JP4982413B2 - Leg wheel type mobile robot - Google Patents

Leg wheel type mobile robot Download PDF

Info

Publication number
JP4982413B2
JP4982413B2 JP2008070555A JP2008070555A JP4982413B2 JP 4982413 B2 JP4982413 B2 JP 4982413B2 JP 2008070555 A JP2008070555 A JP 2008070555A JP 2008070555 A JP2008070555 A JP 2008070555A JP 4982413 B2 JP4982413 B2 JP 4982413B2
Authority
JP
Japan
Prior art keywords
legs
leg
wheel
posture
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008070555A
Other languages
Japanese (ja)
Other versions
JP2009220257A (en
Inventor
亮介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008070555A priority Critical patent/JP4982413B2/en
Publication of JP2009220257A publication Critical patent/JP2009220257A/en
Application granted granted Critical
Publication of JP4982413B2 publication Critical patent/JP4982413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は脚先に車輪を備えた脚移動ロボットの起立動作に関するものである。   The present invention relates to a standing motion of a legged mobile robot having wheels at its leg tips.

様々なロボットにおいて転倒を判断する方法としてZMP(ZeRo Moment Point)と支持凸多角形を用いるものがある。ZMPとは接地点の抗力中心であり、抗力によるモーメントが0になる床面上の点である。支持凸多角形とはロボットが接地しており、荷重をかけることができる部分を内包する最小の凸多角形を指す。この支持凸多角形の辺上を除いた内部にZMPが収まっている場合にはロボットは転倒せず、ZMPを支持凸多角形に収まるようにしつつ脚や車輪を駆動することによって移動を行うことが出来る。   There is a method using ZMP (ZeRo Moment Point) and a support convex polygon as a method for determining a fall in various robots. ZMP is the center of drag at the contact point, and is the point on the floor where the moment due to drag is zero. The supporting convex polygon is a minimum convex polygon that includes a portion where the robot is grounded and can be loaded. When the ZMP is inside the support convex polygon except on the side, the robot does not fall down and moves by driving the legs and wheels while keeping the ZMP in the support convex polygon. I can do it.

ZMPによる2足動作を行っているものとして特許文献1,2,非特許文献1が知られている。   Patent Documents 1 and 2 and Non-Patent Document 1 are known as performing a bipedal operation by ZMP.

これら特許文献1,2及び非特許文献1に示されるような多リンク機構により自重を支えるロボットでは移動する場合に脚の自由度を利用することで、路面の凹凸,段差,溝を踏破する性能が高い。しかし、多リンク機構のリンク間角度を常に制御していなければZMPが支持凸多角形の辺上に達し転倒するために姿勢維持に常にエネルギーを費やさねばならないという問題がある。そのため各リンク間角度を制御していない間は移動時とは異なる姿勢をとるか、補助具を用いることで脚の自由度を制限し姿勢を維持しなければならない。   In a robot that supports its own weight by a multi-link mechanism as shown in these Patent Documents 1 and 2 and Non-Patent Document 1, the degree of freedom of the legs is used when moving, thereby overcoming road surface irregularities, steps, and grooves. Is expensive. However, if the inter-link angle of the multi-link mechanism is not always controlled, there is a problem that energy must always be spent for maintaining the posture because the ZMP reaches the side of the support convex polygon and falls. For this reason, while not controlling the angle between the links, it is necessary to take a posture different from that at the time of movement or to maintain the posture by limiting the degree of freedom of the legs by using an auxiliary tool.

特開平5−305579号公報JP-A-5-305579 特開2001−138272号公報JP 2001-138272 A オーム社「ヒューマノイドロボット」ISBN4−274−20058−2OHM "Humanoid Robot" ISBN4-274-20058-2

