2つの変位センサで測定して、回転系の運動誤差を分離した形で表面形状を求めておくことにより、スライドの真直度誤差、スピンドルの回転運動誤差、熱膨張などによる系統誤差を、全て除去できるようにしている。
また、プローブを傾けることにより、先端のプローブ球の使用範囲を狭くすることができ、誤差をより少なくすることが可能である。
In the present invention, the auxiliary sample provided on the outer periphery of the sample is measured by two displacement sensors, and the surface shape is obtained by separating the movement error of the rotating system, thereby obtaining the straightness error of the slide and the rotation of the spindle. All systematic errors due to motion errors and thermal expansion can be eliminated.
Further, by tilting the probe, the use range of the probe ball at the tip can be narrowed, and the error can be further reduced.

図面を用いて、本発明の実施形態について説明する。
図1は、本発明の形状計測装置の構成を示す概略図である。図1において、本発明の形状計測装置は、走査系を構成している回転スピンドル112及び直動スライド142と、スライド142上に設置されている計測系の変位センサ類で構成されている。スピンドル112により、計測試料120とその外周に設けられた補助試料114とが、スピンドル112上で回転している。直線状に動くスライド142上では、接触式変位プローブ132と、その両側に補助試料114の表面形状を計測できる2台の変位センサ134,136を設置している。
接触式変位プローブ132は、直径10μmの超微粒子シリカ球を用いて横分解能を高め、プローブスライドはエアベアリングで支持して、測定力が5mN程度になる接触型変位センサを実現している。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of the shape measuring apparatus of the present invention. In FIG. 1, the shape measuring apparatus according to the present invention includes a rotating spindle 112 and a linearly moving slide 142 constituting a scanning system, and measuring system displacement sensors installed on the slide 142. The measurement sample 120 and the auxiliary sample 114 provided on the outer periphery thereof are rotated on the spindle 112 by the spindle 112. On the slide 142 that moves linearly, a contact-type displacement probe 132 and two displacement sensors 134 and 136 that can measure the surface shape of the auxiliary sample 114 are installed on both sides thereof.
The contact-type displacement probe 132 uses ultrafine silica spheres with a diameter of 10 μm to increase the lateral resolution, and the probe slide is supported by an air bearing to realize a contact-type displacement sensor with a measuring force of about 5 mN.

図2は,この表面形状計測装置で用いている座標系の模式図である。さて、スライド142の走査方向はx軸方向(半径方向)であり、接触式変位プローブ132の測定方向がz軸方向である。接触式変位プローブ132や変位センサ134、136の出力は、z軸方向の変位である。図2のeSY,eCYは、スピンドル112のY軸周りのチルトモーション,スライド142のY軸周りのヨーイング誤差をそれぞれ表している。
これらの座標系は、走査を行うスピンドル112とスライド142を制御し、接触式変位プローブ132や変位センサ134,136の出力を入力してサンプリングを行うコンピュータ(図示せず)により、利用されている。
本発明は、試料外周部に設けた補助試料114を変位センサ134,136で2点測定することにより、スライド142の真直度誤差、スピンドル112の回転運動誤差、熱膨張などによる系統誤差を、それぞれの誤差を分離することはできないが、全て除去できるようにしている。
FIG. 2 is a schematic diagram of a coordinate system used in the surface shape measuring apparatus. The scanning direction of the slide 142 is the x-axis direction (radial direction), and the measurement direction of the contact displacement probe 132 is the z-axis direction. The outputs of the contact displacement probe 132 and the displacement sensors 134 and 136 are displacements in the z-axis direction. In FIG. 2, e SY and e CY represent a tilt motion around the Y axis of the spindle 112 and a yawing error around the Y axis of the slide 142, respectively.
These coordinate systems are used by a computer (not shown) that controls the spindle 112 and the slide 142 that perform scanning, inputs the outputs of the contact displacement probe 132 and the displacement sensors 134 and 136, and performs sampling. .
In the present invention, the auxiliary sample 114 provided on the outer periphery of the sample is measured at two points by the displacement sensors 134 and 136, so that the straightness error of the slide 142, the rotational motion error of the spindle 112, the thermal error due to thermal expansion, etc. However, it is possible to remove all the errors.

<補助試料の表面形状>
さて、まず、反転法により補助試料114の表面形状を求める。
図3に示すように、変位センサ134で、スライド142の半径方向の位置(x)でスピンドル112を回転(θ)し、補助試料114をサンプリングして、以下のような補助試料114の表面形状f(x,θ)を求める。

Figure 0004982731
(x,θ)は、変位センサ134の出力であり、dは2つの変位センサ134,136の間の距離である。eST(x,θ)はスピンドル112のアキシャルモーション,eSY(x,θ)はスピンドル112のY軸周りのチルトモーション,eCT(x,θ)はスライド142のz軸方向真直度誤差、eCY(x,θ)はスライド142のY軸周りのヨーイング誤差である。 <Surface shape of auxiliary sample>
First, the surface shape of the auxiliary sample 114 is obtained by the inversion method.
As shown in FIG. 3, the displacement sensor 134 rotates (θ) the spindle 112 at the radial position (x) of the slide 142, samples the auxiliary sample 114, and the surface shape of the auxiliary sample 114 as described below. Find f (x, θ).
Figure 0004982731
l 1 (x, θ) is the output of the displacement sensor 134, and d is the distance between the two displacement sensors 134, 136. e ST (x, θ) is the axial motion of the spindle 112, e SY (x, θ) is the tilt motion around the Y axis of the spindle 112, e CT (x, θ) is the straightness error in the z-axis direction of the slide 142, e CY (x, θ) is a yawing error around the Y axis of the slide 142.

つぎに、補助試料114を180度回転(反転)してスピンドル112に設置してから、スピンドルを回転させてセンサ136の出力l (x,θ)を同様にサンプリングすると、以下のようになる。

Figure 0004982731
式(1)+式(2)を計算して、補助試料の表面形状f(x,θ)を求めると、
Figure 0004982731
となる。式(3)では、回転系の運動誤差であるeSY(x,θ)とeCY(x,θ)が除かれている。
上述のようにして、補助試料114の表面形状f(x,θ)を、計測試料120の表面形状計測を行う前に得ておく。
なお、その他の運動誤差であるeST(x,θ)+eCT(x,θ)は、接触式変位プローブ132をスピンドル112の回転中心に合わせて設置し、その出力から得ることができる。 Next, when the auxiliary sample 114 is rotated (reversed) by 180 degrees and placed on the spindle 112, and then the output l 2 (x, θ) of the sensor 136 is sampled in the same manner by rotating the spindle, the following result is obtained. .
Figure 0004982731
When calculating the equation (1) + the equation (2) to obtain the surface shape f (x, θ) of the auxiliary sample,
Figure 0004982731
It becomes. In Expression (3), e SY (x, θ) and e CY (x, θ), which are motion errors of the rotating system, are removed.
As described above, the surface shape f (x, θ) of the auxiliary sample 114 is obtained before the surface shape measurement of the measurement sample 120 is performed.
Note that other motion errors, e ST (x, θ) + e CT (x, θ), can be obtained from the output of the contact-type displacement probe 132 placed in accordance with the rotation center of the spindle 112.

<表面形状測定>
計測試料120の表面形状を計測するときは、スピンドル112とスライド142により半径方向(x)と円周方向(θ)に走査しながら、接触式変位プローブ132の出力l’,変位センサ134,136の出力l’,l’を得ることで行う。
プローブ132の出力l’は、

Figure 0004982731
と表される。ここで、g(x,θ)は測定試料の表面形状であり、e’ST(x,θ)はスピンドル112のアキシャルモーション,e’CT(x,θ)はスライド142のz軸方向真直度誤差を表している。ただし,走査系の回転運動誤差は補助試料形状測定時から変化してもかまわない。 <Surface shape measurement>
When measuring the surface shape of the measurement sample 120, the output l ′ 3 of the contact displacement probe 132, the displacement sensor 134, while scanning in the radial direction (x) and the circumferential direction (θ) by the spindle 112 and the slide 142. This is done by obtaining 136 outputs l ′ 1 and l ′ 2 .
The output l ′ 3 of the probe 132 is
Figure 0004982731
It is expressed. Here, g (x, θ) is the surface shape of the measurement sample, e ′ ST (x, θ) is the axial motion of the spindle 112, and e ′ CT (x, θ) is the straightness of the slide 142 in the z-axis direction. It represents an error. However, the rotational motion error of the scanning system may change from the time of auxiliary sample shape measurement.

