WO2015092913A1 - Two-wheeled mobile object, and method of controlling same - Google Patents

Two-wheeled mobile object, and method of controlling same Download PDF

Info

Publication number
WO2015092913A1
WO2015092913A1 PCT/JP2013/084220 JP2013084220W WO2015092913A1 WO 2015092913 A1 WO2015092913 A1 WO 2015092913A1 JP 2013084220 W JP2013084220 W JP 2013084220W WO 2015092913 A1 WO2015092913 A1 WO 2015092913A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
control
wheels
mode
feedback gain
Prior art date
Application number
PCT/JP2013/084220
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 中村
梓 網野
泰士 上田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/084220 priority Critical patent/WO2015092913A1/en
Publication of WO2015092913A1 publication Critical patent/WO2015092913A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider

Definitions

  • the present invention relates to a two-wheeled vehicle and a control method thereof.
  • a two-wheel moving body that has two wheels and moves by rotating each wheel is known.
  • the two-wheel moving body has an advantage that the area when viewed in plan can be reduced as compared with a moving body including three or more wheels.
  • Patent Document 1 describes a standing two-wheeled parallel two-wheeled vehicle on which a person rides.
  • the parallel two-wheeled vehicle with a pedal is configured to be switchable between a parallel two-wheel mode in which axles of two wheels are arranged on the same straight line and a bicycle mode in which two wheels are shifted and arranged like a bicycle.
  • Patent Document 2 describes a control method for stabilizing the movement in the parallel two-wheel mode described above. That is, Patent Document 2 describes that the wheel driving motor is controlled based on the inclination angle of the vehicle body detected by the angle detecting means to stabilize the attitude of the coaxial two-wheeled vehicle.
  • Patent Document 3 describes a two-wheel moving body that stabilizes the posture by adjusting the degree of opening of two legs, the steering angle of wheels, and the like.
  • the parallel two-wheel mode described in Patent Documents 1 and 2 is effective during low-speed movement, but when one wheel contacts an obstacle (for example, a step) during high-speed movement, a large overturning force is generated. There is a problem that it is easy to fall.
  • the bicycle mode described in Patent Documents 1 and 2 is effective during high-speed movement, there is a problem in that it cannot be stabilized by steering in a stopped state and is likely to fall over.
  • Patent Document 3 proposes a two-wheel moving body that overcomes the two conflicting disadvantages described above by transitioning the parallel two-wheel mode and the bicycle mode via the oblique two-wheel mode. However, there is room for further improvement in the stabilization of the oblique two-wheel mode when transitioning from one of the parallel two-wheel mode and the bicycle mode to the other.
  • an object of the present invention is to provide a two-wheeled moving body that stabilizes the posture during movement and a control method thereof.
  • the two-wheel moving body when shifting from one of the parallel two-wheel mode and the bicycle mode to the other, the first control that stabilizes the posture by accelerating and decelerating the wheel drive motor;
  • the weighting of the feedback gain used for the first control and the second control is made according to the rotational speed of the wheel. An intermediate mode for smoothly changing is executed.
  • FIG.1 (a) is a right view of a two-wheeled mobile body
  • FIG.1 (b) is a front view
  • FIG.1 (c) is a top view.
  • the two legs 5R and 5L are shown open, but the legs 5R and 5L can be opened and closed as will be described later.
  • the two-wheel moving body M is a moving body that moves by rotating the wheels 1R and 1L installed on the distal ends of the two legs 5R and 5L, and is used for, for example, a service robot.
  • the two-wheel moving body M includes wheels 1R, 1L, wheel drive motors 2R, 2L, steer portions 3R, 3L, steer drive motors 4R, 4L, legs 5R, 5L, leg drive motor 6, and upper body 7.
  • the right wheel 1R is installed on the lower side of the leg 5R (on the side opposite to the rotation axis of the leg 5R), and its steer angle ⁇ R by the steer portion 3R. (See FIG. 6A) is adjusted. Note that the center of gravity X G (see FIG. 6B) of the two-wheel moving body M is located above the wheels 1R and 1L.
  • the wheel drive motor 2R shown in FIGS. 1B and 1C is a motor that rotates the wheel 1R in response to a command from the control unit 9, and is accommodated in the steering unit 3R while being connected to the axle of the wheel 1R.
  • the wheel drive motor 2R includes an encoder (not shown) that detects a rotation angle ⁇ R of the wheel 1R (see FIG. 6B) and a rotation speed d ⁇ R indicating a temporal change of the rotation angle ⁇ R. Is installed.
  • the steer portion 3R adjusts the steer angle ⁇ R (see FIG. 6A) of the wheel 1R, and is installed near the lower end of the leg 5R.
  • the steer portion 3R is disposed on the inner side of the wheel 1R in the left-right direction (see FIG. 1B), and accommodates the wheel drive motor 2R therein. Note that the steer portion 3R may be disposed outside the wheel 1R in the left-right direction.
  • the steer drive motor 4R is a motor that adjusts the steer angle ⁇ R (see FIG. 6A) of the wheel 1R in accordance with a command from the control unit 9.
  • the steer drive motor 4R is housed in the lower portion of the leg 5R (see FIG. 1B), and the rotation shaft thereof is installed in the steer portion 3R.
  • the steer drive motor 4R is provided with an encoder (not shown) that detects the steer angle ⁇ R of the wheel 1R.
  • the right wheel 1R is rotated by the wheel drive motor 2R
  • the steering angle [delta] R is adjusted by a steering drive motor 4R
  • the left wheel 1L is rotated by a wheel drive motor 2L different from the right side
  • the steering angle ⁇ L is adjusted by the steering drive motor 4L. Since the left wheel 1L, the wheel drive motor 2L, the steer portion 3L, and the steer drive motor 4L are the same as those on the right side, description thereof is omitted.
  • the legs 5 ⁇ / b> R are installed so as to be rotatable (open / closed legs) in the front-rear direction around a shaft (not shown) disposed inside the upper body 7.
  • the leg 5R has an upper end portion (rotating shaft) installed on the upper body 7 and a lower end portion installed on the steer portion 3R.
  • the left leg 5L has the same configuration as the right leg 5R. In this way, the pair of legs 5R and 5L are installed on the upper body 7, and are configured to be rotatable about the upper end thereof.
  • the leg drive motor 6 is a motor that rotates (opens / closes) the legs 5R and 5L in response to a command from the control unit 9, and is accommodated in the upper body 7.
  • the right leg 5R and the left leg 5L are rotated by one leg drive motor 6.
  • the legs 5R and 5L may be rotated by separate leg drive motors.
  • the leg drive motor 6 is provided with an encoder (not shown) that detects an open leg angle ⁇ of the legs 5R and 5L and an open leg angular velocity d ⁇ that is a temporal change of the open leg angle ⁇ .
  • the upper body 7 is a housing that houses equipment including the leg drive motor 6, the posture detection unit 8, and the control unit 9. As described above, the rotation shafts (not shown) of the legs 5R and 5L are disposed inside the upper body 7.
  • the posture detection unit 8 is, for example, a gyroscope, and is a sensor that acquires information related to the posture of the two-wheel moving body M.
  • the information described above includes the inclination angle ⁇ in the traveling direction of the two-wheeled moving body M (see FIG. 6B), the inclination angular velocity d ⁇ indicating the temporal change of the inclination angle ⁇ , and the inclination of the two-wheeled moving body M in the left-right direction.
  • the posture detection unit 8 outputs each detection result to the control unit 9.
  • the control unit 9 executes arithmetic processing in accordance with information input from the posture detection unit 8, an operation by an operator, and the like, and the wheel drive motors 2R and 2L, the steer drive motors 4R and 4L, and the leg drive motor 6 are operated. Control.
  • the control unit 9 is, for example, a microcomputer (not shown), reads a program stored in a ROM (Read Only Memory), develops it in a RAM (Random Access Memory), and a CPU (Central Processing Unit) performs various processes. Is supposed to run.
  • FIG. 2 is a configuration diagram of a control unit included in the two-wheel moving body.
  • the control unit 9 includes a target value generation unit 91, a leg control unit 92, a mechanism information calculation unit 93, and a moving system control unit 94.
  • the target value generating unit 91 moves the two-wheeled mobile body M based on the current position / orientation of the two-wheeled mobile body M, the coordinates of the target position that is the destination, the speed upper limit value, the acceleration upper limit value, etc. 0t , y0t , ⁇ 0t ) and the target moving speed v0t .
  • x 0t and y 0t are the coordinates of the center of gravity X G (see FIG. 6) of the two-wheel moving body M
  • ⁇ 0t is an angle representing the turning direction of the two-wheel moving body M.
  • the aforementioned target position, speed upper limit value, and acceleration upper limit value are stored in advance in a storage unit (not shown).
  • the current position and direction of the two-wheeled moving body M may be calculated based on the past movement history, or may be input from the outside and stored in the storage unit.
  • the target value generation unit 91 sets the trajectory described above based on a plurality of times (current time + k ⁇ t: ⁇ t is a control cycle, k is a natural number) and the coordinates of the two-wheeled moving body M at each time.
  • the target moving speed v 0t is set similarly.
  • the target value generation unit 91 outputs the calculated target movement speed v 0t to the leg control unit 92. Further, the target value generation unit 91 outputs the trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t to the moving system control unit 94.
  • the leg control unit 92 calculates the target leg opening angle ⁇ 0 of the legs 5R and 5L corresponding to the target moving speed v 0t input from the target value generating unit 91.
  • the target leg opening angle ⁇ 0 is a target angle when the legs 5R and 5L are rotated (see FIG. 1A).
  • Leg control unit 92 controls the leg drive motor 6 according to the target open leg angle [psi 0 calculated, and outputs the target open leg angle [psi 0 to mechanism information calculation section 93.
  • the mechanism information calculation unit 93 is information indicating the positional relationship of the wheels 1R, 1L with respect to the upper body 7 (distance h, displacement q described later: FIG. 6). (See (a) and (b)) and the center of gravity X G (see FIGS. 6A and 6B) of the two-wheeled moving body M excluding the wheels 1R and 1L. Further, the mechanism information calculation unit 93 calculates the distance h (see FIG. 6B) between the line segment T (see FIG. 6A) connecting the centers of the wheels 1R and 1L and the center of gravity X G and the center of gravity X G. moment of inertia I G about the axis perpendicular to the street travel direction, is calculated. The mechanism information calculation unit 93 outputs the calculated values to the moving system control unit 94.
  • the moving system control unit 94 is based on the information input from the target value generation unit 91 and the mechanism information calculation unit 93 and the information input from the encoders (not shown) and the attitude detection unit 8 described above. Wheel drive motors 2R and 2L and steer drive motors 4R and 4L are controlled.
  • FIG. 3 is a configuration diagram of a mobile system control unit included in the control unit.
  • the moving system control unit 94 includes a speed / position calculation unit 941, a travel mode determination unit 942, a parallel two-wheel mode execution unit 943, a bicycle mode execution unit 944, and an intermediate mode execution unit 945.
  • the speed / position calculation unit 941 moves based on information input from the posture detection unit 8 and the mechanism information calculation unit 93 and information input from an encoder (not shown) installed in each motor.
  • the actual velocity (dx c , dy c ) and position (x c , y c ) of the body M are calculated.
  • the travel mode determination unit 942 determines a travel mode to be executed in the next control cycle based on information input from the mechanism information calculation unit 93.
  • This traveling mode includes a parallel two-wheel mode, an intermediate mode, and a bicycle mode. Each travel mode will be described later.
  • the parallel two-wheel mode execution unit 943 executes the two-wheel parallel mode so that the current position (x, y, ⁇ ) approaches the trajectory (x 0t , y 0t , ⁇ 0t ) input from the target value generation unit 91.
  • the two-wheel parallel mode is a travel mode in which the inverted pendulum control is executed in a state where the wheels 1R and 1L are positioned substantially coaxially (that is, the legs 5R and 5L are closed).
  • the above-described inverted pendulum control is control that stabilizes the posture of the two-wheeled moving body M by using the inertial force generated in association with the acceleration / deceleration of the wheel drive motors 2R and 2L.
  • the inverted pendulum control for example, a method described in Japanese Patent Application Laid-Open No. 2007-319991 can be used.
  • the bicycle mode execution unit 944 executes the bicycle mode so that the current position (x, y, ⁇ ) approaches the trajectory (x 0t , y 0t , ⁇ 0t ) input from the target value generation unit 91.
  • the bicycle mode is a traveling mode in which the axles of the wheels 1R and 1L are shifted and the surface directions thereof are substantially matched, and the posture is stabilized using centrifugal force.
  • the bicycle mode for example, Marumo et al., “Research on collision avoidance system for motorcycles”, Transactions of the Japan Society of Mechanical Engineers (C), September 2011, Vol. 77, No. 781, p.
  • the method described in 3300-3331 can be used.
  • the intermediate mode execution unit 945 executes the intermediate mode so that the current position (x, y, ⁇ ) approaches the trajectory (x 0t , y 0t , ⁇ 0t ) input from the target value generation unit 91.
  • the intermediate mode is an intermediate running mode that is executed when shifting from one of the parallel two-wheel mode and the bicycle mode to the other mode.
  • the intermediate mode execution unit 945 includes a weight calculation unit 945a, an inverted pendulum control execution unit 945b, and an attitude stabilization control execution unit 945c. The configuration of the intermediate mode execution unit 945 will be described later.
  • FIG. 4 is a flowchart illustrating processing executed by the control unit. Note that the series of processing shown in FIG. 4 is executed in one control cycle of the control unit 9.
  • the control unit 9 causes the target value generation unit 91 to calculate the trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t of the two-wheel moving body M. For example, when the current position (x, y, ⁇ ) and the target position (x 0 , y 0 , ⁇ 0 ) of the movement destination are given, the target value generation unit 91 creates a straight line connecting these two points. A trajectory of the two-wheeled moving body M is assumed.
  • the target value generation unit 91 determines a target moving speed v 0t at each time in the future based on, for example, a trapezoidal speed pattern (acceleration ⁇ constant speed ⁇ deceleration). Note that the method of calculating the trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t is not limited to the above example.
  • step S102 the control unit 9 causes the leg control unit 92 to calculate a target leg opening angle ⁇ 0 corresponding to the target moving speed v 0t based on the following (Equation 1).
  • the speed thresholds v ra and v rb and the upper limit value ⁇ max of the target leg opening angle ⁇ 0 are preset constants.
  • FIG. 5 is an explanatory diagram showing the relationship between the target moving speed and the target leg opening angle.
  • the broken line shown in FIG. 5 corresponds to (Formula 1).
  • the leg control unit 92 sets the target leg opening angle ⁇ 0 to zero (that is, closes the legs 5R and 5L).
  • the leg control unit 92 sets the target leg opening angle ⁇ 0 so that the legs 5R and 5L are opened wider as the target moving speed v 0t increases.
  • the leg control unit 92 drives the leg drive motor 6 so as to open the legs 5R and 5L by the angle ⁇ max (that is, maximize the legs 5R and 5L). open). In this manner, the leg control unit 92 changes the positional relationship between the wheels 1R and 1L according to the target moving speed v 0t of the two-wheel moving body M.
  • step S ⁇ b> 103 the control unit 9 uses the mechanism information calculation unit 93 to calculate the center of gravity X G and the moment of inertia I G of the two-wheel moving body M. That is, mechanism information calculation unit 93, shown below, based on the (Equation 2), calculates the position vector of the center of gravity X G in a two-wheeled mobile M (excluding the wheels 1R, and 1L).
  • a vector X i shown in (Expression 2) is a position vector of the devices (the steer portions 3R and 3L, the legs 5R and 5L, the upper body 7 and the like) constituting the two-wheeled moving body M.
  • the vector X i is based on the connection relationship and shape of the devices described above, the target leg opening angle ⁇ 0 input from the leg control unit 92, information input from the attitude detection unit 8 and encoders (not shown) of each motor, and the like. Calculated based on The mass W i shown in (Formula 2) is the mass of each device described above, and is stored in advance in a storage unit (not shown).
  • FIGS. 6A and 6B are explanatory views schematically showing the positional relationship of each component of the two-wheel moving body, where FIG. 6A is a plan view and FIG. 6B is a side view.
  • FIG. 6 the simplified as a point mass located the body 7 to the center of gravity X G.
  • the XY plane shown in FIG. 6 is along the horizontal direction
  • the Z axis is along the vertical direction.
  • the mechanism information calculation unit 93 calculates the distance h between the line segment T connecting the centers of the left and right wheels 1R and 1L and the center of gravity X G of the two-wheel moving body M based on the following (Formula 3).
  • the vector a shown in (Formula 3) is a position vector of the center of the wheel 1R
  • the vector b is a position vector of the center of the wheel 1L.
  • the mechanism information calculation unit 93 determines the displacement q () of the wheels 1R and 1L based on the state in which the wheels 1R and 1L are coaxially positioned and the steering angles ⁇ R and ⁇ L (see FIG. 6A) are zero.
  • the front-rear direction) and the width w (left-right direction) are calculated.
  • the displacement q and the width w are obtained from the geometric positional relationship shown in FIG. 6 based on the target leg opening angle ⁇ 0 or the like input from the leg control unit 92.
  • the mechanism information calculation unit 93 calculates information (displacement q, distance h, width w) indicating the positional relationship between the body 7 and the wheels, and 1R and 1L.
  • the mechanism information calculation unit 93 calculates the moment of inertia I G around the center of gravity X G (around the axis parallel to the line segment T shown in FIG. 6A).
  • the inertia moment IG is calculated based on the positional relationship and mass of the devices (the steer portions 3R, 3L, the legs 5R, 5L, the upper body 7, etc.) constituting the two-wheeled moving body M.
  • control unit 9 calculates the speed v and the position (x, y, z) of the two-wheeled moving body M by the speed / position calculation unit 941.
  • the distance h, the displacement q, information input from the attitude detection unit 8 and each encoder are used.
  • the speed / position calculation unit 941 calculates the speed (dx R , dy R ) of the wheel 1R on the XY plane based on (Formula 4) using each acquired information, and the wheel based on (Formula 5).
  • the speed (dx L , dy L ) of 1 L is calculated.
  • r is the radius of the wheels 1R, 1L
  • ⁇ R is the rotation angle of the wheel 1R
  • is the inclination angle in the traveling direction of the two-wheel moving body M
  • is the angle indicating the turning direction