2脚を備えたロボットが転倒した後に復帰する途中の姿勢として、または待機時に各関節の制御を行わずともZMPを支持凸多角形に収めることのできる姿勢として脚を屈曲させ、起立姿勢より接地部分を増やした待機姿勢を取るとする。この待機姿勢から脚を伸展し起立した姿勢を取るためには従来のロボットでは上半身を傾斜させ、ZMPを起立姿勢と待機姿勢で共通な支持凸多角形に移動させ、その後ZMPが支持凸多角形から外れないように脚を伸展させ起立姿勢をとる手法がある。また、ロボットを左右のいずれかに傾斜させ一方の脚のみで成す支持凸多角形にZMPを収め、他方の脚を動かし、ロボットの傾斜を取り除きZMPを左右の中央に戻した時にZMPが待機姿勢と待機姿勢から脚を伸展させた姿勢で共通な支持凸多角形内に収まるようにし、その後ZMPが支持凸多角形から外れないように脚を伸展させ、脚をそろえることで起立姿勢を取る方法がある。   Bend the legs as a posture in the middle of returning after a robot with two legs falls down, or place the ZMP in a support convex polygon without controlling each joint during standby, and ground from the standing posture Suppose you take a waiting posture with more parts. In order to take a standing posture by extending the legs from this standby posture, the conventional robot tilts the upper body, moves the ZMP to a common supporting convex polygon in the standing posture and the standby posture, and then ZMP supports the convex convex polygon. There is a technique to take a standing posture by extending the legs so that they do not come off. In addition, when the robot is tilted to the left or right and the ZMP is placed in the support convex polygon formed by only one leg, the other leg is moved, the tilt of the robot is removed, and the ZMP is returned to the center of the left and right. The leg is extended from the stand-by posture to fit within the common support convex polygon, then the leg is extended so that the ZMP does not deviate from the support convex polygon, and the standing posture is obtained by aligning the legs. There is.

しかし前者の方法では脚の上部リンクと下部リンクの長さが大きく異なる場合、上半身の重量が十分でない場合、上半身の重心が荷物を持つことなどで大きく支持凸多角形から離れている場合などでは上半身の前後方向の傾斜によりZMPを支持凸多角形内に収めるためには上半身を大きく傾斜させる必要があり、これはロボットの可動範囲による制約や、大きく傾斜させることで周囲との衝突が起きる可能性が生じるなどの問題がある。後者の方法ではZMPを片側の脚のみが成す支持凸多角形内に収める必要があるため、支持凸多角形の面積大きくとることができず外乱により転倒の危険があった。また、ロボットの上半身を水平に保つ必要がある場合では、上半身の傾斜を打ち消すために回転関節を追加する必要があり、機構が複雑になるという問題点がある。   However, in the former method, when the length of the upper link and the lower link of the leg are greatly different, the upper body weight is not enough, the center of gravity of the upper body is greatly separated from the supporting convex polygon, such as carrying luggage, etc. In order to fit the ZMP in the support convex polygon by tilting the upper body in the front-rear direction, it is necessary to tilt the upper body greatly, which may be restricted by the range of movement of the robot or may collide with the surroundings by tilting greatly There are problems such as sexuality. In the latter method, since it is necessary to store the ZMP in the support convex polygon formed by only one leg, the area of the support convex polygon cannot be increased, and there is a risk of falling due to disturbance. In addition, when it is necessary to keep the upper body of the robot horizontal, it is necessary to add a rotary joint to cancel the inclination of the upper body, and there is a problem that the mechanism becomes complicated.

本発明の目的は足を屈曲させ、車輪と脚とを接地させ支持凸多角形を大きくとった待機姿勢から、脚を伸展し移動に関し大きな自由度を持つ起立姿勢に安定して遷移することのできるロボット装置を提供することにある。   The object of the present invention is to stably transition from a stand-by posture in which a foot is bent, a wheel and a leg are grounded and a supporting convex polygon is made large, to a standing posture in which the leg is extended and has a large degree of freedom regarding movement. The object is to provide a robot apparatus capable of performing the above.

上記目的は、複数のリンクと前記リンクを屈曲駆動するように接続する複数の関節とを備えた2本の脚と、前記2本の脚の一端に前記関節を介して接続される胴体部と、前記脚の各々の他端に回転駆動するように設けられた車輪と、前記脚と前記車輪の動作を制御する制御手段とを備えた脚車輪型移動ロボットにおいて、前記制御手段は、前記脚に備えられた関節を屈曲して前記車輪と、前記脚をそれぞれ接地させた姿勢から前記2本の脚の一方を前記車輪の接地を保ったまま前記車輪の進行方向に動かし、前記2本の脚の前記車輪のみが接地する姿勢を取るように制御する制御手段を備え、前記脚車輪型移動ロボットにおいて前記脚車輪型移動ロボットの重心が2つの前記車輪の間にない場合、3点以上接地させるものであって、前記制御手段は、前記車輪が全て接地する工程と、前記脚の片方をZMPが支持凸多角形の内部にあるようにしながら前方に送り出す工程と、ZMPが、車輪接地点が作る線分上に十分近づくように制御する工程と、倒立状態に移行する工程とを有する制御を行うことにより達成される。



The object is to provide two legs having a plurality of links and a plurality of joints for connecting the links so as to bend, and a body part connected to one end of the two legs via the joints. A leg wheel type mobile robot comprising a wheel provided to rotate at the other end of each leg, and a control means for controlling the operation of the leg and the wheel, wherein the control means comprises the leg The one of the two legs is moved in the advancing direction of the wheel while maintaining the grounding of the wheel from the posture in which the joint and the leg are grounded by bending the joint provided in the wheel, If the leg wheel type mobile robot has a control means for controlling so that only the wheel of the leg touches the ground, and the center of gravity of the leg wheel type mobile robot is not between the two wheels, three or more points are grounded It is one cause, the control The stage includes a step in which all the wheels are grounded, a step in which one side of the leg is sent forward while the ZMP is inside the support convex polygon, and the ZMP is sufficiently close to a line segment formed by the wheel ground point. This is achieved by performing a control including a control step and a step of shifting to an inverted state .



また上記目的は、前記制御手段は前記2本の脚に備えられた前記複数の関節を屈曲し、前記車輪と前記2本の脚とを接地させた姿勢から前記脚の一方を前記車輪の接地を保ったまま前記車輪の進行方向に動かし、前記2本の脚の前記車輪のみが接地する姿勢を取り、その後前記2本の脚に備えられた前記複数の関節を前記2本の脚を伸展するように制御する制御手段を備えていることにより達成される。   Further, the object is that the control means bends the plurality of joints provided on the two legs, and makes one of the legs contact the ground of the wheel from a posture in which the wheel and the two legs are grounded. The two wheels are moved in the traveling direction while maintaining the position so that only the wheels of the two legs are in contact with the ground, and then the plurality of joints provided on the two legs are extended to the two legs. This is achieved by providing a control means for controlling the operation.

本発明によれば、車輪と脚の一部を接地させ支持凸多角形を大きくとった待機姿勢から、上半身の重量バランスや上半身の傾斜角度制限にかかわらず、移動に関する高い自由度を持つ起立姿勢への安定した姿勢変化を行うことのできる脚車輪型移動ロボットを提供できる。   According to the present invention, from a standby posture in which a part of the wheel and the leg is grounded and the support convex polygon is made large, the standing posture having a high degree of freedom regarding movement regardless of the weight balance of the upper body and the inclination angle limitation of the upper body It is possible to provide a leg-wheel type mobile robot capable of performing a stable posture change.

以下、本発明の実施例を図で説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の一実施例を備えた脚車輪型移動ロボットの概略構成図である。
図2は本発明の一実施例を備えた脚車輪型移動ロボットの関節配置を示す図である。
図1,図2において、ロボット正面方向をX軸、側面方向をY軸、垂直方向をZ軸とおいた。ロボット1は大きく脚部10と胴部100とから構成される。脚部10は左右の脚11R,11Lからなり、それぞれは大腿部12R,12Lと、下肢部13R,13Lと、車輪14R,14Lからなっている。胴部100は左右の脚11R,11Lの上部に位置する胴101と、後述する全ての関節と車輪の動作を制御する制御装置110と、胴の重力方向に対する傾斜角度Ψ、角速度dΨ/dtを検出する傾斜角度検知装置111と、左右の腕120R,120Lとからなり、腕(左右)120R,120Lは上腕121R,121Lと、下腕122R,122Lと、ハンド123R,123Lとからなる。
FIG. 1 is a schematic configuration diagram of a leg-wheel type mobile robot provided with an embodiment of the present invention.
FIG. 2 is a diagram showing a joint arrangement of a leg-wheel type mobile robot provided with an embodiment of the present invention.
1 and 2, the front direction of the robot is the X axis, the side surface direction is the Y axis, and the vertical direction is the Z axis. The robot 1 is mainly composed of a leg portion 10 and a trunk portion 100. The leg portion 10 is composed of left and right legs 11R, 11L, each of which includes thigh portions 12R, 12L, lower limb portions 13R, 13L, and wheels 14R, 14L. The torso 100 has a torso 101 positioned above the left and right legs 11R, 11L, a control device 110 that controls the operation of all joints and wheels, which will be described later, and an inclination angle Ψ and an angular velocity dΨ / dt with respect to the direction of gravity of the torso. The tilt angle detection device 111 to be detected and the left and right arms 120R and 120L, the arms (left and right) 120R and 120L include the upper arms 121R and 121L, the lower arms 122R and 122L, and the hands 123R and 123L.

これら脚または腕を区別する必要がある場合はY軸正方向のものを表す場合は「R」を、Y軸負方向のものを表わす場合は「L」を末尾に付した。大腿部12R,12Lと胴部100の間にはY軸方向を中心軸とする回転関節20R,20Lが、大腿部12R,12Lと下肢部13R,13Lとの間にはY軸方向を中心軸とする回転関節21R,21Lが設けられている。下肢部13R,13Lの下にはY軸方向を中心軸とする車輪回転関節22R,22Lに車輪14R,14Lが設けられている。胴101と上腕121R,121Lの間にはX軸方向を中心軸とする回転関節30R,30LとY軸方向を中心軸とする回転関節31R,31Lが設けられている。上腕121R,121Lと下腕122R,122Lの間にはY軸方向を中心軸とする回転関節32R,32Lが設けられている。また、全ての関節と車輪には角度検出機能を持つモータが取り付けられており制御装置110から指定されたトルクτを発生することが出来る。   When it is necessary to distinguish between these legs or arms, “R” is added to the end of the Y-axis positive direction, and “L” is added to the end of the Y-axis negative direction. Between the thighs 12R, 12L and the torso 100, the rotary joints 20R, 20L centering on the Y axis are between the thighs 12R, 12L and the lower limbs 13R, 13L. Rotating joints 21R and 21L are provided as central axes. Below the lower limb portions 13R and 13L, wheels 14R and 14L are provided at wheel rotary joints 22R and 22L having the Y-axis direction as a central axis. Between the trunk 101 and the upper arms 121R and 121L, rotary joints 30R and 30L having the X-axis direction as the central axis and rotary joints 31R and 31L having the Y-axis direction as the central axis are provided. Between the upper arms 121R and 121L and the lower arms 122R and 122L, rotary joints 32R and 32L having the Y-axis direction as a central axis are provided. Further, a motor having an angle detection function is attached to all the joints and wheels, and a torque τ specified by the control device 110 can be generated.

本実施例のロボット1は移動時に車輪14R,14Lのみを接地させた姿勢である起立姿勢をとる。この姿勢では同軸二輪倒立振子制御を行う。倒立振子制御では、制御装置110が傾斜角度検知装置111より胴体の重力方向に対する傾斜角度Ψ,角速度dΨ/dt,車輪14R,14Lより車輪回転角度と車輪回転角速度の情報を取得しフィードバックによって倒立を維持したまま移動させる。移動を行わない場合は安定性を高めるためにロボット1は待機時に大腿部12R,12Lと下肢部13R,13Lを屈曲させ、車輪14R,14Lと下肢部13R,13Lの一部を接地させた姿勢をとる。この姿勢では支持凸多角形を大きくとることができる。以後これを待機姿勢と呼ぶ。   The robot 1 according to the present embodiment takes a standing posture that is a posture in which only the wheels 14R and 14L are grounded during movement. In this position, coaxial two-wheel inverted pendulum control is performed. In the inverted pendulum control, the control device 110 obtains information on the tilt angle ψ, angular velocity dψ / dt with respect to the direction of gravity of the fuselage from the tilt angle detection device 111, and information on the wheel rotation angle and wheel rotation angular velocity from the wheels 14R, 14L. Move while maintaining. In order not to move, the robot 1 bent the thighs 12R, 12L and the lower limbs 13R, 13L and grounded the wheels 14R, 14L and a part of the lower limbs 13R, 13L in order to improve stability when not moving. Take a posture. In this posture, the supporting convex polygon can be made large. This is hereinafter referred to as a standby posture.

次に制御装置110中でのZMPの算出方法について述べる。制御装置110はロボット1の備える全ての関節の角度,角速度情報と、傾斜角度検知装置111より得られる胴101の重力方向に対しる傾斜角度,角速度を入力として受け取る。これらを用いることで全身の重心位置を算出することができ、その手法は様々あるが例えば非特許文献1記載の方法などがある。求められたX−Y面上での全身の重心位置ベクトルをGxy、Z軸方向をGh、ロボット1の質量をM、とおくと床面上にあるZMP位置Zxyとの関係は重力定数gを用いて次式で表わされる。 Next, a method for calculating ZMP in the control device 110 will be described. The control device 110 receives as input the angle and angular velocity information of all the joints provided in the robot 1 and the tilt angle and angular velocity with respect to the direction of gravity of the body 101 obtained from the tilt angle detecting device 111. By using these, the position of the center of gravity of the whole body can be calculated, and there are various methods, for example, the method described in Non-Patent Document 1. The relationship between the calculated center-of-gravity position vector of the whole body on the XY plane, G xy , the Z-axis direction G h , and the mass of the robot 1 M, is the gravity of the ZMP position Z xy on the floor surface. It is expressed by the following equation using a constant g.

Figure 0004982413
Figure 0004982413

図3は本発明の一実施例を備えた脚車輪型移動ロボットが待機姿勢(S1)から起立姿勢(S4,S5)への姿勢変化を示す図である。   FIG. 3 is a diagram showing a posture change from the standby posture (S1) to the standing posture (S4, S5) by the leg-wheel type mobile robot provided with an embodiment of the present invention.

図3において、ここでS1は大腿部12R,12Lと下肢部13R,13Lを屈曲させ、車輪14R,14Lと下肢部13R,13Lの一部を接地させた待機姿勢であり、S2は脚の一方を車輪進行方向に送り出すことのできる姿勢であり、S3はZMPが車輪14R,14Lの接地点を両端とする線分上に位置する姿勢であり、S4は車輪14R,14Lのみが接地している起立姿勢であり、S5は2本の脚が進展し、左右が揃っている起立姿勢である。以上の手順で本実施例のロボット1は起立する。   In FIG. 3, S1 is a standby posture in which the thighs 12R, 12L and the lower limbs 13R, 13L are bent and the wheels 14R, 14L and a part of the lower limbs 13R, 13L are grounded, and S2 is a leg posture. S3 is a posture in which one side can be sent in the wheel traveling direction, S3 is a posture in which the ZMP is located on a line segment with both ends of the grounding points of the wheels 14R and 14L, and S4 is a posture in which only the wheels 14R and 14L are grounded. S5 is a standing posture in which two legs are advanced and the left and right are aligned. The robot 1 of this embodiment stands up through the above procedure.

最初に、ZMPの算出方法について述べる。車輪14R,14Lの半径をw、待機姿勢時の地面と関節20Rとの距離をR1、大腿部12Rの長さをu、下肢部13Rの長さをd、関節20,21の角度θ20,θ21とおく。関節角度θ20,θ21は胴101と大腿部12,下肢部13が一直線になっているときを基準にY軸方向に右ねじの関係で定義する。 First, a method for calculating ZMP will be described. The radius of the wheels 14R, 14L is w, the distance between the ground and the joint 20R in the standby posture is R1, the length of the thigh 12R is u, the length of the lower limb 13R is d, and the angle θ 20 of the joints 20, 21 , Θ 21 . The joint angles θ 20 and θ 21 are defined as a right-hand thread relationship in the Y-axis direction with reference to the case where the torso 101, the thigh 12 and the lower limb 13 are in a straight line.

まず、姿勢は車輪14R,14Lと下肢部13R,13Lの一部が接地した待機状態(S1)とする。この状態から右脚11Rを車輪進行方向に前後させ、ZMPを車輪14Rと14Lの接地点を両端とする線分上に持ってきた姿勢(S3)への手順を説明する。待機状態から一方の脚を車輪進行方向に送り出すためには幾何的条件より数式2が成立しなければならない   First, the posture is set to a standby state (S1) in which the wheels 14R and 14L and a part of the lower limbs 13R and 13L are grounded. From this state, the procedure to the posture (S3) in which the right leg 11R is moved back and forth in the wheel traveling direction and the ZMP is brought on the line segment having the ground contact points of the wheels 14R and 14L as both ends will be described. In order to send out one leg from the standby state in the wheel traveling direction, Equation 2 must be established from the geometric condition.

Figure 0004982413
Figure 0004982413

数式2では関節の左右を区別しないのでR,Lの添え字を省略している。待機状態(S1)にて数式2を満たしていない場合は関節21R,21Lを等しく伸展させ、数式2の条件を満たすようにする。また同時に制御装置110はZMPを両脚の作る支持凸多角形に収まるように制御を行う。本実施例ではR1を最小にするように関節21R,21Lを伸展する(S2)。   In Equation 2, the left and right joints are not distinguished, so the R and L subscripts are omitted. When Expression 2 is not satisfied in the standby state (S1), the joints 21R and 21L are extended equally to satisfy the condition of Expression 2. At the same time, the control device 110 controls the ZMP so that it fits within the support convex polygon formed by both legs. In this embodiment, the joints 21R and 21L are extended so as to minimize R1 (S2).

数式2が成立するように関節21を伸展した姿勢(S2)時の関節21Rから車輪14RまでのX方向距離をAとする。制御装置110は右脚11Rを車輪14Rの設置を保ったまま前後方向にAだけ動かしZMPが車輪14R,14Lの接地点を両端とする線分上に位置する姿勢(S3)になるように制御する。このとき関節角度θ20R,θ21Rは車輪前後方向移動量Aを用いると数式3の関係にある。車輪前後方向移動量Aを連続して変化させ、数式3を数値的に解くことにより関節角度θ20Rとθ21Rの動作パターンが得られ、この動作パターンに従って制御装置110は関節20R,21Lを制御する。この時関節20R,20Lの地上からの高さは一定であるので胴部100の左右傾斜は維持される。 Let A be the distance in the X direction from the joint 21R to the wheel 14R in the posture (S2) in which the joint 21 is extended so that Formula 2 is established. The control device 110 moves the right leg 11R by A in the front-rear direction while maintaining the installation of the wheel 14R, and controls the ZMP to be in a posture (S3) positioned on a line segment with both ends of the ground contact points of the wheels 14R and 14L. To do. At this time, the joint angles θ 20 R and θ 21 R have the relationship of Equation 3 when the wheel front-rear direction movement amount A is used. The movement pattern of the joint angles θ 20 R and θ 21 R is obtained by continuously changing the wheel longitudinal movement amount A and numerically solving Equation 3, and according to this movement pattern, the control device 110 causes the joints 20R, 21L. To control. At this time, since the heights of the joints 20R and 20L from the ground are constant, the left and right inclination of the trunk portion 100 is maintained.

以上のように常に3点以上接地させ支持凸多角形を大きくとることで姿勢変化中でも転倒の危険性を下げることができる。   As described above, it is possible to reduce the risk of falling even during posture change by always grounding at least three points and taking a large support convex polygon.

Figure 0004982413
Figure 0004982413

車輪14R,14Lと下肢部14Lが接地しており、ZMPが車輪14R,14Lの接地点を両端とする線分上に位置する姿勢(S3)から車輪14R,14Lのみが接地している起立姿勢(S4)への姿勢変化は、制御装置110が車輪14R,14Lに対して数式4で表わされるトルクτを与えることにより倒立振子制御を行うことによって変化する。   The standing posture in which only the wheels 14R, 14L are grounded from the posture (S3) in which the wheels 14R, 14L and the lower limbs 14L are grounded and the ZMP is located on the line segment having the grounding points of the wheels 14R, 14L as both ends. The posture change to (S4) changes when the control device 110 performs the inverted pendulum control by applying the torque τ expressed by Formula 4 to the wheels 14R and 14L.

Figure 0004982413
Figure 0004982413

ここでΨは車輪14R,14Lの回転角度の平均であり、dΨ/dtはその時間微分であり、τは車輪回転関節22R,22Lが発生させる車輪駆動トルクである。車輪14R,14Lの平均回転角度Ψは倒立振子制御を行う直前の値を0としている。またKはベクトルで表わされる制御ゲインでありこれは公知である手法、例えば特開昭63−305082号公報などにより求めることができる。   Here, Ψ is an average of the rotation angles of the wheels 14R and 14L, dΨ / dt is a time derivative thereof, and τ is a wheel driving torque generated by the wheel rotation joints 22R and 22L. The average rotation angle Ψ of the wheels 14R and 14L is set to 0 immediately before performing the inverted pendulum control. K is a control gain represented by a vector, which can be obtained by a known method, for example, Japanese Patent Laid-Open No. 63-305082.

車輪14R,14Lのみが接地する姿勢(S4)から車輪14R,14Lのみが接地し、脚を伸展し同軸二輪倒立振子制御を行う姿勢(S5)への姿勢変化について述べる。関節21R,21Lを伸展し、次に間接20R,20Lを動かし、車輪14R,14Lの左右を揃える。この時、前後方向の安定性は倒立振子制御で保障されるので脚の関節角度の動作パターンはトルク,回転角度,回転角速度制限の中で任意にとって良く、脚の進展と左右揃えを同時にやってもよい。   The posture change from the posture (S4) in which only the wheels 14R and 14L are grounded to the posture (S5) in which only the wheels 14R and 14L are grounded and the legs are extended to perform the coaxial two-wheel inverted pendulum control will be described. The joints 21R and 21L are extended, and then the indirect 20R and 20L are moved to align the left and right wheels 14R and 14L. At this time, since the stability in the front-rear direction is guaranteed by the inverted pendulum control, the motion pattern of the joint angles of the legs is arbitrary for the torque, rotation angle, and rotation angular velocity limitations, and the leg development and left-right alignment are performed simultaneously. Also good.

以上の手順に沿って動作することにより脚を折りたたみ支持凸多角形を大きくとった待機姿勢から脚を伸展している起立姿勢に安定して姿勢を変化させることができる。   By operating in accordance with the above procedure, the posture can be changed stably from the standby posture in which the leg is folded and the supporting polygon is made larger to the standing posture in which the leg is extended.

以上の説明は右脚11Rを主に用いているが、左脚を用いる場合も同様である。また、本実施例ではX軸を中心軸とする方向の回転関節を含んでいないために胴101の左右傾斜は一定としているが、X軸を中心軸とする方向回転関節を追加しZMPが支持凸多角形にとどまる範囲内において胴101を任意に傾斜させてもよい。さらに腕(左右)120R,120Lなどに荷物を持った場合でも待機姿勢でZMPが支持凸多角形内に留めることができているならばZMPに荷物の影響を含めたうえで同様の手順を取ることにより安定して待機姿勢から起立姿勢への姿勢変化を行うことができる。   The above description mainly uses the right leg 11R, but the same applies to the case where the left leg is used. Further, in this embodiment, since there is no rotational joint in the direction with the X axis as the central axis, the left and right inclination of the body 101 is constant, but a directional rotational joint with the X axis as the central axis is added to support the ZMP. The body 101 may be arbitrarily inclined within a range that remains in a convex polygon. If the ZMP can be held within the support convex polygon in the stand-by posture even when the arms (left and right) 120R, 120L are held, take the same procedure after including the effects of the load on the ZMP. Thus, the posture change from the standby posture to the standing posture can be performed stably.

本発明の一実施例のロボットについての概略図である。It is the schematic about the robot of one Example of this invention. 本発明の一実施例のロボットにおける関節構成を示す図である。It is a figure which shows the joint structure in the robot of one Example of this invention. 本発明の一実施例のロボットにおける待機姿勢から起立姿勢への姿勢変化を表す図である。It is a figure showing the attitude | position change from the stand-by attitude | position to the standing attitude | position in the robot of one Example of this invention.

符号の説明Explanation of symbols

1 ロボット
10 脚部
11R,11L 脚(左右)
12R,12L 大腿部
13R,13L 下肢部
14R,14L 車輪
100 胴部
101 胴
110 制御装置
111 傾斜角度検知装置
120R,120L 腕(左右)
121R,121L 上腕
122R,122L 下腕
123R,123L ハンド
1 Robot 10 Leg 11R, 11L Leg (left and right)
12R, 12L Thigh 13R, 13L Lower limb 14R, 14L Wheel 100 Body 101 Body
110 Control device 111 Inclination angle detection device 120R, 120L Arm (left and right)
121R, 121L Upper arm 122R, 122L Lower arm 123R, 123L Hand

Claims (2)

複数のリンクと前記リンクを屈曲駆動するように接続する複数の関節とを備えた2本の
脚と、前記2本の脚の一端に前記関節を介して接続される胴体部と、前記脚の各々の他端
に回転駆動するように設けられた車輪と、前記脚と前記車輪の動作を制御する制御手段と
を備えた脚車輪型移動ロボットにおいて、
前記制御手段は、前記脚に備えられた関節を屈曲して前記車輪と、前記脚をそれぞれ接
地させた姿勢から前記2本の脚の一方を前記車輪の接地を保ったまま前記車輪の進行方向
に動かし、前記2本の脚の前記車輪のみが接地する姿勢を取るように制御する制御手段を
備え、
前記脚車輪型移動ロボットにおいて前記脚車輪型移動ロボットの重心が2つの前記車輪の間にない場合、3点以上接地させるものであって、
前記制御手段は、
前記車輪が全て接地する工程と、
前記脚の片方をZMPが支持凸多角形の内部にあるようにしながら前方に送り出す工程と、
ZMPが、車輪接地点が作る線分上に十分近づくように制御する工程と、
倒立状態に移行する工程とを有する制御を行うことを特徴とする脚車輪型移動ロボット。
Two legs provided with a plurality of links and a plurality of joints connected so as to bend and drive the links; a body part connected to one end of the two legs via the joints; In a leg-wheel type mobile robot provided with wheels provided so as to be rotationally driven at each other end, and a control means for controlling the operation of the legs and the wheels,
The control means is configured to bend the joints provided on the legs so that one of the two legs is kept in contact with the wheel and one of the two legs from a posture in which the legs are grounded. Control means for controlling so that only the wheels of the two legs are in contact with the ground,
When the center of gravity of the leg wheel type mobile robot is not between the two wheels in the leg wheel type mobile robot, three or more points are grounded ,
The control means includes
All the wheels are grounded;
Sending one side of the leg forward while ZMP is inside the support convex polygon;
A process of controlling the ZMP so that it is sufficiently close to the line segment formed by the wheel contact point;
A leg-wheel type mobile robot characterized by performing control including a step of shifting to an inverted state .
請求項1記載の脚車輪型移動ロボットにおいて、
前記制御手段は前記2本の脚に備えられた前記複数の関節を屈曲し、前記車輪と前記2
本の脚とを接地させた姿勢から前記脚の一方を前記車輪の接地を保ったまま前記車輪の進
行方向に動かし、前記2本の脚の前記車輪のみが接地する姿勢を取り、その後前記2本の
脚に備えられた前記複数の関節を前記2本の脚を伸展するように制御する制御手段を備え
ていることを特徴とする脚車輪型移動ロボット。
The leg-wheel type mobile robot according to claim 1,
The control means bends the plurality of joints provided on the two legs, the wheel and the 2
One of the legs is moved in the advancing direction of the wheel while maintaining the grounding of the wheel from a posture in which the leg is grounded, and only the wheel of the two legs is grounded, and then the 2 A leg-wheel type mobile robot comprising control means for controlling the plurality of joints provided on a leg so as to extend the two legs.
JP2008070555A 2008-03-19 2008-03-19 Leg wheel type mobile robot Expired - Fee Related JP4982413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070555A JP4982413B2 (en) 2008-03-19 2008-03-19 Leg wheel type mobile robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070555A JP4982413B2 (en) 2008-03-19 2008-03-19 Leg wheel type mobile robot

Publications (2)

Publication Number Publication Date
JP2009220257A JP2009220257A (en) 2009-10-01
JP4982413B2 true JP4982413B2 (en) 2012-07-25

Family

ID=41237606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070555A Expired - Fee Related JP4982413B2 (en) 2008-03-19 2008-03-19 Leg wheel type mobile robot

Country Status (1)

Country Link
JP (1) JP4982413B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183956B (en) * 2011-02-24 2012-11-21 浙江大学宁波理工学院 Lateral control method of horizontal walking of under-actuated two-foot walking robot
WO2015092913A1 (en) * 2013-12-20 2015-06-25 株式会社日立製作所 Two-wheeled mobile object, and method of controlling same
WO2015145710A1 (en) * 2014-03-28 2015-10-01 株式会社日立製作所 Moving body and control device for same
CN105955278B (en) * 2016-07-03 2018-08-17 柳州惠林科技有限责任公司 A kind of head-swinging type balance puppet based on electric unicycle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285864A (en) * 1992-04-08 1993-11-02 Toshiba Corp Two-feet moving walking device
JP2004243491A (en) * 2003-02-14 2004-09-02 Shosuke Tanaka Robot system working by means of inertia and internal sense
JP2007185761A (en) * 2006-05-08 2007-07-26 Chiba Inst Of Technology Walking body
JP4258456B2 (en) * 2004-09-14 2009-04-30 トヨタ自動車株式会社 robot
JP4797775B2 (en) * 2006-04-24 2011-10-19 株式会社日立製作所 Biped type moving mechanism

Also Published As

Publication number Publication date
JP2009220257A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4930003B2 (en) Mobile robot
JP4560658B2 (en) Control device for legged mobile robot
KR101264248B1 (en) legged mobile robot
JP5322562B2 (en) Moving trolley
JP4867823B2 (en) Inverted wheel type moving body and control method thereof
US8014923B2 (en) Travel device
JP5221689B2 (en) Gait generator for legged mobile robot
EP1721711B1 (en) Gait generator of mobile robot
KR101028133B1 (en) Legged robot
JP2006136962A (en) Mobile robot
JP2001062760A (en) Leg type walking robot
EP2343230A1 (en) Robot and control method thereof
JPH05337849A (en) Attitude stabilization control device for leg type mobile robot
JP4982413B2 (en) Leg wheel type mobile robot
JP4899165B2 (en) Control device for legged mobile robot
WO2014141356A1 (en) Moving body
JP2004291799A (en) Movable carriage
JP3405868B2 (en) Gait Generation Method for Legged Walking Robot
JP4613539B2 (en) Robot motion planning method
JP2006334729A (en) Inverted pendulum type carriage robot and its controlling method
JP2017030093A (en) Multiple robot coordination moving system and method
WO2022137746A1 (en) Robot
JP4237130B2 (en) Control device for legged mobile robot
JP5306959B2 (en) Control device for legged mobile robot
JP3495718B2 (en) Control device for articulated robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees