WO2015145710A1 - Moving body and control device for same - Google Patents

Moving body and control device for same Download PDF

Info

Publication number
WO2015145710A1
WO2015145710A1 PCT/JP2014/059070 JP2014059070W WO2015145710A1 WO 2015145710 A1 WO2015145710 A1 WO 2015145710A1 JP 2014059070 W JP2014059070 W JP 2014059070W WO 2015145710 A1 WO2015145710 A1 WO 2015145710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
moving means
frame
moving
actuator
Prior art date
Application number
PCT/JP2014/059070
Other languages
French (fr)
Japanese (ja)
Inventor
梓 網野
亮介 中村
泰士 上田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/059070 priority Critical patent/WO2015145710A1/en
Publication of WO2015145710A1 publication Critical patent/WO2015145710A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Definitions

  • the present invention relates to a moving body and a control device that stabilizes the posture of the moving body.
  • Patent Document 1 a technique described in the following [Patent Document 1] is known as a technique of a moving body having wheels on the front and rear sides for the purpose of stabilizing the posture.
  • the front wheel body and the rear wheel body are separated from each other, the front wheel body and the rear wheel body can be moved in the pitch direction, and the servo mechanism is used.
  • a moving body that supports and controls a connection relative angle between a front wheel body portion and a rear wheel body portion according to a riding situation.
  • the present invention has been invented in view of the above, and a movable body that can maintain the stability of the upper body while reducing the impact from the road surface regardless of low-speed traveling or high-speed traveling, and stabilization of the posture thereof It is an object of the present invention to provide a control device that performs the above.
  • the present invention provides a movable body including a trunk base portion and a frame with moving means that is coaxially supported by the trunk base portion and includes a moving means at a front end.
  • the frames are provided with bevel gears facing each other around the same axis, and the bevel gears are connected by bevel-shaped pinion gears so that the front and rear frames with moving means are constrained at opposite phases and at the same operating angle.
  • the front and rear springs attached to the front and rear springs are attached so that the reaction force increases when the body part moves downward in the vertical direction with respect to the relative movement between the frame with the front and rear moving means and the body base part. It is mounted between one or both of the frames with moving means and the body base portion.
  • the present invention is characterized in that the moving body is provided with a vertical actuator capable of changing an initial position of the vertical spring in one or both of the front and rear moving means, and the relative angle of the frame with the moving means can be adjusted. It is what.
  • the present invention is characterized in that in the moving body, the frame with moving means includes a wheel actuator, and the wheel actuator is controlled so that the inclination and angular velocity of the body base coincide with a target value. .
  • the present invention is characterized in that in the moving body, the frame with moving means includes a steering actuator, and the steering actuator is controlled so that the inclination and angular velocity of the body base coincide with a target value. .
  • the present invention provides a movable body, wherein the movable body includes a body portion that is rotatable on a connecting shaft of the body base portion and the front and rear frames with moving means, and further reacts when displaced from an initial position of the body portion and the body base portion.
  • the spring constants of the upper and lower springs and the pitch springs independently, the vertical rigidity and pitch rotation rigidity of the fuselage can be set independently. It is characterized by.
  • the present invention provides a moving body, wherein the movable body has a pitch actuator capable of rotating in the pitch direction between the pitch spring and the body portion, and a longitudinal direction in the front-rear direction.
  • a pitch arm to be connected; suspension of the pitch springs at both front and rear ends of the pitch arm; and changing an initial angle between the body and the body base by changing an operating angle of the pitch actuator. It is a feature.
  • the present invention provides a control unit for a moving body including a body base portion and a frame with moving means that is coaxially supported by the body base portion and includes a moving means at a tip.
  • the tilt sensor mounted on the fuselage base and the front and rear frames with moving means are each provided with a bevel gear around the same axis, and the bevel gear is connected by a bevel tooth pinion gear,
  • the frame with the front and rear moving means is constrained at the opposite phase and the same operating angle, and the body part moves vertically downward with respect to the relative movement between the frame with the front and rear moving means and the body base part.
  • Serial tilt sensor is characterized in that for detecting the tilt angle, angular velocity of the body base with respect to the direction of gravity.
  • the present invention provides a control device for a moving body, wherein a vertical actuator capable of changing an initial position of the vertical spring is provided in one or both of the front and rear moving means, and the relative angle of the frame with the moving means is adjustable. It is characterized by this.
  • the present invention provides the control device for a moving body, wherein the frame with the moving means includes a wheel actuator, and controls the wheel actuator so that the inclination and the angular velocity of the body base coincide with a target value. Is.
  • the present invention provides the control device for a moving body, wherein the frame with the moving means includes a steering actuator, and controls the steering actuator so that the inclination and the angular velocity of the body base coincide with a target value. Is.
  • the present invention provides a control device for a moving body, wherein the body base portion and the front / rear moving means-equipped frame include a body portion that is rotatable, and is further displaced from an initial position of the body portion and the body base portion.
  • the vertical spring and the pitch rotation rigidity of the body can be independently set by independently setting the spring constants of the vertical spring and the pitch spring. It is characterized by setting.
  • the present invention provides a control device for a moving body, which includes a pitch actuator capable of rotating in the pitch direction between the pitch spring and the body portion, and a longitudinal direction in the front-rear direction.
  • a pitch arm connected to the pitch actuator is provided, the pitch springs are suspended at both front and rear ends of the pitch arm, and the operating angle of the pitch actuator is changed to change the initial positions of the body and the body base. It is characterized by making it.
  • the moving body of the present invention and the control device that stabilizes the posture, it is possible to provide stable performance according to the road surface condition.
  • FIG. 3 is a diagram illustrating details of the structure of the first embodiment.
  • FIG. 3 is a diagram illustrating details of the structure of the first embodiment. Sectional drawing for demonstrating the detail of Example 1.
  • FIG. 5 is a diagram for explaining the operation of the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the first embodiment.
  • FIG. 3 is a control block diagram of the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the first embodiment.
  • FIG. 6 is a diagram illustrating the operation of the robot according to the second embodiment.
  • FIG. 1 is a perspective view showing the entire robot according to the first embodiment of the present invention.
  • the robot 1 of the present invention includes a left leg 6 and a right leg 7 of a pair of left and right moving means at the lower part of the body 3, and two legs and a left arm on the left and right sides of the body 3. 4 and right arm 5 are provided.
  • a head 2 is provided on the upper portion of the body 2.
  • the two legs, the left foot 6 and the right leg 7 are provided as moving means for the robot 1 and are mainly used for moving the horizontal ground.
  • the left arm 6 and the right arm 5 are used for operations such as gripping an object and gestures for communication with a human.
  • the fuselage 3 is equipped with a control device that controls the operation of each part and a sensor that detects the tilt angle and angular velocity of the fuselage 3 with respect to the direction of gravity.
  • the body 3 or the head 2 includes a distance sensor and a sensor for recognizing an environment surrounding the camera.
  • the traveling direction of the robot 1 is the X axis, the roll around the X axis, the Y axis perpendicular to the X axis and parallel to the horizontal plane, the pitch around the Y axis, the X axis and the Y axis.
  • the axis orthogonal to the Z axis is referred to as the Z axis
  • the axis around the Z axis is referred to as the yaw direction.
  • FIG. 2 is a diagram illustrating the configuration of the lower half of the robot 1 according to the first embodiment, and is a perspective view seen from the front direction of the robot.
  • the foot frames 13L and 13R of the robot 1 are each configured to have a longitudinal direction in the Z direction and a predetermined distance in the Y axis direction, and are arranged substantially parallel to the Z axis as their positional relationship. ing.
  • Steering actuators 12L and 12R having rotation output portions around the X-axis direction are provided at the lower ends in the Z direction of the foot frames 13L and 13R.
  • Steering hubs 13L and 13R are provided at the output portions of the steering actuators 12L and 12R, respectively, and the steering hubs 13L and 13R support the wheel actuators 11L and 11R, respectively.
  • the wheel actuators 11L and 11R are provided with wheels 10L and 10R each having a rotation shaft in a direction parallel to the Y axis when the output shaft direction of the steering actuators 12L and 12R is parallel to the X axis. Can be driven in the roll direction.
  • the wheels 10L and 10R are displayed with their upper portions cut off so that the contents can be easily seen.
  • Steering actuators 12L and 12R and wheel actuators 11L and 11R are composed of a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a reducer and an angle detector (rotary encoder, potentiometer, etc.) ) Is built-in.
  • a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a reducer and an angle detector (rotary encoder, potentiometer, etc.) ) Is built-in.
  • Steering actuators 12L and 12R drive steering hubs 13L and 13R connected to the output unit to a predetermined angle in accordance with a command value from control device 101 described later.
  • the leg frames 13L and 13R are configured to be curved so that they do not come into contact with each other in the maximum movable range when the wheels 10L and 10R are rotated in the roll direction, and the movable ranges of the steering actuators 12L and 12R are set. The wheels 10L and 10R do not come into contact with the foot frames 13L and 13R by the operation of the steering actuators 12L and 13L.
  • the deformation actuator 20 is attached to the foot frame 13L so that the output axis direction is parallel to the Y axis, and includes a deformation arm 21 at the output portion thereof.
  • the deformation arm 21 is connected to a spring 22 at the opposite end in the longitudinal direction of the deformation actuator 20L, and the spring 22 is connected to the waist frame 30 at the opposite end of the connection with the deformation arm 21.
  • the connection point between the spring 22 and the waist frame 30 is provided at the end of a frame configured in a protruding shape so as to be provided at a predetermined distance behind and below the axis A1.
  • the waist frame 30 is also configured as a rotating shaft for the foot frames 13L and 13R, and includes the foot frames 13L and 13R swingable in the pitch direction around the axis A1.
  • the deformation actuator 20 incorporates a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a speed reducer, and an angle detector (rotary encoder, potentiometer, etc.). According to the command value from the device 101, the deformable arm 21 connected to the output unit can be driven at a predetermined angle.
  • a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a speed reducer, and an angle detector (rotary encoder, potentiometer, etc.).
  • the upper body connection frame 31 is attached to the waist frame 30 so as to be swingable in the pitch direction, and the upper part of the upper body connection frame 31 is connected to the body 3.
  • FIG. 3 is a diagram in which only components necessary for explaining the operation of the upper body connection frame 31 are extracted from FIG.
  • the upper body connection frame 31 has a substantially U-shape that is open on the lower side, and is connected to the waist frame 30 so that both ends of the upper body connection frame 31 can swing about the axis A1.
  • the waist frame 30 is provided with a protruding frame of the same length in the front and rear at the center in the Y-axis direction, pitch springs 32 and 33 are provided at the ends of the protruding frame, and the waist frame 30 of the pitch springs 32 and 33.
  • the opposite end of the connection to the upper body connection frame is attached to the front end of a protruding frame of the same length before and after the front and rear provided in the center in the Y-axis direction of the upper body connection frame.
  • the pitch springs 32 and 33 have equal spring constants and are attached with a predetermined initial tension, and the upper body connection frame 31 has a position where the lengths of the pitch springs 32 and 33 are equal when no special force is input ( (In the initial state).
  • the operation of the upper body connection frame 31 is attenuated and the initial state is restored. Time can also be shortened.
  • FIG. 4 is a cross-sectional view illustrating a configuration of a base connection of a leg portion of the robot 1 according to the first embodiment. It is sectional drawing at the time of cutting along a YZ plane through the axis
  • the waist frame 30 has a longitudinal direction in the left-right direction along the axis A1, and is configured as a rotating shaft of the leg frames 14L and 14R.
  • the foot frame 14L includes a side gear 40L on the inner side surface (the center side of the robot).
  • the side gear 40L is a bevel gear that is configured integrally with the leg frame 14L around the waist frame 30 and can swing in the pitch direction.
  • the foot frame 14R has a side gear 40R on the inner side surface, and the side gear 40R is configured integrally with the leg frame 14R with the waist frame 30 as an axis, like the foot frame 14R, and can swing in the pitch direction. It is a bevel gear.
  • the waist frame 30 is on a plane passing through the midpoints of the side gear 40L and the side gear 40L, and has a shaft-shaped structure including pinion gears 42 and 43 so as to be rotatable around an axis A2 that intersects the axis A1 at one point.
  • the shape of the pinion gears 42 and 43 is a bevel gear, and the pinion gear 42 meshes with the side gears 40R and 40L on the left and right, respectively, and the pinion gear 43 meshes with the 40R and 40L on the left and right, respectively, like the pinion gear 42.
  • the side gears 40L and 40R have the same number of teeth and the same module, and the pinion gears 42 and 43 also have the same number of teeth and the same module.
  • the side gear 40L and the side gear 40R are restrained to move in the opposite phase and the same operating angle.
  • FIG. 5 illustrates the movement of the reverse phase and the same operating angle by the differential gear described in FIG.
  • FIG. 6 shows how the foot frames 14L and 14R are operated by the deformation actuator 20.
  • the state of the deformable arm 21 in FIG. 6 (a) is changed to the state in FIG. 6 (b).
  • the foot frame 14L moves forward in the traveling direction.
  • the leg frame 14R moves rearward due to the restriction of the differential gear. In this way, the foot frames 14L and 14R can be differentially operated by the operation of the deformation actuator 20.
  • FIG. 7 shows the traveling mode of the robot of the first embodiment.
  • the robot 1 of the present invention has two traveling modes according to the moving speed.
  • FIG. 7A shows a parallel wheel mode used during low-speed traveling
  • FIG. 7B shows a series wheel mode used during high-speed traveling.
  • the posture of the parallel wheel mode in FIG. 7 (a) has a small footprint (ground projection area), so it is mainly in a crowded situation or in a situation where there is a demand to move without colliding with an obstacle in a crowd. Use.
  • the in-line wheel mode in FIG. 7B is a posture in which the left foot 6 and the right foot 7 are alternately opened back and forth, and is a posture that is taken at a relatively high speed.
  • the deformation from the parallel wheel mode to the serial wheel mode is performed by the operation of the deformation actuator 20 as described in FIG.
  • FIG. 8 shows a control block diagram
  • the tilt sensor 100 is mounted inside the fuselage 3, and detects the tilt angle and angular velocity of the fuselage 3 with respect to the direction of gravity.
  • the control device 101 determines the tilt and angular velocity of the fuselage 3 based on the state detected by the tilt sensor 100.
  • the wheel actuators 11L and 11R and the steering actuators 12L and 12R are appropriately controlled so as to match the target values. Specifically, in the parallel wheel mode (FIG. 7A), the wheel actuators 11L and 11R are appropriately controlled so as to maintain the inverted pendulum in the pitch direction. Further, in the in-line wheel mode (FIG.
  • the steering actuator is based on the speed of the wheel actuators 11L and 11R and the roll angle / angular speed information from the tilt sensor 100. 12L and 12R are controlled appropriately, and the traveling direction of the wheels 10L and 10R is changed to stabilize the posture.
  • FIG. 9 shows a state where the robot 1 is mitigating the impact from the road surface in the serial wheel mode.
  • the spring 22 acts as a spring for the vertical suspension that reduces the impact force from the road surface, and stabilizes the posture of the robot 1.
  • a rod or the like is used to increase the rigidity of the connection. It can also be set so as to reduce the impact force by the compliance of the deformation actuator 20.
  • FIG. 9 (c) shows a case where a particularly large impact force from the road surface is applied to the wheel 10L.
  • the impact force in the vertical direction is alleviated by the suspension in the vertical direction, but in the case of a road surface protrusion that causes rotation in the pitch direction as shown in FIG.
  • Pitch springs 32 and 33 interposed between the connection frame 31 and the waist frame 30 relax the pitch rotation of the waist frame 30 and transmit it to the upper body connection frame 31, thereby greatly changing the behavior of the body 3 in the pitch direction. There is nothing.
  • the pitch springs 32 and 33 act as suspension springs that relax the movement in the pitch direction, and stabilize the posture of the robot 1 in the pitch direction. Further, by changing the spring constants of the pitch springs 32 and 33, the performance of stabilizing the pitch direction of the robot 1 can be changed. For example, the road surface is relatively leveled and only large undulations exist. In the case of a smooth road surface, the stiffness in the pitch direction can be increased by increasing the spring constants of the pitch springs 32 and 33, or by connecting them with a rigid body such as a rod instead of the springs.
  • the upper body of the robot rotates in the pitch direction due to inertial force during acceleration and deceleration, and the behavior becomes unstable. You can avoid that.
  • FIG. 10 illustrates Example 2 of the present invention.
  • the pitch springs 32 and 33 are mounted so as to connect the waist frame 30 and the upper body connection frame 31.
  • the upper body connection frame 31 has an output shaft around the pitch axis. Connected to the waist frame 30 of the pitch springs 32 and 33 at both ends in the front-rear direction of the pitch arm 52 having the longitudinal direction in the X direction and connecting the longitudinal center to the pitch actuator 51 at the output part of the pitch actuator 51 It is comprised by connecting the reverse end of.
  • the pitch actuator 51 incorporates a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a reduction gear, and an angle detector (rotary encoder, potentiometer, etc.).
  • the relative motion between the waist frame 30 and the upper body connection frame 31 is a motion caused by a disturbance, but in the second embodiment, the relative motion can also be realized by the motion of the pitch actuator 51.
  • the pitch actuator 51 is driven by a predetermined angle. The upper body can be kept vertical.
  • ADVANTAGE OF THE INVENTION According to this invention, it can implement

Abstract

 The present invention pertains to a moving body and to a control device for stabilizing the orientation thereof, and is provided with the feature of a movement mechanism for minimizing pitching motion of the trunk and enhancing stability. This moving body is characterized in that swing arm-like feet equipped at the distal with wheels designed to be capable of steering motion with respect to the surface of the ground are respectively supported rotatably about the same axis as the trunk at the front and back of the lower portion of the trunk, and differential motion in rotation of the front and back feet is created through a mechanism employing an ambulatory action bevel gear and a bevel-shaped pinon gear of identical shape which are provided to the front and back legs, thereby providing a function that restricts motion of the trunk to vertical motion only, and that minimizes pitching motion of the trunk due to inertia resulting from input from the ground surface, or from acceleration/deceleration.

Description

移動体及びその制御装置MOBILE BODY AND ITS CONTROL DEVICE
本発明は移動体、及びその姿勢の安定化を行う制御装置に関する。 The present invention relates to a moving body and a control device that stabilizes the posture of the moving body.
前後に車輪を備えた移動体であって、姿勢の安定化を目的とした移動体の技術としては例えば下記の〔特許文献1〕に記載の技術が知られている。 For example, a technique described in the following [Patent Document 1] is known as a technique of a moving body having wheels on the front and rear sides for the purpose of stabilizing the posture.
 〔特許文献1〕に記載されている方法によれば、前輪車体部と後輪車体部とを別構造とし、前輪車体部と後輪車体部とをピッチ方向に遥動可能にかつサーボ機構により支持し、前輪車体部と後輪車体部との連結相対角度を乗車状況に応じて制御する移動体が開示されている。 According to the method described in [Patent Document 1], the front wheel body and the rear wheel body are separated from each other, the front wheel body and the rear wheel body can be moved in the pitch direction, and the servo mechanism is used. There is disclosed a moving body that supports and controls a connection relative angle between a front wheel body portion and a rear wheel body portion according to a riding situation.
特開2005-82044号公報JP-A-2005-82044
ところで、従来の〔特許文献1〕の技術では、路面追従のために前輪車体部と後輪車体部との連結相対角度を可動させると前輪車体部または後輪車体部に傾きが生じ、例えばセンサ等を搭載している場合に、認識方向が安定しない恐れがある。 By the way, in the conventional technique of [Patent Document 1], when the connecting relative angle between the front wheel body part and the rear wheel body part is moved in order to follow the road surface, the front wheel body part or the rear wheel body part is inclined. Etc., the recognition direction may not be stable.
 本発明は、上記を鑑みて発明されたものであり、低速走行、高速走行に拘わらず路面からの衝撃を緩和しつつも上体の安定性を維持可能な移動体、及びその姿勢の安定化を行う制御装置の提供を目的とする。 The present invention has been invented in view of the above, and a movable body that can maintain the stability of the upper body while reducing the impact from the road surface regardless of low-speed traveling or high-speed traveling, and stabilization of the posture thereof It is an object of the present invention to provide a control device that performs the above.
 前記課題を解決するため本発明は、胴体ベース部と、前記胴体ベース部に同軸に支持され先端に移動手段を備えた移動手段付きフレームを前後に備えた移動体において、前記前後の移動手段付きフレームはそれぞれ向い合せに傘歯ギヤを前記同軸まわりに備え、前記傘歯ギヤは傘歯状のピニオンギヤによって連結されることにより、前記前後の移動手段付きフレームは逆位相かつ同作動角度にて拘束し、前記前後の移動手段付きフレームと前記胴体ベース部との間の相対運動に対して、前記胴体部が鉛直方向下向きに移動する際に反力が増加するように取り付けられる上下スプリングを前記前後の移動手段付きフレームの一方もしくは両方と前記胴体ベース部との間に搭載することを特徴とするものである。 In order to solve the above-described problems, the present invention provides a movable body including a trunk base portion and a frame with moving means that is coaxially supported by the trunk base portion and includes a moving means at a front end. The frames are provided with bevel gears facing each other around the same axis, and the bevel gears are connected by bevel-shaped pinion gears so that the front and rear frames with moving means are constrained at opposite phases and at the same operating angle. The front and rear springs attached to the front and rear springs are attached so that the reaction force increases when the body part moves downward in the vertical direction with respect to the relative movement between the frame with the front and rear moving means and the body base part. It is mounted between one or both of the frames with moving means and the body base portion.
 更に、本発明は移動体において、前記上下スプリングの初期位置を変更可能な上下アクチュエータを前記前後の移動手段の一方もしくは両方に備え、前記移動手段付きフレームの相対角度を調整可能としたことを特徴とするものである。 Furthermore, the present invention is characterized in that the moving body is provided with a vertical actuator capable of changing an initial position of the vertical spring in one or both of the front and rear moving means, and the relative angle of the frame with the moving means can be adjusted. It is what.
 更に、本発明は移動体において、前記移動手段付きフレームは車輪アクチュエータを備え、前記胴体ベースの傾きと角速度を目標値に一致させるように、前記車輪アクチュエータを制御することを特徴とするものである。 Further, the present invention is characterized in that in the moving body, the frame with moving means includes a wheel actuator, and the wheel actuator is controlled so that the inclination and angular velocity of the body base coincide with a target value. .
 更に、本発明は移動体において、前記移動手段付きフレームはステアリングアクチュエータを備え、前記胴体ベースの傾きと角速度を目標値に一致させるように、前記ステアリングアクチュエータを制御することを特徴とするものである。 Furthermore, the present invention is characterized in that in the moving body, the frame with moving means includes a steering actuator, and the steering actuator is controlled so that the inclination and angular velocity of the body base coincide with a target value. .
 更に、本発明は移動体において、前記胴体ベース部と前記前後の移動手段付きフレームの接続軸に回転可能に胴体部を備え、さらに前記胴体部と前記胴体ベース部の初期位置から変位すると反力が増加するように備えられるピッチスプリングとで構成されることにより、前記上下スプリングと前記ピッチスプリングのバネ定数を独立に設定することにより、前記胴体の上下剛性およびピッチ回転剛性を独立に設定することを特徴とするものである。 Further, the present invention provides a movable body, wherein the movable body includes a body portion that is rotatable on a connecting shaft of the body base portion and the front and rear frames with moving means, and further reacts when displaced from an initial position of the body portion and the body base portion. By setting the spring constants of the upper and lower springs and the pitch springs independently, the vertical rigidity and pitch rotation rigidity of the fuselage can be set independently. It is characterized by.
 更に、本発明は移動体において、前記ピッチスプリングと前記胴体部との間に、ピッチ方向に回転動作が可能なピッチアクチュエータと、前後方向に長手方向を有し、その中央部を前記ピッチアクチュエータと接続されるピッチアームを備え、前記ピッチアームの前後両端において前記ピッチスプリングを其々懸架し、前記ピッチアクチュエータの作動角度を変化させることにより前記胴体と前記胴体ベースとの初期位置を変化させることを特徴とするものである。 Furthermore, the present invention provides a moving body, wherein the movable body has a pitch actuator capable of rotating in the pitch direction between the pitch spring and the body portion, and a longitudinal direction in the front-rear direction. A pitch arm to be connected; suspension of the pitch springs at both front and rear ends of the pitch arm; and changing an initial angle between the body and the body base by changing an operating angle of the pitch actuator. It is a feature.
 また、前記課題を解決するため本発明は、胴体ベース部と、前記胴体ベース部に同軸に支持され先端に移動手段を備えた移動手段付きフレームを前後に備えた移動体の制御装置において、前記胴体ベースに搭載された傾斜センサと、前記前後の移動手段付きフレームはそれぞれ向い合せに傘歯ギヤを前記同軸まわりに備え、前記傘歯ギヤは傘歯状のピニオンギヤによって連結されることにより、前記前後の移動手段付きフレームは逆位相かつ同作動角度にて拘束し、前記前後の移動手段付きフレームと前記胴体ベース部との間の相対運動に対して、前記胴体部が鉛直方向下向きに移動する際に反力が増加するように取り付けられる上下スプリングを前記前後の移動手段付きフレームの一方もしくは両方と前記胴体ベース部との間に搭載し、前記傾斜センサは胴体ベースの重力方向に対する傾斜角度、角速度を検出することを特徴とするものである。 Further, in order to solve the above-mentioned problems, the present invention provides a control unit for a moving body including a body base portion and a frame with moving means that is coaxially supported by the body base portion and includes a moving means at a tip. The tilt sensor mounted on the fuselage base and the front and rear frames with moving means are each provided with a bevel gear around the same axis, and the bevel gear is connected by a bevel tooth pinion gear, The frame with the front and rear moving means is constrained at the opposite phase and the same operating angle, and the body part moves vertically downward with respect to the relative movement between the frame with the front and rear moving means and the body base part. When the upper and lower springs attached so as to increase the reaction force at the time are mounted between one or both of the front and rear frames with moving means and the body base portion, Serial tilt sensor is characterized in that for detecting the tilt angle, angular velocity of the body base with respect to the direction of gravity.
 更に、本発明は移動体の制御装置において、前記上下スプリングの初期位置を変更可能な上下アクチュエータを前記前後の移動手段の一方もしくは両方に備え、前記移動手段付きフレームの相対角度を調整可能としたことを特徴とするものである。 Furthermore, the present invention provides a control device for a moving body, wherein a vertical actuator capable of changing an initial position of the vertical spring is provided in one or both of the front and rear moving means, and the relative angle of the frame with the moving means is adjustable. It is characterized by this.
 更に、本発明は移動体の制御装置において、前記移動手段付きフレームは車輪アクチュエータを備え、前記胴体ベースの傾きと角速度を目標値に一致させるように、前記車輪アクチュエータを制御することを特徴とするものである。 Further, the present invention provides the control device for a moving body, wherein the frame with the moving means includes a wheel actuator, and controls the wheel actuator so that the inclination and the angular velocity of the body base coincide with a target value. Is.
 更に、本発明は移動体の制御装置において、前記移動手段付きフレームはステアリングアクチュエータを備え、前記胴体ベースの傾きと角速度を目標値に一致させるように、前記ステアリングアクチュエータを制御することを特徴とするものである。 Furthermore, the present invention provides the control device for a moving body, wherein the frame with the moving means includes a steering actuator, and controls the steering actuator so that the inclination and the angular velocity of the body base coincide with a target value. Is.
 更に、本発明は移動体の制御装置において、前記胴体ベース部と前記前後の移動手段付きフレームの接続軸に回転可能に胴体部を備え、さらに前記胴体部と前記胴体ベース部の初期位置から変位すると反力が増加するように備えられるピッチスプリングとで構成されることにより、前記上下スプリングと前記ピッチスプリングのバネ定数を独立に設定することにより、前記胴体の上下剛性およびピッチ回転剛性を独立に設定することを特徴とするものである。 Further, the present invention provides a control device for a moving body, wherein the body base portion and the front / rear moving means-equipped frame include a body portion that is rotatable, and is further displaced from an initial position of the body portion and the body base portion. In this case, the vertical spring and the pitch rotation rigidity of the body can be independently set by independently setting the spring constants of the vertical spring and the pitch spring. It is characterized by setting.
 更に、本発明は移動体の制御装置において、前記ピッチスプリングと前記胴体部との間に、ピッチ方向に回転動作が可能なピッチアクチュエータと、前後方向に長手方向を有し、その中央部を前記ピッチアクチュエータと接続されるピッチアームを備え、前記ピッチアームの前後両端において前記ピッチスプリングを其々懸架し、前記ピッチアクチュエータの作動角度を変化させることにより前記胴体と前記胴体ベースとの初期位置を変化させることを特徴とするものである。 Furthermore, the present invention provides a control device for a moving body, which includes a pitch actuator capable of rotating in the pitch direction between the pitch spring and the body portion, and a longitudinal direction in the front-rear direction. A pitch arm connected to the pitch actuator is provided, the pitch springs are suspended at both front and rear ends of the pitch arm, and the operating angle of the pitch actuator is changed to change the initial positions of the body and the body base. It is characterized by making it.
 本発明の移動体、及びその姿勢の安定化を行う制御装置によれば、路面状況に応じた安定性能を付与することが実現できる。 According to the moving body of the present invention and the control device that stabilizes the posture, it is possible to provide stable performance according to the road surface condition.
本発明の実施例1のロボットの全体像を示す図。The figure which shows the whole image of the robot of Example 1 of this invention. 実施例1の構造の詳細を示す図。FIG. 3 is a diagram illustrating details of the structure of the first embodiment. 実施例1の構造の詳細を示す図。FIG. 3 is a diagram illustrating details of the structure of the first embodiment. 実施施例1の詳細を説明するための断面図。Sectional drawing for demonstrating the detail of Example 1. FIG. 実施例1の動作を説明するための図。FIG. 5 is a diagram for explaining the operation of the first embodiment. 実施例1の動作を説明するための図。FIG. 5 is a diagram for explaining the operation of the first embodiment. 実施例1の動作を説明するための図。FIG. 5 is a diagram for explaining the operation of the first embodiment. 実施例1の制御ブロック図。FIG. 3 is a control block diagram of the first embodiment. 実施例1の動作を説明するための図。FIG. 5 is a diagram for explaining the operation of the first embodiment. 本発明の実施例2のロボットの全体像を示す図。The figure which shows the whole image of the robot of Example 2 of this invention. 実施例2のロボットの動作を説明する図。FIG. 6 is a diagram illustrating the operation of the robot according to the second embodiment.
以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明の実施例1のロボットの全体を示す斜視図である。
図1に示す様に、本発明のロボット1は、胴体3の下部に左右一対の移動手段の左脚6と右脚7を備え、胴体3の左右両側には、2本の脚部、左腕4と右腕5を備える。また、胴体2の上部には頭部2を備える。2本の脚部、左足6及び右脚7はロボット1の移動手段として備えられており、主に水平な地面の移動に用いられる。左腕6及び右腕5は物体の把持、人間とのコミュニケーションのためのジェスチャー等の動作に用いられる。
FIG. 1 is a perspective view showing the entire robot according to the first embodiment of the present invention.
As shown in FIG. 1, the robot 1 of the present invention includes a left leg 6 and a right leg 7 of a pair of left and right moving means at the lower part of the body 3, and two legs and a left arm on the left and right sides of the body 3. 4 and right arm 5 are provided. In addition, a head 2 is provided on the upper portion of the body 2. The two legs, the left foot 6 and the right leg 7 are provided as moving means for the robot 1 and are mainly used for moving the horizontal ground. The left arm 6 and the right arm 5 are used for operations such as gripping an object and gestures for communication with a human.
 胴体3は各部の動作を制御する制御装置と胴体3の重力方向に対する傾斜角度、角速度を検出するセンサを内部に搭載している。胴体3または頭部2は距離センサ、カメラとの周囲環境を認識するセンサを備えている。ここで、ロボット1の進行方向をX軸とし、X軸の軸回りをロール方向、X軸と直角で水平面と平行な軸をY軸、Y軸の軸回りをピッチ方向、X軸とY軸と直交する軸をZ軸、Z軸の軸回りをヨー方向と称し、以降特別な表記の無い場合はこれを用いるものとする。 The fuselage 3 is equipped with a control device that controls the operation of each part and a sensor that detects the tilt angle and angular velocity of the fuselage 3 with respect to the direction of gravity. The body 3 or the head 2 includes a distance sensor and a sensor for recognizing an environment surrounding the camera. Here, the traveling direction of the robot 1 is the X axis, the roll around the X axis, the Y axis perpendicular to the X axis and parallel to the horizontal plane, the pitch around the Y axis, the X axis and the Y axis. The axis orthogonal to the Z axis is referred to as the Z axis, and the axis around the Z axis is referred to as the yaw direction.
 図2は、実施例1のロボット1の下半身の構成を示す図で、ロボットの進行方向斜め前情報から見た斜視図である。ロボット1の足フレーム13L及び13RはそれぞれZ方向に長手方向を持つように、かつY軸方向に所定の距離を離間して構成され、それぞれの位置関係としてはZ軸に略平行にそれぞれ配置されている。足フレーム13L及び13RのZ方向下端には、X軸方向まわりに回転出力部を備えるステアリングアクチュエータ12Lおよび12Rを備える。ステアリングアクチュエータ12L及び12Rの出力部には、それぞれステアリングハブ13L及び13Rが備えられており、ステアリングハブ13Lおよび13Rはそれぞれ車輪アクチュエータ11Lと11Rを支持している。 FIG. 2 is a diagram illustrating the configuration of the lower half of the robot 1 according to the first embodiment, and is a perspective view seen from the front direction of the robot. The foot frames 13L and 13R of the robot 1 are each configured to have a longitudinal direction in the Z direction and a predetermined distance in the Y axis direction, and are arranged substantially parallel to the Z axis as their positional relationship. ing. Steering actuators 12L and 12R having rotation output portions around the X-axis direction are provided at the lower ends in the Z direction of the foot frames 13L and 13R. Steering hubs 13L and 13R are provided at the output portions of the steering actuators 12L and 12R, respectively, and the steering hubs 13L and 13R support the wheel actuators 11L and 11R, respectively.
 車輪アクチュエータ11Lと11Rは、ステアリングアクチュエータ12Lおよび12Rの出力軸方向がX軸と平行な状態を基準とするとY軸と平行な向きに回転軸を備え、回転出力部に取り付けられた車輪10L及び10Rをそれぞれロール方向に駆動可能である。尚、ここでは、内容物が見易いように車輪10L及び10Rは上部を切断して表示している。 The wheel actuators 11L and 11R are provided with wheels 10L and 10R each having a rotation shaft in a direction parallel to the Y axis when the output shaft direction of the steering actuators 12L and 12R is parallel to the X axis. Can be driven in the roll direction. Here, the wheels 10L and 10R are displayed with their upper portions cut off so that the contents can be easily seen.
 ステアリングアクチュエータ12L及び12Rと、車輪アクチュエータ11L及び11Rは、例えば電動モータ(ステッピングモータやブラシレスモータ、超音波モータ等)の様な動力源と、減速機と角度検出器(ロータリエンコ―ダやポテンショメータなど)を内蔵している。 Steering actuators 12L and 12R and wheel actuators 11L and 11R are composed of a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a reducer and an angle detector (rotary encoder, potentiometer, etc.) ) Is built-in.
 ステアリングアクチュエータ12Lおよび12Rは、後述する制御装置101からの指令値に従い、その出力部に接続されたステアリングハブ13Lおよび13Rを所定の角度に駆動する。また、脚フレーム13L及び13Rは、車輪10L及び10Rのロール方向回転に際し、最大可動範囲で接触しないように湾曲して構成されており、またステアリングアクチュエータ12Lおよび12Rの可動範囲を設定しているため、ステアリングアクチュエータ12Lおよび13Lの動作により車輪10Lおよび10Rが足フレーム13Lおよび13Rに接触することはない。 Steering actuators 12L and 12R drive steering hubs 13L and 13R connected to the output unit to a predetermined angle in accordance with a command value from control device 101 described later. Further, the leg frames 13L and 13R are configured to be curved so that they do not come into contact with each other in the maximum movable range when the wheels 10L and 10R are rotated in the roll direction, and the movable ranges of the steering actuators 12L and 12R are set. The wheels 10L and 10R do not come into contact with the foot frames 13L and 13R by the operation of the steering actuators 12L and 13L.
 変形アクチュエータ20は足フレーム13Lに出力軸方向がY軸と平行となるように取り付けられ、その出力部に変形アーム21を備える。変形アーム21は、変形アクチュエータ20Lの長手方向逆端にスプリング22を接続し、スプリング22は変形アーム21との接続の逆端を腰フレーム30に接続される。スプリング22と腰フレーム30との接続点は、軸A1の後方かつ下方に所定の距離を離間して設けられるように突起状に構成されたフレームの先端に設けられる。 The deformation actuator 20 is attached to the foot frame 13L so that the output axis direction is parallel to the Y axis, and includes a deformation arm 21 at the output portion thereof. The deformation arm 21 is connected to a spring 22 at the opposite end in the longitudinal direction of the deformation actuator 20L, and the spring 22 is connected to the waist frame 30 at the opposite end of the connection with the deformation arm 21. The connection point between the spring 22 and the waist frame 30 is provided at the end of a frame configured in a protruding shape so as to be provided at a predetermined distance behind and below the axis A1.
 腰フレーム30は足フレーム13Lおよび13Rの回転軸としても構成されており、軸A1回りにピッチ方向に足フレーム13Lおよび13Rを揺動可能に備えている。 The waist frame 30 is also configured as a rotating shaft for the foot frames 13L and 13R, and includes the foot frames 13L and 13R swingable in the pitch direction around the axis A1.
 変形アクチュエータ20は例えば電動モータ(ステッピングモータやブラシレスモータ、超音波モータ等)の様な動力源と、減速機と角度検出器(ロータリエンコ―ダやポテンショメータなど)を内蔵しており、後述する制御装置101からの指令値に従い、その出力部に接続している変形アーム21を所定の角度に駆動可能である。 The deformation actuator 20 incorporates a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a speed reducer, and an angle detector (rotary encoder, potentiometer, etc.). According to the command value from the device 101, the deformable arm 21 connected to the output unit can be driven at a predetermined angle.
 また上半身接続フレーム31は腰フレーム30にピッチ方向に遥動可能に取り付けられており、上半身接続フレーム31の上部は胴体3と接続されている。 The upper body connection frame 31 is attached to the waist frame 30 so as to be swingable in the pitch direction, and the upper part of the upper body connection frame 31 is connected to the body 3.
 図3は、上半身接続フレーム31の動作を説明するために必要な構成部品のみを図2から抜き出した図である。 FIG. 3 is a diagram in which only components necessary for explaining the operation of the upper body connection frame 31 are extracted from FIG.
 上半身接続フレーム31は、下側に開いた略コの字型の形状であり、両端を軸A1を回転中心に遥動可能に腰フレーム30と接続されている。腰フレーム30はY軸方向中央部に前後に同じ長さの突起状のフレームを備えており、その突起状のフレームの先端にピッチスプリング32および33を備え、ピッチスプリング32および33の腰フレーム30との接続の逆端は、上半身接続フレームのY軸方向中央に前後に設けられた前後に同じ長さの突起状のフレームの先端に取り付けられる。ピッチスプリング32および33は等しいバネ定数を備え、所定の初張力を持って取り付けられており、上半身接続フレーム31は特段の力が入力されない場合はピッチスプリング32および33の長さが等しくなる位置(初期状態)で停止している。また、ここでは図示していないがピッチスプリング32またはピッチスプリング33と並列に、またはどちらか一方と並列にダンパを備えることにより、上半身接続フレーム31の動作を減衰し、前述の初期状態への復帰時間を短縮することもできる。 The upper body connection frame 31 has a substantially U-shape that is open on the lower side, and is connected to the waist frame 30 so that both ends of the upper body connection frame 31 can swing about the axis A1. The waist frame 30 is provided with a protruding frame of the same length in the front and rear at the center in the Y-axis direction, pitch springs 32 and 33 are provided at the ends of the protruding frame, and the waist frame 30 of the pitch springs 32 and 33. The opposite end of the connection to the upper body connection frame is attached to the front end of a protruding frame of the same length before and after the front and rear provided in the center in the Y-axis direction of the upper body connection frame. The pitch springs 32 and 33 have equal spring constants and are attached with a predetermined initial tension, and the upper body connection frame 31 has a position where the lengths of the pitch springs 32 and 33 are equal when no special force is input ( (In the initial state). Although not shown here, by providing a damper in parallel with the pitch spring 32 or the pitch spring 33 or in parallel with either one, the operation of the upper body connection frame 31 is attenuated and the initial state is restored. Time can also be shortened.
 図4は、実施例1のロボット1の脚部の根元の接続の構成を示す断面図である。図2における軸A1を通りYZ平面で切った場合の断面図である。 FIG. 4 is a cross-sectional view illustrating a configuration of a base connection of a leg portion of the robot 1 according to the first embodiment. It is sectional drawing at the time of cutting along a YZ plane through the axis | shaft A1 in FIG.
 腰フレーム30は軸A1に沿って長手方向を左右方向に備え、脚フレーム14Lおよび14Rの回転軸として構成されている。足フレーム14Lは内側の側面(ロボットの中央側)にサイドギヤ40Lを備えている。サイドギヤ40Lは足フレーム14Lと同様に腰フレーム30を軸として、脚フレーム14Lと一体となって構成され、ピッチ方向に遥動可能である傘歯ギヤである。足フレーム14Rは内側の側面にサイドギヤ40Rを備えており、サイドギヤ40Rは足フレーム14Rと同様に腰フレーム30を軸として、脚フレーム14Rと一体となって構成され、ピッチ方向に遥動可能である傘歯ギヤである。腰フレーム30はサイドギヤ40Lおよびサイドギヤ40Lの中点を通る平面上にあり、かつ軸A1と一点で交わる軸A2回りに回転可能にピニオンギヤ42および43を備えるような軸形状の構造を備えており、ピニオンギヤ42および43の形状は傘歯ギヤであり、ピニオンギヤ42はその左右でそれぞれサイドギヤ40Rおよび40Lと噛み合っており、ピニオンギヤ43はピニオンギヤ42と同様にその左右でそれぞれ40Rおよび40Lと噛み合っている。サイドギヤ40Lと40Rは同じ歯数、同じモジュールであり、ピニオンギヤ42,43も同じ歯数、同じモジュールで構成されている。サイドギヤ40Lとサイドギヤ40Rは逆位相かつ同作動角度となるように拘束され運動を行う。 The waist frame 30 has a longitudinal direction in the left-right direction along the axis A1, and is configured as a rotating shaft of the leg frames 14L and 14R. The foot frame 14L includes a side gear 40L on the inner side surface (the center side of the robot). As with the foot frame 14L, the side gear 40L is a bevel gear that is configured integrally with the leg frame 14L around the waist frame 30 and can swing in the pitch direction. The foot frame 14R has a side gear 40R on the inner side surface, and the side gear 40R is configured integrally with the leg frame 14R with the waist frame 30 as an axis, like the foot frame 14R, and can swing in the pitch direction. It is a bevel gear. The waist frame 30 is on a plane passing through the midpoints of the side gear 40L and the side gear 40L, and has a shaft-shaped structure including pinion gears 42 and 43 so as to be rotatable around an axis A2 that intersects the axis A1 at one point. The shape of the pinion gears 42 and 43 is a bevel gear, and the pinion gear 42 meshes with the side gears 40R and 40L on the left and right, respectively, and the pinion gear 43 meshes with the 40R and 40L on the left and right, respectively, like the pinion gear 42. The side gears 40L and 40R have the same number of teeth and the same module, and the pinion gears 42 and 43 also have the same number of teeth and the same module. The side gear 40L and the side gear 40R are restrained to move in the opposite phase and the same operating angle.
 図5は図4で説明した差動ギヤによる逆位相・同作動角度の運動を説明している。 FIG. 5 illustrates the movement of the reverse phase and the same operating angle by the differential gear described in FIG.
 足フレーム14Lおよび足フレーム14Rは回転中心において差動ギヤで互いに拘束されているため、図5(a)のように足フレーム14Lが進行方向前側に動作した場合は足フレーム14Rは後ろ側に足フレーム14Lと同じ動作角度だけ動作し、また逆に、図5(b)のように足フレーム14Lが進行方向後ろ側に動作した場合は足フレーム14Rは前側に足フレーム14Lと同じ動作角度だけ動作する。 Since the foot frame 14L and the foot frame 14R are constrained to each other by a differential gear at the center of rotation, when the foot frame 14L moves forward in the traveling direction as shown in FIG. When the foot frame 14L moves backward in the direction of travel as shown in Fig. 5 (b), the foot frame 14R moves forward and the same operating angle as the foot frame 14L. To do.
 図6は足フレーム14Lおよび14Rが変形アクチュエータ20により動作する様子を示している。 FIG. 6 shows how the foot frames 14L and 14R are operated by the deformation actuator 20.
 変形アクチュエータ20の出力部に取り付けられた変形アーム21は、スプリング22を介して腰フレーム30と接続されているため、図6(a)の変形アーム21の状態から図6(b)の状態へ変形アーム21の角度を動作させると足フレーム14Lは進行方向前側に動作する。またこのとき、差動ギヤの拘束により足フレーム14Rは後側に動作する。このように、変形アクチュエータ20の動作によって、足フレーム14Lおよび14Rは差動動作が可能である。 Since the deformable arm 21 attached to the output portion of the deformable actuator 20 is connected to the waist frame 30 via the spring 22, the state of the deformable arm 21 in FIG. 6 (a) is changed to the state in FIG. 6 (b). When the angle of the deforming arm 21 is moved, the foot frame 14L moves forward in the traveling direction. At this time, the leg frame 14R moves rearward due to the restriction of the differential gear. In this way, the foot frames 14L and 14R can be differentially operated by the operation of the deformation actuator 20.
 図7は実施例1のロボットの走行形態を示している。 FIG. 7 shows the traveling mode of the robot of the first embodiment.
 本発明のロボット1は、移動速度に応じて2つの走行モードを備えており、図7(a)は低速走行時に用いる平行車輪モード、図7(b)は高速走行時に用いる直列車輪モードである。図7(a)の平行車輪モードの姿勢は、フットプリント(対地投影面積)が小さいため、主に混雑した状況下や、人ごみの中等で障害物に衝突せずに移動する要求がある状況で用いる。図7(b)の直列車輪モードは、左足6と右足7を互い違いに前後に開いた姿勢であり、比較的高速移動時にとる姿勢である。平行車輪モードから直列車輪モードへの変形は、図6で説明したように変形アクチュエータ20の動作によって行う。 The robot 1 of the present invention has two traveling modes according to the moving speed. FIG. 7A shows a parallel wheel mode used during low-speed traveling, and FIG. 7B shows a series wheel mode used during high-speed traveling. . The posture of the parallel wheel mode in FIG. 7 (a) has a small footprint (ground projection area), so it is mainly in a crowded situation or in a situation where there is a demand to move without colliding with an obstacle in a crowd. Use. The in-line wheel mode in FIG. 7B is a posture in which the left foot 6 and the right foot 7 are alternately opened back and forth, and is a posture that is taken at a relatively high speed. The deformation from the parallel wheel mode to the serial wheel mode is performed by the operation of the deformation actuator 20 as described in FIG.
 図8は制御ブロック図を示している。 FIG. 8 shows a control block diagram.
 傾斜センサ100は、胴体3の内部に搭載され、胴体3の重力方向に対する傾斜角度、角速度を検出し、制御装置101は、傾斜センサ100が検出した状態を基に、胴体3の傾きと角速度を目標値に一致させるように、車輪アクチュエータ11L及び11R,ステアリングアクチュエータ12L及び12Rを適切に制御する。具体的には、平行車輪モード時(図7(a))には、ピッチ方向の倒立振子を維持するように、車輪アクチュエータ11Lおよび11Rを適切に制御する。また、直列車輪モード時(図7(b))では、ロール方向に対して不安定であるので、車輪アクチュエータ11Lおよび11Rの速度と傾斜センサ100からのロール角度・角速度情報をもとにステアリングアクチュエータ12Lおよび12Rを適切に制御し、車輪10Lおよび10Rの進行方向を変化させ姿勢の安定化を行う。 The tilt sensor 100 is mounted inside the fuselage 3, and detects the tilt angle and angular velocity of the fuselage 3 with respect to the direction of gravity. The control device 101 determines the tilt and angular velocity of the fuselage 3 based on the state detected by the tilt sensor 100. The wheel actuators 11L and 11R and the steering actuators 12L and 12R are appropriately controlled so as to match the target values. Specifically, in the parallel wheel mode (FIG. 7A), the wheel actuators 11L and 11R are appropriately controlled so as to maintain the inverted pendulum in the pitch direction. Further, in the in-line wheel mode (FIG. 7B), it is unstable with respect to the roll direction, so the steering actuator is based on the speed of the wheel actuators 11L and 11R and the roll angle / angular speed information from the tilt sensor 100. 12L and 12R are controlled appropriately, and the traveling direction of the wheels 10L and 10R is changed to stabilize the posture.
 図9はロボット1が直列車輪モード時に路面からの衝撃を緩和している状態を示している。 FIG. 9 shows a state where the robot 1 is mitigating the impact from the road surface in the serial wheel mode.
 ロボット1が路面を走行すると、路面の小さな凹凸やうねり等の影響により、路面から車輪10Lまたは11L、もしくはその両方に断続的に上方向の衝撃力が働く。車輪10Lまたは11L、もしくはその両方に入力された衝撃力は、軸A1を中心とした足フレーム14Lおよび足フレーム14Rの回転運動に変換され、前述の通り足フレーム14L及び足フレーム14Rは逆位相かつ同作動角度に拘束されているため、図9(b)のように腰フレーム30はZ軸に沿って動作する。また、脚フレーム14Lの動作に伴い、スプリング22は引張りの力を受け、所定のストロ―クを経て元の位置に復帰する。また、ここでは図示していないが、スプリング22に並列にダンパを備えることにより、より速い振動の減衰を行うことが可能である。 When the robot 1 travels on the road surface, an upward impact force works intermittently from the road surface to the wheel 10L or 11L or both due to the influence of small unevenness or undulation on the road surface. The impact force input to the wheels 10L and / or 11L is converted into the rotational motion of the foot frame 14L and the foot frame 14R around the axis A1, and the foot frame 14L and the foot frame 14R are in antiphase and as described above. Since it is constrained to the same operating angle, the waist frame 30 moves along the Z-axis as shown in FIG. 9B. As the leg frame 14L moves, the spring 22 receives a tensile force and returns to its original position through a predetermined stroke. Although not shown here, by providing a damper in parallel with the spring 22, it is possible to perform faster vibration damping.
 このように、直列車輪モード時にはスプリング22は路面からの衝撃力を緩和する上下方向のサスペンションのバネとして働き、ロボット1の姿勢を安定化させる。また、スプリング22のバネ定数を変化させることによりロボット1の上下方向の安定化の性能を変化させることが可能であり、例えば、スプリング22の代わりにロッド等により剛性をより強くして接続し、変形アクチュエータ20のコンプライアンスにより衝撃力を緩和するよう設定することもできる。 Thus, in the in-line wheel mode, the spring 22 acts as a spring for the vertical suspension that reduces the impact force from the road surface, and stabilizes the posture of the robot 1. In addition, it is possible to change the vertical stabilization performance of the robot 1 by changing the spring constant of the spring 22. For example, instead of the spring 22, a rod or the like is used to increase the rigidity of the connection. It can also be set so as to reduce the impact force by the compliance of the deformation actuator 20.
 図9(c)は車輪10Lに特に大きい路面からの衝撃力が加わった時を示している。
前述の通り上下方向のサスペンションにより上下方向の衝撃力は緩和されるが、図9(c)のように特にピッチ方向の回転を起こすような路面の突起の場合、図3で説明したように上半身接続フレーム31と腰フレーム30の間に介装されるピッチスプリング32および33が腰フレーム30のピッチ回転を緩和し上半身接続フレーム31に伝達することで、胴体3のピッチ方向の挙動を大きく変化させることがない。
FIG. 9 (c) shows a case where a particularly large impact force from the road surface is applied to the wheel 10L.
As described above, the impact force in the vertical direction is alleviated by the suspension in the vertical direction, but in the case of a road surface protrusion that causes rotation in the pitch direction as shown in FIG. Pitch springs 32 and 33 interposed between the connection frame 31 and the waist frame 30 relax the pitch rotation of the waist frame 30 and transmit it to the upper body connection frame 31, thereby greatly changing the behavior of the body 3 in the pitch direction. There is nothing.
 このようにピッチスプリング32および33はピッチ方向の運動を緩和するサスペンションのバネとして働き、ロボット1のピッチ方向の姿勢を安定化させる。また、ピッチスプリング32および33のバネ定数を変化させることによりロボット1のピッチ方向の安定化の性能を変化させることができ、例えば比較的整地された路面であって、大きなうねりのみが存在する様な路面の場合は、ピッチスプリング32および33のバネ定数を大きくし、もしくはバネの代わりにロッドの様な剛体で接続することによりピッチ方向への剛性を高めることができる。 Thus, the pitch springs 32 and 33 act as suspension springs that relax the movement in the pitch direction, and stabilize the posture of the robot 1 in the pitch direction. Further, by changing the spring constants of the pitch springs 32 and 33, the performance of stabilizing the pitch direction of the robot 1 can be changed. For example, the road surface is relatively leveled and only large undulations exist. In the case of a smooth road surface, the stiffness in the pitch direction can be increased by increasing the spring constants of the pitch springs 32 and 33, or by connecting them with a rigid body such as a rod instead of the springs.
 また、ピッチスプリング32および33のバネ定数を路面の粗さに対して適切に選択することにより、加速や減速の際にロボットの上半身が慣性力によりピッチ方向に回転し、挙動が不安定となることを回避することができる。 In addition, by appropriately selecting the spring constants of the pitch springs 32 and 33 with respect to the roughness of the road surface, the upper body of the robot rotates in the pitch direction due to inertial force during acceleration and deceleration, and the behavior becomes unstable. You can avoid that.
 以上のような構造とすることで、ロボットの上下方向の安定性を決定するスプリング22のバネ定数およびピッチ方向の安定性を決定するピッチスプリング32と33を独立に選択することが可能になり、路面状況や動作状況に応じた上下方向、ピッチ方向の安定性能を備えることができる。 With the structure as described above, it becomes possible to independently select the spring constant of the spring 22 that determines the vertical stability of the robot and the pitch springs 32 and 33 that determine the stability in the pitch direction. It is possible to provide stable performance in the vertical direction and the pitch direction according to road surface conditions and operation conditions.
 図10は、本発明の実施例2を説明している。 FIG. 10 illustrates Example 2 of the present invention.
 胴体3より上部は実施例1と同様のため、省略して表示している。実施例1では、ピッチスプリング32および33は腰フレーム30と上半身接続フレーム31の間を繋ぐように搭載されていたが、実施例2では、上半身接続フレーム31に出力軸をピッチ軸回りに備えるピッチアクチュエータ51を備え、ピッチアクチュエータ51の出力部に、X方向に長手方向を備え長手方向中央をピッチアクチュエータ51と接続するピッチアーム52の前後方向両端にピッチスプリング32及び33の腰フレーム30との接続の逆端を接続することにより構成される。ピッチアクチュエータ51は、例えば電動モータ(ステッピングモータやブラシレスモータ、超音波モータ等)の様な動力源と、減速機と角度検出器(ロータリエンコ―ダやポテンショメータなど)を内蔵している。 Since the upper part of the body 3 is the same as that of the first embodiment, it is omitted. In the first embodiment, the pitch springs 32 and 33 are mounted so as to connect the waist frame 30 and the upper body connection frame 31. In the second embodiment, however, the upper body connection frame 31 has an output shaft around the pitch axis. Connected to the waist frame 30 of the pitch springs 32 and 33 at both ends in the front-rear direction of the pitch arm 52 having the longitudinal direction in the X direction and connecting the longitudinal center to the pitch actuator 51 at the output part of the pitch actuator 51 It is comprised by connecting the reverse end of. The pitch actuator 51 incorporates a power source such as an electric motor (stepping motor, brushless motor, ultrasonic motor, etc.), a reduction gear, and an angle detector (rotary encoder, potentiometer, etc.).
 実施例1では、腰フレーム30と上半身接続フレーム31の間の相対運動は、外乱によって起こる運動であったが、この実施例2ではピッチアクチュエータ51の運動によっても相対運動を実現できる。例えば、実施例1では路面が進行方向に対して傾きを持っていると、上半身はその傾きをキャンセルできないが、図11のように実施例2ではピッチアクチュエータ51を所定の角度だけ駆動することにより上半身を鉛直に保つことができる。 In the first embodiment, the relative motion between the waist frame 30 and the upper body connection frame 31 is a motion caused by a disturbance, but in the second embodiment, the relative motion can also be realized by the motion of the pitch actuator 51. For example, in the first embodiment, if the road surface has an inclination with respect to the traveling direction, the upper body cannot cancel the inclination, but in the second embodiment, as shown in FIG. 11, the pitch actuator 51 is driven by a predetermined angle. The upper body can be kept vertical.
本発明によれば、路面状況に応じた安定性能を備えた移動体、及びその姿勢の安定化を目的とした制御装置を提供することが実現できる。 ADVANTAGE OF THE INVENTION According to this invention, it can implement | achieve providing the moving body provided with the stable performance according to the road surface condition, and the control apparatus aiming at the stabilization of the attitude | position.
20・・・変形アクチュエータ
21・・・変形アーム
22・・・スプリング
30・・・腰フレーム
31・・・上半身接続フレーム
32・・・ピッチスプリング
33・・・ピッチスプリング
40L・・・サイドギヤ
40R・・・サイドギヤ
42・・・ピニオンギヤ
43・・・ピニオンギヤ
51・・・ピッチアクチュエータ
52・・・ピッチアーム
20 ... Deformation actuator
21 ... Deformation arm
22 ... Spring
30 ... Waist frame
31 ... Upper body connection frame
32 ... Pitch spring
33 ... Pitch spring
40L ・ ・ ・ Side gear
40R ・ ・ ・ Side gear
42 ・ ・ ・ Pinion gear
43 ・ ・ ・ Pinion gear
51 ・ ・ ・ Pitch actuator
52 ... Pitch arm

Claims (12)

  1. 胴体ベース部と、
    前記胴体ベース部に同軸に支持され先端に移動手段を備えた移動手段付きフレームを前後に備えた移動体において、
    前記前後の移動手段付きフレームはそれぞれ向い合せに傘歯ギヤを前記同軸まわりに備え、
    前記傘歯ギヤは傘歯状のピニオンギヤによって連結されることにより、前記前後の移動手段付きフレームは逆位相かつ同作動角度にて拘束し、
    前記前後の移動手段付きフレームと前記胴体ベース部との間の相対運動に対して、前記胴体部が鉛直方向下向きに移動する際に反力が増加するように取り付けられる上下スプリングを前記前後の移動手段付きフレームの一方もしくは両方と前記胴体ベース部との間に搭載することを特徴とする移動体。
    The torso base,
    In a movable body provided front and rear with a frame with moving means supported coaxially on the body base portion and provided with moving means at the tip,
    The front and rear frames with moving means are each provided with a bevel gear around the same axis,
    The bevel gear is connected by a bevel-shaped pinion gear so that the front and rear frames with moving means are constrained at opposite phases and the same operating angle,
    The front and rear springs attached so that the reaction force increases when the body part moves downward in the vertical direction with respect to the relative movement between the frame with the front and rear moving means and the body base part. A moving body mounted between one or both of the frames with means and the body base portion.
  2. 請求項1の移動体において、
    前記上下スプリングの初期位置を変更可能な上下アクチュエータを前記前後の移動手段の一方もしくは両方に備え、前記移動手段付きフレームの相対角度を調整可能としたことを特徴とする移動体。
    The mobile body according to claim 1,
    A moving body characterized in that a vertical actuator capable of changing an initial position of the vertical spring is provided in one or both of the front and rear moving means, and the relative angle of the frame with the moving means can be adjusted.
  3. 請求項1の移動体において、
    前記移動手段付きフレームは車輪アクチュエータを備え、
    前記胴体ベースの傾きと角速度を目標値に一致させるように、前記車輪アクチュエータを制御することを特徴とする移動体。
    The mobile body according to claim 1,
    The frame with moving means comprises a wheel actuator;
    The moving body characterized in that the wheel actuator is controlled so that the inclination and angular velocity of the body base coincide with a target value.
  4. 請求項3の移動体の制御装置において、
    前記移動手段付きフレームはステアリングアクチュエータを備え、
    前記胴体ベースの傾きと角速度を目標値に一致させるように、前記ステアリングアクチュエータを制御することを特徴とする移動体。
    In the control apparatus of the moving body of Claim 3,
    The frame with moving means comprises a steering actuator;
    A moving body characterized in that the steering actuator is controlled so that an inclination and an angular velocity of the body base coincide with a target value.
  5. 請求項1乃至請求項4の移動体において、
    前記胴体ベース部と前記前後の移動手段付きフレームの接続軸に回転可能に胴体部を備え、さらに前記胴体部と前記胴体ベース部の初期位置から変位すると反力が増加するように備えられるピッチスプリングとで構成されることにより、前記上下スプリングと前記ピッチスプリングのバネ定数を独立に設定することにより、前記胴体の上下剛性およびピッチ回転剛性を独立に設定することを特徴とする移動体。
    The movable body according to claim 1 to claim 4,
    A pitch spring provided on a connecting shaft of the body base part and the front and rear frame with moving means so as to be rotatable, and further provided such that a reaction force increases when displaced from an initial position of the body part and the body base part. By configuring the spring constants of the upper and lower springs and the pitch spring independently, the moving body is characterized in that the vertical rigidity and the pitch rotation rigidity of the body are independently set.
  6. 請求項5の移動体において、
    前記ピッチスプリングと前記胴体部との間に、ピッチ方向に回転動作が可能なピッチアクチュエータと、前後方向に長手方向を有し、その中央部を前記ピッチアクチュエータと接続されるピッチアームを備え、
    前記ピッチアームの前後両端において前記ピッチスプリングを其々懸架し、前記ピッチアクチュエータの作動角度を変化させることにより前記胴体と前記胴体ベースとの初期位置を変化させることを特徴とする移動体。
    The mobile body according to claim 5,
    A pitch actuator capable of rotating in the pitch direction between the pitch spring and the body portion, and a pitch arm having a longitudinal direction in the front-rear direction and connected to the pitch actuator at the center,
    A moving body, wherein the pitch spring is suspended at both front and rear ends of the pitch arm, and the initial position of the body and the body base is changed by changing the operating angle of the pitch actuator.
  7. 胴体ベース部と、
    前記胴体ベース部に同軸に支持され先端に移動手段を備えた移動手段付きフレームを前後に備えた移動体の制御装置において、
    前記胴体ベースに搭載された傾斜センサと、
    前記前後の移動手段付きフレームはそれぞれ向い合せに傘歯ギヤを前記同軸まわりに備え、
    前記傘歯ギヤは傘歯状のピニオンギヤによって連結されることにより、前記前後の移動手段付きフレームは逆位相かつ同作動角度にて拘束し、
    前記前後の移動手段付きフレームと前記胴体ベース部との間の相対運動に対して、前記胴体部が鉛直方向下向きに移動する際に反力が増加するように取り付けられる上下スプリングを前記前後の移動手段付きフレームの一方もしくは両方と前記胴体ベース部との間に搭載し、
    前記傾斜センサは胴体ベースの重力方向に対する傾斜角度、角速度を検出することを特徴とする移動体の制御装置。
    The torso base,
    In the control device for a moving body including a frame with moving means supported coaxially on the body base portion and provided with moving means at the front end,
    A tilt sensor mounted on the fuselage base;
    The front and rear frames with moving means are each provided with a bevel gear around the same axis,
    The bevel gear is connected by a bevel-shaped pinion gear so that the front and rear frames with moving means are constrained at opposite phases and the same operating angle,
    The front and rear springs attached so that the reaction force increases when the body part moves downward in the vertical direction with respect to the relative movement between the frame with the front and rear moving means and the body base part. It is mounted between one or both of the frames with means and the body base part,
    The apparatus according to claim 1, wherein the inclination sensor detects an inclination angle and an angular velocity with respect to a gravity direction of the body base.
  8. 請求項7の移動体の制御装置において、
    前記上下スプリングの初期位置を変更可能な上下アクチュエータを前記前後の移動手段の一方もしくは両方に備え、前記移動手段付きフレームの相対角度を調整可能としたことを特徴とする移動体の制御装置。
    In the moving body control device according to claim 7,
    An apparatus for controlling a moving body, comprising: an upper / lower actuator capable of changing an initial position of the upper / lower springs in one or both of the front / rear moving means, wherein the relative angle of the frame with the moving means can be adjusted.
  9. 請求項7の移動体の制御装置において、
    前記移動手段付きフレームは車輪アクチュエータを備え、
    前記胴体ベースの傾きと角速度を目標値に一致させるように、前記車輪アクチュエータを制御することを特徴とする移動体の制御装置。
    In the moving body control device according to claim 7,
    The frame with moving means comprises a wheel actuator;
    A control device for a moving body, wherein the wheel actuator is controlled so that a tilt and an angular velocity of the body base coincide with a target value.
  10. 請求項9の移動体の制御装置において、
    前記移動手段付きフレームはステアリングアクチュエータを備え、
    前記胴体ベースの傾きと角速度を目標値に一致させるように、前記ステアリングアクチュエータを制御することを特徴とする移動体の制御装置。
    In the moving body control device according to claim 9,
    The frame with moving means comprises a steering actuator;
    A control device for a moving body, wherein the steering actuator is controlled so that an inclination and an angular velocity of the body base coincide with a target value.
  11. 請求項7乃至請求項10の移動体の制御装置において、
    前記胴体ベース部と前記前後の移動手段付きフレームの接続軸に回転可能に胴体部を備え、さらに前記胴体部と前記胴体ベース部の初期位置から変位すると反力が増加するように備えられるピッチスプリングとで構成されることにより、前記上下スプリングと前記ピッチスプリングのバネ定数を独立に設定することにより、前記胴体の上下剛性およびピッチ回転剛性を独立に設定することを特徴とする移動体の制御装置。
    In the control apparatus of the moving body of Claim 7 thru | or 10,
    A pitch spring provided on a connecting shaft of the body base part and the front and rear frame with moving means so as to be rotatable, and further provided such that a reaction force increases when displaced from an initial position of the body part and the body base part. By configuring the spring constants of the upper and lower springs and the pitch spring independently, the vertical stiffness and the pitch rotation stiffness of the body are independently set. .
  12. 請求項11の移動体の制御装置において、
    前記ピッチスプリングと前記胴体部との間に、ピッチ方向に回転動作が可能なピッチアクチュエータと、前後方向に長手方向を有し、その中央部を前記ピッチアクチュエータと接続されるピッチアームを備え、
    前記ピッチアームの前後両端において前記ピッチスプリングを其々懸架し、前記ピッチアクチュエータの作動角度を変化させることにより前記胴体と前記胴体ベースとの初期位置を変化させることを特徴とする移動体の制御装置。
    In the control apparatus of the mobile body of Claim 11,
    A pitch actuator capable of rotating in the pitch direction between the pitch spring and the body portion, and a pitch arm having a longitudinal direction in the front-rear direction and connected to the pitch actuator at the center,
    The moving body control device characterized in that the pitch spring is suspended at both front and rear ends of the pitch arm, and the initial position of the body and the body base is changed by changing the operating angle of the pitch actuator. .
PCT/JP2014/059070 2014-03-28 2014-03-28 Moving body and control device for same WO2015145710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059070 WO2015145710A1 (en) 2014-03-28 2014-03-28 Moving body and control device for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059070 WO2015145710A1 (en) 2014-03-28 2014-03-28 Moving body and control device for same

Publications (1)

Publication Number Publication Date
WO2015145710A1 true WO2015145710A1 (en) 2015-10-01

Family

ID=54194299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059070 WO2015145710A1 (en) 2014-03-28 2014-03-28 Moving body and control device for same

Country Status (1)

Country Link
WO (1) WO2015145710A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114669A (en) * 2016-07-29 2016-11-16 中国科学院合肥物质科学研究院 A kind of swinging arm wheeled type unmanned ground vehicle
WO2018205744A1 (en) * 2017-05-12 2018-11-15 山东百扬和信息科技有限公司 Coal mine transporting machine
CN112118996A (en) * 2018-05-16 2020-12-22 三菱电机株式会社 Mobile trolley
CN113895537A (en) * 2021-10-15 2022-01-07 山东科技大学 Wheel-foot type obstacle crossing robot
CN114408015A (en) * 2021-12-21 2022-04-29 重庆特斯联智慧科技股份有限公司 Steering device of logistics robot and control method thereof
US11603149B2 (en) * 2019-01-04 2023-03-14 Hyundai Motor Company Vehicles and systems and components thereof
FR3126958A1 (en) 2021-09-16 2023-03-17 Horus Marie Siddharta 2030 High mobility compact land vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258875A (en) * 1986-04-30 1987-11-11 Daihatsu Motor Co Ltd Automobile
JP2001070357A (en) * 1999-07-15 2001-03-21 Daimlerchrysler Ag Wheel suspension system for automobile
JP2001506947A (en) * 1996-07-09 2001-05-29 グリム,フリードリッヒ Single-rail motorcycle
JP2001260973A (en) * 2000-03-13 2001-09-26 Enrique Maximo Aparicio Leonardo Two-direction input suspension system using general spring/shock absorber device
JP2004306733A (en) * 2003-04-04 2004-11-04 Hitachi Ltd Vehicle suspension system, vehicle body attitude control method and its system
JP2005288561A (en) * 2004-03-31 2005-10-20 Advanced Telecommunication Research Institute International Humanoid robot
JP2009090404A (en) * 2007-10-05 2009-04-30 Ihi Corp Mobile robot attitude control device and method
JP2009154256A (en) * 2007-12-27 2009-07-16 Yaskawa Electric Corp Transfer device comprising leg with wheel
JP2009220257A (en) * 2008-03-19 2009-10-01 Hitachi Ltd Leg-wheel mobile robot
US20100108423A1 (en) * 2008-11-04 2010-05-06 Performance Concepts, Inc. Self-propelled vehicle and articulated steerable mobile chassis thereof
JP2011045973A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Robot
WO2014076837A1 (en) * 2012-11-19 2014-05-22 株式会社日立製作所 Mobile body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258875A (en) * 1986-04-30 1987-11-11 Daihatsu Motor Co Ltd Automobile
JP2001506947A (en) * 1996-07-09 2001-05-29 グリム,フリードリッヒ Single-rail motorcycle
JP2001070357A (en) * 1999-07-15 2001-03-21 Daimlerchrysler Ag Wheel suspension system for automobile
JP2001260973A (en) * 2000-03-13 2001-09-26 Enrique Maximo Aparicio Leonardo Two-direction input suspension system using general spring/shock absorber device
JP2004306733A (en) * 2003-04-04 2004-11-04 Hitachi Ltd Vehicle suspension system, vehicle body attitude control method and its system
JP2005288561A (en) * 2004-03-31 2005-10-20 Advanced Telecommunication Research Institute International Humanoid robot
JP2009090404A (en) * 2007-10-05 2009-04-30 Ihi Corp Mobile robot attitude control device and method
JP2009154256A (en) * 2007-12-27 2009-07-16 Yaskawa Electric Corp Transfer device comprising leg with wheel
JP2009220257A (en) * 2008-03-19 2009-10-01 Hitachi Ltd Leg-wheel mobile robot
US20100108423A1 (en) * 2008-11-04 2010-05-06 Performance Concepts, Inc. Self-propelled vehicle and articulated steerable mobile chassis thereof
JP2011045973A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Robot
WO2014076837A1 (en) * 2012-11-19 2014-05-22 株式会社日立製作所 Mobile body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114669A (en) * 2016-07-29 2016-11-16 中国科学院合肥物质科学研究院 A kind of swinging arm wheeled type unmanned ground vehicle
CN106114669B (en) * 2016-07-29 2018-11-20 中国科学院合肥物质科学研究院 A kind of swinging arm wheeled type unmanned ground vehicle
WO2018205744A1 (en) * 2017-05-12 2018-11-15 山东百扬和信息科技有限公司 Coal mine transporting machine
CN112118996A (en) * 2018-05-16 2020-12-22 三菱电机株式会社 Mobile trolley
US11603149B2 (en) * 2019-01-04 2023-03-14 Hyundai Motor Company Vehicles and systems and components thereof
FR3126958A1 (en) 2021-09-16 2023-03-17 Horus Marie Siddharta 2030 High mobility compact land vehicle
CN113895537A (en) * 2021-10-15 2022-01-07 山东科技大学 Wheel-foot type obstacle crossing robot
CN113895537B (en) * 2021-10-15 2022-10-14 山东科技大学 Wheel-foot type obstacle crossing robot
CN114408015A (en) * 2021-12-21 2022-04-29 重庆特斯联智慧科技股份有限公司 Steering device of logistics robot and control method thereof
CN114408015B (en) * 2021-12-21 2024-04-09 重庆特斯联智慧科技股份有限公司 Steering device of logistics robot and control method thereof

Similar Documents

Publication Publication Date Title
WO2015145710A1 (en) Moving body and control device for same
JP4924179B2 (en) Inverted wheel type moving body and control method thereof
JP4735598B2 (en) Inverted wheel type moving body and control method thereof
JP4470988B2 (en) Inverted wheel type moving body and control method thereof
JP4867823B2 (en) Inverted wheel type moving body and control method thereof
JP5923621B2 (en) Moving body
JP5539040B2 (en) Legged mobile robot
JP5468973B2 (en) Legged mobile robot
JP5322562B2 (en) Moving trolley
WO2013088500A1 (en) Mobile body
WO2014141356A1 (en) Moving body
JP2015070981A (en) Obstacle avoidable leading robot
CN109018119A (en) The variable tracker action of driving mode
JP6902728B2 (en) Mobile
WO2022059714A1 (en) Two-wheeled vehicle
JP6493342B2 (en) Traveling device
JP2009101898A (en) Inverted wheel type moving body and control method thereof
JP6210852B2 (en) Saddle riding
JP2006341690A (en) Three-wheeled moving vehicle
JP2006334729A (en) Inverted pendulum type carriage robot and its controlling method
JP6669002B2 (en) Traveling device
JP5429954B2 (en) Wheel moving device and its traveling direction control method
JP4752542B2 (en) vehicle
JP5337650B2 (en) Inverted pendulum type moving body
JP4798382B2 (en) Traveling vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP