JP4979187B2 - Aluminum nitride phosphor and method for producing the same - Google Patents

Aluminum nitride phosphor and method for producing the same Download PDF

Info

Publication number
JP4979187B2
JP4979187B2 JP2004216131A JP2004216131A JP4979187B2 JP 4979187 B2 JP4979187 B2 JP 4979187B2 JP 2004216131 A JP2004216131 A JP 2004216131A JP 2004216131 A JP2004216131 A JP 2004216131A JP 4979187 B2 JP4979187 B2 JP 4979187B2
Authority
JP
Japan
Prior art keywords
phosphor
aluminum nitride
aluminum
powder
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004216131A
Other languages
Japanese (ja)
Other versions
JP2005054182A (en
Inventor
和彦 原
利隆 桜井
高潮 頼
裕 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Tokyo Institute of Technology NUC
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA, Tokyo Institute of Technology NUC filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP2004216131A priority Critical patent/JP4979187B2/en
Publication of JP2005054182A publication Critical patent/JP2005054182A/en
Application granted granted Critical
Publication of JP4979187B2 publication Critical patent/JP4979187B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、新規な窒化アルミニウム系蛍光体及びその製造方法に関する。   The present invention relates to a novel aluminum nitride phosphor and a method for producing the same.

蛍光体は、VFD(蛍光表示管)、FED(電界放射ディスプレイ)、高輝度CRT(陰極線管)、PDP(プラズマディスプレイパネル)等の各種ディスプレイ装置のほか、白色LED(発光ダイオード)等の発光素子に広く使用されている。   Phosphors include various display devices such as VFD (fluorescent display tube), FED (field emission display), high brightness CRT (cathode ray tube), PDP (plasma display panel), etc., and light emitting elements such as white LEDs (light emitting diodes). Widely used.

これらの発光素子において、発光部は蛍光体を含む蛍光体塗布膜で構成される。蛍光体塗布膜は、粉末状蛍光体をバインダーと共に塗布することにより得られるが、これにより、大面積の基板上や複雑な形状をもつ面に発光部を形成することを容易にしている。 In these light emitting elements, the light emitting part is composed of a phosphor coating film containing a phosphor. The phosphor coating film can be obtained by applying a powdered phosphor together with a binder. This makes it easy to form a light emitting portion on a large-area substrate or on a surface having a complicated shape.

これらの蛍光体塗布膜は、主としてガラス又はプラスチックフィルム基板上に粉末状蛍光体をバインダーとともに塗布し、成型することにより製造される。
蛍光体塗布膜に関し、従来より、所望の発光色に応じてさまざまな種類の蛍光体(蛍光性化合物)が利用されている。
These phosphor coating films are manufactured by coating and molding a powdered phosphor together with a binder mainly on a glass or plastic film substrate.
Regarding phosphor coating films, various types of phosphors (fluorescent compounds) have been conventionally used depending on the desired emission color.

硫化物を母材とする粉末蛍光体にあっては、Mn添加硫化亜鉛(ZnS:Mn)系、テルビウム添加硫化亜鉛(ZnS:Tb)系等において黄橙色から緑色、Cu添加硫化亜鉛(ZnS:Cu)系において青緑色の蛍光発光が得られる。このほかにも、ZnS:Ag、ZnS:Ag,Al、ZnS:Cu,Al、(Zn,Cd)S:Cu,Al等が硫化物系蛍光体として知られている。   For powder phosphors based on sulfides, yellow-orange to green, Cu-doped zinc sulfide (ZnS: Blue-green fluorescence is obtained in the Cu) system. In addition, ZnS: Ag, ZnS: Ag, Al, ZnS: Cu, Al, (Zn, Cd) S: Cu, Al, and the like are known as sulfide-based phosphors.

酸化物を母材とする粉末蛍光体では、(Y,Gd)BO:Eu、Y:Eu、SrTiO:Pr、YS:Eu等において赤色、BaAl1219:Mn、ZnSiO:Mn、Zn(Ga,Al):Mn、Y(Al,Ga)12:Tb、YSiO:Tb、ZnGa:Mn等において緑色、BaMgAl1423:Eu、YSiO:Ce等において青色の蛍光発光が得られることが知られている。このほかにも、例えばZnO:Zn等が酸化物系蛍光体として知られている。 In the powder phosphor using the oxide as a base material, red in (Y, Gd) BO 3 : Eu, Y 2 O 3 : Eu, SrTiO 3 : Pr, Y 2 O 2 S: Eu, etc., BaAl 12 O 19 : Mn, Zn 2 SiO 4 : Mn, Zn (Ga, Al) 2 O 4 : Mn, Y 3 (Al, Ga) 5 O 12 : Tb, Y 2 SiO 5 : Tb, ZnGa 2 O 4 : Mn, green It is known that blue fluorescent light emission can be obtained in BaMgAl 14 O 23 : Eu, Y 2 SiO 5 : Ce, and the like. In addition, for example, ZnO: Zn is known as an oxide phosphor.

これらの蛍光体は、電子線、紫外線等で与えられたエネルギーを可視光に変換して発光するが、その変換効率は通常30%程度であり、可視光に変換されなかったエネルギーは蛍光体に吸収される。   These phosphors emit light by converting energy given by electron beams, ultraviolet rays, etc. into visible light, but the conversion efficiency is usually about 30%, and energy that has not been converted into visible light is transferred to the phosphor. Absorbed.

近年、ディスプレイ用等の蛍光体塗布膜には、より輝度の高い蛍光発光が必要とされている。特に大画面化が進んでいるPDP用の蛍光体塗布膜は、加工の容易性から、粉末状蛍光体を塗料化して用いる方法が主流となっている。このため、これらの蛍光体から、高輝度の蛍光体塗布膜をつくる必要がある。   In recent years, fluorescent coating films for displays and the like are required to emit fluorescent light with higher brightness. In particular, for a phosphor coating film for PDP whose screen size is increasing, a method using powdered phosphor as a paint has become the mainstream because of ease of processing. For this reason, it is necessary to form a phosphor coating film with high brightness from these phosphors.

しかしながら、付与エネルギーを高めると蛍光体に吸収されるエネルギーも増大し、蛍光体の構造が破壊されること等により損傷が進行し、経時安定性が得られないという問題がある。   However, when the applied energy is increased, the energy absorbed by the phosphor is also increased, and the damage proceeds due to the destruction of the structure of the phosphor, and there is a problem that stability over time cannot be obtained.

十分な高輝度と長寿命特性を発揮できる蛍光体としては、例えば硫化亜鉛を母体とし、付活剤及び共付活剤を含む蛍光体(例えば、特許文献1)、硫化物系又は酸化物系の粉末蛍光体(例えば、特許文献2)が知られている。   As a phosphor capable of exhibiting sufficiently high luminance and long life characteristics, for example, a phosphor containing zinc sulfide as a base material and containing an activator and a coactivator (for example, Patent Document 1), sulfide-based or oxide-based A powder phosphor (for example, Patent Document 2) is known.

しかしながら、これらの蛍光体は、その構造が破壊される際に硫黄、硫化物ガス、酸素等の放出が避けられず、ディスプレイ装置等に用いられる電子源、フィラメント等の周辺部品を腐食又は劣化させる原因となる。   However, these phosphors inevitably release sulfur, sulfide gas, oxygen, etc. when their structure is destroyed, and corrode or deteriorate peripheral parts such as electron sources and filaments used in display devices. Cause.

硫化物系又は酸化物系以外の蛍光体として、窒化ガリウム蛍光体(例えば、特許文献3、特許文献4)がある。窒化ガリウム蛍光体では、硫黄、硫化物ガス、酸素等を放出することはないが、付与エネルギーを高めても硫化物系又は酸化物系の蛍光体と同程度の輝度しか得られない上、その原料が高価である。また、窒化ガリウムの禁制帯幅は約3.4eVであり、真空紫外光励起に対しては、高い発光効率が期待できない。   As phosphors other than sulfides or oxides, there are gallium nitride phosphors (for example, Patent Document 3 and Patent Document 4). Gallium nitride phosphors do not release sulfur, sulfide gas, oxygen, etc., but they can only obtain the same brightness as sulfide or oxide phosphors even when the applied energy is increased. The raw material is expensive. Moreover, the forbidden band width of gallium nitride is about 3.4 eV, and high luminous efficiency cannot be expected for vacuum ultraviolet light excitation.

他方、窒化アルミニウムに発光中心不純物元素をドーピングした窒化アルミニウム系蛍光体は、禁制帯幅が約6.2eVと大きく、真空紫外域の紫外光励起に対しても発光効率が高いという点、材料の物理的・化学的な安定性が高く、強く励起しても劣化が起こらず高い輝度が得られるという点で有利である。また、窒化アルミニウムは、資源が豊富で、毒性・腐食性がなく、生態系への適合性が高い元素から構成されることから、環境に負荷の少ない材料としても脚光を浴びつつある。   On the other hand, an aluminum nitride-based phosphor obtained by doping aluminum nitride with a luminescent center impurity element has a large forbidden band width of about 6.2 eV, and has high luminous efficiency against ultraviolet light excitation in the vacuum ultraviolet region. It is advantageous in that it has high mechanical and chemical stability and does not deteriorate even when strongly excited, and high brightness can be obtained. Aluminum nitride is also attracting attention as an environmentally friendly material because it is composed of elements that are abundant in resources, non-toxic and corrosive, and highly compatible with ecosystems.

このような材料の製造方法として、例えば窒素雰囲気中1000℃・1000psi(約7MPa)でAl-Mn混合粉を処理する方法(例えば、非特許文献1)が知られている。   As a method for producing such a material, for example, a method of treating Al—Mn mixed powder at 1000 ° C. and 1000 psi (about 7 MPa) in a nitrogen atmosphere is known (eg, Non-Patent Document 1).

しかしながら、高圧雰囲気を要するこの方法では、安全面及びコスト面から工業的規模での生産に適していない。   However, this method requiring a high-pressure atmosphere is not suitable for production on an industrial scale because of safety and cost.

また、熱拡散により発光中心不純物元素を窒化アルミニウム粉末にドーピングさせる方法(例えば、非特許文献2)も提案されている。   In addition, a method of doping an aluminum nitride powder with an emission center impurity element by thermal diffusion (for example, Non-Patent Document 2) has also been proposed.

しかしながら、十分な発光強度を得るために必要とされる発光中心不純物元素のドーピング量は通常0.1原子%以上とされているが、そのような量を熱拡散によりドーピングすることは不可能である。数原子%の元素をドーピングするためには、高価な(NHAlFにMnClを加えて毒性のあるNH雰囲気中で反応させる方法(例えば、非特許文献2)があるが、工業的規模での生産に適した方法とは言えない。 However, the doping amount of the luminescent center impurity element required for obtaining sufficient light emission intensity is usually 0.1 atomic% or more, but such amount cannot be doped by thermal diffusion. is there. In order to dope an element of several atomic%, there is a method (for example, Non-Patent Document 2) in which MnCl 2 is added to expensive (NH 4 ) 3 AlF 6 and reacted in a toxic NH 3 atmosphere. It is not a suitable method for production on an industrial scale.

このため、工業的規模において窒化アルミニウムは、熱蛍光体(例えば、特許文献5)の作製に用いられているにすぎないというのが現状である。
特開平8−183954号公報 特開平9−260060号公報 特開2002−309249号公報 特開2002−356676号公報 特開平5−263075号公報 J. electrochemical society 109(11)1962 Czechoslovakia J. Physics B, vol.22(1972),847
For this reason, the present situation is that aluminum nitride is only used for producing a thermoluminescent material (for example, Patent Document 5) on an industrial scale.
Japanese Patent Laid-Open No. 8-183954 JP-A-9-260060 JP 2002-309249 A JP 2002-356676 A JP-A-5-263075 J. electrochemical society 109 (11) 1962 Czechoslovakia J. Physics B, vol. 22 (1972), 847

従って、本発明の主な目的は、窒化アルミニウム系蛍光体を工業的規模で提供することにある。   Accordingly, a main object of the present invention is to provide an aluminum nitride phosphor on an industrial scale.

本発明者は、従来技術の問題に鑑みて鋭意研究を重ねた結果、特定のプロセスにより窒化アルミニウム粉末を製造することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor has found that the above object can be achieved by producing aluminum nitride powder by a specific process, and has completed the present invention.

すなわち、本発明は、下記の窒化アルミニウム系蛍光体及びその製造方法に係る。   That is, the present invention relates to the following aluminum nitride phosphor and a method for producing the same.

1.1)Ti、V、Cr、Mn、Co、Cu及びZnの少なくとも1種の遷移元素及びその化合物ならびに2)Sm、Eu、Gd、Tb、Dy及びErの少なくとも1種の希土類元素及びその化合物、の少なくとも1種とアルミニウムとを含む原料を、窒素を含む雰囲気中で燃焼合成させることにより、前記遷移元素及び前記希土類元素の一部又は全部が窒化アルミニウム中に固溶した窒化アルミニウム系蛍光体を製造する方法。
2.原料が、さらに3)ホウ素を含む、前記項1に記載の製造方法。
3.原料の一部又は全部が、前記遷移元素、前記希土類元素及びアルミニウムの少なくとも2種を含む合金又は化合物である前記項1に記載の製造方法。
4.原料の一部又は全部が、
a)前記遷移元素、
b)前記希土類元素、
c)ホウ素、ならびにd)アルミニウム
の少なくとも2種を含む合金又は化合物である前記項2に記載の製造方法。
1.1) At least one transition element of Ti, V, Cr, Mn, Co, Cu and Zn and its compound and 2) At least one rare earth element of Sm, Eu, Gd, Tb, Dy and Er and its An aluminum nitride-based fluorescent material in which a part or all of the transition element and the rare earth element are dissolved in aluminum nitride by burning and synthesizing a raw material containing at least one kind of compound and aluminum in an atmosphere containing nitrogen A method of manufacturing a body.
2. Item 2. The method according to Item 1, wherein the raw material further contains 3) boron.
3. Item 2. The method according to Item 1, wherein a part or all of the raw material is an alloy or a compound containing at least two of the transition element, the rare earth element, and aluminum.
4). Some or all of the ingredients
a) the transition element,
b) the rare earth element,
Item 3. The production method according to Item 2, which is an alloy or compound containing at least two of c) boron and d) aluminum.

本発明の製造方法によれば、燃焼合成により第二元素を含む窒化アルミニウム系蛍光体を製造できるので、膜状蛍光体を工業的規模で提供することが可能となる。   According to the production method of the present invention, since the aluminum nitride-based phosphor containing the second element can be produced by combustion synthesis, the film-like phosphor can be provided on an industrial scale.

また、本発明により得られる蛍光体は、これまでの蛍光体と同等以上の高い発光強度を有するとともに、マトリックスが窒化アルミニウムから構成されているので窒化アルミニウムのもつ特性(高い熱伝導性等)も兼ね備えており、全体的には従来の材料よりも優れた特性を発揮することができる。   In addition, the phosphor obtained by the present invention has a high emission intensity equal to or higher than that of conventional phosphors, and also has characteristics (such as high thermal conductivity) of aluminum nitride because the matrix is made of aluminum nitride. Combined, overall, it can exhibit properties superior to conventional materials.

1.窒化アルミニウム系蛍光体の製造方法
本発明の製造方法は、1)遷移元素及びその化合物ならびに2)希土類元素及びその化合物の少なくとも1種とアルミニウムとを含む原料を、窒素を含む雰囲気中で燃焼合成させることにより窒化アルミニウム系蛍光体を製造する方法である。
1. Method for Producing Aluminum Nitride-Based Phosphor The production method of the present invention comprises 1) transition elements and compounds thereof and 2) a raw material containing aluminum and at least one rare earth element and compounds thereof in an atmosphere containing nitrogen. This is a method for producing an aluminum nitride phosphor.

(1)原料
原料は、1)遷移元素及びその化合物ならびに2)希土類元素及びその化合物の少なくとも1種(以下、前記1)及び2)を総称して「第二元素」ともいう。)とアルミニウムとを含む。すなわち、上記原料は、上記1)及び2)からなる第二元素の少なくとも1種と、アルミニウムとを必須成分として含む。
(1) Raw materials The raw materials are collectively referred to as 1) transition elements and compounds thereof and 2) rare earth elements and at least one of the compounds (hereinafter referred to as 1) and 2) as “second elements”. ) And aluminum. That is, the raw material contains at least one second element composed of 1) and 2) and aluminum as essential components.

遷移元素としては、特にSc、Ti、V、Cr、Mn、Co、Ni、Cu、Ag及びZnの少なくとも1種が好ましい。また、希土類元素としては、特にCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbの少なくとも1種が好ましい。
さらに、本発明では、発光強度を高める目的で、ホウ素、ガリウム、インジウム及びタリウムから選ばれるホウ素族元素及びその化合物の少なくとも1種(以下、これらを総称して「第三元素」ともいう。)を含んでもよい。
As the transition element, at least one of Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Ag, and Zn is particularly preferable. As the rare earth element, at least one of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb is particularly preferable.
Furthermore, in the present invention, for the purpose of increasing the emission intensity, at least one of a boron group element selected from boron, gallium, indium, and thallium and a compound thereof (hereinafter, these are also collectively referred to as “third element”). May be included.

これら第二元素及び第三元素の化合物としては、無機酸塩(硝酸塩、硫酸塩、炭酸塩、塩化物等)、有機酸塩(酢酸塩、シュウ酸塩等、)、酸化物、窒化物、炭化物、ホウ化物のほか、これらの元素を含む金属有機化合物等が挙げられる。これらの中でも、酸化物を好適に用いることができる。   The compounds of these second and third elements include inorganic acid salts (nitrates, sulfates, carbonates, chlorides, etc.), organic acid salts (acetates, oxalates, etc.), oxides, nitrides, In addition to carbides and borides, metal organic compounds containing these elements can be used. Among these, oxides can be preferably used.

本発明では、原料の一部又は全部として、
a)遷移元素、
b)希土類元素、
c)ホウ素、ガリウム、インジウム及びタリウムからなるホウ素族元素の少なくとも1種ならびにd)アルミニウム
の少なくとも2種を含む合金又は化合物を用いることもできる。なお、本発明における合金とは、金属間化合物を含む概念である。従って、例えばa)第二元素とアルミニウムとを含む合金又は化合物、b)第三元素とアルミニウムとを含む合金又は化合物、c)第二元素、第三元素及びアルミニウムを含む合金又は化合物等を適宜組合せて用いることもできる。
In the present invention, as a part or all of the raw material,
a) transition elements,
b) rare earth elements,
It is also possible to use an alloy or compound containing c) at least one boron group element consisting of boron, gallium, indium and thallium and d) at least two kinds of aluminum. In addition, the alloy in this invention is the concept containing an intermetallic compound. Thus, for example, a) an alloy or compound containing a second element and aluminum, b) an alloy or compound containing a third element and aluminum, c) an alloy or compound containing a second element, a third element and aluminum, etc. It can also be used in combination.

一方、本発明で用いるアルミニウムは、特に限定されず、市販品も使用できる。また、アトマイズ法、シュレッド法等の公知の製法によるものを使用することができる。   On the other hand, the aluminum used in the present invention is not particularly limited, and commercially available products can also be used. Moreover, the thing by well-known manufacturing methods, such as an atomizing method and a shred method, can be used.

アルミニウムの純度も特に限定されないが、一般的には99%以上、さらに99.9%以上のものを使用することが好ましい。純度の上限値の限定はないが、通常は99.999%程度とすれば良い。   The purity of aluminum is not particularly limited, but it is generally preferable to use aluminum having a purity of 99% or more, and more preferably 99.9% or more. Although there is no limitation on the upper limit value of purity, it may be usually about 99.999%.

原料中における第二元素の割合は、使用する第二元素の種類、目的とする製品の組成等に応じて適宜決定すれば良いが、一般的には第二元素が窒化アルミニウム系蛍光体中0.05〜10原子%、特に0.1〜5原子%となるように設定することが望ましい。かかる範囲内に設定することによって、より良好な発光強度を得ることができる。   The ratio of the second element in the raw material may be appropriately determined according to the type of the second element to be used, the composition of the target product, etc., but generally the second element is 0% in the aluminum nitride phosphor. It is desirable to set it to be 0.05 to 10 atomic%, particularly 0.1 to 5 atomic%. By setting within this range, better emission intensity can be obtained.

原料中における第三元素の割合は、使用する第三元素の種類、目的とする製品の組成等に応じて適宜決定すれば良いが、一般的には第三元素が窒化アルミニウム系蛍光体中0.05〜10原子%、特に0.1〜5原子%となるように設定することが望ましい。かかる範囲内に設定することによって、より良好な発光強度を得ることができる。   The ratio of the third element in the raw material may be appropriately determined according to the type of the third element to be used, the composition of the target product, etc., but generally the third element is 0% in the aluminum nitride phosphor. It is desirable to set it to be 0.05 to 10 atomic%, particularly 0.1 to 5 atomic%. By setting within this range, better emission intensity can be obtained.

本発明において用いる原料の形態は限定的でないが、特に粉末状で使用することが望ましい。この場合、原料の平均粒径は、通常100μm以下程度、好ましくは50μm以下とすれば良い。特に、アルミニウム粉末の平均粒径は、通常1〜100μm、特に5〜50μmとすることが好ましい。アルミニウム粉末の平均粒径を上記範囲に設定することによって、得られる窒化アルミニウム系蛍光体における発光中心となる第二元素の均一な分散をより確実に行うことが可能となる。   The form of the raw material used in the present invention is not limited, but it is particularly desirable to use it in powder form. In this case, the average particle diameter of the raw material is usually about 100 μm or less, preferably 50 μm or less. In particular, the average particle size of the aluminum powder is usually 1 to 100 μm, preferably 5 to 50 μm. By setting the average particle size of the aluminum powder within the above range, it is possible to more surely perform uniform dispersion of the second element serving as the emission center in the obtained aluminum nitride phosphor.

また、第二元素及び第三元素の粉末(第二元素及び第三元素の化合物の場合は当該化合物の粉末)の平均粒径は、通常50μm以下、特に20μm以下、さらに5μm以下とすることが好ましい。第二元素及び第三元素の平均粒径を50μm以下とする場合には、より優れた分散性を得ることができ、蛍光特性の向上に寄与する。第二元素及び第三元素の粉末の平均粒径の下限は特に限定されないが、工業的に使用されるのは通常0.1μm程度とすれば良い。   The average particle size of the powder of the second element and the third element (in the case of the compound of the second element and the third element, the powder of the compound) is usually 50 μm or less, particularly 20 μm or less, and more preferably 5 μm or less. preferable. When the average particle size of the second element and the third element is 50 μm or less, more excellent dispersibility can be obtained, which contributes to the improvement of the fluorescence characteristics. The lower limit of the average particle size of the powders of the second element and the third element is not particularly limited, but it is usually about 0.1 μm for industrial use.

(2)燃焼合成反応
上記原料を燃焼合成させ、原料(特にアルミニウム)を窒化させることにより、窒化アルミニウム系蛍光体を得る。
(2) Combustion synthesis reaction An aluminum nitride-based phosphor is obtained by combustion synthesis of the above raw materials and nitriding the raw materials (particularly aluminum).

燃焼合成の反応条件、操作手順等は、公知の燃焼合成反応と同様にすれば良い。例えば、原料を窒素ガス雰囲気中に配置し、原料の一部を加熱することにより燃焼反応を開始させ、継続して窒素ガスを供給することにより反応を完了させることができる。   The reaction conditions and operation procedures for combustion synthesis may be the same as those for known combustion synthesis reactions. For example, a raw material is arrange | positioned in nitrogen gas atmosphere, a combustion reaction is started by heating a part of raw material, and reaction can be completed by supplying nitrogen gas continuously.

本発明の燃焼合成では、通常は、燃焼反応部分が瞬時に3000K以上の高温となり、そこで窒化アルミニウムが合成されると同時に、発光中心となる遷移元素及び希土類元素のいずれか1種以上の元素の一部又は全部が窒化アルミニウム中に固溶する。   In the combustion synthesis of the present invention, usually, the combustion reaction part instantaneously becomes a high temperature of 3000 K or more, and at the same time, aluminum nitride is synthesized, and at the same time, any one or more elements of transition elements and rare earth elements serving as luminescence centers. Part or all of it is dissolved in aluminum nitride.

その後、燃焼合成が終了した部分は急激に室温付近まで急冷されるため、発光中心となる遷移元素又は希土類元素のいずれか1種以上の元素の一部又は全部が固溶(場合によっては非平衡状態まで大量に固溶)した窒化アルミニウム蛍光体が得られる。   After that, the part where the combustion synthesis is completed is rapidly cooled to near room temperature, so that part or all of one or more of the transition elements or rare earth elements serving as the luminescence center are in solid solution (in some cases non-equilibrium) Thus, an aluminum nitride phosphor having a solid solution in a large amount) can be obtained.

雰囲気中の窒素ガス濃度は20体積%以上(特に50体積%以上)、ガス圧力は0.2〜3Mpa程度とすることが好ましい。この範囲内においては、適度な反応速度を確保することができ、また安全管理上も好ましい。   The nitrogen gas concentration in the atmosphere is preferably 20% by volume or more (particularly 50% by volume or more), and the gas pressure is preferably about 0.2 to 3 MPa. Within this range, an appropriate reaction rate can be secured, and safety management is also preferable.

なお、反応温度を調節する目的等で、原料中に、市販の窒化アルミニウム(粉末)又は本発明による窒化アルミニウム(粉末)を添加することもできる。   In addition, for the purpose of adjusting the reaction temperature, commercially available aluminum nitride (powder) or aluminum nitride (powder) according to the present invention can be added to the raw material.

燃焼合成反応により得られた反応生成物は、そのまま蛍光体として使用することも可能であるが、好ましくは反応生成物を粉砕した後、分級等によって平均粒子径1〜20μm程度に調整し、粉末状窒化アルミニウム系蛍光体とする。粉砕は既知の方法で行えば良く、乾式粉砕又は有機溶剤等を分散媒とする湿式粉砕のいずれで行っても良い。   The reaction product obtained by the combustion synthesis reaction can be used as a phosphor as it is, but after the reaction product is pulverized, it is preferably adjusted to an average particle size of about 1 to 20 μm by classification or the like The aluminum nitride-based phosphor is used. The pulverization may be performed by a known method, and may be performed by either dry pulverization or wet pulverization using an organic solvent or the like as a dispersion medium.

本発明の窒化アルミニウム系蛍光体から蛍光体塗布膜を作製する場合は、窒化アルミニウム系蛍光体を含む混合物を成型して蛍光体塗布膜をつくることができる。より具体的には、例えば本発明蛍光体の粉末を用い、これを樹脂バインダー等に混合してペーストを調製し、所望のパターンとなるように基材上に上記ペーストを塗布又は印刷すれば良い。   When producing a phosphor coating film from the aluminum nitride phosphor of the present invention, a phosphor coating film can be produced by molding a mixture containing an aluminum nitride phosphor. More specifically, for example, the phosphor of the present invention is used, mixed with a resin binder or the like to prepare a paste, and the paste is applied or printed on the substrate so as to have a desired pattern. .

2.窒化アルミニウム系蛍光体
本発明の蛍光体は、遷移元素及び希土類元素を少なくとも1種を0.05〜10原子%含む。特に、本発明蛍光体は、本発明の製造方法により得られる窒化アルミニウム系蛍光体であって、遷移元素及び希土類元素を少なくとも1種を0.05〜10原子%含む窒化アルミニウム系蛍光体であることが望ましい。
2. Aluminum nitride phosphor The phosphor of the present invention contains 0.05 to 10 atomic% of at least one transition element and rare earth element. In particular, the phosphor of the present invention is an aluminum nitride phosphor obtained by the production method of the present invention, and is an aluminum nitride phosphor containing 0.05 to 10 atomic% of at least one transition element and rare earth element. It is desirable.

第二元素の種類は限定的でなく、所望の蛍光特性等に応じて適宜選択することができる。本発明では、遷移元素としては、特にSc、Ti、V、Cr、Mn、Co、Ni、Cu、Ag及びZnの少なくとも1種が好ましい。また、希土類元素としては、特にCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbの少なくとも1種が好ましい。   The type of the second element is not limited and can be appropriately selected according to desired fluorescence characteristics and the like. In the present invention, as the transition element, at least one of Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Ag, and Zn is particularly preferable. As the rare earth element, at least one of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb is particularly preferable.

第二元素は、本発明蛍光体中0.05〜10原子%、特に0.1〜5原子%とすることが望ましい。かかる範囲に設定することによって、より良好な発光強度等を得ることができる。   The second element is desirably 0.05 to 10 atomic%, particularly 0.1 to 5 atomic% in the phosphor of the present invention. By setting to such a range, better emission intensity and the like can be obtained.

本発明蛍光体では、第二元素の一部又は全部が窒化アルミニウム母体中に固溶した構成であっても良い。窒化アルミニウム母体に対する第二元素の固溶の程度は限定的でなく、所望の蛍光特性が得られるように適宜設定すれば良い。   The phosphor of the present invention may have a configuration in which part or all of the second element is dissolved in the aluminum nitride matrix. The degree of solid solution of the second element with respect to the aluminum nitride base is not limited, and may be set as appropriate so as to obtain desired fluorescence characteristics.

本発明の蛍光体は、さらに、発光強度を高める目的で、前記第三元素を含んでもよい。第三元素は、本発明蛍光体中0.05〜10原子%、特に0.1〜5原子%とすることが望ましい。かかる範囲に設定することによって、より良好な発光強度等を得ることができる。   The phosphor of the present invention may further contain the third element for the purpose of increasing the emission intensity. The third element is desirably 0.05 to 10 atomic%, particularly 0.1 to 5 atomic% in the phosphor of the present invention. By setting to such a range, better emission intensity and the like can be obtained.

本発明蛍光体の形態は限定的でないが、通常は粉末状であることが好ましい。この場合、粉末の平均粒径は、一般的には0.5〜100μm程度、特に1〜50μmとすることが望ましい。かかる範囲に設定することによって、より優れた分散性等を得ることができる。   Although the form of the phosphor of the present invention is not limited, it is usually preferable to be in a powder form. In this case, the average particle size of the powder is generally about 0.5 to 100 μm, and particularly preferably 1 to 50 μm. By setting it in such a range, more excellent dispersibility and the like can be obtained.

本発明蛍光体は、従来の蛍光体と同様の用途に使用することができ、膜状蛍光体の製造等に好適に用いることができる。例えば、本発明の蛍光体及び樹脂バインダーを含むペーストを基材に塗布することにより膜状蛍光体を形成することができる。これによって得られる膜状蛍光体は、発光素子としてVFD(蛍光表示管)、FED(電界放射ディスプレイ)、高輝度CRT(陰極線管)、PDP(プラズマディスプレイパネル)のほか、白色LED(発光ダイオード)等に幅広く利用することができる。   The phosphor of the present invention can be used for the same applications as conventional phosphors, and can be suitably used for production of a film-like phosphor. For example, a film-like phosphor can be formed by applying a paste containing the phosphor of the present invention and a resin binder to a substrate. The resulting film-like phosphors are VFD (fluorescent display tube), FED (field emission display), high brightness CRT (cathode ray tube), PDP (plasma display panel) as a light emitting element, and white LED (light emitting diode). It can be used widely.

以下、実施例及び比較例を示し、本発明の特徴とするところを明確にする。ただし、本発明はこれらの実施例に限定されるものではない。   Hereinafter, examples and comparative examples will be shown to clarify the features of the present invention. However, the present invention is not limited to these examples.

なお、本発明における各物性は次のようにして測定した。   Each physical property in the present invention was measured as follows.

(1)平均粒子径
堀場製作所製「LA―500型」を用い、レーザー回折法により測定した。
(1) Average particle diameter It measured by the laser diffraction method using "LA-500 type" by Horiba.

(2)遷移元素・希土類元素含有量
ICP発光分光分析法又は炎光分析法により測定した。
(2) Transition element / rare earth element content Measured by ICP emission spectroscopy or flame analysis.

(3)発光特性
ヘリウム・カドミウムレーザー装置(ウシオ電機社製「PCLN−U10R」)の325nm、出力12mW、及び6W水銀ランプ(10cm離して照射)の254nmの紫外光を励起源として分光測光装置(浜松ホトニクス社製「PMA−50」)により測定した。
(3) Luminescent characteristics Spectrophotometer (UV light of 254 nm of helium cadmium laser device (“PCLN-U10R” manufactured by USHIO INC.), 12 mW output, and 6 W mercury lamp (irradiated 10 cm away) as an excitation source ( Hamamatsu Photonics "PMA-50").

(4)経時安定性
出力0.6mW、波長325nmのレーザー光を0.5mmに集光して大気中で試料に照射し、初期発光強度を100とした相対強度変化により測定した。
(4) Stability over time A laser beam having an output of 0.6 mW and a wavelength of 325 nm was condensed to 0.5 mm and irradiated on the sample in the atmosphere.

<比較例1>
市販のCRT用(Cu,Al)添加硫化亜鉛緑色粉末蛍光体塗布膜を紫外線(波長325nm及び254nm)で照射したところ、中心波長約530nm(緑色)の発光が見られた。
<Comparative Example 1>
When a commercially available (Cu, Al) -added zinc sulfide green powder phosphor coating film for CRT was irradiated with ultraviolet rays (wavelengths of 325 nm and 254 nm), light emission with a central wavelength of about 530 nm (green) was observed.

<実施例1>
アルミニウム粉末(平均粒子径40μm)及びMnO粉末(平均粒子径5μm)を樹脂容器中にて10分間震蕩混合し、均一な混合粉末とした。この場合、アルミニウムとMnとの割合は、Al:Mn=99.7原子%:0.3原子%とした。
得られた混合粉末20gを10cm×12cmのグラファイト板の中心部に置き、このグラファイト板を反応容器中に入れた。
<Example 1>
Aluminum powder (average particle size 40 μm) and MnO 2 powder (average particle size 5 μm) were shaken and mixed in a resin container for 10 minutes to obtain a uniform mixed powder. In this case, the ratio of aluminum to Mn was Al: Mn = 99.7 atomic%: 0.3 atomic%.
20 g of the obtained mixed powder was placed in the center of a 10 cm × 12 cm graphite plate, and this graphite plate was placed in a reaction vessel.

燃焼反応着火源として、カーボンリボンヒーターを混合粉末の一端に接触させ、50Paまで脱気した後、窒素ガスを流入させ、容器内圧力が0.8MPaに達した時点でカーボンリボンヒーターに2.25KWで15秒通電し、着火させて燃焼合成反応を開始した。   As a combustion reaction ignition source, a carbon ribbon heater is brought into contact with one end of the mixed powder, degassed to 50 Pa, nitrogen gas is introduced, and when the internal pressure of the container reaches 0.8 MPa, 2. The combustion synthesis reaction was started by energizing at 25 KW for 15 seconds and igniting.

燃焼反応完了後、合成された反応生成物を振動ミルにより解砕し、粉砕及び篩通しにより粉末状窒化アルミニウム系蛍光体(平均粒子径10μm)を得た。窒化アルミニウム系蛍光体中のMn含有量は0.3原子%であった。   After completion of the combustion reaction, the synthesized reaction product was pulverized by a vibration mill, and a powdered aluminum nitride-based phosphor (average particle size 10 μm) was obtained by pulverization and sieving. The Mn content in the aluminum nitride phosphor was 0.3 atomic%.

得られた窒化アルミニウム蛍光体を紫外線(波長325nm及び254nm)で照射したところ、中心波長約600nm(赤色に近い橙色)の発光が認められた。発光スペクトルを図1(「MnO 0.3%」)に示す。 When the obtained aluminum nitride phosphor was irradiated with ultraviolet rays (wavelengths of 325 nm and 254 nm), light emission with a central wavelength of about 600 nm (orange near red) was observed. The emission spectrum is shown in FIG. 1 (“MnO 2 0.3%”).

<実施例2>
アルミニウム粉末(平均粒子径40μm)及びEu粉末(平均粒子径1μm)を用い、アルミニウムとEuとの割合がAl:Eu=97原子%:3原子%となるように混合したほかは、実施例1と同様にして粉末状窒化アルミニウム蛍光体(平均粒子径8μm)を製造した。得られた窒化アルミニウム系蛍光体中のEu含有量は3原子%であった。
<Example 2>
Aluminium powder (average particle diameter 40 μm) and Eu 2 O 3 powder (average particle diameter 1 μm) were used and mixed so that the ratio of aluminum to Eu was Al: Eu = 97 atomic%: 3 atomic%. In the same manner as in Example 1, a powdered aluminum nitride phosphor (average particle size 8 μm) was produced. The Eu content in the obtained aluminum nitride phosphor was 3 atomic%.

得られた窒化アルミニウム系蛍光体を紫外線(波長325nm及び254nm)で照射したところ、中心波長約530nm(緑色)の発光が認められた。発光スペクトルを図1(「Eu 3.0%」)及び図2(a)に示す。 When the obtained aluminum nitride phosphor was irradiated with ultraviolet rays (wavelengths of 325 nm and 254 nm), light emission with a center wavelength of about 530 nm (green) was observed. The emission spectrum is shown in FIG. 1 (“Eu 2 O 3 3.0%”) and FIG.

<実施例3>
アルミニウム粉末(平均粒子径40μm)及びSm粉末(平均粒子径1μm)を用い、アルミニウムとSmとの割合がAl:Sm=99原子%:1原子%となるように混合したほかは、実施例1と同様にして粉末状窒化アルミニウム系蛍光体(平均粒子径8μm)を製造した。得られた窒化アルミニウム系蛍光体中体のSm含有量は1原子%であった。
<Example 3>
Aluminium powder (average particle diameter 40 μm) and Sm 2 O 3 powder (average particle diameter 1 μm) were used and mixed so that the ratio of aluminum to Sm was Al: Sm = 99 atomic%: 1 atomic%. In the same manner as in Example 1, a powdered aluminum nitride phosphor (average particle size 8 μm) was produced. The Sm content of the obtained aluminum nitride based phosphor was 1 atomic%.

得られた窒化アルミニウム系蛍光体を紫外線(波長325nm及び254nm)で照射したところ、中心波長約700nm(赤外)の発光が認められた。発光スペクトルを図1(「Sm 1.0%」)に示す。 When the obtained aluminum nitride phosphor was irradiated with ultraviolet rays (wavelengths of 325 nm and 254 nm), light emission with a central wavelength of about 700 nm (infrared) was observed. The emission spectrum is shown in FIG. 1 (“Sm 2 O 3 1.0%”).

<実施例4>
アルミニウム粉末(平均粒子径40μm)及びTb粉末(平均粒子径1μm)を用い、アルミニウムとTbとの割合がAl:Tb=99原子%:1原子%となるように混合したほかは、実施例1と同様にして粉末状窒化アルミニウム系蛍光体(平均粒子径8μm)を製造した。得られた窒化アルミニウム系蛍光体中のTb含有量は1原子%であった。
<Example 4>
Aluminium powder (average particle diameter 40 μm) and Tb 4 O 7 powder (average particle diameter 1 μm) were used and mixed so that the ratio of aluminum to Tb was Al: Tb = 99 atomic%: 1 atomic%. In the same manner as in Example 1, a powdered aluminum nitride phosphor (average particle size 8 μm) was produced. The Tb content in the obtained aluminum nitride phosphor was 1 atomic%.

得られた窒化アルミニウム系蛍光体を紫外線(波長325nm及び254nm)の紫外線で照射したところ、中心波長約550nm(緑色)の発光が認められた。発光スペクトルを図1(「Tb」 1.0%)に示す。 When the obtained aluminum nitride phosphor was irradiated with ultraviolet rays (wavelengths of 325 nm and 254 nm), light emission with a central wavelength of about 550 nm (green) was observed. The emission spectrum is shown in FIG. 1 (“Tb 4 O 7 ” 1.0%).

<実施例5>
アルミニウム粉末(平均粒子径40μm)、Eu粉末(平均粒子径1μm)及びBN粉末(平均粒子径2μm)を用い、アルミニウムとEuとBとの割合がAl:Eu:B=92原子%:3原子%:5原子%となるように混合したほかは、実施例1と同様にして粉末状窒化アルミニウム蛍光体(平均粒子径8μm)を製造した。得られた窒化アルミニウム系蛍光体中のEu含有量は3原子%、B含有量は5原子%であった。
<Example 5>
Aluminum powder (average particle diameter 40 μm), Eu 2 O 3 powder (average particle diameter 1 μm) and BN powder (average particle diameter 2 μm) were used, and the ratio of aluminum to Eu and B was Al: Eu: B = 92 atomic%. A powdered aluminum nitride phosphor (average particle size of 8 μm) was produced in the same manner as in Example 1 except that the mixing was carried out so that the concentration was 3 atom% and 5 atom%. The resulting aluminum nitride phosphor had an Eu content of 3 atomic% and a B content of 5 atomic%.

得られた窒化アルミニウム系蛍光体を紫外線(波長325nm及び254nm)で照射したところ、中心波長約530nm(緑色)の発光が認められた。発光スペクトルを図2(b)に示す。   When the obtained aluminum nitride phosphor was irradiated with ultraviolet rays (wavelengths of 325 nm and 254 nm), light emission with a center wavelength of about 530 nm (green) was observed. The emission spectrum is shown in FIG.

<試験例1>
a)比較例1の硫化亜鉛粉末蛍光体、b)実施例1で得られた窒化アルミニウム系蛍光体及びc)実施例2で得られた窒化アルミニウム系蛍光体の経時安定性をそれぞれ測定した。その結果を図3〜5に示す。
<Test Example 1>
The time-dependent stability of a) the zinc sulfide powder phosphor of Comparative Example 1, b) the aluminum nitride phosphor obtained in Example 1, and c) the aluminum nitride phosphor obtained in Example 2 were measured. The results are shown in FIGS.

実施例1〜4で得られた蛍光体のスペクトル図である。It is a spectrum figure of the fluorescent substance obtained in Examples 1-4. 実施例2及び5で得られた蛍光体のスペクトル図である。It is a spectrum figure of the fluorescent substance obtained in Example 2 and 5. 比較例1の硫化亜鉛粉末蛍光体の経時安定性を測定した結果を示す図である。It is a figure which shows the result of having measured the temporal stability of the zinc sulfide powder fluorescent substance of the comparative example 1. FIG. 実施例1で得られた窒化アルミニウム系蛍光体の経時安定性を測定した結果を示す図である。It is a figure which shows the result of having measured temporal stability of the aluminum nitride-type fluorescent substance obtained in Example 1. FIG. 実施例2で得られた窒化アルミニウム系蛍光体の経時安定性を測定した結果を示す図である。It is a figure which shows the result of having measured temporal stability of the aluminum nitride-type fluorescent substance obtained in Example 2. FIG.

Claims (4)

1)Ti、V、Cr、Mn、Co、Cu及びZnの少なくとも1種の遷移元素及びその化合物ならびに2)Sm、Eu、Gd、Tb、Dy及びErの少なくとも1種の希土類元素及びその化合物、の少なくとも1種とアルミニウムとを含む原料を、窒素を含む雰囲気中で燃焼合成させることにより、前記遷移元素及び前記希土類元素の一部又は全部が窒化アルミニウム中に固溶した窒化アルミニウム系蛍光体を製造する方法。 1) at least one transition element of Ti, V, Cr, Mn, Co, Cu and Zn and a compound thereof; and 2) at least one rare earth element of Sm, Eu, Gd, Tb, Dy and Er and a compound thereof, An aluminum nitride-based phosphor in which a part or all of the transition element and the rare earth element are dissolved in aluminum nitride by burning and synthesizing a raw material containing at least one of aluminum and aluminum in an atmosphere containing nitrogen. How to manufacture. 原料が、さらに3)ホウ素を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the raw material further contains 3) boron. 原料の一部又は全部が、前記遷移元素、前記希土類元素及びアルミニウムの少なくとも2種を含む合金又は化合物である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a part or all of the raw material is an alloy or a compound containing at least two of the transition element, the rare earth element, and aluminum. 原料の一部又は全部が、
a)前記遷移元素、
b)前記希土類元素、
c)ホウ素、ならびにd)アルミニウム
の少なくとも2種を含む合金又は化合物である請求項2に記載の製造方法。
Some or all of the ingredients
a) the transition element,
b) the rare earth element,
The production method according to claim 2, which is an alloy or compound containing at least two of c) boron and d) aluminum.
JP2004216131A 2003-07-24 2004-07-23 Aluminum nitride phosphor and method for producing the same Active JP4979187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216131A JP4979187B2 (en) 2003-07-24 2004-07-23 Aluminum nitride phosphor and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003279393 2003-07-24
JP2003279393 2003-07-24
JP2004216131A JP4979187B2 (en) 2003-07-24 2004-07-23 Aluminum nitride phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005054182A JP2005054182A (en) 2005-03-03
JP4979187B2 true JP4979187B2 (en) 2012-07-18

Family

ID=34380076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216131A Active JP4979187B2 (en) 2003-07-24 2004-07-23 Aluminum nitride phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP4979187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107200589A (en) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 A kind of preparation method and fluorescence associated ceramics of the fluorescence ceramics of aluminium nitride matrix

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130640B2 (en) * 2005-04-01 2013-01-30 三菱化学株式会社 Method for manufacturing phosphor
CN104759615A (en) 2005-04-01 2015-07-08 三菱化学株式会社 Alloy powder for inorganic functional material and phosphor
CN101171321B (en) * 2005-04-01 2013-06-05 三菱化学株式会社 Alloy powder for raw material of inorganic functional material and phosphor
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
JP5181492B2 (en) * 2006-02-28 2013-04-10 三菱化学株式会社 Method for producing phosphor raw material and phosphor raw material alloy
TW200804564A (en) 2006-02-28 2008-01-16 Mitsubishi Chem Corp Fluorescent material and method of manufacturing alloy for fluorescent material
JP5239182B2 (en) * 2006-03-27 2013-07-17 三菱化学株式会社 Phosphor and light emitting device using the same
EP2022834A4 (en) * 2006-05-19 2011-11-23 Mitsubishi Chem Corp Nitrogen-containing alloy and method for producing phosphor by using the same
JP5292724B2 (en) * 2006-05-19 2013-09-18 三菱化学株式会社 Method for manufacturing phosphor based on nitride
JP5517400B2 (en) * 2006-07-11 2014-06-11 日本碍子株式会社 Blue light emitting aluminum nitride material and manufacturing method thereof
JP5332136B2 (en) * 2006-09-29 2013-11-06 三菱化学株式会社 Nitrogen-containing alloy and phosphor manufacturing method using the same
JP5135812B2 (en) * 2007-02-05 2013-02-06 憲一 町田 Phosphor based on nitride or oxynitride, method for producing the same, phosphor-containing composition using the same, light emitting device, lighting device, and image display device
JP5077930B2 (en) * 2007-04-03 2012-11-21 独立行政法人産業技術総合研究所 Manufacturing method of multi-component nitride phosphors by combustion synthesis
JP5190835B2 (en) * 2007-04-03 2013-04-24 独立行政法人産業技術総合研究所 Method for producing multi-component oxynitride phosphor
WO2008123581A1 (en) * 2007-04-03 2008-10-16 National Institute Of Advanced Industrial Science And Technology Process for producing multinary nitride or oxynitride fluorescent material by combustion synthesis and multinary nitride or oxynitride fluorescent material
JP2008285662A (en) 2007-04-18 2008-11-27 Mitsubishi Chemicals Corp Method for producing inorganic substance, phosphor, phosphor-including composition, emission device, illumination device, and image display device
WO2008132954A1 (en) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, illuminating device, image display device, and nitrogen-containing compound
US8120238B2 (en) 2007-09-03 2012-02-21 National University Corporation Kobe University Deep ultraviolet semiconductor optical device
WO2011022878A1 (en) 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 Luminescent element, producing method thereof and luminescence method using the same
CN102577611B (en) 2009-08-26 2014-04-02 海洋王照明科技股份有限公司 Light emitting element, manufacturing method and light emitting method thereof
WO2011022880A1 (en) 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 Luminescent element, producing method thereof and luminescence method using the same
US9096792B2 (en) 2009-08-26 2015-08-04 Ocean's King Lighting Science & Technology Co., Ltd. Luminescent element including nitride, preparation method thereof and luminescence method
CN102576651B (en) 2009-08-26 2015-01-07 海洋王照明科技股份有限公司 Luminescent element, producing method thereof and luminescence method using the same
CN110386822B (en) * 2018-04-19 2021-02-26 深圳光峰科技股份有限公司 Complex phase fluorescent ceramic and preparation method thereof
JPWO2021206151A1 (en) * 2020-04-09 2021-10-14

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167260A (en) * 1986-01-21 1987-07-23 株式会社東芝 Luminescent sintered body
JPH05263075A (en) * 1992-03-17 1993-10-12 Toshiba Corp Stimulable thermophosphor
JP2000016805A (en) * 1998-07-03 2000-01-18 Toyo Alum Kk Production of aluminum nitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107200589A (en) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 A kind of preparation method and fluorescence associated ceramics of the fluorescence ceramics of aluminium nitride matrix
CN107200589B (en) * 2016-03-18 2021-07-23 深圳光峰科技股份有限公司 Preparation method of aluminum nitride matrix fluorescent ceramic and related fluorescent ceramic

Also Published As

Publication number Publication date
JP2005054182A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4979187B2 (en) Aluminum nitride phosphor and method for producing the same
US6596195B2 (en) Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
KR101168174B1 (en) Lighting instrument and image displaying apparatus using phosphor
JP5224439B2 (en) Phosphor and light emitting device using the same
Park et al. Solvothermal synthesis and luminescence properties of Tb3+-doped gadolinium aluminum garnet
CN107851694B (en) Light emitting device and image display apparatus
JP6739832B2 (en) Phosphor, method of manufacturing the same, lighting fixture and image display device
JP4356563B2 (en) Oxynitride phosphor, method for producing oxynitride phosphor, and white light emitting device
JP4165412B2 (en) Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment
JP5185829B2 (en) Rare earth activated aluminum nitride powder and method for producing the same
JP5187817B2 (en) Phosphors and light emitting devices
JP2006137902A (en) Nitride phosphor, process for producing nitride phosphor and white light-emitting element
JP4979194B2 (en) Aluminum nitride phosphor
JP5111181B2 (en) Phosphor and light emitting device
JP4356539B2 (en) Nitride phosphor, method for producing the same, white light emitting device and pigment
Anthuvan et al. Synthesis and Luminescent Properties of Tb3+ Activated Li3Ba2Gd3-x (MoO4) 8 Based Efficient Green Emitting Phosphors
JP5077930B2 (en) Manufacturing method of multi-component nitride phosphors by combustion synthesis
CN116023938B (en) Lanthanide ion doped double perovskite nanocrystalline and preparation method and application thereof
Woo et al. An investigation on Eu3+ doped CaLa2ZnO5 novel red emitting phosphors for white light-emitting diodes
Rao et al. Photoluminescence properties of SrLa2SiO6: Eu phosphor
KR100430755B1 (en) Blue-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
JP2023125736A (en) Green phosphor and method for producing green phosphor
JP5252988B2 (en) Yellow phosphor and method for producing the same
KR100501741B1 (en) Red phosphor comprising samarium for ultraviolet LED and manufacturing method thereof and applicable device thereof
Hirata et al. Long-UV excited white-emitting phosphors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091211

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250