静電容量型センサ134,136の出力l’,l’は、

Figure 0004982731
である。なお、e’CY(x,θ)はスライド142のY軸周りのヨーイング誤差、e’SY(x,θ)はスピンドル112のY軸周りのチルトモーションである。
((5)+(6))/2を計算して、
Figure 0004982731
を得る。 Outputs l ′ 1 and l ′ 2 of the capacitive sensors 134 and 136 are
Figure 0004982731
It is. Note that e ′ CY (x, θ) is a yawing error around the Y axis of the slide 142, and e ′ SY (x, θ) is a tilt motion around the Y axis of the spindle 112.
((5) + (6)) / 2 is calculated,
Figure 0004982731
Get.

この式(7)で求めたe’ST(x,θ)+e’CT(x,θ)を式(4)に代入して、測定試料120の表面形状g(x,θ)を下に示すように求める。

Figure 0004982731
補助試料114の表面形状f(x,θ)が既知であるので、式(8)から計測試料120の表面形状g(x,θ)を得ることができる。
式(8)で分かるように、スピンドル112のアキシャルモーション(e’ST(x,θ)),スライド142のz軸方向真直度(e’CT(x,θ)),スピンドル112のY軸周りのチルトモーション(e’SY(x,θ)),スライド142のY軸周りのヨーイング誤差(e’CY(x,θ))が最終的に除かれている。
なお、上述の実施形態では、接触式変位センサや無接触式変位センサを用いているが、表面形状を計測できる変位センサであれば、上述の走査系の誤差を除く計測を行うことができる。 The surface shape g (x, θ) of the measurement sample 120 is shown below by substituting e ′ ST (x, θ) + e ′ CT (x, θ) obtained by this equation (7) into equation (4). Asking.
Figure 0004982731
Since the surface shape f (x, θ) of the auxiliary sample 114 is known, the surface shape g (x, θ) of the measurement sample 120 can be obtained from the equation (8).
As can be seen from equation (8), the axial motion of the spindle 112 (e ′ ST (x, θ)), the straightness of the slide 142 in the z-axis direction (e ′ CT (x, θ)), the Y axis of the spindle 112 The tilt motion (e ′ SY (x, θ)) and the yaw error (e ′ CY (x, θ)) around the Y axis of the slide 142 are finally removed.
In the above-described embodiment, a contact-type displacement sensor or a non-contact-type displacement sensor is used. However, any displacement sensor capable of measuring the surface shape can perform measurement excluding the above-described scanning system error.

<プローブの当て方>
図4は、接触式変位プローブ132が計測試料120に当たっている様子を示している。
図4の下部に示しているのは、接触式変位プローブ132の先端部分のプローブ球が凹面の計測試料を計測した場合に、計測試料に当たる部分の角度を示している。
図4(a)は、従来の計測試料を回転させず、直線的に走査を行った場合を示している。この場合、先端部分のプローブ球は、左右対称に大きい角度であたることになる。このように、プローブ球の広い範囲が使用されているので、傾斜のきつい面では誤差が大きくなる。
<How to apply the probe>
FIG. 4 shows a state in which the contact displacement probe 132 is in contact with the measurement sample 120.
The lower part of FIG. 4 shows the angle of the portion of the contact-type displacement probe 132 that hits the measurement sample when the probe sphere at the tip of the contact displacement probe 132 measures a measurement sample with a concave surface.
FIG. 4A shows a case where a conventional measurement sample is scanned linearly without being rotated. In this case, the probe sphere at the tip portion has a large left-right symmetrical angle. As described above, since a wide range of probe spheres is used, an error becomes large on a tilted surface.

図4(b)は、上述した計測試料を回転させて走査した場合を示している。この場合は、先端部分のプローブ球は、中心から半分しか計測試料に当たらない。そのため、プローブ球に当たる角度範囲が狭く、使用する範囲が少ないために誤差が少ない。
図4(c)は、図5に示すように、接触式変位プローブ132を傾けて、z軸(計測試料に垂直)に対して浅い角度で計測試料に当てている。このように、接触式変位プローブ132を傾けることにより、先端のプローブ球の使用範囲を狭くすることができ、誤差をより少なくすることが可能である。
FIG. 4B shows a case where the above-described measurement sample is rotated and scanned. In this case, the probe sphere at the tip part only hits the measurement sample from the center. For this reason, the angle range hitting the probe ball is narrow and the range to be used is small, so that there are few errors.
In FIG. 4C, as shown in FIG. 5, the contact displacement probe 132 is tilted and applied to the measurement sample at a shallow angle with respect to the z axis (perpendicular to the measurement sample). Thus, by tilting the contact-type displacement probe 132, the use range of the probe sphere at the tip can be narrowed, and the error can be further reduced.

形状計測装置の概略構成を示す図である。It is a figure which shows schematic structure of a shape measuring device. 形状計測装置の以下で使用する座標系を示す模式図である。It is a schematic diagram which shows the coordinate system used below of a shape measuring device. 補助試料を走査して行うサンプリングを示す図である。It is a figure which shows the sampling performed by scanning an auxiliary sample. 接触式変位プローブと計測試料とが当たる様子を示す模式図である。It is a schematic diagram which shows a mode that a contact-type displacement probe and a measurement sample contact | win. 接触式変位プローブを傾けて当てている構成を示す模式図である。It is a schematic diagram which shows the structure which inclines and applies the contact-type displacement probe.

Claims (3)

計測試料とその周囲に配置した補助試料とを回転動作させるスピンドルと、直線運動を行うスライドとで構成した走査系と、
前記計測試料の表面形状を計測する計測試料変位プローブと、前記補助試料の表面形状を計測する2台の運動誤差計測用変位センサとで構成した計測系とを備え、
前記変位プローブと前記2台の変位センサは、前記変位プローブを中に挟んで配置して前記スライド上に載せ、
前記走査系を構成する前記スピンドルとスライドが動作して、前記計測試料と前記補助試料を走査して、前記変位プローブ及び前記2台の変位センサの出力をサンプリングし、
予め求めた前記補助試料の表面形状を用いて、前記走査系の運動誤差を含まない、前記計測試料の表面形状を求めることを特徴とする表面形状計測装置。
A scanning system composed of a spindle that rotates a measurement sample and an auxiliary sample arranged around the measurement sample, and a slide that performs linear motion;
A measurement system composed of a measurement sample displacement probe for measuring the surface shape of the measurement sample, and two motion error measurement displacement sensors for measuring the surface shape of the auxiliary sample;
The displacement probe and the two displacement sensors are placed on the slide with the displacement probe interposed therebetween,
The spindle and slide constituting the scanning system operate, scan the measurement sample and the auxiliary sample, and sample the outputs of the displacement probe and the two displacement sensors,
A surface shape measuring apparatus for obtaining a surface shape of the measurement sample that does not include a movement error of the scanning system, using the surface shape of the auxiliary sample obtained in advance.
請求項1に記載の表面形状計測装置において、
前記補助試料の表面形状を予め求めるため
前記2台の変位センサの1台で前記走査系の運動誤差を含む表面形状を計測し、
次に、前記スピンドルを固定したまま補助試料を180度反転設置してから、前記2台の変位センサの他の1台で、前記走査系の運動誤差を含む表面形状を計測し、
予め前記計測試料変位プローブを前記スピンドルの中心に合わせて測定することで、前記スピンドルのアキシャルモーションと前記スライドのz軸方向真直度誤差の運動誤差を得て、
計測した2つの変位センサの出力を前記得られた運動誤差で補正し、誤差を含まない前記補助試料の表面形状を求めることを特徴とする表面形状計測装置。
In the surface shape measuring apparatus according to claim 1,
In order to obtain the surface shape of the auxiliary sample in advance ,
Measure the surface shape including the movement error of the scanning system with one of the two displacement sensors,
Next, after the auxiliary sample is inverted 180 degrees with the spindle fixed , the other one of the two displacement sensors measures the surface shape including the motion error of the scanning system,
By measuring the measurement sample displacement probe in advance with the center of the spindle, the axial motion of the spindle and the motion error of the straightness error in the z-axis direction of the slide are obtained,
A surface shape measuring apparatus, wherein the measured outputs of the two displacement sensors are corrected with the obtained movement error, and the surface shape of the auxiliary sample not including the error is obtained.
請求項1又は2に記載の表面形状計測装置において、
前記変位プローブは、先端部が球状の接触式であり、前記計測試料に対して垂直より傾けて配置させることを特徴とする表面形状計測装置。
In the surface shape measuring device according to claim 1 or 2,
The displacement probe is a contact type with a spherical tip, and is arranged to be inclined with respect to the measurement sample from the vertical direction.
JP2005124052A 2005-04-21 2005-04-21 Surface shape measuring device Active JP4982731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124052A JP4982731B2 (en) 2005-04-21 2005-04-21 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124052A JP4982731B2 (en) 2005-04-21 2005-04-21 Surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2006300778A JP2006300778A (en) 2006-11-02
JP4982731B2 true JP4982731B2 (en) 2012-07-25

Family

ID=37469236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124052A Active JP4982731B2 (en) 2005-04-21 2005-04-21 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JP4982731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606012A (en) * 2015-12-28 2016-05-25 哈尔滨工业大学 Single-probe optical curved surface on-machine measurement method facing precision and ultra-precision machine tools

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296716B (en) * 2014-10-11 2016-09-28 中国人民解放军国防科学技术大学 A kind of ultraprecise verticality measuring method based on single gauge head error separate
CN105234745B (en) * 2015-11-09 2017-06-16 南通国盛智能科技集团股份有限公司 Machine tool spindle thermal error, deviation from circular from are separated and processing method with turn error

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443711A (en) * 1987-08-11 1989-02-16 Fujitec Kk Surface strain measuring instrument
JPH01148904A (en) * 1987-12-07 1989-06-12 Hitachi Ltd Apparatus for inspecting magnetic disk
JP3604944B2 (en) * 1999-03-17 2004-12-22 キヤノン株式会社 Three-dimensional shape measuring machine and its measuring method
JP3768918B2 (en) * 2002-05-17 2006-04-19 キヤノン株式会社 3D shape measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606012A (en) * 2015-12-28 2016-05-25 哈尔滨工业大学 Single-probe optical curved surface on-machine measurement method facing precision and ultra-precision machine tools

Also Published As

Publication number Publication date
JP2006300778A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4459264B2 (en) Three-dimensional shape measurement method
JP5571007B2 (en) Sphere shape measuring device
US10345101B2 (en) Device and method for calibrating a coordinate-measuring device
US20060033934A1 (en) Method and apparatus for interferometric measurement of components with large aspect ratios
CN107121060B (en) Inner wall measuring instrument and offset calculating method
Vissiere et al. Concept and architecture of a new apparatus for cylindrical form measurement with a nanometric level of accuracy
EP1925907B1 (en) Ultra precision profile measuring method
US7142313B2 (en) Interaxis angle correction method
JP4982731B2 (en) Surface shape measuring device
JP6744661B2 (en) High-precision shape measurement method using multiple displacement gages
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
WO2007037224A1 (en) Probe-type shape measurement device and method, and rotation-restricted air cylinder suitable for the device
JP6170385B2 (en) Measuring device, measuring method, and article manufacturing method
CN114279303B (en) Device and method for detecting verticality of double-sided micro-cylindrical lens array
KR20170031815A (en) Probe alignment measurement method for probe rotary type atomic force microscope
JP2009145152A (en) Measuring device
JP3768918B2 (en) 3D shape measurement method
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
Peggs et al. Measuring in three dimensions at the mesoscopic level
JP2006098251A (en) Shape measuring instrument and shape measuring method
JP2012112894A (en) Method for centering probe
JPH11257945A (en) Probe type shape measuring apparatus and shape measuring method
JP2001280948A (en) Shape measuring instrument
JP2010025856A (en) Non-contact measurement method for three-axis angular velocity of sphere
JP4980817B2 (en) Multipoint probe zero error related value recording device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150