  • [delta] R is steering angle of the wheel 1R.
  • the speed / position calculation unit 941 calculates the center of gravity X G of the body 7 by the following (Formula 6) based on the speeds (dx R , dy R ), (dx L , dy L ) of the wheels 1R, 1L.
  • the speed (dx C , dy C ) is calculated.
  • the speed / position calculation unit 941 calculates the height z C of the center of gravity XG in the z direction (vertical direction) based on the following (Formula 7).
  • the speed / position calculation unit 941 integrates (dx R + dx L ) / 2 and (dy R + dy L ) / 2 with time, and calculates the current position (x, y) of the center of gravity X G. .
  • the speed-position calculating unit 941 described below on the basis of (Equation 8), to calculate the velocity v of the center of gravity X G.
  • the current position (x, y) and speed v of the two-wheeled moving body M calculated in this way are used for controlling the wheel drive motors 2R, 2L and the steer drive motors 4R, 4L based on feedback control.
  • step S104 of FIG. 4 the control unit 9 determines whether or not the displacement q (see FIG. 6A) is less than the threshold value D1 by the travel mode determination unit 942.
  • the threshold value D1 is a value that serves as a criterion for determining whether or not the posture can be sufficiently stabilized only in the parallel two-wheel mode, and is set in advance.
  • the traveling mode determination unit 942 determines to execute the parallel two-wheel mode.
  • step S ⁇ b> 105 the control unit 9 controls the posture of the two-wheel moving body M by the parallel two-wheel mode execution unit 943.
  • the parallel two-wheel mode execution unit 943 provides predetermined feedback gains K1, K2, K3, and K4 for the rotation angle ⁇ , the rotation speed d ⁇ , the inclination angle ⁇ in the traveling direction, and the inclination angular velocity d ⁇ of the wheels 1R and 1L, respectively.
  • a value obtained by multiplication and addition is set as a target value of the average torque ⁇ c of the wheel drive motors 2R and 2L.
  • the parallel two-wheel mode execution unit 943 calculates the turning torque ⁇ d based on the following (Equation 9).
  • K d is a turning gain set in advance
  • ⁇ ot is a target value indicating the turning direction
  • is an angle indicating the current turning direction.
  • the parallel two-wheel mode execution unit 943 outputs the target torque ( ⁇ c ⁇ d ) to the right wheel drive motor 2R and outputs the target torque ( ⁇ c + ⁇ d ) to the left wheel drive motor 2L.
  • ⁇ c is a target value of the average torque of the wheels 1R and 1L.
  • the parallel two-wheel mode execution unit 943 sets the target steer angle of the steer drive motors 4R and 4L to zero.
  • the parallel two-wheel mode execution unit 943 uses the inertial force generated with the acceleration / deceleration of the wheel drive motors 2R and 2L, and stabilizes the posture of the two-wheel moving body M by the inverted pendulum control.
  • step S106 the control unit 9 determines whether the displacement q is less than the threshold value D2 by the travel mode determination unit 942.
  • the threshold value D2 is a value that serves as a criterion for determining whether or not the posture stability can be sufficiently secured only in the bicycle mode, and is set in advance.
  • the control unit 9 outputs a command signal to the intermediate mode execution unit 945.
  • step S107 the control unit 9 determines to execute the intermediate mode.
  • the intermediate mode is a travel mode that is executed when transitioning from one of the parallel two-wheel mode and the bicycle mode to the other.
  • the control of the wheel drive motors 2R and 2L based on the inverted pendulum control and the control of the steer drive motors 4R and 4L based on the posture stability control are executed together.
  • the inverted pendulum control (first control) is based on the inertial force (acting in a direction perpendicular to the line segment T: see FIG. 6A) accompanying acceleration / deceleration of the wheel drive motors 2R and 2L. This is control that stabilizes the posture of the two-wheeled moving body M by using it.
  • the posture stabilization control acts in a direction parallel to the line segment T generated by the two-wheel moving body M turning with the rotation of the steering drive motors 4R and 4L: 6 (a)) is used to stabilize the posture of the two-wheeled moving body M.
  • the transition from one of the parallel two-wheel mode and the bicycle mode to the other is smoothly performed by smoothly changing the weight of the gain used for the inverted pendulum control and the posture stabilization control.
  • FIG. 7 is a flowchart showing a flow of processing when the intermediate mode execution unit executes the intermediate mode.
  • the intermediate mode execution unit 945 calculates the ratio (that is, the division weight of each control) between the gain used in the inverted pendulum control and the gain used in the posture stabilization control by the weight calculation unit 945a (see FIG. 3). .
  • Weight calculator 945a uses the following (Equation 10), calculates a weighting factor E 1 which focuses on torque efficiency of the inverted pendulum control.
  • K shown in (Expression 10) is a coefficient for adjusting the ratio between E 1 and E 2 and is set in advance.
  • is an angle formed by a line segment T (see FIG. 6) connecting the centers of the wheels 1R and 1L and the front direction of the upper body 7 (forward direction in FIG. 6).
  • is an angle indicating the current turning direction, and is an average value of the steer angles ⁇ R and ⁇ L. As described above, when the inverted pendulum control is performed, since the steer portions 3R and 3L are not rotated (the steer is not cut), the angle ⁇ is constant.
  • the weight calculation section 945a uses the following (Equation 11), calculates a weighting factor E 2 which focuses on the centrifugal force generation efficiency of the posture stabilization control.
  • M 1 shown in (Formula 11) is the mass of the two-wheel moving body M excluding the wheels 1R and 1L, and r is the radius of the wheels 1R and 1L.
  • h is the distance between the line segment T connecting the centers of the wheels 1R and 1L and the center of gravity X G
  • is the rotation angle of the wheel 1R
  • L is the length of the line segment T (between the centers of the wheels 1R and 1L) Distance) (see FIG. 6A).
  • the weighting element E 2 is proportional to the square of the rotational speed of the wheels 1R, 1L (d ⁇ / dt) 2 , and the centrifugal force generation efficiency increases as the weighting element E 2 increases.
  • the square of the speed v of the two-wheel moving body M may be used.
  • the angle ⁇ included in the weighting elements E 1 and E 2 , the distance h included in the weighting element E 2 , the rotational speed (d ⁇ / dt), and the length L change continuously over time. Accordingly, the magnitudes of the weighting elements E 1 and E 2 also change continuously with the passage of time.
  • the weight calculation section 945a when the length L than a predetermined value set in advance is small, the weight calculation section 945a, it is preferable to set the value of weighting factor E 2 to zero. Thus, it is possible to avoid a situation that there is no solution for the weighting factor E 2.
  • the weight calculation unit 945a outputs the weighting elements E 1 and E 2 to the inverted pendulum control execution unit 945b and outputs the weighting elements E 1 and E 2 to the posture stabilization control execution unit 945c.
  • the intermediate mode execution unit 945 calculates the target torque ⁇ 0 of the wheel drive motors 2R and 2L by the inverted pendulum control execution unit 945b. That is, the inverted pendulum control execution unit 945b calculates a feedback gain when controlling the wheel drive motors 2R and 2L using the first weight value (1 / E 1 + E 2 ) input from the weight calculation unit 945a. .
  • the inverted pendulum control execution unit 945b uses the first weight value (1 / E as the feedback gain used in the parallel two-wheel mode execution unit 943 as the feedback gain of the inclination angle ⁇ and the inclination angular velocity d ⁇ of the body 7 along the traveling direction. 1 + E 2 ) is used.
  • the feedback gain a value obtained by multiplying the first weighting value (1 / E 1 + E 2 ) by a predetermined constant may be used.
  • the inverted pendulum control execution unit 945b performs gain scheduling based on the already calculated distance h (see FIG. 6), inertia moment I G , mass of each device, and the like, and target torques of the wheel drive motors 2R and 2L. ⁇ 0 is calculated.
  • the target torque ⁇ o is calculated based on the following (Equation 12) using the average torque ⁇ c calculated by the parallel two-wheel mode execution unit 943, taking into consideration only the influence of the wheels 1R and 1L not being coaxial. It may be calculated.
  • the intermediate mode execution unit 945 calculates the posture stabilization steer angle ⁇ os by the posture stabilization control execution unit 945c.
  • This steering angle ⁇ os for stabilizing the posture is a steering angle for stabilizing the posture of the two-wheeled moving body M by generating a centrifugal force by cutting the steering.
  • the posture stabilization control execution unit 945c uses the second weighting value (E 2 / E) for the feedback gain used in the bicycle mode execution unit 944 as the feedback gain of the inclination angle ⁇ and the inclination angular velocity d ⁇ of the body 7 along the traveling direction.
  • a steering angle ⁇ os for posture stabilization is calculated using a product of 1 + E 2 ).
  • the posture stabilization control execution unit 945c reverses the sign of each steer angle ⁇ os with respect to the steer drive motors 4R and 4L. As a result, a centrifugal force in the vertical direction is generated with respect to the line segment T connecting the centers of the wheels 1R and 1L, and the posture of the two-wheel moving body M can be stabilized.
  • the posture stabilization control execution unit 945c calculates the follower steering angles ⁇ of and ⁇ oa .
  • the tracking steer angles ⁇ of and ⁇ oa are steer angles for causing the traveling path of the two-wheeled vehicle M to follow the trajectory (x 0t , y 0t , ⁇ 0t ) generated by the target value generation unit 91. It is.
  • the steer angle ⁇ of is calculated by multiplying the distance between the trajectory (x 0t , y 0t , ⁇ 0t ) and the current position of the two-wheel moving body M by the feedback gain K f .
  • the posture stabilization control execution unit 945c makes the positive and negative of the respective steering angles ⁇ of regarding the steering drive motors 4R and 4L.
  • the posture stabilization control executing unit 945C and the angle omega that indicates the current turning direction, an angle omega 0 indicating a target turning direction, the difference a multiplied by the feedback gain K a in the, steering angle for turning [delta] oa Set as.
  • the posture stabilization control execution unit 945c reverses the sign of each steer angle ⁇ oa with respect to the steer drive motors 4R and 4L.
  • step S1075 in FIG. 7 the posture stabilization control execution unit 945c calculates target steer angles ⁇ R and ⁇ L of the steer drive motors 4R and 4L based on the following (Formula 13).
  • the above (Formula 13) is a formula for calculating the target steer angles ⁇ R and ⁇ L when the left leg 5L is ahead of the body 7. Note that when the right leg 5R precedes, the signs of the steer angles ⁇ os and ⁇ oa are opposite to those in (Formula 13).
  • the target torque ⁇ 0 calculated in step S1071 is output to the wheel drive motors 2R and 2L, and the target steer angles ⁇ R and ⁇ L calculated in step S1074 are output to the steer drive motors 4R and 4L.
  • Step S ⁇ b> 108 the control unit 9 executes the bicycle mode by the bicycle mode execution unit 944.
  • the bicycle mode execution unit 944 outputs a target rotational speed d ⁇ 0 obtained by dividing the target moving speed v ot by the radius r of the wheels 1R, 1L to the left and right wheel drive motors 2R, 2L. Further, the bicycle mode execution unit 944 calculates a target steer angle ⁇ ot and drives the left and right steer drive motors 4R and 4L.
  • the posture of the two-wheeled moving body M can be stabilized by executing the bicycle mode with the legs 5R and 5L opened relatively large (q ⁇ D2).
  • description is abbreviate
  • the target torques of the wheel drive motors 2R, 2L and the angles of the steer drive motors 4R, 4L may become discontinuous, Compensation may occur, and the driving mode may not be smoothly shifted and the vehicle may fall over.
  • the ratio of the feedback gain is continuously changed over time while executing the inverted pendulum control and the posture stabilization control together in the intermediate mode. Therefore, as described above, the travel mode can be smoothly shifted.
  • the second embodiment differs from the first embodiment in that the stereo camera 10 is mounted on the upper body 7 and the configuration of the control unit 9, but is otherwise the same as in the first embodiment. It is. Therefore, a different part from 1st Embodiment is demonstrated and description of the overlapping part is abbreviate
  • FIG. 8 is a right side view of the two-wheel moving body according to this embodiment, FIG. 8B is a front view, and FIG. 8C is a plan view.
  • the two-wheeled moving body M includes a stereo camera 10 (imaging unit) that images the outside world including at least a travel destination route.
  • the stereo camera 10 is configured so that an object can be imaged simultaneously from a plurality of different directions.
  • FIG. 9 is a configuration diagram of a control unit included in the two-wheel moving body.
  • the control unit 9 includes an image recognition unit 95, a target value generation unit 91, a leg control unit 92, and a moving system control unit 94.
  • the image recognition unit 95 Based on the image information input from the stereo camera 10, the image recognition unit 95 recognizes the state of the route scheduled to travel (tilt, presence / absence of obstacles, unevenness, etc.). Note that details of the processing executed by the image recognition unit 95 are omitted.
  • the target value generation unit 91 based on information input in advance by the operator and information input from the image recognition unit 95, a trajectory (x 0t , y 0t , ⁇ 0t ) and a target for moving to the destination. A moving speed v 0t is generated.
  • the leg control unit 92 calculates the target leg opening angle ⁇ 0 of the legs 5R and 5L corresponding to the target moving speed v 0t input from the target value generating unit 91
  • the moving system control unit 94 includes the information input from the image recognition unit 95, the trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t input from the target value generation unit 91, and the leg control unit 92. Each motor is controlled on the basis of the target leg opening angle ⁇ 0 of the legs 5R and 5L input from.
  • the configuration of the mobile system control unit 94 is the same as that described in the first embodiment (see FIG. 3).
  • the travel mode determination unit 942 determines the travel mode according to the size of the target leg opening angle ⁇ 0 input from the leg control unit 92, for example.
  • the weighting element E 1 used in the weight calculation unit 945a is a fixed value, and a function that increases in proportion to the square of the rotational speeds (d ⁇ / dt) of the wheels 1R and 1L is used as the weighting element E 2. It may be used. Even in this case, the first weighting value (1 / E 1 + E 2 ) and the second weighting value (E 2 / E 1 + E 2 ) are continuously set according to the rotational speeds (d ⁇ / dt) of the wheels 1R and 1L. Since it changes, the running mode can be smoothly shifted.
  • the moving system control unit 94 When the unevenness is recognized on the path by the image recognition unit 95 during the execution of the intermediate mode, the moving system control unit 94 preferably performs the following process. That is, the mobile system control unit 94 multiplies the first weighting value (1 / E 1 + E 2 ) corresponding to the inverted pendulum control by a predetermined value ⁇ ( ⁇ 1) by the weight calculation unit 945a (see FIG. 3). The first weighting value is made smaller than when there is no unevenness. On the other hand, the weight value for posture stabilization control is divided by the predetermined value ⁇ , and the second weight value is made larger than when there is no unevenness. Thereby, the gain of the inverted pendulum control that is greatly affected by the unevenness of the floor surface is suppressed, and the posture of the two-wheeled moving body M can be stabilized.
  • the target value generation unit 91 outputs the target moving speed v 0t to the leg control unit 92 so as to widen the legs 5R and 5L compared to the normal time without the unevenness. . If the wheel 1R (or wheel 1L) on one side rides on the convex part during execution of the parallel two-wheel mode (that is, the inverted pendulum control), a large overturning force is generated and the posture of the two-wheeled moving body M becomes unstable. Cheap. As described above, the legs 5R and 5L are opened relatively large by the leg control unit 92, whereby the bicycle mode can be quickly shifted from the parallel two-wheel mode to the intermediate mode. Even when riding on the convex part in the bicycle mode, the posture can be quickly stabilized by utilizing the centrifugal force.
  • the weighting elements E 1 and E 2 are calculated based on the rotational speeds (d ⁇ / dt) of the wheels 1R and 1L even if the control unit 9 does not include the mechanism information calculation unit 93. did. Thereby, it is possible to smoothly shift from one of the parallel two-wheel mode and the bicycle mode to the other through the intermediate mode.
  • the control unit 9 suppresses the gain of the inverted pendulum control to increase the gain of the posture stabilization control, Open 5L promptly and shift to bicycle mode. Therefore, even when the floor surface is uneven, the posture of the two-wheel moving body M can be kept stable.
  • the two-wheeled moving body M according to the present invention has been described above, but the present invention is not limited to the above-described embodiments, and can be changed as appropriate.
  • the weighting element E 1 is calculated based on (Formula 10) and the weighting element E 2 is calculated based on (Formula 11) is described, but the present invention is not limited to this. That is, if the weighting of the feedback gain used for the inverted pendulum control (first control) and the posture stability control (second control) can be smoothly changed according to the rotation speed of the wheels 1R and 1L, A functional form may be used.
  • the control part 9 is based on the rotational speed of wheel 1R, 1L and the information (displacement q, distance h, width w) which shows the positional relationship of the upper body 7 and wheel 1R, 1L.
  • the intermediate mode may be executed based only on the rotational speeds of the wheels 1R and 1L. In this case, the wheels 1R, with increasing rotational speed of 1L, a smaller weighting factor E 1 of the inverted pendulum control, increasing the weighting factor E 2 of the posture stabilization control.
  • the imaging unit that images the outside world is the stereo camera 10
  • the present invention is not limited to this.
  • a CCD (Charge-Coupled Device) camera or the like may be used as the “imaging means”.
  • the feedback gain of the inverted pendulum control is calculated by multiplying the feedback gain of the parallel two-wheel mode by the first weighting value (1 / E 1 + E 2 ), and the second weight is assigned to the feedback gain of the bicycle mode.
  • the present invention is not limited to this.
  • each weight value may be set so that the ratio between the first weight value and the second weight value is 1: E 2 . In this case, according to the weighting factor E 2 increases or decreases, it is possible to smoothly change the weighting of the feedback gain used in the inverted pendulum control and posture stabilization control.
  • Control unit 10 Stereo camera (imaging means) 91 Target Value Generation Unit 92 Leg Control Unit 93 Mechanism Information Calculation Unit 94 Moving System Control Unit 95 Image Recognition Unit 941 Speed / Position Calculation Unit 942 Traveling Mode Determination Unit 943 Parallel Two Wheel Mode Execution Unit 944 Bicycle Mode Execution Unit 945 Intermediate Mode Execution Unit 945a Weight calculation unit 945b Inverted pendulum control execution unit 945c Attitude stabilization control execution unit

Abstract

Provided is a two-wheeled mobile object and the like that achieve stable posture during movement. The two-wheeled mobile object is provided with: an upper body (7); a pair of rotatable legs (5R, 5L); wheels (1R, 1L) mounted to the legs (5R, 5L); wheel drive motors (2R, 2L); steer units (3R, 3L); steer drive motors (4R, 4L); a posture detection unit (8) that detects posture information of the upper body (7); and a control unit (9). In accordance with the rotating speed of the wheels (1R, 1L), the control unit (9) implements an intermediate mode in which the weighting for feedback gain used for first control and second control is smoothly varied.

Description

二輪移動体及びその制御方法Two-wheel moving body and control method thereof
 本発明は、二輪移動体及びその制御方法に関する。 The present invention relates to a two-wheeled vehicle and a control method thereof.
 二つの車輪を備え、各車輪を回転させることで移動する二輪移動体が知られている。二輪移動体は、三つ以上の車輪を備える移動体と比較して、平面視した場合の面積を小さくできるという利点を有している。 A two-wheel moving body that has two wheels and moves by rotating each wheel is known. The two-wheel moving body has an advantage that the area when viewed in plan can be reduced as compared with a moving body including three or more wheels.
 例えば、特許文献1には、人が搭乗する立ち乗り型のペダル付き平行二輪車について記載されている。このペダル付き平行二輪車は、二つの車輪の車軸を同一直線上に配置する平行二輪モードと、二つの車輪をずらして自転車のごとく配置する自転車モードと、を切替可能に構成されている。 For example, Patent Document 1 describes a standing two-wheeled parallel two-wheeled vehicle on which a person rides. The parallel two-wheeled vehicle with a pedal is configured to be switchable between a parallel two-wheel mode in which axles of two wheels are arranged on the same straight line and a bicycle mode in which two wheels are shifted and arranged like a bicycle.
 また、特許文献2には、前記した平行二輪モードでの移動を安定化させるための制御方法について記載されている。すなわち、特許文献2には、角度検出手段によって検出される車体の傾斜角等に基づいて車輪駆動用モータを制御し、同軸二輪車の姿勢を安定化させることが記載されている。 Patent Document 2 describes a control method for stabilizing the movement in the parallel two-wheel mode described above. That is, Patent Document 2 describes that the wheel driving motor is controlled based on the inclination angle of the vehicle body detected by the angle detecting means to stabilize the attitude of the coaxial two-wheeled vehicle.
 また、本願出願人は、前記した平行二輪モードと自転車モードとの中間形態である斜め二輪モードを実行する二輪移動体を開発し、この二輪移動体に係る発明について特許文献3に開示している。すなわち、特許文献3には、二本の脚の開き具合や車輪のステア角等を調整することで、姿勢を安定化させる二輪移動体について記載されている。 In addition, the applicant of the present application has developed a two-wheel moving body that executes an oblique two-wheel mode, which is an intermediate form between the parallel two-wheel mode and the bicycle mode, and discloses an invention relating to the two-wheel moving body in Patent Document 3. . That is, Patent Document 3 describes a two-wheel moving body that stabilizes the posture by adjusting the degree of opening of two legs, the steering angle of wheels, and the like.
特開2010-274715号公報JP 2010-274715 A 特開昭63-305082号公報JP 63-305082 A PCT/JP2013/056566PCT / JP2013 / 056566
 ところで、特許文献1,2に記載の平行二輪モードは低速移動時に有効であるが、高速移動時に片側の車輪が障害物(例えば、段差)に接触すると大きな転倒力が発生し、二輪移動体が転倒しやすくなるという問題がある。また、特許文献1,2に記載の自転車モードは高速移動時に有効であるが、停止状態ではステアリングによる安定化を行えず、転倒しやすいという問題がある。 By the way, the parallel two-wheel mode described in Patent Documents 1 and 2 is effective during low-speed movement, but when one wheel contacts an obstacle (for example, a step) during high-speed movement, a large overturning force is generated. There is a problem that it is easy to fall. Moreover, although the bicycle mode described in Patent Documents 1 and 2 is effective during high-speed movement, there is a problem in that it cannot be stabilized by steering in a stopped state and is likely to fall over.
 特許文献3では、この平行二輪モードと自転車モードとを斜め二輪モードを介して遷移させることで、前記した二つの相反する欠点を克服した二輪移動体を提案している。しかしながら、平行二輪モード及び自転車モードのうち一方から他方に遷移する際の斜め二輪モードの安定化について、さらに改善する余地がある。 Patent Document 3 proposes a two-wheel moving body that overcomes the two conflicting disadvantages described above by transitioning the parallel two-wheel mode and the bicycle mode via the oblique two-wheel mode. However, there is room for further improvement in the stabilization of the oblique two-wheel mode when transitioning from one of the parallel two-wheel mode and the bicycle mode to the other.
 そこで本発明は、移動中の姿勢を安定させる二輪移動体及びその制御方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a two-wheeled moving body that stabilizes the posture during movement and a control method thereof.
 前記課題を解決するために、本発明に係る二輪移動体は、平行二輪モード及び自転車モードの一方から他方に移行する際、車輪駆動モータを加減速することで姿勢を安定させる第1制御と、ステア駆動モータの回転角を調整することで姿勢を安定させる第2制御と、を併せて行うとともに、前記第1制御及び前記第2制御に用いるフィードバックゲインの重み付けを、車輪の回転速度に応じて滑らかに変化させる中間モードを実行することを特徴とする。 In order to solve the above-described problem, the two-wheel moving body according to the present invention, when shifting from one of the parallel two-wheel mode and the bicycle mode to the other, the first control that stabilizes the posture by accelerating and decelerating the wheel drive motor; In addition to the second control for stabilizing the posture by adjusting the rotation angle of the steering drive motor, the weighting of the feedback gain used for the first control and the second control is made according to the rotational speed of the wheel. An intermediate mode for smoothly changing is executed.
 本発明によれば、移動中の姿勢を安定させる二輪移動体及びその制御方法を提供できる。 According to the present invention, it is possible to provide a two-wheel moving body that stabilizes a posture during movement and a control method thereof.
本発明の第1実施形態に係る二輪移動体の外観図であり、(a)は二輪移動体の右側面図であり、(b)は二輪移動体の正面図であり、(c)は二輪移動体の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the two-wheel moving body which concerns on 1st Embodiment of this invention, (a) is a right view of a two-wheel moving body, (b) is a front view of a two-wheel moving body, (c) is a two-wheeled vehicle. It is a top view of a moving body. 二輪移動体が備える制御部の構成図である。It is a block diagram of the control part with which a two-wheel moving body is provided. 制御部が備える移動系制御部の構成図である。It is a block diagram of the moving system control part with which a control part is provided. 制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which a control part performs. 目標移動速度と、目標開脚角度と、の関係を示す説明図である。It is explanatory drawing which shows the relationship between a target moving speed and a target leg opening angle. 二輪移動体の各構成の位置関係を模式的に示す説明図であり、(a)は平面図であり、(b)は側面図である。It is explanatory drawing which shows typically the positional relationship of each structure of a two-wheel mobile body, (a) is a top view, (b) is a side view. 中間モード実行部が中間モードを実行する際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process when an intermediate mode execution part performs intermediate mode. 本発明の第2実施形態に係る二輪移動体の外観図であり、(a)は二輪移動体の右側面図であり、(b)は二輪移動体の正面図であり、(c)は二輪移動体の平面図である。It is an external view of the two-wheeled mobile body which concerns on 2nd Embodiment of this invention, (a) is a right view of a two-wheeled mobile body, (b) is a front view of a two-wheeled mobile body, (c) is a two-wheeled vehicle. It is a top view of a moving body. 二輪移動体が備える制御部の構成図である。It is a block diagram of the control part with which a two-wheel moving body is provided.
≪第1実施形態≫
<二輪移動体の構成>
 図1(a)は二輪移動体の右側面図であり、図1(b)は正面図であり、図1(c)は平面図である。なお、図1では、二本の脚5R,5Lが開いた状態を図示しているが、後記するように脚5R,5Lは開閉可能である。
 二輪移動体Mは、二本の脚5R,5Lの先端側に設置された車輪1R,1Lを回転させることで移動する移動体であり、例えば、サービスロボットに用いられる。二輪移動体Mは、車輪1R,1Lと、車輪駆動モータ2R,2Lと、ステア部3R,3Lと、ステア駆動モータ4R,4Lと、脚5R,5Lと、脚駆動モータ6と、上体7と、姿勢検出部8と、制御部9と、を備えている。
<< First Embodiment >>
<Configuration of two-wheeled vehicle>
Fig.1 (a) is a right view of a two-wheeled mobile body, FIG.1 (b) is a front view, FIG.1 (c) is a top view. In FIG. 1, the two legs 5R and 5L are shown open, but the legs 5R and 5L can be opened and closed as will be described later.
The two-wheel moving body M is a moving body that moves by rotating the wheels 1R and 1L installed on the distal ends of the two legs 5R and 5L, and is used for, for example, a service robot. The two-wheel moving body M includes wheels 1R, 1L, wheel drive motors 2R, 2L, steer portions 3R, 3L, steer drive motors 4R, 4L, legs 5R, 5L, leg drive motor 6, and upper body 7. A posture detection unit 8 and a control unit 9.
 図1(a)、(b)に示すように、右側の車輪1Rは、脚5Rの下側(脚5Rの回動軸とは反対側)に設置され、ステア部3Rによってそのステア角δR(図6(a)参照)が調整される。なお、二輪移動体Mの重心XG(図6(b)参照)は、車輪1R,1Lよりも上方に位置している。 As shown in FIGS. 1 (a) and 1 (b), the right wheel 1R is installed on the lower side of the leg 5R (on the side opposite to the rotation axis of the leg 5R), and its steer angle δ R by the steer portion 3R. (See FIG. 6A) is adjusted. Note that the center of gravity X G (see FIG. 6B) of the two-wheel moving body M is located above the wheels 1R and 1L.
 図1(b)、(c)に示す車輪駆動モータ2Rは、制御部9からの指令に応じて車輪1Rを回転させるモータであり、車輪1Rの車軸に連結された状態でステア部3Rに収容されている。
 なお、車輪駆動モータ2Rには、車輪1Rの回転角ζR(図6(b)参照)と、この回転角ζRの時間的変化を示す回転速度dζRと、を検出するエンコーダ(図示せず)が設置されている。
The wheel drive motor 2R shown in FIGS. 1B and 1C is a motor that rotates the wheel 1R in response to a command from the control unit 9, and is accommodated in the steering unit 3R while being connected to the axle of the wheel 1R. Has been.
The wheel drive motor 2R includes an encoder (not shown) that detects a rotation angle ζ R of the wheel 1R (see FIG. 6B) and a rotation speed dζ R indicating a temporal change of the rotation angle ζ R. Is installed.
 ステア部3Rは、車輪1Rのステア角δR(図6(a)参照)を調整するものであり、脚5Rの下端付近に設置されている。ステア部3Rは、左右方向で車輪1Rよりも内側に配置され(図1(b)参照)、その内部に車輪駆動モータ2Rを収容している。なお、左右方向において車輪1Rの外側にステア部3Rを配置してもよい。 The steer portion 3R adjusts the steer angle δ R (see FIG. 6A) of the wheel 1R, and is installed near the lower end of the leg 5R. The steer portion 3R is disposed on the inner side of the wheel 1R in the left-right direction (see FIG. 1B), and accommodates the wheel drive motor 2R therein. Note that the steer portion 3R may be disposed outside the wheel 1R in the left-right direction.
 ステア駆動モータ4Rは、制御部9からの指令に応じて車輪1Rのステア角δR(図6(a)参照)を調整するモータである。ステア駆動モータ4Rは、例えば、脚5Rの下部に収容され(図1(b)参照)、その回転軸がステア部3Rに設置されている。
 なお、ステア駆動モータ4Rには、車輪1Rのステア角δRを検出するエンコーダ(図示せず)が設置されている。
The steer drive motor 4R is a motor that adjusts the steer angle δ R (see FIG. 6A) of the wheel 1R in accordance with a command from the control unit 9. For example, the steer drive motor 4R is housed in the lower portion of the leg 5R (see FIG. 1B), and the rotation shaft thereof is installed in the steer portion 3R.
The steer drive motor 4R is provided with an encoder (not shown) that detects the steer angle δ R of the wheel 1R.
 このように、右側の車輪1Rは、車輪駆動モータ2Rによって回転し、そのステア角δRがステア駆動モータ4Rによって調整される。一方、左側の車輪1Lは、右側とは別の車輪駆動モータ2Lによって回転し、そのステア角δL(図6(a)参照)がステア駆動モータ4Lによって調整される。
 なお、左側の車輪1L、車輪駆動モータ2L、ステア部3L、及びステア駆動モータ4Lについては右側と同様であるから、その説明を省略する。
Thus, the right wheel 1R is rotated by the wheel drive motor 2R, the steering angle [delta] R is adjusted by a steering drive motor 4R. On the other hand, the left wheel 1L is rotated by a wheel drive motor 2L different from the right side, and the steering angle δ L (see FIG. 6A) is adjusted by the steering drive motor 4L.
Since the left wheel 1L, the wheel drive motor 2L, the steer portion 3L, and the steer drive motor 4L are the same as those on the right side, description thereof is omitted.
 脚5Rは、上体7の内部に配置された軸(図示せず)を中心に前後方向で回動(開脚/閉脚)可能に設置されている。脚5Rは、その上端付近(回動軸)が上体7に設置され、下端付近がステア部3Rに設置されている。左側の脚5Lも、前記した右側の脚5Rと同様の構成を備えている。
 このように一対の脚5R,5Lは上体7に設置され、その上端を軸として回動可能に構成されている。
The legs 5 </ b> R are installed so as to be rotatable (open / closed legs) in the front-rear direction around a shaft (not shown) disposed inside the upper body 7. The leg 5R has an upper end portion (rotating shaft) installed on the upper body 7 and a lower end portion installed on the steer portion 3R. The left leg 5L has the same configuration as the right leg 5R.
In this way, the pair of legs 5R and 5L are installed on the upper body 7, and are configured to be rotatable about the upper end thereof.
 脚駆動モータ6は、制御部9からの指令に応じて脚5R,5Lを回動(開脚/閉脚)させるモータであり、上体7に収容されている。本実施形態では、一個の脚駆動モータ6によって、右側の脚5Rと左側の脚5Lとを回動させる構成にした。なお、別々の脚駆動モータで脚5R,5Lをそれぞれ回動させてもよい。
 脚駆動モータ6には、脚5R,5Lの開脚角度ψと、この開脚角度ψの時間的変化である開脚角速度dψと、を検出するエンコーダ(図示せず)が設置されている。
The leg drive motor 6 is a motor that rotates (opens / closes) the legs 5R and 5L in response to a command from the control unit 9, and is accommodated in the upper body 7. In this embodiment, the right leg 5R and the left leg 5L are rotated by one leg drive motor 6. The legs 5R and 5L may be rotated by separate leg drive motors.
The leg drive motor 6 is provided with an encoder (not shown) that detects an open leg angle ψ of the legs 5R and 5L and an open leg angular velocity dψ that is a temporal change of the open leg angle ψ.
 上体7は、脚駆動モータ6、姿勢検出部8及び制御部9を含む機器を収納する筐体である。前記したように、脚5R,5Lの回動軸(図示せず)は、上体7の内部に配置されている。 The upper body 7 is a housing that houses equipment including the leg drive motor 6, the posture detection unit 8, and the control unit 9. As described above, the rotation shafts (not shown) of the legs 5R and 5L are disposed inside the upper body 7.
 姿勢検出部8は、例えば、ジャイロスコープであり、二輪移動体Mの姿勢に関する情報を取得するセンサである。
 前記した情報には、二輪移動体Mの進行方向への傾斜角θ(図6(b)参照)、傾斜角θの時間的変化を示す傾斜角速度dθ、二輪移動体Mの左右方向への傾斜角φ、傾斜角φの時間的変化を示す傾斜角速度dφ、二輪移動体Mの旋回方向を示す角度ω、及び、角度ωの時間的変化を示す旋回方向角速度dωが含まれる。姿勢検出部8は、各検出結果を制御部9に出力する。
The posture detection unit 8 is, for example, a gyroscope, and is a sensor that acquires information related to the posture of the two-wheel moving body M.
The information described above includes the inclination angle θ in the traveling direction of the two-wheeled moving body M (see FIG. 6B), the inclination angular velocity dθ indicating the temporal change of the inclination angle θ, and the inclination of the two-wheeled moving body M in the left-right direction. The angle φ, the inclination angular velocity dφ indicating a temporal change of the inclination angle φ, the angle ω indicating the turning direction of the two-wheeled moving body M, and the turning direction angular velocity dω indicating the temporal change of the angle ω are included. The posture detection unit 8 outputs each detection result to the control unit 9.
 制御部9は、姿勢検出部8から入力される情報や、操作者による操作等に応じて演算処理を実行し、車輪駆動モータ2R,2L、ステア駆動モータ4R,4L、及び脚駆動モータ6を制御する。制御部9は、例えばマイコン(Microcomputer:図示せず)であり、ROM(Read Only Memory)に記憶されたプログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が各種処理を実行するようになっている。 The control unit 9 executes arithmetic processing in accordance with information input from the posture detection unit 8, an operation by an operator, and the like, and the wheel drive motors 2R and 2L, the steer drive motors 4R and 4L, and the leg drive motor 6 are operated. Control. The control unit 9 is, for example, a microcomputer (not shown), reads a program stored in a ROM (Read Only Memory), develops it in a RAM (Random Access Memory), and a CPU (Central Processing Unit) performs various processes. Is supposed to run.
<制御部の構成>
 図2は、二輪移動体が備える制御部の構成図である。図2に示すように、制御部9は、目標値生成部91と、脚制御部92と、機構情報算出部93と、移動系制御部94と、を備えている。
 目標値生成部91は、二輪移動体Mの現在位置・向き、移動先である目標位置の座標、速度上限値、加速度上限値等に基づいて、二輪移動体Mを移動させる際の軌道(x0t,y0t,ω0t)及び目標移動速度v0tを生成する。ここで、x0t,y0tは、二輪移動体Mの重心XG(図6参照)の座標であり、ω0tは、二輪移動体Mの旋回方向を表す角度である。
<Configuration of control unit>
FIG. 2 is a configuration diagram of a control unit included in the two-wheel moving body. As shown in FIG. 2, the control unit 9 includes a target value generation unit 91, a leg control unit 92, a mechanism information calculation unit 93, and a moving system control unit 94.
The target value generating unit 91 moves the two-wheeled mobile body M based on the current position / orientation of the two-wheeled mobile body M, the coordinates of the target position that is the destination, the speed upper limit value, the acceleration upper limit value, etc. 0t , y0t , ω0t ) and the target moving speed v0t . Here, x 0t and y 0t are the coordinates of the center of gravity X G (see FIG. 6) of the two-wheel moving body M, and ω 0t is an angle representing the turning direction of the two-wheel moving body M.
 前記した目標位置、速度上限値、及び加速度上限値は、予め記憶部(図示せず)に格納されている。二輪移動体Mの現在位置及び向きに関しては、過去の移動履歴に基づいて算出してもよいし、外部から入力して記憶部に格納してもよい。
 目標値生成部91は、複数の時刻(現在時刻+kΔt:Δtは制御周期、kは自然数)と、各時刻における二輪移動体Mの座標と、によって、前記した軌道を設定する。なお、目標移動速度v0tについても同様に設定される。
The aforementioned target position, speed upper limit value, and acceleration upper limit value are stored in advance in a storage unit (not shown). The current position and direction of the two-wheeled moving body M may be calculated based on the past movement history, or may be input from the outside and stored in the storage unit.
The target value generation unit 91 sets the trajectory described above based on a plurality of times (current time + kΔt: Δt is a control cycle, k is a natural number) and the coordinates of the two-wheeled moving body M at each time. The target moving speed v 0t is set similarly.
 目標値生成部91は、算出した目標移動速度v0tを脚制御部92に出力する。また、目標値生成部91は、軌道(x0t,y0t,ω0t)及び目標移動速度v0tを移動系制御部94に出力する。 The target value generation unit 91 outputs the calculated target movement speed v 0t to the leg control unit 92. Further, the target value generation unit 91 outputs the trajectory (x 0t , y 0t , ω 0t ) and the target moving speed v 0t to the moving system control unit 94.
 脚制御部92は、目標値生成部91から入力される目標移動速度v0tに対応して、脚5R,5Lの目標開脚角度ψ0を算出する。なお、目標開脚角度ψ0とは、脚5R,5Lを回動させる際の目標角度である(図1(a)参照)。脚制御部92は、算出した目標開脚角度ψ0に応じて脚駆動モータ6を制御するとともに、この目標開脚角度ψ0を機構情報算出部93に出力する。 The leg control unit 92 calculates the target leg opening angle ψ 0 of the legs 5R and 5L corresponding to the target moving speed v 0t input from the target value generating unit 91. The target leg opening angle ψ 0 is a target angle when the legs 5R and 5L are rotated (see FIG. 1A). Leg control unit 92 controls the leg drive motor 6 according to the target open leg angle [psi 0 calculated, and outputs the target open leg angle [psi 0 to mechanism information calculation section 93.
 機構情報算出部93は、脚制御部92から入力される目標開脚角度ψ0に基づいて、上体7に対する車輪1R,1Lの位置関係を示す情報(後記する距離h、変位q:図6(a)、(b)参照)と、車輪1R,1Lを除いた二輪移動体Mの重心XG(図6(a)、(b)参照)と、を算出する。
 また、機構情報算出部93は、車輪1R,1Lの中心を結ぶ線分T(図6(a)参照)と重心XGとの距離h(図6(b)参照)と、重心XGを通り進行方向に垂直な軸回りの慣性モーメントIGと、を算出する。
 機構情報算出部93は、算出した各値を移動系制御部94に出力する。
Based on the target leg opening angle ψ 0 input from the leg control unit 92, the mechanism information calculation unit 93 is information indicating the positional relationship of the wheels 1R, 1L with respect to the upper body 7 (distance h, displacement q described later: FIG. 6). (See (a) and (b)) and the center of gravity X G (see FIGS. 6A and 6B) of the two-wheeled moving body M excluding the wheels 1R and 1L.
Further, the mechanism information calculation unit 93 calculates the distance h (see FIG. 6B) between the line segment T (see FIG. 6A) connecting the centers of the wheels 1R and 1L and the center of gravity X G and the center of gravity X G. moment of inertia I G about the axis perpendicular to the street travel direction, is calculated.
The mechanism information calculation unit 93 outputs the calculated values to the moving system control unit 94.
 移動系制御部94は、目標値生成部91及び機構情報算出部93から入力される情報と、前記した各エンコーダ(図示せず)及び姿勢検出部8から入力される情報と、に基づいて、車輪駆動モータ2R,2L及びステア駆動モータ4R,4Lを制御する。 The moving system control unit 94 is based on the information input from the target value generation unit 91 and the mechanism information calculation unit 93 and the information input from the encoders (not shown) and the attitude detection unit 8 described above. Wheel drive motors 2R and 2L and steer drive motors 4R and 4L are controlled.
<移動系制御部の構成>
 図3は、制御部が備える移動系制御部の構成図である。移動系制御部94は、速度・位置算出部941と、走行モード決定部942と、平行二輪モード実行部943と、自転車モード実行部944と、中間モード実行部945と、を有している。
<Configuration of mobile system controller>
FIG. 3 is a configuration diagram of a mobile system control unit included in the control unit. The moving system control unit 94 includes a speed / position calculation unit 941, a travel mode determination unit 942, a parallel two-wheel mode execution unit 943, a bicycle mode execution unit 944, and an intermediate mode execution unit 945.
 速度・位置算出部941は、姿勢検出部8及び機構情報算出部93から入力される情報と、各モータに設置されたエンコーダ(図示せず)から入力される情報と、に基づいて、二輪移動体Mの実際の速度(dxc,dyc)及び位置(xc,yc)を算出する。
 走行モード決定部942は、機構情報算出部93から入力される情報に基づいて、次の制御周期で実行すべき走行モードを決定する。
 この走行モードには、平行二輪モード、中間モード、及び自転車モードが含まれる。それぞれの走行モードについては後記する。
The speed / position calculation unit 941 moves based on information input from the posture detection unit 8 and the mechanism information calculation unit 93 and information input from an encoder (not shown) installed in each motor. The actual velocity (dx c , dy c ) and position (x c , y c ) of the body M are calculated.
The travel mode determination unit 942 determines a travel mode to be executed in the next control cycle based on information input from the mechanism information calculation unit 93.
This traveling mode includes a parallel two-wheel mode, an intermediate mode, and a bicycle mode. Each travel mode will be described later.
 平行二輪モード実行部943は、目標値生成部91から入力される軌道(x0t,y0t,ω0t)に現在位置(x,y,ω)を近づけるように、二輪平行モードを実行する。ここで、二輪平行モードとは、車輪1R,1Lが略同軸上に位置する(つまり、脚5R,5Lが閉じている)状態において倒立振子制御を実行する走行モードである。前記した倒立振子制御とは、車輪駆動モータ2R,2Lの加減速に伴って発生する慣性力を利用して、二輪移動体Mの姿勢を安定させる制御である。
 倒立振子制御として、例えば、特開2007-319991号公報に記載の方法を用いることができる。
The parallel two-wheel mode execution unit 943 executes the two-wheel parallel mode so that the current position (x, y, ω) approaches the trajectory (x 0t , y 0t , ω 0t ) input from the target value generation unit 91. Here, the two-wheel parallel mode is a travel mode in which the inverted pendulum control is executed in a state where the wheels 1R and 1L are positioned substantially coaxially (that is, the legs 5R and 5L are closed). The above-described inverted pendulum control is control that stabilizes the posture of the two-wheeled moving body M by using the inertial force generated in association with the acceleration / deceleration of the wheel drive motors 2R and 2L.
As the inverted pendulum control, for example, a method described in Japanese Patent Application Laid-Open No. 2007-319991 can be used.
 自転車モード実行部944は、目標値生成部91から入力される軌道(x0t,y0t,ω0t)に現在位置(x,y,ω)を近づけるように、自転車モードを実行する。ここで、自転車モードとは、車輪1R,1Lの車軸をずらすとともにその面方向を略一致させ、遠心力を利用して姿勢を安定させる走行モードである。
 自転車モードとして、例えば、丸茂ほか一名、「二輪車の衝突回避システムに関する研究」、日本機械学会論文集(C編)、2011年9月、77巻781号、p.3300-3311に記載の方法を用いることができる。
The bicycle mode execution unit 944 executes the bicycle mode so that the current position (x, y, ω) approaches the trajectory (x 0t , y 0t , ω 0t ) input from the target value generation unit 91. Here, the bicycle mode is a traveling mode in which the axles of the wheels 1R and 1L are shifted and the surface directions thereof are substantially matched, and the posture is stabilized using centrifugal force.
As the bicycle mode, for example, Marumo et al., “Research on collision avoidance system for motorcycles”, Transactions of the Japan Society of Mechanical Engineers (C), September 2011, Vol. 77, No. 781, p. The method described in 3300-3331 can be used.
 中間モード実行部945は、目標値生成部91から入力される軌道(x0t,y0t,ω0t)に現在位置(x,y,ω)を近づけるように、中間モードを実行する。ここで、中間モードとは、平行二輪モード及び自転車モードのうち一方から他方のモードへの移行時に実行される中間的な走行モードである。
 図3に示すように、中間モード実行部945は、重み算出部945aと、倒立振子制御実行部945bと、姿勢安定制御実行部945cと、を有している。なお、中間モード実行部945の各構成については、後記する。
The intermediate mode execution unit 945 executes the intermediate mode so that the current position (x, y, ω) approaches the trajectory (x 0t , y 0t , ω 0t ) input from the target value generation unit 91. Here, the intermediate mode is an intermediate running mode that is executed when shifting from one of the parallel two-wheel mode and the bicycle mode to the other mode.
As shown in FIG. 3, the intermediate mode execution unit 945 includes a weight calculation unit 945a, an inverted pendulum control execution unit 945b, and an attitude stabilization control execution unit 945c. The configuration of the intermediate mode execution unit 945 will be described later.
<制御部の処理内容>
 図4は、制御部が実行する処理を示すフローチャートである。なお、図4に示す一連の処理は、制御部9の一回分の制御周期で実行される。
 ステップS101において制御部9は、目標値生成部91によって、二輪移動体Mの軌道(x0t,y0t,ω0t)及び目標移動速度v0tを算出する。例えば、現在位置(x,y,ω)と、移動先の目標位置(x0,y0,ω0)と、が与えられた場合、目標値生成部91は、これら二点を結ぶ直線を二輪移動体Mの軌道とする。
 また、目標値生成部91は、例えば、台形速度パターン(加速→定速→減速)に基づき、将来における各時刻の目標移動速度v0tを決定する。なお、軌道(x0t,y0t,ω0t)及び目標移動速度v0tの算出方法は、前記した例に限定されない。
<Processing content of control unit>
FIG. 4 is a flowchart illustrating processing executed by the control unit. Note that the series of processing shown in FIG. 4 is executed in one control cycle of the control unit 9.
In step S101, the control unit 9 causes the target value generation unit 91 to calculate the trajectory (x 0t , y 0t , ω 0t ) and the target moving speed v 0t of the two-wheel moving body M. For example, when the current position (x, y, ω) and the target position (x 0 , y 0 , ω 0 ) of the movement destination are given, the target value generation unit 91 creates a straight line connecting these two points. A trajectory of the two-wheeled moving body M is assumed.
Further, the target value generation unit 91 determines a target moving speed v 0t at each time in the future based on, for example, a trapezoidal speed pattern (acceleration → constant speed → deceleration). Note that the method of calculating the trajectory (x 0t , y 0t , ω 0t ) and the target moving speed v 0t is not limited to the above example.
 ステップS102において制御部9は、脚制御部92によって、以下の(数式1)に基づき目標移動速度v0tに対応する目標開脚角度ψ0を算出する。なお、速度の閾値vra,vrb、及び目標開脚角度ψ0の上限値ψmaxは、予め設定された定数である。 In step S102, the control unit 9 causes the leg control unit 92 to calculate a target leg opening angle ψ 0 corresponding to the target moving speed v 0t based on the following (Equation 1). Note that the speed thresholds v ra and v rb and the upper limit value ψ max of the target leg opening angle ψ 0 are preset constants.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図5は、目標移動速度と、目標開脚角度と、の関係を示す説明図である。図5に示す折線は、(数式1)に対応している。目標移動速度v0tが閾値vra未満である場合、脚制御部92は、目標開脚角度ψ0をゼロに設定する(つまり、脚5R,5Lを閉じる)。
 目標移動速度v0tが閾値vra以上かつ閾値vrb以下である場合、脚制御部92は、目標移動速度v0tが大きいほど脚5R,5Lが大きく開かれるように、目標開脚角度ψ0を設定する。
FIG. 5 is an explanatory diagram showing the relationship between the target moving speed and the target leg opening angle. The broken line shown in FIG. 5 corresponds to (Formula 1). When the target moving speed v 0t is less than the threshold value v ra , the leg control unit 92 sets the target leg opening angle ψ 0 to zero (that is, closes the legs 5R and 5L).
When the target moving speed v 0t is not less than the threshold value v ra and not more than the threshold value v rb , the leg control unit 92 sets the target leg opening angle ψ 0 so that the legs 5R and 5L are opened wider as the target moving speed v 0t increases. Set.
 目標移動速度v0tが閾値vrbよりも大きい場合、脚制御部92は、角度ψmaxだけ脚5R,5Lを開くように脚駆動モータ6を駆動する(つまり、脚5R,5Lを最大限に開く)。このように、脚制御部92は、二輪移動体Mの目標移動速度v0tに応じて、車輪1R,1Lの位置関係を変化させる。 When the target moving speed v 0t is larger than the threshold value v rb , the leg control unit 92 drives the leg drive motor 6 so as to open the legs 5R and 5L by the angle ψ max (that is, maximize the legs 5R and 5L). open). In this manner, the leg control unit 92 changes the positional relationship between the wheels 1R and 1L according to the target moving speed v 0t of the two-wheel moving body M.
 ステップS103において制御部9は、機構情報算出部93によって、二輪移動体Mの重心XG、慣性モーメントIG等を算出する。
 すなわち、機構情報算出部93は、以下に示す(数式2)に基づいて、二輪移動体M(車輪1R,1Lを除く)の重心XGの位置ベクトルを算出する。なお、(数式2)に示すベクトルXiは、二輪移動体Mを構成する機器(ステア部3R,3L、脚5R,5L、上体7等)の位置ベクトルである。ベクトルXiは、前記した機器の接続関係・形状、脚制御部92から入力される目標開脚角度ψ0、姿勢検出部8や各モータのエンコーダ(図示せず)から入力される情報等に基づいて算出される。(数式2)に示す質量Wiは、前記した機器それぞれの質量であり、予め記憶部(図示せず)に格納されている。
In step S <b> 103, the control unit 9 uses the mechanism information calculation unit 93 to calculate the center of gravity X G and the moment of inertia I G of the two-wheel moving body M.
That is, mechanism information calculation unit 93, shown below, based on the (Equation 2), calculates the position vector of the center of gravity X G in a two-wheeled mobile M (excluding the wheels 1R, and 1L). A vector X i shown in (Expression 2) is a position vector of the devices (the steer portions 3R and 3L, the legs 5R and 5L, the upper body 7 and the like) constituting the two-wheeled moving body M. The vector X i is based on the connection relationship and shape of the devices described above, the target leg opening angle ψ 0 input from the leg control unit 92, information input from the attitude detection unit 8 and encoders (not shown) of each motor, and the like. Calculated based on The mass W i shown in (Formula 2) is the mass of each device described above, and is stored in advance in a storage unit (not shown).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図6は、二輪移動体の各構成の位置関係を模式的に示す説明図であり、(a)は平面図であり、(b)は側面図である。なお、図6では、上体7を重心XGに位置する質点として簡略化した。また、図6に示すX-Y平面は水平方向に沿っており、Z軸は鉛直方向に沿っている。
 機構情報算出部93は、左右の車輪1R,1Lの中心を結ぶ線分Tと、二輪移動体Mの重心XGと、の距離hを、以下に示す(数式3)に基づいて算出する。なお、(数式3)に示すベクトルaは車輪1Rの中心の位置ベクトルであり、ベクトルbは車輪1Lの中心の位置ベクトルである。
FIGS. 6A and 6B are explanatory views schematically showing the positional relationship of each component of the two-wheel moving body, where FIG. 6A is a plan view and FIG. 6B is a side view. In FIG. 6, the simplified as a point mass located the body 7 to the center of gravity X G. Further, the XY plane shown in FIG. 6 is along the horizontal direction, and the Z axis is along the vertical direction.
The mechanism information calculation unit 93 calculates the distance h between the line segment T connecting the centers of the left and right wheels 1R and 1L and the center of gravity X G of the two-wheel moving body M based on the following (Formula 3). In addition, the vector a shown in (Formula 3) is a position vector of the center of the wheel 1R, and the vector b is a position vector of the center of the wheel 1L.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、機構情報算出部93は、車輪1R,1Lが同軸上に位置しステア角δR,δL(図6(a)参照)をゼロとした状態を基準する車輪1R,1Lの変位q(前後方向)と、幅w(左右方向)と、を算出する。変位q及び幅wは、脚制御部92から入力される目標開脚角度ψ0等に基づき、図6に示す幾何学的な位置関係から求められる。
 このようにして機構情報算出部93は、上体7と車輪と1R,1Lの位置関係を示す情報(変位q、距離h、幅w)を算出する。
Further, the mechanism information calculation unit 93 determines the displacement q () of the wheels 1R and 1L based on the state in which the wheels 1R and 1L are coaxially positioned and the steering angles δ R and δ L (see FIG. 6A) are zero. The front-rear direction) and the width w (left-right direction) are calculated. The displacement q and the width w are obtained from the geometric positional relationship shown in FIG. 6 based on the target leg opening angle ψ 0 or the like input from the leg control unit 92.
In this way, the mechanism information calculation unit 93 calculates information (displacement q, distance h, width w) indicating the positional relationship between the body 7 and the wheels, and 1R and 1L.
 また、機構情報算出部93は、重心XG回り(図6(a)に示す線分Tに平行な軸回り)の慣性モーメントIGを算出する。慣性モーメントIGは、二輪移動体Mを構成する機器(ステア部3R,3L、脚5R,5L、上体7等)の位置関係及び質量に基づいて算出される。 Further, the mechanism information calculation unit 93 calculates the moment of inertia I G around the center of gravity X G (around the axis parallel to the line segment T shown in FIG. 6A). The inertia moment IG is calculated based on the positional relationship and mass of the devices (the steer portions 3R, 3L, the legs 5R, 5L, the upper body 7, etc.) constituting the two-wheeled moving body M.
 その他、制御部9は、速度・位置算出部941によって、二輪移動体Mの速度v及び位置(x,y,z)を算出する。速度v及び位置(x,y,z)の算出処理には、前記した距離h、変位q、姿勢検出部8及び各エンコーダ(図示せず)から入力される情報が用いられる。 In addition, the control unit 9 calculates the speed v and the position (x, y, z) of the two-wheeled moving body M by the speed / position calculation unit 941. For the calculation process of the velocity v and the position (x, y, z), the distance h, the displacement q, information input from the attitude detection unit 8 and each encoder (not shown) are used.
 速度・位置算出部941は、取得した各情報を用いて、(数式4)に基づきX‐Y平面上における車輪1Rの速度(dxR,dyR)を算出し、(数式5)に基づき車輪1Lの速度(dxL,dyL)を算出する。
 なお、rは車輪1R,1Lの半径であり、ζRは車輪1Rの回転角であり、θは二輪移動体Mの進行方向への傾斜角であり、ωは旋回方向を示す角度であり、δRは車輪1Rのステア角である。
The speed / position calculation unit 941 calculates the speed (dx R , dy R ) of the wheel 1R on the XY plane based on (Formula 4) using each acquired information, and the wheel based on (Formula 5). The speed (dx L , dy L ) of 1 L is calculated.
Here, r is the radius of the wheels 1R, 1L, ζ R is the rotation angle of the wheel 1R, θ is the inclination angle in the traveling direction of the two-wheel moving body M, and ω is the angle indicating the turning direction, [delta] R is steering angle of the wheel 1R.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 続いて、速度・位置算出部941は、車輪1R,1Lの速度(dxR,dyR),(dxL,dyL)等に基づき、以下の(数式6)で上体7の重心XGの速度(dxC,dyC)を算出する。 Subsequently, the speed / position calculation unit 941 calculates the center of gravity X G of the body 7 by the following (Formula 6) based on the speeds (dx R , dy R ), (dx L , dy L ) of the wheels 1R, 1L. The speed (dx C , dy C ) is calculated.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 また、速度・位置算出部941は、以下に示す(数式7)に基づいて、重心XGのz方向(鉛直方向)の高さzCを算出する。 Further, the speed / position calculation unit 941 calculates the height z C of the center of gravity XG in the z direction (vertical direction) based on the following (Formula 7).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、速度・位置算出部941は、(dxR+dxL)/2、及び(dyR+dyL)/2、をそれぞれ時間で積分し、重心XGの現在位置(x,y)を算出する。また、速度・位置算出部941は、以下に示す(数式8)に基づいて、重心XGの速度vを算出する。 Also, the speed / position calculation unit 941 integrates (dx R + dx L ) / 2 and (dy R + dy L ) / 2 with time, and calculates the current position (x, y) of the center of gravity X G. . The speed-position calculating unit 941 described below on the basis of (Equation 8), to calculate the velocity v of the center of gravity X G.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 このようにして算出された二輪移動体Mの現在位置(x,y)及び速度vは、フィードバック制御に基づく車輪駆動モータ2R,2L及びステア駆動モータ4R,4Lの制御に用いられる。 The current position (x, y) and speed v of the two-wheeled moving body M calculated in this way are used for controlling the wheel drive motors 2R, 2L and the steer drive motors 4R, 4L based on feedback control.
 次に、図4のステップS104において制御部9は、走行モード決定部942によって、変位q(図6(a)参照)が閾値D1未満であるか否かを判定する。前記した閾値D1は、平行二輪モードのみで十分に姿勢を安定させられるか否かの判定基準となる値であり、予め設定されている。変位qが閾値D1未満である場合(S104→Yes)、走行モード決定部942は平行二輪モードを実行することを決定する。 Next, in step S104 of FIG. 4, the control unit 9 determines whether or not the displacement q (see FIG. 6A) is less than the threshold value D1 by the travel mode determination unit 942. The threshold value D1 is a value that serves as a criterion for determining whether or not the posture can be sufficiently stabilized only in the parallel two-wheel mode, and is set in advance. When the displacement q is less than the threshold value D1 (S104 → Yes), the traveling mode determination unit 942 determines to execute the parallel two-wheel mode.
 ステップS105において制御部9は、平行二輪モード実行部943によって、二輪移動体Mの姿勢を制御する。
 例えば、平行二輪モード実行部943は、車輪1R,1Lの回転角ζ、回転速度dζ、進行方向への傾斜角θ、傾斜角速度dθに対し、それぞれ所定のフィードバックゲインK1、K2、K3、K4を乗じて加算したものを車輪駆動モータ2R,2Lの平均トルクτcの目標値とする。
In step S <b> 105, the control unit 9 controls the posture of the two-wheel moving body M by the parallel two-wheel mode execution unit 943.
For example, the parallel two-wheel mode execution unit 943 provides predetermined feedback gains K1, K2, K3, and K4 for the rotation angle ζ, the rotation speed dζ, the inclination angle θ in the traveling direction, and the inclination angular velocity dθ of the wheels 1R and 1L, respectively. A value obtained by multiplication and addition is set as a target value of the average torque τ c of the wheel drive motors 2R and 2L.
 また、平行二輪モード実行部943は、以下に示す(数式9)に基づいて、旋回トルクτdを算出する。なお、Kdは予め設定された旋回ゲインであり、ωotは旋回方向を示す目標値であり、ωは現在の旋回方向を示す角度である。 The parallel two-wheel mode execution unit 943 calculates the turning torque τ d based on the following (Equation 9). K d is a turning gain set in advance, ω ot is a target value indicating the turning direction, and ω is an angle indicating the current turning direction.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 平行二輪モード実行部943は、右側の車輪駆動モータ2Rに目標トルク(τc-τd)を出力し、左側の車輪駆動モータ2Lに目標トルク(τc+τd)を出力する。前記したように、τcは車輪1R,1Lの平均トルクの目標値である。また、平行二輪モード実行部943は、ステア駆動モータ4R,4Lの目標ステア角をゼロにする。
 このようにして平行二輪モード実行部943は、車輪駆動モータ2R,2Lの加減速に伴って発生する慣性力を利用し、倒立振子制御によって二輪移動体Mの姿勢を安定させる。
The parallel two-wheel mode execution unit 943 outputs the target torque (τ c −τ d ) to the right wheel drive motor 2R and outputs the target torque (τ c + τ d ) to the left wheel drive motor 2L. As described above, τ c is a target value of the average torque of the wheels 1R and 1L. Further, the parallel two-wheel mode execution unit 943 sets the target steer angle of the steer drive motors 4R and 4L to zero.
Thus, the parallel two-wheel mode execution unit 943 uses the inertial force generated with the acceleration / deceleration of the wheel drive motors 2R and 2L, and stabilizes the posture of the two-wheel moving body M by the inverted pendulum control.
 図4において、変位qが閾値D1以上である場合(S104→No)、制御部9の処理はステップS106に進む。ステップS106において制御部9は、走行モード決定部942によって、変位qが閾値D2未満であるか否かを判定する。前記した閾値D2は、自転車モードのみで姿勢の安定性を十分に確保できるか否かの判定基準となる値であり、予め設定されている。
 変位qが閾値D2未満である場合(S106→Yes)、制御部9は、中間モード実行部945に指令信号を出力する。
In FIG. 4, when the displacement q is greater than or equal to the threshold value D1 (S104 → No), the process of the control unit 9 proceeds to step S106. In step S106, the control unit 9 determines whether the displacement q is less than the threshold value D2 by the travel mode determination unit 942. The threshold value D2 is a value that serves as a criterion for determining whether or not the posture stability can be sufficiently secured only in the bicycle mode, and is set in advance.
When the displacement q is less than the threshold value D2 (S106 → Yes), the control unit 9 outputs a command signal to the intermediate mode execution unit 945.
 ステップS107において制御部9は、中間モードを実行することを決定する。ここで、中間モードとは、平行二輪モード及び自転車モードの一方から他方に遷移する際に実行される走行モードである。中間モードでは、倒立振子制御に基づく車輪駆動モータ2R,2Lの制御と、姿勢安定制御に基づくステア駆動モータ4R,4Lの制御と、が併せて実行される。 In step S107, the control unit 9 determines to execute the intermediate mode. Here, the intermediate mode is a travel mode that is executed when transitioning from one of the parallel two-wheel mode and the bicycle mode to the other. In the intermediate mode, the control of the wheel drive motors 2R and 2L based on the inverted pendulum control and the control of the steer drive motors 4R and 4L based on the posture stability control are executed together.
 前記したように、倒立振子制御(第1制御)は、車輪駆動モータ2R,2Lの加減速に伴う慣性力(線分Tに対して垂直な方向に作用する:図6(a)参照)を利用して二輪移動体Mの姿勢を安定させる制御である。
 また、姿勢安定制御(第2制御)は、ステア駆動モータ4R,4Lの回転に伴い二輪移動体Mが旋回することにより発生する遠心力(線分Tに対して平行な方向に作用する:図6(a)参照)を利用して、二輪移動体Mの姿勢を安定させる制御である。
As described above, the inverted pendulum control (first control) is based on the inertial force (acting in a direction perpendicular to the line segment T: see FIG. 6A) accompanying acceleration / deceleration of the wheel drive motors 2R and 2L. This is control that stabilizes the posture of the two-wheeled moving body M by using it.
In addition, the posture stabilization control (second control) acts in a direction parallel to the line segment T generated by the two-wheel moving body M turning with the rotation of the steering drive motors 4R and 4L: 6 (a)) is used to stabilize the posture of the two-wheeled moving body M.
 中間モードでは、倒立振子制御及び姿勢安定制御に用いるゲインの重み付けを滑らかに変化させることで、平行二輪モード及び自転車モードの一方から他方への移行をスムーズに行う。 In the intermediate mode, the transition from one of the parallel two-wheel mode and the bicycle mode to the other is smoothly performed by smoothly changing the weight of the gain used for the inverted pendulum control and the posture stabilization control.
 図7は、中間モード実行部が中間モードを実行する際の処理の流れを示すフローチャートである。
 ステップS1071において中間モード実行部945は、重み算出部945a(図3参照)によって、倒立振子制御で用いるゲインと、姿勢安定制御で用いるゲインとの比(つまり、各制御の分割重み)を算出する。
FIG. 7 is a flowchart showing a flow of processing when the intermediate mode execution unit executes the intermediate mode.
In step S1071, the intermediate mode execution unit 945 calculates the ratio (that is, the division weight of each control) between the gain used in the inverted pendulum control and the gain used in the posture stabilization control by the weight calculation unit 945a (see FIG. 3). .
 重み算出部945aは、以下の(数式10)を用いて、倒立振子制御のトルク効率に着目した重み付け要素E1を算出する。(数式10)に示すKは、E1とE2との比を調整するための係数であり、予め設定されている。ξは、車輪1R,1Lの中心を結ぶ線分T(図6参照)と、上体7の正面方向(図6では、前方向)と、のなす角である。δは、現在の旋回方向を示す角度であり、ステア角δR,δLの平均値である。前記したように、倒立振子制御を行う際にはステア部3R,3Lを回転させない(ステアを切らない)ため、角度δは一定である。 Weight calculator 945a, using the following (Equation 10), calculates a weighting factor E 1 which focuses on torque efficiency of the inverted pendulum control. K shown in (Expression 10) is a coefficient for adjusting the ratio between E 1 and E 2 and is set in advance. ξ is an angle formed by a line segment T (see FIG. 6) connecting the centers of the wheels 1R and 1L and the front direction of the upper body 7 (forward direction in FIG. 6). δ is an angle indicating the current turning direction, and is an average value of the steer angles δ R and δ L. As described above, when the inverted pendulum control is performed, since the steer portions 3R and 3L are not rotated (the steer is not cut), the angle δ is constant.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 図6に示す角度(ξ+δ)がπ/2に近づくにつれて、車輪1R,1Lのトルクが二輪移動体Mの進行に反映される程度も大きくなる。つまり、重み付け要素E1が大きくなるほど、車輪1R,1Lを回転させる際のトルク効率も大きくなる。 As the angle (ξ + δ) shown in FIG. 6 approaches π / 2, the degree to which the torque of the wheels 1R, 1L is reflected in the progress of the two-wheel moving body M increases. In other words, the larger the weighting factor E 1, also increases the torque efficiency in rotating the wheels 1R, and 1L.
 車輪1R,1Lの中心を結ぶ線分T(図6参照)と、二輪移動体Mの進行方向(図6の角度δ)と、が垂直である場合、重み付け要素E1は最大(E1=K)なる。一方、線分Tと二輪移動体Mの進行方向とが一直線上にある場合、重み付け要素E1は最小(E1=0)になる。 When the line segment T (see FIG. 6) connecting the centers of the wheels 1R and 1L is perpendicular to the traveling direction of the two-wheel moving body M (angle δ in FIG. 6), the weighting element E 1 is maximum (E 1 = K) On the other hand, when the line segment T and the traveling direction of the two-wheeled moving body M are on a straight line, the weighting element E 1 is minimum (E 1 = 0).
 また、重み算出部945aは、以下の(数式11)を用いて、姿勢安定制御の遠心力発生効率に着目した重み付け要素E2を算出する。
 (数式11)に示すm1は車輪1R,1Lを除く二輪移動体Mの質量であり、rは車輪1R,1Lの半径である。hは車輪1R,1Lの中心を結ぶ線分Tと重心XGとの距離であり、ζは車輪1Rの回転角であり、Lは線分Tの長さ(車輪1R,1Lの中心間の距離)である(図6(a)参照)。
The weight calculation section 945a, using the following (Equation 11), calculates a weighting factor E 2 which focuses on the centrifugal force generation efficiency of the posture stabilization control.
M 1 shown in (Formula 11) is the mass of the two-wheel moving body M excluding the wheels 1R and 1L, and r is the radius of the wheels 1R and 1L. h is the distance between the line segment T connecting the centers of the wheels 1R and 1L and the center of gravity X G , ζ is the rotation angle of the wheel 1R, and L is the length of the line segment T (between the centers of the wheels 1R and 1L) Distance) (see FIG. 6A).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 重み付け要素E2は、車輪1R,1Lの回転速度の二乗(dζ/dt)2に比例しており、この重み付け要素E2が大きくなるほど遠心力発生効率も大きくなる。なお、(数式11)に記載のr2と(dζ/dt)2との積に代えて、二輪移動体Mの速度vの二乗を用いてもよい。
 重み付け要素E1,E2に含まれる角度ξ、重み付け要素E2に含まれる距離h、回転速度(dζ/dt)、及び長さLは、時間の経過とともに連続的に変化する。したがって、それぞれの重み付け要素E1,E2の大きさも時間の経過とともに連続的に変化する。ちなみに、予め設定した所定値よりも長さLが小さい場合、重み算出部945aは重み付け要素E2の値をゼロに設定することが好ましい。これによって、重み付け要素E2の解がないという事態を回避できる。
The weighting element E 2 is proportional to the square of the rotational speed of the wheels 1R, 1L (dζ / dt) 2 , and the centrifugal force generation efficiency increases as the weighting element E 2 increases. Instead of the product of r 2 and (dζ / dt) 2 described in (Equation 11), the square of the speed v of the two-wheel moving body M may be used.
The angle ξ included in the weighting elements E 1 and E 2 , the distance h included in the weighting element E 2 , the rotational speed (dζ / dt), and the length L change continuously over time. Accordingly, the magnitudes of the weighting elements E 1 and E 2 also change continuously with the passage of time. Incidentally, when the length L than a predetermined value set in advance is small, the weight calculation section 945a, it is preferable to set the value of weighting factor E 2 to zero. Thus, it is possible to avoid a situation that there is no solution for the weighting factor E 2.
 重み算出部945aは、重み付け要素E1,E2を倒立振子制御実行部945bに出力するとともに、重み付け要素E1,E2を姿勢安定制御実行部945cに出力する。 The weight calculation unit 945a outputs the weighting elements E 1 and E 2 to the inverted pendulum control execution unit 945b and outputs the weighting elements E 1 and E 2 to the posture stabilization control execution unit 945c.
 図7のステップS1072において中間モード実行部945は、倒立振子制御実行部945bによって、車輪駆動モータ2R,2Lの目標トルクτ0を算出する。
 つまり、倒立振子制御実行部945bは、重み算出部945aから入力される第1重み付け値(1/E1+E2)を用いて、車輪駆動モータ2R,2Lを制御する際のフィードバックゲインを算出する。
In step S1072 in FIG. 7, the intermediate mode execution unit 945 calculates the target torque τ 0 of the wheel drive motors 2R and 2L by the inverted pendulum control execution unit 945b.
That is, the inverted pendulum control execution unit 945b calculates a feedback gain when controlling the wheel drive motors 2R and 2L using the first weight value (1 / E 1 + E 2 ) input from the weight calculation unit 945a. .
 例えば、倒立振子制御実行部945bは、進行方向に沿う上体7の傾斜角θ及び傾斜角速度dθのフィードバックゲインとして、平行二輪モード実行部943で用いたフィードバックゲインに第1重み付け値(1/E1+E2)を乗算したものを用いる。なお、フィードバックゲインとして、第1重み付け値(1/E1+E2)に所定の定数を乗算したものを用いてもよい。
 その他、倒立振子制御実行部945bは、既に算出されている距離h(図6参照)、慣性モーメントIG、各機器の質量等に基づきゲインのスケジューリングを行い、車輪駆動モータ2R,2Lの目標トルクτ0を算出する。
For example, the inverted pendulum control execution unit 945b uses the first weight value (1 / E as the feedback gain used in the parallel two-wheel mode execution unit 943 as the feedback gain of the inclination angle θ and the inclination angular velocity dθ of the body 7 along the traveling direction. 1 + E 2 ) is used. As the feedback gain, a value obtained by multiplying the first weighting value (1 / E 1 + E 2 ) by a predetermined constant may be used.
In addition, the inverted pendulum control execution unit 945b performs gain scheduling based on the already calculated distance h (see FIG. 6), inertia moment I G , mass of each device, and the like, and target torques of the wheel drive motors 2R and 2L. τ 0 is calculated.
 なお、車輪1R,1Lが同軸上にないことによる影響のみを考慮し、平行二輪モード実行部943によって算出される平均トルクτcを用いて、以下の(数式12)に基づき目標トルクτoを算出してもよい。 Note that the target torque τ o is calculated based on the following (Equation 12) using the average torque τ c calculated by the parallel two-wheel mode execution unit 943, taking into consideration only the influence of the wheels 1R and 1L not being coaxial. It may be calculated.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図7のステップS1073において中間モード実行部945は、姿勢安定制御実行部945cによって、姿勢安定化用のステア角δosを算出する。この姿勢安定化用のステア角δosは、ステアを切って遠心力を発生させることで二輪移動体Mの姿勢を安定させるためのステア角である。
 例えば、姿勢安定制御実行部945cは、進行方向に沿う上体7の傾斜角θ、傾斜角速度dθのフィードバックゲインとして、自転車モード実行部944で用いたフィードバックゲインに第2重み付け値(E2/E1+E2)を乗算したものを用いて、姿勢安定化用のステア角δosを算出する。
In step S1073 of FIG. 7, the intermediate mode execution unit 945 calculates the posture stabilization steer angle δ os by the posture stabilization control execution unit 945c. This steering angle δ os for stabilizing the posture is a steering angle for stabilizing the posture of the two-wheeled moving body M by generating a centrifugal force by cutting the steering.
For example, the posture stabilization control execution unit 945c uses the second weighting value (E 2 / E) for the feedback gain used in the bicycle mode execution unit 944 as the feedback gain of the inclination angle θ and the inclination angular velocity dθ of the body 7 along the traveling direction. A steering angle δ os for posture stabilization is calculated using a product of 1 + E 2 ).
 姿勢安定制御実行部945cは、ステア駆動モータ4R,4Lに関し、それぞれのステア角δosの正負を逆にする。これによって、車輪1R,1Lの中心を結ぶ線分Tに対して垂直方向の遠心力を発生させ、二輪移動体Mの姿勢を安定させることができる。 The posture stabilization control execution unit 945c reverses the sign of each steer angle δ os with respect to the steer drive motors 4R and 4L. As a result, a centrifugal force in the vertical direction is generated with respect to the line segment T connecting the centers of the wheels 1R and 1L, and the posture of the two-wheel moving body M can be stabilized.
 図7のステップS1074において姿勢安定制御実行部945cは、追従用のステア角δof,δoaを算出する。なお、追従用のステア角δof,δoaとは、目標値生成部91によって生成された軌道(x0t,y0t,ω0t)に二輪移動体Mの進行経路を追従させるためのステア角である。
 ステア角δofは、軌道(x0t,y0t,ω0t)と二輪移動体Mの現在位置との距離にフィードバックゲインKfを乗じることで算出される。なお、姿勢安定制御実行部945cは、ステア駆動モータ4R,4Lに関し、それぞれのステア角δofの正負を共通にする。
In step S1074 in FIG. 7, the posture stabilization control execution unit 945c calculates the follower steering angles δ of and δ oa . The tracking steer angles δ of and δ oa are steer angles for causing the traveling path of the two-wheeled vehicle M to follow the trajectory (x 0t , y 0t , ω 0t ) generated by the target value generation unit 91. It is.
The steer angle δ of is calculated by multiplying the distance between the trajectory (x 0t , y 0t , ω 0t ) and the current position of the two-wheel moving body M by the feedback gain K f . Note that the posture stabilization control execution unit 945c makes the positive and negative of the respective steering angles δ of regarding the steering drive motors 4R and 4L.
 また、姿勢安定制御実行部945cは、現在の旋回方向を示す角度ωと、目標旋回方向を示す角度ω0と、の差にフィードバックゲインKaを乗算したものを、旋回用のステア角δoaとして設定する。なお、姿勢安定制御実行部945cは、ステア駆動モータ4R,4Lに関し、それぞれのステア角δoaの正負を逆にする。 Further, the posture stabilization control executing unit 945C, and the angle omega that indicates the current turning direction, an angle omega 0 indicating a target turning direction, the difference a multiplied by the feedback gain K a in the, steering angle for turning [delta] oa Set as. The posture stabilization control execution unit 945c reverses the sign of each steer angle δ oa with respect to the steer drive motors 4R and 4L.
 図7のステップS1075において姿勢安定制御実行部945cは、以下の(数式13)に基づいて、ステア駆動モータ4R,4Lの目標ステア角δR,δLを算出する。 In step S1075 in FIG. 7, the posture stabilization control execution unit 945c calculates target steer angles δ R and δ L of the steer drive motors 4R and 4L based on the following (Formula 13).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 上記(数式13)は、上体7に対して左側の脚5Lが先行している場合における目標ステア角δR,δLの算出式である。なお、右側の脚5Rが先行する場合、ステア角δos,δoaの符号が(数式13)の場合とは逆になる。
 ステップS1071で算出された目標トルクτ0は車輪駆動モータ2R,2Lに出力され、ステップS1074で算出された目標ステア角δR,δLはステア駆動モータ4R,4Lに出力される。
The above (Formula 13) is a formula for calculating the target steer angles δ R and δ L when the left leg 5L is ahead of the body 7. Note that when the right leg 5R precedes, the signs of the steer angles δ os and δ oa are opposite to those in (Formula 13).
The target torque τ 0 calculated in step S1071 is output to the wheel drive motors 2R and 2L, and the target steer angles δ R and δ L calculated in step S1074 are output to the steer drive motors 4R and 4L.
 再び、図4に戻って説明を続ける。ステップS106において変位q(図6(a)参照)が閾値D2以上である場合(S106→No)、制御部9の処理はステップS108に進む。ステップS108において制御部9は、自転車モード実行部944によって、自転車モードを実行する。 Again, returning to FIG. When displacement q (refer to Drawing 6 (a)) is more than threshold D2 in Step S106 (S106-> No), processing of control part 9 progresses to Step S108. In step S <b> 108, the control unit 9 executes the bicycle mode by the bicycle mode execution unit 944.
 自転車モード実行部944は、左右の車輪駆動モータ2R,2Lに対し、目標移動速度votを車輪1R,1Lの半径rで除算することで得られる目標回転速度dζ0を出力する。また、自転車モード実行部944は、目標ステア角δotを算出し、左右のステア駆動モータ4R,4Lを駆動する。
 このように脚5R,5Lが比較的大きく開いた状態で(q≧D2)、自転車モードを実行することによって、二輪移動体Mの姿勢を安定させることができる。なお、自転車モードの詳細については説明を省略するが、二輪移動体Mの移動速度に応じて操舵角度ゲインを変更することが好ましい。
The bicycle mode execution unit 944 outputs a target rotational speed dζ 0 obtained by dividing the target moving speed v ot by the radius r of the wheels 1R, 1L to the left and right wheel drive motors 2R, 2L. Further, the bicycle mode execution unit 944 calculates a target steer angle δot and drives the left and right steer drive motors 4R and 4L.
Thus, the posture of the two-wheeled moving body M can be stabilized by executing the bicycle mode with the legs 5R and 5L opened relatively large (q ≧ D2). In addition, although description is abbreviate | omitted about the detail of a bicycle mode, it is preferable to change a steering angle gain according to the moving speed of the two-wheel mobile body M. FIG.
<効果>
 本実施形態によれば、平行二輪モード及び自転車モードの一方から他方に移行する際に中間モードを実行し、重み付け要素E1,E2を倒立振子制御及び姿勢安定制御のフィードバックゲインに反映させる。
<Effect>
According to this embodiment, when shifting from one of the parallel two-wheel mode and the bicycle mode to the other, the intermediate mode is executed, and the weighting elements E 1 and E 2 are reflected in the feedback gains of the inverted pendulum control and the posture stabilization control.
 これによって、速度上昇に応じて脚5R,5Lを開く過程で、慣性力を利用した倒立振子制御の影響度合いが徐々に小さくなり、遠心力を利用した姿勢安定制御の影響度合いが徐々に大きくなる。なお、重み付け要素E1,E2の変数(角度ξ、距離h、回転速度(dζ/dt)、長さL)は連続的に変化するため、前記した変化も連続的に生じる。したがって、平行二輪モード→中間モード→自転車モードの順に走行モードをスムーズに移行させることができる。
 なお、減速過程において、自転車モード→中間モード→平行二輪モードの順に走行モードを移行させる場合についても同様である。
As a result, in the process of opening the legs 5R and 5L according to the speed increase, the degree of influence of the inverted pendulum control using the inertial force is gradually reduced, and the degree of influence of the posture stabilization control using the centrifugal force is gradually increased. . Since the variables (angle ξ, distance h, rotational speed (dζ / dt), length L) of the weighting elements E 1 and E 2 change continuously, the above-described changes also occur continuously. Therefore, the running mode can be smoothly shifted in the order of parallel two-wheel mode → intermediate mode → bicycle mode.
The same applies to the case where the traveling mode is shifted in the order of bicycle mode → intermediate mode → parallel two-wheel mode in the deceleration process.
 仮に、中間モードを介することなく、自転車モード及び平行二輪モードの一方から他方に移行した場合、車輪駆動モータ2R,2Lの目標トルクやステア駆動モータ4R,4Lの角度が不連続になったり、過補償が生じたりして、走行モードをスムーズに移行できず、転倒する場合がある。
 これに対して本実施形態では、中間モードにおいて倒立振子制御及び姿勢安定制御を併せて実行しつつ、フィードバックゲインの比率を時間の経過とともに連続的に変化させる。したがって、前記したように、走行モードをスムーズに移行させることができる。
If a transition is made from one of the bicycle mode and the parallel two-wheel mode to the other without going through the intermediate mode, the target torques of the wheel drive motors 2R, 2L and the angles of the steer drive motors 4R, 4L may become discontinuous, Compensation may occur, and the driving mode may not be smoothly shifted and the vehicle may fall over.
On the other hand, in the present embodiment, the ratio of the feedback gain is continuously changed over time while executing the inverted pendulum control and the posture stabilization control together in the intermediate mode. Therefore, as described above, the travel mode can be smoothly shifted.
≪第2実施形態≫
 第2実施形態は、第1実施形態と比較して、上体7にステレオカメラ10が搭載されている点と、制御部9の構成と、が異なるが、その他については第1実施形態と同様である。したがって、第1実施形態と異なる部分について説明し、重複する部分の説明を省略する。
<< Second Embodiment >>
The second embodiment differs from the first embodiment in that the stereo camera 10 is mounted on the upper body 7 and the configuration of the control unit 9, but is otherwise the same as in the first embodiment. It is. Therefore, a different part from 1st Embodiment is demonstrated and description of the overlapping part is abbreviate | omitted.
 図8は、本実施形態に係る二輪移動体の右側面図であり、図8(b)は正面図であり、図8(c)は平面図である。
 図8に示すように、二輪移動体Mは、少なくとも進行先の経路を含む外界を撮像するステレオカメラ10(撮像手段)を備えている。ステレオカメラ10は、対象物を複数の異なる方向から同時に撮像できるように構成されている。
FIG. 8 is a right side view of the two-wheel moving body according to this embodiment, FIG. 8B is a front view, and FIG. 8C is a plan view.
As shown in FIG. 8, the two-wheeled moving body M includes a stereo camera 10 (imaging unit) that images the outside world including at least a travel destination route. The stereo camera 10 is configured so that an object can be imaged simultaneously from a plurality of different directions.
 図9は、二輪移動体が備える制御部の構成図である。図9に示すように、制御部9は、画像認識部95と、目標値生成部91と、脚制御部92と、移動系制御部94と、を備えている。
 画像認識部95は、ステレオカメラ10から入力される画像情報に基づいて、進行予定の経路の状態(傾斜、障害物の有無、凹凸等)を認識する。なお、画像認識部95が実行する処理の詳細については、説明を省略する。
 目標値生成部91は、操作者によって予め入力される情報と、画像認識部95から入力される情報と、に基づき、移動先に向かうための軌道(x0t,y0t,ω0t)及び目標移動速度v0tを生成する。
 脚制御部92は、目標値生成部91から入力される目標移動速度v0tに対応して、脚5R,5Lの目標開脚角度ψ0を算出する。
FIG. 9 is a configuration diagram of a control unit included in the two-wheel moving body. As shown in FIG. 9, the control unit 9 includes an image recognition unit 95, a target value generation unit 91, a leg control unit 92, and a moving system control unit 94.
Based on the image information input from the stereo camera 10, the image recognition unit 95 recognizes the state of the route scheduled to travel (tilt, presence / absence of obstacles, unevenness, etc.). Note that details of the processing executed by the image recognition unit 95 are omitted.
The target value generation unit 91, based on information input in advance by the operator and information input from the image recognition unit 95, a trajectory (x 0t , y 0t , ω 0t ) and a target for moving to the destination. A moving speed v 0t is generated.
The leg control unit 92 calculates the target leg opening angle ψ 0 of the legs 5R and 5L corresponding to the target moving speed v 0t input from the target value generating unit 91.
 移動系制御部94は、画像認識部95から入力される情報と、目標値生成部91から入力される軌道(x0t,y0t,ω0t)及び目標移動速度v0tと、脚制御部92から入力される脚5R,5Lの目標開脚角度ψ0と、に基づいて、各モータを制御する。なお、移動系制御部94の構成は、第1実施形態で説明したものと同様である(図3参照)。 The moving system control unit 94 includes the information input from the image recognition unit 95, the trajectory (x 0t , y 0t , ω 0t ) and the target moving speed v 0t input from the target value generation unit 91, and the leg control unit 92. Each motor is controlled on the basis of the target leg opening angle ψ 0 of the legs 5R and 5L input from. The configuration of the mobile system control unit 94 is the same as that described in the first embodiment (see FIG. 3).
 走行モード決定部942(図3参照)は、例えば、脚制御部92から入力される目標開脚角度ψ0の大きさに応じて走行モードを決定する。
 例えば、重み算出部945a(図3参照)で用いられる重み付け要素E1を固定値とし、車輪1R,1Lの回転速度(dζ/dt)の二乗に比例して増加する関数を重み付け要素E2として用いてもよい。この場合でも、車輪1R,1Lの回転速度(dζ/dt)に応じて、第1重み付け値(1/E1+E2)及び第2重み付け値(E2/E1+E2)が連続的に変化するため、走行モードをスムーズに移行させることができる。
The travel mode determination unit 942 (see FIG. 3) determines the travel mode according to the size of the target leg opening angle ψ 0 input from the leg control unit 92, for example.
For example, the weighting element E 1 used in the weight calculation unit 945a (see FIG. 3) is a fixed value, and a function that increases in proportion to the square of the rotational speeds (dζ / dt) of the wheels 1R and 1L is used as the weighting element E 2. It may be used. Even in this case, the first weighting value (1 / E 1 + E 2 ) and the second weighting value (E 2 / E 1 + E 2 ) are continuously set according to the rotational speeds (dζ / dt) of the wheels 1R and 1L. Since it changes, the running mode can be smoothly shifted.
 中間モードの実行中、画像認識部95によって経路上で凹凸が認識された場合、移動系制御部94は、次のような処理を行うことが好ましい。すなわち、移動系制御部94は、重み算出部945a(図3参照)によって、倒立振子制御に対応する第1重み付け値(1/E1+E2)に所定値α(<1)を乗算し、凹凸がない場合よりも第1重み付け値を小さくする。一方、姿勢安定化制御の重み付け値を所定値αで除算し、凹凸がない場合よりも第2重み付け値を大きくする。
 これによって、床面の凹凸で大きな影響を受ける倒立振子制御のゲインが抑制され、二輪移動体Mの姿勢を安定させることができる。
When the unevenness is recognized on the path by the image recognition unit 95 during the execution of the intermediate mode, the moving system control unit 94 preferably performs the following process. That is, the mobile system control unit 94 multiplies the first weighting value (1 / E 1 + E 2 ) corresponding to the inverted pendulum control by a predetermined value α (<1) by the weight calculation unit 945a (see FIG. 3). The first weighting value is made smaller than when there is no unevenness. On the other hand, the weight value for posture stabilization control is divided by the predetermined value α, and the second weight value is made larger than when there is no unevenness.
Thereby, the gain of the inverted pendulum control that is greatly affected by the unevenness of the floor surface is suppressed, and the posture of the two-wheeled moving body M can be stabilized.
 また、画像認識部95によって凹凸が認識された場合、目標値生成部91は、凹凸がない通常時よりも脚5R,5Lを広げるように、脚制御部92に目標移動速度v0tを出力する。仮に、平行二輪モード(つまり、倒立振子制御)の実行中に片側の車輪1R(又は車輪1L)が凸部に乗り上げると、大きな転倒力が発生して二輪移動体Mの姿勢が不安定になりやすい。
 前記したように、脚制御部92によって脚5R,5Lを比較的大きく開くことで、平行二輪モードから中間モードを介して自転車モードに速やかに移行できる。なお、自転車モードで凸部に乗り上げた場合でも、遠心力を利用して速やかに姿勢を安定させることができる。
When the unevenness is recognized by the image recognition unit 95, the target value generation unit 91 outputs the target moving speed v 0t to the leg control unit 92 so as to widen the legs 5R and 5L compared to the normal time without the unevenness. . If the wheel 1R (or wheel 1L) on one side rides on the convex part during execution of the parallel two-wheel mode (that is, the inverted pendulum control), a large overturning force is generated and the posture of the two-wheeled moving body M becomes unstable. Cheap.
As described above, the legs 5R and 5L are opened relatively large by the leg control unit 92, whereby the bicycle mode can be quickly shifted from the parallel two-wheel mode to the intermediate mode. Even when riding on the convex part in the bicycle mode, the posture can be quickly stabilized by utilizing the centrifugal force.
<効果>
 本実施形態によれば、制御部9が機構情報算出部93を有しない構成でも、車輪1R,1Lの回転速度(dζ/dt)等に基づいて重み付け要素E1,E2を算出するようにした。これによって、中間モードを介して平行二輪モード及び自転車モードの一方から他方へとスムーズに移行させることができる。
<Effect>
According to the present embodiment, the weighting elements E 1 and E 2 are calculated based on the rotational speeds (dζ / dt) of the wheels 1R and 1L even if the control unit 9 does not include the mechanism information calculation unit 93. did. Thereby, it is possible to smoothly shift from one of the parallel two-wheel mode and the bicycle mode to the other through the intermediate mode.
 また、ステレオカメラ10による撮像結果から進行予定の床面上に凹凸を認識した場合、制御部9は、倒立振子制御のゲインを抑制して姿勢安定化制御のゲインを大きくしたり、脚5R,5Lを速やかに開いて自転車モードに移行したりする。したがって、床面が凹凸状である場合にも、二輪移動体Mの姿勢を安定させ続けることができる。 When the unevenness is recognized on the floor surface scheduled to travel from the imaging result of the stereo camera 10, the control unit 9 suppresses the gain of the inverted pendulum control to increase the gain of the posture stabilization control, Open 5L promptly and shift to bicycle mode. Therefore, even when the floor surface is uneven, the posture of the two-wheel moving body M can be kept stable.
≪変形例≫
 以上、本発明に係る二輪移動体Mについて説明したが、本発明は前記した各実施形態に限定されるものではなく、適宜変更できる。
 例えば、第1実施形態では、(数式10)に基づいて重み付け要素E1を算出し、(数式11)に基づいて重み付け要素E2を算出する場合について説明したが、これに限らない。すなわち、車輪1R,1Lの回転速度に応じて、倒立振子制御(第1制御)及び姿勢安定制御(第2制御)に用いるフィードバックゲインの重み付けを滑らかに変化させることが可能であれば、別の関数形を用いてもよい。
≪Modification≫
The two-wheeled moving body M according to the present invention has been described above, but the present invention is not limited to the above-described embodiments, and can be changed as appropriate.
For example, in the first embodiment, the case where the weighting element E 1 is calculated based on (Formula 10) and the weighting element E 2 is calculated based on (Formula 11) is described, but the present invention is not limited to this. That is, if the weighting of the feedback gain used for the inverted pendulum control (first control) and the posture stability control (second control) can be smoothly changed according to the rotation speed of the wheels 1R and 1L, A functional form may be used.
 また、第1実施形態では、制御部9が、車輪1R,1Lの回転速度と、上体7と車輪1R,1Lとの位置関係を示す情報(変位q、距離h、幅w)に基づいて中間モードを実行する場合について説明したが、これに限らない。
 すなわち、車輪1R,1Lの回転速度のみに基づいて中間モードを実行するようにしてもよい。この場合、車輪1R,1Lの回転速度の上昇に伴って、倒立振子制御の重み付け要素E1を小さくし、姿勢安定制御の重み付け要素E2を大きくする。
Moreover, in 1st Embodiment, the control part 9 is based on the rotational speed of wheel 1R, 1L and the information (displacement q, distance h, width w) which shows the positional relationship of the upper body 7 and wheel 1R, 1L. Although the case of executing the intermediate mode has been described, the present invention is not limited to this.
That is, the intermediate mode may be executed based only on the rotational speeds of the wheels 1R and 1L. In this case, the wheels 1R, with increasing rotational speed of 1L, a smaller weighting factor E 1 of the inverted pendulum control, increasing the weighting factor E 2 of the posture stabilization control.
 また、第2実施形態では、外界を撮像する「撮像手段」がステレオカメラ10である場合について説明したが、これに限らない。例えば、「撮像手段」として、CCD(Charge Coupled Device)カメラ等を用いてもよい。 In the second embodiment, the case where the “imaging unit” that images the outside world is the stereo camera 10 has been described. However, the present invention is not limited to this. For example, a CCD (Charge-Coupled Device) camera or the like may be used as the “imaging means”.
 また、各実施形態では、平行二輪モードのフィードバックゲインに第1重み付け値(1/E1+E2)を乗算することで倒立振子制御のフィードバックゲインを算出し、自転車モードのフィードバックゲインに第2重み付け値(E2/E1+E2)を乗算することで姿勢安定制御のフィードバックゲインを算出する場合について説明したが、これに限らない。
 例えば、第1重み付け値と、第2重み付け値と、の比が1:E2となるように各重み付け値を設定してもよい。この場合でも、重み付け要素E2の増減に応じて、倒立振子制御及び姿勢安定制御に用いるフィードバックゲインの重み付けを滑らかに変化させることができる。
In each embodiment, the feedback gain of the inverted pendulum control is calculated by multiplying the feedback gain of the parallel two-wheel mode by the first weighting value (1 / E 1 + E 2 ), and the second weight is assigned to the feedback gain of the bicycle mode. Although the case where the feedback gain of the posture stabilization control is calculated by multiplying the value (E 2 / E 1 + E 2 ) has been described, the present invention is not limited to this.
For example, each weight value may be set so that the ratio between the first weight value and the second weight value is 1: E 2 . In this case, according to the weighting factor E 2 increases or decreases, it is possible to smoothly change the weighting of the feedback gain used in the inverted pendulum control and posture stabilization control.
 M 二輪移動体
 1R,1L 車輪
 2R,2L 車輪駆動モータ
 3R,3L ステア部
 4R,4L ステア駆動モータ
 5R,5L 脚
 6 脚駆動モータ
 7 上体
 8 姿勢検出部
 9 制御部
 10 ステレオカメラ(撮像手段)
 91 目標値生成部
 92 脚制御部
 93 機構情報算出部
 94 移動系制御部
 95 画像認識部
 941 速度・位置算出部
 942 走行モード決定部
 943 平行二輪モード実行部
 944 自転車モード実行部
 945 中間モード実行部
 945a 重み算出部
 945b 倒立振子制御実行部
 945c 姿勢安定制御実行部
M Two- wheel moving body 1R, 1L Wheel 2R, 2L Wheel drive motor 3R, 3L Steer unit 4R, 4L Steer drive motor 5R, 5L Leg 6 Leg drive motor 7 Upper body 8 Attitude detection unit 9 Control unit 10 Stereo camera (imaging means)
91 Target Value Generation Unit 92 Leg Control Unit 93 Mechanism Information Calculation Unit 94 Moving System Control Unit 95 Image Recognition Unit 941 Speed / Position Calculation Unit 942 Traveling Mode Determination Unit 943 Parallel Two Wheel Mode Execution Unit 944 Bicycle Mode Execution Unit 945 Intermediate Mode Execution Unit 945a Weight calculation unit 945b Inverted pendulum control execution unit 945c Attitude stabilization control execution unit

