JPS62167260A - Luminescent sintered body - Google Patents

Luminescent sintered body

Info

Publication number
JPS62167260A
JPS62167260A JP61008955A JP895586A JPS62167260A JP S62167260 A JPS62167260 A JP S62167260A JP 61008955 A JP61008955 A JP 61008955A JP 895586 A JP895586 A JP 895586A JP S62167260 A JPS62167260 A JP S62167260A
Authority
JP
Japan
Prior art keywords
sintered body
luminescent
sintering
added
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61008955A
Other languages
Japanese (ja)
Inventor
加曽利 光男
和夫 篠崎
直寿 松田
正昭 玉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61008955A priority Critical patent/JPS62167260A/en
Publication of JPS62167260A publication Critical patent/JPS62167260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Luminescent Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、紫外線、X線、あるいは電子線下で発光す
る発光焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a luminescent sintered body that emits light under ultraviolet rays, X-rays, or electron beams.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化物焼結体は、大きな機械的強度あるいは、高い熱伝
導率を利用して高温部品材料あるいは半導体基板への応
用が広がろうとしている。これらの焼結体では焼成ロッ
トや焼結体中の特性バラツキを非破壊的に検査すること
が望まれている。この検量は信頼性の向上に重要な役割
を果す。
Nitride sintered bodies are being used as high-temperature component materials and semiconductor substrates due to their large mechanical strength and high thermal conductivity. For these sintered bodies, it is desired to non-destructively inspect variations in properties between firing lots and among the sintered bodies. This calibration plays an important role in improving reliability.

非破壊検査として従来種々な方法が試みられている。た
とえば、X線映像法によれば、焼結体中の空隙や異物を
検出することができる。また、超音波検査で密度や数十
μm程度の欠陥を検出することができる。しかし、これ
らの方法は欠陥像を画像化する装置が必要となり、検査
装置が高価で大形である。さらに、微小欠陥の検出はむ
づかしい。
Conventionally, various methods have been tried as non-destructive testing. For example, by using X-ray imaging, it is possible to detect voids and foreign objects in a sintered body. Further, ultrasonic inspection can detect defects in density and on the order of several tens of micrometers. However, these methods require an apparatus for imaging the defect image, and the inspection apparatus is expensive and large. Furthermore, detection of minute defects is difficult.

螢光染料浸透探傷法は、簡便で多数の製品検査に有効で
あるが1表面の比較的大きな幾何学的な傷の検出に限ら
れる。しかもいずれの方法も化学組成分布や結晶構造分
布など焼結体の本質的なバラツキを検出することは容易
でない。
Fluorescent dye penetrant flaw detection is simple and effective for inspecting a large number of products, but is limited to the detection of relatively large geometric flaws on one surface. Moreover, with either method, it is not easy to detect essential variations in the sintered body, such as chemical composition distribution and crystal structure distribution.

半導体や酸化物単結晶では、カソードルミネセンスある
いはフォトルミネセンスによって格子欠陥と対応づける
試みがおる。これは均一な材料中の格子欠陥が発光中心
となることを利用するもので、微視的欠陥の検出法とし
てすぐれている。しかしこの方法を通常の窒化物焼結体
に応用し、簡便かつ精度の高い欠陥検出法とするのは困
難である。これは、通常の焼結体を紫外線、xmhるい
は電子線に曝しても発光しないか、発光してもその強度
が微弱であることによる。また、窒化物焼結体の発光が
まだよく研究されていないため1発光から欠陥や組成の
種類を知ることができないことによる。
In semiconductors and oxide single crystals, attempts have been made to associate lattice defects with cathodoluminescence or photoluminescence. This method utilizes the fact that lattice defects in a uniform material serve as emission centers, and is an excellent method for detecting microscopic defects. However, it is difficult to apply this method to ordinary nitride sintered bodies as a simple and highly accurate defect detection method. This is because when a normal sintered body is exposed to ultraviolet rays, xmh, or electron beams, it does not emit light, or even if it does emit light, the intensity is weak. Another reason is that the light emission of nitride sintered bodies has not been well studied, so it is not possible to determine the type of defect or composition from a single light emission.

〔発明の目的〕[Purpose of the invention]

この発明は、発光を利用した非破壊検査法に適する窒化
物焼結体を提供するにある。
The object of the present invention is to provide a nitride sintered body suitable for non-destructive testing using light emission.

〔発明の概要〕[Summary of the invention]

この発明は、窒化物焼結体には、通常主成分の窒化物相
のほかに焼結助剤に起因した酸化物相が含まれているこ
とに注目してなされた。すなわちこれらの酸化物相に微
量の発光性元素を含有させることによってなされた。
This invention was made by focusing on the fact that a nitride sintered body usually contains an oxide phase caused by a sintering aid in addition to the nitride phase, which is the main component. That is, this was achieved by incorporating a trace amount of a luminescent element into these oxide phases.

焼結助剤は、主VC焼結体の緻密化のために主成分の原
料に0.O1〜15wtチ加えられる物質である。
The sintering aid is added to the main component raw material in order to densify the main VC sintered body. This is a substance that is added in an amount of 1 to 15 wt.

窒化アルミニウムの場合、高温で酸化イツトリウムある
いは酸化カルシウムになるような化合物粉体が助剤とな
り、これは高温焼結処理中に液相となり、主成分窒化物
粒子間VCあって焼結を促進するほか、酸素など主成分
中の不純物をとりこんで熱伝導などの特性を向上させる
といわれている。
In the case of aluminum nitride, a compound powder that turns into yttrium oxide or calcium oxide at high temperatures is used as an auxiliary agent, which becomes a liquid phase during the high-temperature sintering process and promotes sintering due to the presence of VC between the main component nitride particles. In addition, it is said to improve properties such as heat conduction by incorporating impurities in the main components such as oxygen.

焼結後、助剤は、主成部粒子間に固溶体あるいは副相と
して存在する。窒化アルミニウム焼結体で酸化イツトリ
ウム助剤の場合、副相y2o3・xA1203の化学組
成で表わされ、助剤含量によって、Y3AlsO1z(
x=−) 、 YAIOa(x=1 ) 、 Y4A1
20g(x=1/2)などの結晶となる。
After sintering, the auxiliary agent exists as a solid solution or subphase between the main particles. In case of aluminum nitride sintered body and yttrium oxide auxiliary agent, it is expressed by the chemical composition of subphase y2o3 x A1203, and depending on the auxiliary content, Y3AlsO1z (
x=-), YAIOa(x=1), Y4A1
It becomes a crystal such as 20g (x=1/2).

この発明では、上記焼結助剤粉体を窒化物原料粉体に添
加する時に同時に、助剤を構、成する陽イオン元素に対
し% 0.001〜50原子チのセリウム。
In this invention, when the sintering aid powder is added to the nitride raw material powder, at the same time, 0.001 to 50% cerium is added to the cationic element constituting the aid.

プラセオジム、ネオジム、ビスマスの少くとも1種の元
素を含む化合物を添加する。添加には、共沈などの手段
であらかじめ助剤中にこれらの元素を含有せしめておく
方法か、あるいはこれらの元素を含む化合物粉体あるい
は液体を助剤に加える方法がとられる。不純物元素の添
加量の下限値は無添加の場合に比べて発光強度が強くな
る限界から求められたものである。添加量の主限値以上
に不純物元素化合物を加えると、濃度消光をおこして発
光強度が弱くなり1本発明の目的に適わない。
A compound containing at least one element of praseodymium, neodymium, and bismuth is added. For addition, these elements can be added to the auxiliary by pre-containing these elements in the auxiliary by means such as coprecipitation, or by adding compound powder or liquid containing these elements to the auxiliary. The lower limit of the amount of the impurity element added was determined from the limit at which the emission intensity becomes stronger than in the case of no addition. If the impurity element compound is added in an amount exceeding the main limit value, concentration quenching occurs and the emission intensity becomes weak, which is not suitable for the purpose of the present invention.

またこの場合、助剤の目的とする焼結促進や焼結体特性
の向上を損う恐れがある。
Moreover, in this case, there is a possibility that the purpose of the auxiliary agent to promote sintering and improve the properties of the sintered body may be impaired.

次に1本発明のAM焼結体の製造方法を簡単に説明する
Next, a method for manufacturing an AM sintered body according to the present invention will be briefly explained.

ますAへ粉末に焼結助剤としての希土類化合物又はアル
カリ土類化合物の少なくとも一種以上と発光元素を適当
量添加する、もしくは、あらかじめ共沈などの手段によ
り発光元素を含んだ希土類化合物又はアルカリ土類化合
物を少なくとも1種以上添加した後ボールミル等で混合
する。焼結には、常圧焼結法、ホットプレス焼結法等が
採用される。常圧焼結法による場合には、前記混合粉末
にバインダーを添加し、混線、造粒、整粒を行なった後
、成形する。成形法としては、金型ブレス静水圧プレス
又はシート成形等が採用される。つづいて、成形体を例
えばN2ガス気流中で加熱してバインダーを除去した後
、常圧焼結を行なう。一方、ホットプレス焼結法による
場合には前記混合粉末を直接ホットプレスすればよい。
Add an appropriate amount of a luminescent element to the powder and at least one kind of rare earth compound or alkaline earth compound as a sintering aid to the mass A, or add a rare earth compound or alkaline earth containing a luminescent element by means such as coprecipitation in advance. After adding at least one type of compound, the mixture is mixed using a ball mill or the like. For sintering, a pressureless sintering method, a hot press sintering method, etc. are used. In the case of the pressureless sintering method, a binder is added to the mixed powder, and the mixed powder is mixed, granulated, and sized, and then molded. As the molding method, mold press isostatic pressing, sheet molding, etc. are adopted. Subsequently, the molded body is heated, for example, in a N2 gas stream to remove the binder, and then pressureless sintering is performed. On the other hand, when using the hot press sintering method, the mixed powder may be directly hot pressed.

こうした工程において、常圧焼結法による場合も、ホッ
トプレス焼結法による場合も、焼結@度は1600〜2
000℃であり、実用上はl 700 ’O〜1800
℃の範囲である。
In these processes, whether by the pressureless sintering method or the hot press sintering method, the sintering degree is 1600 to 2.
000℃, and in practical terms l 700'O~1800
℃ range.

〔発明の効果〕〔Effect of the invention〕

本発明の焼結体を紫外線、X線あるいは電子線からなる
励起源下におくと1発光を示す。)i8渭体中の発光強
度の分布は目視によって容易に観察できる。この分布は
、焼結体全面に均一な体色の分布をもっている場合でも
、不均一になることが多い。発光強度の分布は焼結体中
の発光性元素めるいは、焼結体中に生成した副相生成物
の含量分布あるいは、副相生物の化学種の分布に起因し
ていると考えられ、したがりて、この分布から焼結体の
化学組成とその量の均一性が容易に判明する。
When the sintered body of the present invention is placed under an excitation source consisting of ultraviolet rays, X-rays, or electron beams, it emits light. ) The distribution of luminescence intensity in the i8 housing can be easily observed visually. This distribution is often non-uniform even when the sintered body has a uniform body color distribution over the entire surface. The distribution of luminescence intensity is thought to be due to the content distribution of luminescent elements in the sintered body, the content distribution of subphase products generated in the sintered body, or the distribution of chemical species of subphase organisms. Therefore, from this distribution, the chemical composition of the sintered body and the uniformity of its amount can be easily determined.

一方、異なる化学種の結晶格子内にある発光性元素が異
なる発光色を示すことはよく知られている。たとえばセ
リウム不純物を含むY3AA! so 12は紫外線下
で黄色発光を示すのに、YAlO3は紫外部発光を示す
。ユーロピウムやクロム不純物を含む酸化物では°その
発光色は化学種によって大きくかわらず、前者は赤〜橙
色で後者は深赤色となるが、この場合も発光スペクトル
の位置や形を測定することによって化学種を同定するこ
とができる。したがって、焼結体に生成した副相の化学
種を発光色から推測することができる。
On the other hand, it is well known that luminescent elements located within the crystal lattice of different chemical species exhibit different luminescent colors. For example, Y3AA contains cerium impurities! so 12 exhibits yellow emission under ultraviolet light, whereas YAlO3 exhibits ultraviolet emission. In the case of oxides containing europium or chromium impurities, the emission color varies greatly depending on the chemical species, with the former being red to orange and the latter deep red. Species can be identified. Therefore, the chemical species of the subphase generated in the sintered body can be estimated from the emission color.

上記のように本発明の焼結体により、焼結体中の化学組
成と量の均一性および副相生成物種が、発光を観察する
ことにより容易に調べることができる。紫外線励起の場
合、光源はたとえば東京光学機械株の市販品である螢光
検査灯(FI−31L形)を用いればよく、空気中、目
視で発光を観測できる。これは他の非破壊検査法に比べ
簡便である。
As described above, by using the sintered body of the present invention, the uniformity of the chemical composition and amount in the sintered body and the species of subphase products can be easily investigated by observing luminescence. In the case of ultraviolet excitation, the light source may be, for example, a commercially available fluorescent inspection lamp (FI-31L type) manufactured by Tokyo Kogaku Kikai Co., Ltd., and luminescence can be visually observed in the air. This is simpler than other non-destructive testing methods.

ざらに発光は、微弱なものも目視で検出可能であり、筒
感度な検出法でめる。また、発光スペクトルは、一般に
発光中心となる元素の位置する結晶内環境によって敏感
にかわるため、高精度の化学組成と結晶構造検出も可能
でおる。これらを利用して、従来の非破壊検査法で得ら
れない情報を得ることも可能となる。たとえば走査型電
子鏡下で二次電子像と陰極線ルミネセンス像を比較する
ことにより、主成分粒子間にある副相生成物の結晶性が
高感度・高精度に得られる可能性がある。
Roughly weak luminescence can be detected visually, and can be detected using a tube-sensitive detection method. Furthermore, since the emission spectrum generally changes sensitively depending on the intracrystalline environment in which the element serving as the emission center is located, it is also possible to detect the chemical composition and crystal structure with high precision. Using these techniques, it is also possible to obtain information that cannot be obtained using conventional non-destructive testing methods. For example, by comparing a secondary electron image and a cathodoluminescence image under a scanning electron microscope, it is possible to obtain the crystallinity of a subphase product between main component particles with high sensitivity and precision.

次に、本発明のA/N fi結体の製造方法を簡単に説
明する。まずAfN粉末に焼結助剤としての希土類化合
物又はアルカリ土類化合物の少なくとも一種以上と発光
元素を適当量添加する、もしくは、あらかじめ共沈など
の手段により発光元素を含んだ希土類化合物又はアルカ
リ土類化合物を少なくとも1種以上添加した後ボールミ
ル等で混合する。
Next, the method for manufacturing the A/N fi aggregate of the present invention will be briefly explained. First, a suitable amount of at least one kind of rare earth compound or alkaline earth compound as a sintering aid and a luminescent element are added to the AfN powder, or a rare earth compound or alkaline earth compound containing a luminescent element is added by means such as coprecipitation in advance. After adding at least one compound, the mixture is mixed using a ball mill or the like.

焼結には、常圧焼結法、ホットプレス焼結法等が採用さ
れる。常圧焼結法による場合には、前記混合粉末にバイ
ンダーを添加し、混練、造粒、整粒を行なった後、成形
する。成形法としては、上屋プレス、静水圧プレス又は
シート成形等が採用される。つづいて、成形体を例えば
N2ガス気流中で加熱してバインダーを除去した後、常
圧焼結を行なう。一方、ホットプレス焼結法による場合
には前記混合粉末を直接ホットプレスすればよい。
For sintering, a pressureless sintering method, a hot press sintering method, etc. are used. When using the pressureless sintering method, a binder is added to the mixed powder, kneaded, granulated, and sized, and then shaped. As the molding method, shed press, isostatic press, sheet molding, etc. are adopted. Subsequently, the molded body is heated, for example, in a N2 gas stream to remove the binder, and then pressureless sintering is performed. On the other hand, when using the hot press sintering method, the mixed powder may be directly hot pressed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

実施例I M■粉末にY2O3の粉末を3重量%およびTb4O7
を0.030はチ添加し、ボールミルで粉砂、混合を行
ない原料を調製した。つづいて、この原料にパラフィン
を7重に%添加して造粒した後、500kg/adの圧
力でプレス成形して30X30X8市の圧粉体とした。
Example I M■ powder with 3% by weight of Y2O3 powder and Tb4O7
A raw material was prepared by adding 0.030% of the mixture and mixing with powdered sand in a ball mill. Subsequently, 7% paraffin was added to this raw material and granulated, followed by press molding at a pressure of 500 kg/ad to obtain a green compact of 30×30×8 size.

ひきつづき、この圧粉体を窒素雰囲気中で700°Cま
で加熱してパラフィンを除去した。
Subsequently, this green compact was heated to 700°C in a nitrogen atmosphere to remove paraffin.

次いで、カーボン容器中に収容し、窒素ガス雰囲気中、
1800°Cにて2時間常圧焼結してAm焼結体を製造
した。
Next, it was placed in a carbon container and placed in a nitrogen gas atmosphere.
An Am sintered body was produced by pressureless sintering at 1800°C for 2 hours.

得られた焼結体に紫外線Ci長365nm)を照射した
ところ、焼結体は均一に緑色の螢光を発した。
When the obtained sintered body was irradiated with ultraviolet light (Ci length: 365 nm), the sintered body uniformly emitted green fluorescence.

加速電圧xoKV、*流密度lμA/dの電子線の照射
によっても焼結体は同様の螢光を発した。
The sintered body also emitted similar fluorescence when irradiated with an electron beam at an accelerating voltage of xoKV and a current density of lμA/d.

又、X線[!ll!]折により、焼結体の構成相を調べ
たところ、AMとY3Also 12であることが判明
した。
Also, X-ray [! ll! When the constituent phases of the sintered body were investigated, it was found that they were AM and Y3Also 12.

実施例2 実施例1と同様なA射粉末にY2O3粉末を1重量%お
よびCr2O3を0.01重量%添加し、ボールミルで
粉砕:2重合を行ない原料を調製した。つづいて、この
原料を500に9/attの圧力でプレス成形してl径
12關、厚さ10朋の圧粉体とした。次いで、との圧粉
体をカーボン型中に入れ窒素ガス雰囲気中、1750°
Cで100に9重mの圧力下で1時間ホットプレス焼結
してAM焼結体を製造した。
Example 2 A raw material was prepared by adding 1% by weight of Y2O3 powder and 0.01% by weight of Cr2O3 to the same A powder as in Example 1, and performing pulverization and double polymerization in a ball mill. Subsequently, this raw material was press-molded at a pressure of 500 mm to 9 mm to form a green compact with a diameter of 12 mm and a thickness of 10 mm. Next, the green compact was placed in a carbon mold and heated at 1750° in a nitrogen gas atmosphere.
An AM sintered body was manufactured by hot press sintering at C for 1 hour under a pressure of 100 to 9 m.

得られた焼結体に紫外線(波長365μm)を照射した
ところ、焼結体は均一に淡橙色の螢光を発した。X線回
折により構成相を同定したところ、実施例−1と同じく
A画とYaAlso 12であった。
When the obtained sintered body was irradiated with ultraviolet light (wavelength: 365 μm), the sintered body uniformly emitted pale orange fluorescence. When the constituent phases were identified by X-ray diffraction, they were A-image and YaAlso 12, as in Example-1.

実施例−3〜15 実施例−1と同様なAIN粉末に、表−1に示した如く
の焼結助剤そして発光性化合物を添加し、実施例−1で
述べた如くにして各焼結体を得た。
Examples 3 to 15 Sintering aids and luminescent compounds as shown in Table 1 were added to the same AIN powder as in Example 1, and each sintering process was carried out as described in Example 1. I got a body.

紫外線照射または電子線照射による焼結体の螢光色そし
て、X線回折による構成相を合わせて表−11c、示し
た。
The fluorescent color of the sintered body by ultraviolet irradiation or electron beam irradiation and the constituent phases by X-ray diffraction are shown in Table 11c.

実施例−16 実施例−1で用いたA/N粉末に、Y2O310重量%
Crp30.005重量%およびCeO2を0.05重
量%を添加し、実施例−1と同様な方法により焼結体を
得た。
Example-16 10% by weight of Y2O3 was added to the A/N powder used in Example-1.
A sintered body was obtained in the same manner as in Example-1 by adding 30.005% by weight of Crp and 0.05% by weight of CeO2.

焼結体に紫外線(365nm)を照射したところ、焼結
体中心部では黄色に、焼結体周辺部では、淡橙色に発光
した。
When the sintered body was irradiated with ultraviolet light (365 nm), the center of the sintered body emitted yellow light, and the periphery of the sintered body emitted light orange.

この焼結体を真半分に切断し、断面を観察したところ、
明らかに周辺部よりも中心部でMN以外の副構成相が多
く分布していることが判明した。
When this sintered body was cut in half and the cross section was observed,
It was found that sub-constituent phases other than MN were clearly distributed more in the center than in the periphery.

実施例−17 Y2O3とY2O3に対して1重量%のTb4O7を濃
硝酸に溶解し、これにシェラ酸水溶液を加えてイツトリ
ウムとテルビウムのシュウ酸塩共沈を得だ。
Example 17 1% by weight of Tb4O7 based on Y2O3 and Y2O3 was dissolved in concentrated nitric acid, and an aqueous Schellic acid solution was added thereto to obtain an oxalate coprecipitation of yttrium and terbium.

つづいてこのシュウ酸塩共沈を水洗、乾燥後大気雰囲気
中で1000℃、2時間の分解焼成によりテルビウムを
含むイツトリウム酸化物((Y、Tb)zo3)を得た
。次に、実施例−1と同様なAIIN粉末に上記(Y、
Tb)203を1重量%添加し、実施例−1で述べた如
くにして焼結体を得た。
Subsequently, this oxalate coprecipitate was washed with water, dried, and then decomposed and calcined in the air at 1000° C. for 2 hours to obtain yttrium oxide containing terbium ((Y,Tb)zo3). Next, the above (Y,
1% by weight of Tb)203 was added and a sintered body was obtained in the same manner as described in Example-1.

得られた焼結体に紫外線を照射したところ、焼結体は均
一に緑色の螢光を発した。電子線照射によっても同様の
螢光を発した。また、X線回折により焼結体の構成相を
調べたところAINとY3Al5O12であることが判
明した。
When the obtained sintered body was irradiated with ultraviolet light, the sintered body uniformly emitted green fluorescence. Similar fluorescence was also emitted by electron beam irradiation. Further, when the constituent phases of the sintered body were examined by X-ray diffraction, they were found to be AIN and Y3Al5O12.

上述のように、本発明の窒化物焼結体を用いれば焼結体
の組成、含量バラツキの非破壊検査が容易に行える。一
方1発光性を利用し、非破壊検査以外の応用も考えられ
る。たとえば、窒化珪素焼結体の場合、軽量でかつ高温
で高強度な・本来の特性に発光性を加えることができる
ので、高温下でのシンチレータ−が作れる。また透光性
窒化アルミニウム焼結体では高熱伝導性を有するレーザ
発振材料への応用が可能である。  (以下乍白)表 
 −1 実施例−3Ca■3 1wt% 鳩■3 0.01  
wt%  1800℃・2時間14Ba■3  1  
 MnCO30,01wt% 1800’OIy5sr
■31MoQ)31J、01wt%1800#1   
6YF3 3−% CeO20,001vrt% 17
00    #1   7  La2O31Cr2O3
0,03wt% 1800   11   8  Gd
z03    ’    Eu2O30,03wt% 
1800   11   9  Lu2O3’    
Tb4O70,03wt% 1800   11  1
0  LaF3    ’    Tb4O70,03
wt% 1750    #’   11  CaF2
    ’    Ga2O30,03wt% 175
0    tl   12  BaF2    ’  
  guzos  o、o3 wt% 1750   
1t13SrF21&n2030.03wt%1750
z’   14 8CzO310wt% Tb40? 
 0.1   wt% 1900    を発光しない
     緑 色     A/N、 CaOφ2人頗
3発光しrxイ     緑 色     A!!N+
BaO’6A1203発光しない     緑 色  
  〜N、未知相黄色   黄色  keN+Y3)J
!5012赤色   −)−INtL嘘3 赤色   赤色  1(Jd膿3 緑色   緑色  ′L□3 緑色   緑色  ’ LaAt!03青色   −項
、CaO”2AIE3 背色   −1Bao・6人12o3 橙 色              I 未知相線色 
      I 5C203,lF!1m黄色   黄
色  庫、 Y3Al5O121”Ca()2人120
As described above, by using the nitride sintered body of the present invention, non-destructive inspection of composition and content variations of the sintered body can be easily performed. On the other hand, it is also possible to consider applications other than non-destructive testing by utilizing the luminescence property. For example, in the case of silicon nitride sintered bodies, it is possible to add luminescence to the original properties of being lightweight and having high strength at high temperatures, so scintillators that can be used at high temperatures can be made. Furthermore, the translucent aluminum nitride sintered body can be applied to a laser oscillation material with high thermal conductivity. (Hereafter in white) Table
-1 Example-3Ca■3 1wt% Pigeon■3 0.01
wt% 1800℃・2 hours 14Ba■3 1
MnCO30.01wt% 1800'OIy5sr
■31MoQ) 31J, 01wt%1800#1
6YF3 3-% CeO20,001vrt% 17
00 #1 7 La2O31Cr2O3
0.03wt% 1800 11 8 Gd
z03' Eu2O30.03wt%
1800 11 9 Lu2O3'
Tb4O70.03wt% 1800 11 1
0 LaF3' Tb4O70,03
wt% 1750 #' 11 CaF2
' Ga2O30.03wt% 175
0 tl 12 BaF2'
guzos o, o3 wt% 1750
1t13SrF21&n2030.03wt%1750
z' 14 8CzO310wt% Tb40?
Does not emit 0.1 wt% 1900 Green color A/N, CaOφ2 human body 3 emits rx I Green color A! ! N+
BaO'6A1203 does not emit green color
~N, unknown phase yellow yellow keN+Y3)J
! 5012 Red -) -INtL Lie 3 Red Red 1 (Jd Pus3 Green Green 'L□3 Green Green ' LaAt!03 Blue -Term, CaO"2AIE3 Back color -1Bao・6 people 12o3 Orange Color I Unknown phase line color
I5C203,lF! 1m Yellow Yellow Warehouse, Y3Al5O121”Ca() 2 people 120
3

Claims (4)

【特許請求の範囲】[Claims] (1)紫外線、X線あるいは電子線下で発光中心となる
元素を含むことを特徴とする窒化アルミニウム焼結体か
らなる発光焼結体。
(1) A luminescent sintered body made of an aluminum nitride sintered body characterized by containing an element that becomes a luminescent center under ultraviolet rays, X-rays, or electron beams.
(2)発光中心が窒化アルミニウム以外の副構成相にあ
ることを特徴とする特許請求の範囲第1項記載の発光焼
結体。
(2) The luminescent sintered body according to claim 1, wherein the luminescent center is in a sub-constituent phase other than aluminum nitride.
(3)添加物が、SC、La、Y、Gd、LuおよびC
a、Ba、Srの少なくとも1種の化合物であり、これ
に発光中心となる元素の化合物としてCe、Pr、Nd
、Sm、Eu、Tb、Er、Tm、Ho、Cr、Mn、
Ga、Pb、Biの化合物の群から少なくとも一種を添
加物に対して0.001〜10原子%加えたことを特徴
とする特許請求の範囲第2項記載の発光焼結体。
(3) Additives are SC, La, Y, Gd, Lu and C
A compound of at least one of a, Ba, and Sr, and a compound of an element serving as a luminescent center including Ce, Pr, and Nd.
, Sm, Eu, Tb, Er, Tm, Ho, Cr, Mn,
The light-emitting sintered body according to claim 2, characterized in that at least one member from the group of compounds of Ga, Pb, and Bi is added in an amount of 0.001 to 10 atomic % based on the additive.
(4)添加物の合計量が元素換算で0.01〜15重量
%である混合粉体を1600〜2000℃で焼結したこ
とを特徴とする特許請求の範囲第3項記載の発光焼結体
(4) Luminescent sintering according to claim 3, characterized in that a mixed powder in which the total amount of additives is 0.01 to 15% by weight in terms of elements is sintered at 1600 to 2000°C. body.
JP61008955A 1986-01-21 1986-01-21 Luminescent sintered body Pending JPS62167260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008955A JPS62167260A (en) 1986-01-21 1986-01-21 Luminescent sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008955A JPS62167260A (en) 1986-01-21 1986-01-21 Luminescent sintered body

Publications (1)

Publication Number Publication Date
JPS62167260A true JPS62167260A (en) 1987-07-23

Family

ID=11707091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008955A Pending JPS62167260A (en) 1986-01-21 1986-01-21 Luminescent sintered body

Country Status (1)

Country Link
JP (1) JPS62167260A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097780A (en) * 1999-09-30 2001-04-10 Toshiba Corp Sintered aluminum nitride, and board using the same for semiconductor device
JP2005054182A (en) * 2003-07-24 2005-03-03 Toyo Aluminium Kk Aluminum nitride based phosphor and preparation of the same
WO2006016711A1 (en) * 2004-08-11 2006-02-16 National Institute For Materials Science Phosphor, method for producing same and light-emitting device
WO2007066732A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP2008127276A (en) * 2006-11-23 2008-06-05 Komico Ltd Aluminum nitride sintered compact for electrostatic chuck and method of forming the same
JP2008239386A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Aluminum nitride sintered compact and member for semiconductor manufacturing apparatus
JP2012211229A (en) * 2011-03-30 2012-11-01 Covalent Materials Corp Green phosphor
JP2016180076A (en) * 2015-03-25 2016-10-13 日亜化学工業株式会社 Method for producing phosphor molding, and light emitting device
WO2018193838A1 (en) * 2017-04-18 2018-10-25 Ntn株式会社 Ceramic composition for scintillator, scintillator and radiation detection device, and method for manufacturing scintillator
DE112021006659T5 (en) 2020-12-25 2023-10-12 Nichia Corporation METHOD FOR PRODUCING FLUORESCENT CERAMICS AND METHOD FOR PRODUCING A LIGHT-EMITTING DEVICE

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097780A (en) * 1999-09-30 2001-04-10 Toshiba Corp Sintered aluminum nitride, and board using the same for semiconductor device
JP2005054182A (en) * 2003-07-24 2005-03-03 Toyo Aluminium Kk Aluminum nitride based phosphor and preparation of the same
JP4953065B2 (en) * 2004-08-11 2012-06-13 独立行政法人物質・材料研究機構 Phosphor and production method thereof
WO2006016711A1 (en) * 2004-08-11 2006-02-16 National Institute For Materials Science Phosphor, method for producing same and light-emitting device
EP1795574A1 (en) * 2004-08-11 2007-06-13 National Institute for Materials Science Phosphor, method for producing same and light-emitting device
US8852453B2 (en) 2004-08-11 2014-10-07 National Institute For Materials Science Phosphor
EP1835008A1 (en) * 2004-08-11 2007-09-19 National Institute for Materials Science Phosphor, production method thereof and light emitting instrument
EP1795574A4 (en) * 2004-08-11 2007-09-19 Nat Inst For Materials Science Phosphor, method for producing same and light-emitting device
JPWO2006016711A1 (en) * 2004-08-11 2008-05-01 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
KR101168173B1 (en) * 2004-08-11 2012-07-24 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Phosphor and method for producing the same
US7431864B2 (en) 2004-08-11 2008-10-07 National Institute For Materials Science Phosphor, production method thereof and light emitting instrument
JP2008263209A (en) * 2004-08-11 2008-10-30 National Institute For Materials Science Light emitting apparatus using phosphor
US8114313B2 (en) 2005-12-08 2012-02-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP5170640B2 (en) * 2005-12-08 2013-03-27 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
WO2007066732A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP2008127276A (en) * 2006-11-23 2008-06-05 Komico Ltd Aluminum nitride sintered compact for electrostatic chuck and method of forming the same
JP2008239386A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Aluminum nitride sintered compact and member for semiconductor manufacturing apparatus
JP2012211229A (en) * 2011-03-30 2012-11-01 Covalent Materials Corp Green phosphor
JP2016180076A (en) * 2015-03-25 2016-10-13 日亜化学工業株式会社 Method for producing phosphor molding, and light emitting device
WO2018193838A1 (en) * 2017-04-18 2018-10-25 Ntn株式会社 Ceramic composition for scintillator, scintillator and radiation detection device, and method for manufacturing scintillator
DE112021006659T5 (en) 2020-12-25 2023-10-12 Nichia Corporation METHOD FOR PRODUCING FLUORESCENT CERAMICS AND METHOD FOR PRODUCING A LIGHT-EMITTING DEVICE

Similar Documents

Publication Publication Date Title
Xu et al. Direct view of stress distribution in solid by mechanoluminescence
Sohn et al. Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu, Dy, Nd)
US4473513A (en) Method for sintering high density yttria-gadolinia ceramic scintillators
US4747973A (en) Rare-earth-doped yttria-gadolina ceramic scintillators
US7008558B2 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
CN108139492B (en) Method for shortening scintillation response of luminescence center and material of scintillator with shortened scintillation response
JP5462515B2 (en) Transparent ceramics, manufacturing method thereof, and device using the transparent ceramics
US6793848B2 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
Dantelle et al. Research on efficient fast scintillators: evidence and X‐ray absorption near edge spectroscopy characterization of Ce4+ in Ce3+, Mg2+‐Co‐doped Gd3Al2Ga3O12 garnet crystal
Ginther et al. The thermoluminescence of CaF2: Mn
Sampaio et al. Translucent and persistent luminescent SrAl2O4: Eu2+ Dy3+ ceramics
JPS5930883A (en) Rare earth element-added yttria-gadolinia ceramic scintillator and manufacture
CN110330970B (en) Red light and near-infrared luminescent material, preparation method and luminescent device
JPS62177474A (en) Radiation detector using solid scintillator material and manufacture thereof
US6479420B2 (en) Ceramics and their power for scintillators, and method for producing same
JPS62167260A (en) Luminescent sintered body
US6967330B1 (en) High-density polycrystalline lutetium silicate materials activated with Ce
US3893939A (en) Activated phosphors having matrices of yttrium-transition metal compound
CN112877061B (en) Light excitation-free temperature sensing material, preparation method and temperature sensing method
JP2008143726A (en) Polycrystalline transparent y2o3 ceramics and its production method
Mori et al. Scintillation and optical properties of Ce-doped YAGG transparent ceramics
US4466929A (en) Preparation of yttria-gadolinia ceramic scintillators by vacuum hot pressing
JPH07188655A (en) Fluorescencer, its production, and radiation detector and tomograph using the same
US3718601A (en) Fluorescent high alumina substrates
JP2001181043A (en) Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same