Claims (12)

  1.  上体と、
     前記上体に設置される一端を軸として回動可能な一対の脚と、
     一対の前記脚の他端側にそれぞれ設置される車輪と、
     前記車輪にそれぞれ設置される車輪駆動モータと、
     前記車輪のステア角をそれぞれ調整するステア部と、
     前記ステア部にそれぞれ設置されるステア駆動モータと、
     前記上体の姿勢情報を検出する姿勢検出部と、
     制御部と、を備え、
     前記制御部は、
     それぞれの前記車輪が略同軸である平行二輪モードと、前記車輪の軸をずらすとともにその面方向を略一致させる自転車モードと、を実行可能であり、
     前記平行二輪モード及び前記自転車モードの一方から他方に移行する際、
     前記車輪駆動モータを加減速することで姿勢を安定させる第1制御と、前記ステア駆動モータの回転角を調整することで姿勢を安定させる第2制御と、を併せて行うとともに、前記車輪の回転速度に応じて、前記第1制御及び前記第2制御に用いるフィードバックゲインの重み付けを滑らかに変化させる中間モードを実行すること
     を特徴とする二輪移動体。
    Upper body,
    A pair of legs rotatable about one end installed on the upper body;
    Wheels respectively installed on the other ends of the pair of legs;
    A wheel drive motor installed on each of the wheels;
    Steer portions for adjusting the steer angles of the wheels, and
    A steer drive motor installed in each of the steer portions;
    A posture detection unit for detecting posture information of the upper body;
    A control unit,
    The controller is
    A parallel two-wheel mode in which each of the wheels is substantially coaxial, and a bicycle mode in which the axis of the wheel is shifted and the surface directions thereof substantially coincide with each other can be executed.
    When shifting from one of the parallel two-wheel mode and the bicycle mode to the other,
    The first control for stabilizing the posture by accelerating / decelerating the wheel drive motor and the second control for stabilizing the posture by adjusting the rotation angle of the steer drive motor are performed together, and the rotation of the wheel is performed. A two-wheeled vehicle that executes an intermediate mode in which the weighting of the feedback gain used in the first control and the second control is smoothly changed according to speed.
  2.  前記制御部は、
     前記上体、前記脚、前記車輪、及び前記ステア部を含む機器の接続関係と、前記脚の目標開脚角度と、に基づいて、前記上体と前記車輪との位置関係を示す情報を算出する機構情報算出部を有し、
     前記車輪の回転速度と、前記位置関係を示す情報と、に基づいて、前記中間モードを実行すること
     を特徴とする請求項1に記載の二輪移動体。
    The controller is
    Information indicating the positional relationship between the upper body and the wheel is calculated based on the connection relationship of the devices including the upper body, the leg, the wheel, and the steer portion, and the target leg opening angle of the leg. A mechanism information calculation unit that
    The two-wheel moving body according to claim 1, wherein the intermediate mode is executed based on a rotation speed of the wheel and information indicating the positional relationship.
  3.  前記制御部は、
     (数式11)に基づいて重み付け要素E2を算出する重み算出部を有し、
     第1重み付け値と、第2重み付け値と、の比を1:E2とし、
     前記平行二輪モードのフィードバックゲインに前記第1重み付け値を乗算することで、前記第1制御のフィードバックゲインを算出し、
     前記自転車モードのフィードバックゲインに前記第2重み付け値を乗算することで、前記第2制御のフィードバックゲインを算出すること
     を特徴とする請求項2に記載の二輪移動体。
     ここで、m1は前記車輪を除いた前記二輪移動体の質量、rは前記車輪の半径、hは前記車輪の中心を結ぶ直線と前記二輪移動体の重心との距離、ζは前記車輪の回転角、Lは前記車輪の中心間の距離、ξは前記車輪の中心を結ぶ直線と前記上体の正面方向とのなす角度、δはそれぞれの前記車輪のステア角の平均値である。
    Figure JPOXMLDOC01-appb-M000001
    The controller is
    A weight calculating unit that calculates the weighting element E 2 based on (Formula 11),
    The ratio of the first weight value and the second weight value is 1: E 2 ,
    By multiplying the feedback gain of the parallel two-wheel mode by the first weight value, the feedback gain of the first control is calculated,
    The two-wheeled vehicle according to claim 2, wherein the feedback gain of the second control is calculated by multiplying the feedback gain of the bicycle mode by the second weighting value.
    Here, m 1 is the mass of the two-wheel moving body excluding the wheel, r is the radius of the wheel, h is the distance between the straight line connecting the centers of the wheels and the center of gravity of the two-wheel moving body, and ζ is the wheel A rotation angle, L is a distance between the centers of the wheels, ξ is an angle formed by a straight line connecting the centers of the wheels and the front direction of the upper body, and δ is an average value of the steering angles of the wheels.
    Figure JPOXMLDOC01-appb-M000001
  4.  前記重み算出部は、
     (数式10)に基づいて重み付け要素E1を算出し、
     前記第1重み付け値を(1/E1+E2)とし、前記第2重み付け値を(E2/E1+E2)とすること
     を特徴とする請求項3に記載の二輪移動体。
     ここで、Kは定数、ξは前記車輪の中心を結ぶ直線と前記上体の正面方向とのなす角度、δはそれぞれの前記車輪のステア角の平均値である。
    Figure JPOXMLDOC01-appb-M000002
    The weight calculation unit
    A weighting element E 1 is calculated based on (Equation 10),
    The two-wheeled vehicle according to claim 3, wherein the first weight value is (1 / E 1 + E 2 ) and the second weight value is (E 2 / E 1 + E 2 ).
    Here, K is a constant, ξ is an angle formed by a straight line connecting the centers of the wheels and the front direction of the upper body, and δ is an average value of the steering angles of the wheels.
    Figure JPOXMLDOC01-appb-M000002
  5.  前記制御部は、前記中間モードを実行する際、
     目標となる軌道に実際の移動経路を沿わせるための追従用のステア角と、
     遠心力を発生させて姿勢安定化を図るための姿勢安定用のステア角と、をそれぞれ算出し、
     前記自転車モードのフィードバックゲインに前記第2重み付け値を乗算して得られる新たなフィードバックゲインを用いて、前記姿勢安定用のステア角を算出すること
     を特徴とする請求項3に記載の二輪移動体。
    When the controller executes the intermediate mode,
    Steering angle for following to move the actual path along the target trajectory,
    Calculate the steer angle for posture stabilization in order to stabilize the posture by generating centrifugal force,
    The two-wheeled vehicle according to claim 3, wherein the steering angle for stabilizing the posture is calculated using a new feedback gain obtained by multiplying the feedback gain in the bicycle mode by the second weighting value. .
  6.  外界を撮像する撮像手段を備え、
     前記制御部は、
     前記撮像手段から入力される画像情報に基づいて、少なくとも床面の凹凸を認識する画像認識部を有し、
     前記制御部は、
     前記画像認識部によって進行経路上に凹凸ありと認識した場合、平らな床面を走行する場合と比較して、前記第1制御に用いるフィードバックゲインの重み付けを減少させるとともに、前記第2制御に用いるフィードバックゲインの重み付けを増加させること
     を特徴とする請求項1から請求項5のいずれか一項に記載の二輪移動体。
    An imaging means for imaging the outside world,
    The controller is
    Based on image information input from the imaging means, it has an image recognition unit that recognizes at least unevenness of the floor surface,
    The controller is
    When the image recognition unit recognizes that there is unevenness on the travel path, the weight of the feedback gain used for the first control is reduced and used for the second control as compared with the case of traveling on a flat floor surface. The two-wheeled vehicle according to any one of claims 1 to 5, wherein weighting of the feedback gain is increased.
  7.  一端を軸として回動可能な一対の脚にそれぞれ設置される車輪を車輪駆動モータによって回転させ、ステア駆動モータによって前記車輪のステア角をそれぞれ調整する二輪移動体の制御方法であって、
     それぞれの前記車輪が略同軸である平行二輪モードと、前記車輪の軸をずらすとともにその面方向を略一致させる自転車モードと、のうち一方から他方に移行する際、
     前記車輪駆動モータを加減速することで姿勢を安定させる第1制御と、前記ステア駆動モータの回転角を調整することで姿勢を安定させる第2制御と、を併せて行うとともに、前記車輪の回転速度に応じて、前記第1制御及び前記第2制御に用いるフィードバックゲインの重み付けを滑らかに変化させる中間モードを実行すること
     を特徴とする二輪移動体の制御方法。
    A method for controlling a two-wheeled mobile body in which wheels installed on a pair of legs rotatable around one end are rotated by a wheel drive motor and the steering angle of the wheel is adjusted by a steering drive motor, respectively.
    When shifting from one to the other among the parallel two-wheel mode in which each of the wheels is substantially coaxial and the bicycle mode in which the axis of the wheel is shifted and the surface direction is substantially matched,
    The first control for stabilizing the posture by accelerating / decelerating the wheel drive motor and the second control for stabilizing the posture by adjusting the rotation angle of the steer drive motor are performed together, and the rotation of the wheel is performed. A control method for a two-wheeled vehicle, comprising: executing an intermediate mode in which a weighting of a feedback gain used for the first control and the second control is smoothly changed according to speed.
  8.  前記脚及び前記車輪を含む複数の機器の接続関係と、前記脚の目標開脚角度と、に基づいて、前記脚の前記一端が設置される上体と前記車輪との位置関係を示す情報を算出し、前記車輪の回転速度と、前記位置関係を示す情報と、に基づいて、前記中間モードを実行すること
     を特徴とする請求項7に記載の二輪移動体の制御方法。
    Information indicating the positional relationship between the wheel and the upper body on which the one end of the leg is installed based on the connection relationship between the plurality of devices including the leg and the wheel and the target leg opening angle of the leg. The method for controlling a two-wheeled vehicle according to claim 7, wherein the intermediate mode is executed based on the calculated rotation speed of the wheel and information indicating the positional relationship.
  9.  (数式11)に基づいて重み付け要素E2を算出し、
     第1重み付け値と、第2重み付け値と、の比を1:E2とし、
     前記平行二輪モードのフィードバックゲインに前記第1重み付け値を乗算することで、前記第1制御のフィードバックゲインを算出し、
     前記自転車モードのフィードバックゲインに前記第2重み付け値を乗算することで、前記第2制御のフィードバックゲインを算出すること
     を特徴とする請求項8に記載の二輪移動体の制御方法。
     ここで、m1は前記車輪を除いた前記二輪移動体の質量、rは前記車輪の半径、hは前記車輪の中心を結ぶ直線と前記二輪移動体の重心との距離、ζは前記車輪の回転角、Lは前記車輪の中心間の距離、ξは前記車輪の中心を結ぶ直線と前記上体の正面方向とのなす角度、δはそれぞれの前記車輪のステア角の平均値である。
    Figure JPOXMLDOC01-appb-M000003
    Based on (Formula 11), the weighting element E 2 is calculated,
    The ratio of the first weight value and the second weight value is 1: E 2 ,
    By multiplying the feedback gain of the parallel two-wheel mode by the first weight value, the feedback gain of the first control is calculated,
    The method for controlling a two-wheeled vehicle according to claim 8, wherein the feedback gain of the second control is calculated by multiplying the feedback gain of the bicycle mode by the second weighting value.
    Here, m 1 is the mass of the two-wheel moving body excluding the wheel, r is the radius of the wheel, h is the distance between the straight line connecting the centers of the wheels and the center of gravity of the two-wheel moving body, and ζ is the wheel A rotation angle, L is a distance between the centers of the wheels, ξ is an angle formed by a straight line connecting the centers of the wheels and the front direction of the upper body, and δ is an average value of the steering angles of the wheels.
    Figure JPOXMLDOC01-appb-M000003
  10.  (数式10)に基づいて重み付け要素E1を算出し、
     前記第1重み付け値を(1/E1+E2)とし、前記第2重み付け値を(E2/E1+E2)とすること
     を特徴とする請求項9に記載の二輪移動体の制御方法。
     ここで、Kは定数、ξは前記車輪の中心を結ぶ直線と前記上体の正面方向とのなす角度、δはそれぞれの前記車輪のステア角の平均値である。
    Figure JPOXMLDOC01-appb-M000004
    A weighting element E 1 is calculated based on (Equation 10),
    The method for controlling a two-wheeled vehicle according to claim 9, wherein the first weighting value is (1 / E 1 + E 2 ) and the second weighting value is (E 2 / E 1 + E 2 ). .
    Here, K is a constant, ξ is an angle formed by a straight line connecting the centers of the wheels and the front direction of the upper body, and δ is an average value of the steering angles of the wheels.
    Figure JPOXMLDOC01-appb-M000004
  11.  前記中間モードを実行する際、
     目標となる軌道に実際の移動経路を沿わせるための追従用のステア角と、
     遠心力を発生させて姿勢安定化を図るための姿勢安定用のステア角と、をそれぞれ算出し、
     前記自転車モードのフィードバックゲインに前記第2重み付け値を乗算して得られる新たなフィードバックゲインを用いて、前記姿勢安定用のステア角を算出すること
     を特徴とする請求項9に記載の二輪移動体の制御方法。
    When executing the intermediate mode,
    Steering angle for following to move the actual path along the target trajectory,
    Calculate the steer angle for posture stabilization in order to stabilize the posture by generating centrifugal force,
    The two-wheeled vehicle according to claim 9, wherein the steering angle for stabilizing the posture is calculated using a new feedback gain obtained by multiplying the feedback gain in the bicycle mode by the second weighting value. Control method.
  12.  撮像手段から入力される画像情報に基づき、進行経路上に凹凸ありと認識した場合、平らな床面を走行する場合と比較して、前記第1制御に用いるフィードバックゲインの重み付けを減少させるとともに、前記第2制御に用いるフィードバックゲインの重み付けを増加させること
     を特徴とする請求項8から請求項11のいずれか一項に記載の二輪移動体の制御方法。
    Based on the image information input from the imaging means, when it is recognized that there is unevenness on the travel path, the weight of the feedback gain used for the first control is reduced as compared with the case of traveling on a flat floor surface, The method for controlling a two-wheeled vehicle according to any one of claims 8 to 11, wherein the weighting of the feedback gain used for the second control is increased.
PCT/JP2013/084220 2013-12-20 2013-12-20 Two-wheeled mobile object, and method of controlling same WO2015092913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084220 WO2015092913A1 (en) 2013-12-20 2013-12-20 Two-wheeled mobile object, and method of controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084220 WO2015092913A1 (en) 2013-12-20 2013-12-20 Two-wheeled mobile object, and method of controlling same

Publications (1)

Publication Number Publication Date
WO2015092913A1 true WO2015092913A1 (en) 2015-06-25

Family

ID=53402306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084220 WO2015092913A1 (en) 2013-12-20 2013-12-20 Two-wheeled mobile object, and method of controlling same

Country Status (1)

Country Link
WO (1) WO2015092913A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108068938A (en) * 2016-11-11 2018-05-25 广东高标电子科技有限公司 A kind of two-wheel car method for control speed and system
CN109693747A (en) * 2017-10-20 2019-04-30 深圳市亮点智控科技有限公司 A kind of swing type balanced robot and balanced robot's control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301654A (en) * 2006-05-09 2007-11-22 Fujitsu Ltd Mobile robot having a plurality of axes
JP2008062769A (en) * 2006-09-06 2008-03-21 Yoshihiro Suda Riding movement vehicle
JP2009220257A (en) * 2008-03-19 2009-10-01 Hitachi Ltd Leg-wheel mobile robot
JP2010274715A (en) * 2009-05-27 2010-12-09 Univ Of Tokyo Parallel two-wheel vehicle with pedal
WO2011031992A2 (en) * 2009-09-10 2011-03-17 Bpg Inc. Personal transport vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301654A (en) * 2006-05-09 2007-11-22 Fujitsu Ltd Mobile robot having a plurality of axes
JP2008062769A (en) * 2006-09-06 2008-03-21 Yoshihiro Suda Riding movement vehicle
JP2009220257A (en) * 2008-03-19 2009-10-01 Hitachi Ltd Leg-wheel mobile robot
JP2010274715A (en) * 2009-05-27 2010-12-09 Univ Of Tokyo Parallel two-wheel vehicle with pedal
WO2011031992A2 (en) * 2009-09-10 2011-03-17 Bpg Inc. Personal transport vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108068938A (en) * 2016-11-11 2018-05-25 广东高标电子科技有限公司 A kind of two-wheel car method for control speed and system
CN109693747A (en) * 2017-10-20 2019-04-30 深圳市亮点智控科技有限公司 A kind of swing type balanced robot and balanced robot's control method

Similar Documents

Publication Publication Date Title
JP4956962B2 (en) Traveling apparatus and control method thereof
US8738259B2 (en) Movable body, travel device, and movable body control method
JP7014867B2 (en) Bicycle control device
US7703568B2 (en) Coaxial motorcycle
Jeong et al. Wheeled inverted pendulum type assistant robot: design concept and mobile control
CN107376312B (en) Stand-riding mobile device
JP4296852B2 (en) Coaxial motorcycle
JP5680325B2 (en) Vehicle out-of-road departure prevention control device
JP6281594B2 (en) TRAVEL DEVICE, TRAVEL DEVICE CONTROL METHOD, AND TRAVEL DEVICE CONTROL PROGRAM
JP2007011634A (en) Control method of mobile carriage and mobile carriage
JP2008059497A (en) Mobile body and its control method
JP2007219986A (en) Inversion moving device and its control method
WO2022059714A1 (en) Two-wheeled vehicle
JP2013212232A (en) Unmanned two-wheeler with attitude control
JP2010082717A (en) Inverted pendulum type movement mechanism
WO2015092913A1 (en) Two-wheeled mobile object, and method of controlling same
JP2010000989A (en) Two-wheeled automobile
KR101478599B1 (en) Inverted pendulum type vehicle
JP6776543B2 (en) Vehicle control system
KR20130105700A (en) Inverted pendulum type mobile object
JP6225869B2 (en) Inverted two-wheeled mobile system
KR101465520B1 (en) Inverted pendulum type vehicle
EP2597022B1 (en) Inverted pendulum type vehicle
JP2017169981A (en) Standing ride type movement device
Takei et al. Stabilized motion of a small sized bike robot only by steering control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP