JP2008127276A - Aluminum nitride sintered compact for electrostatic chuck and method of forming the same - Google Patents
Aluminum nitride sintered compact for electrostatic chuck and method of forming the same Download PDFInfo
- Publication number
- JP2008127276A JP2008127276A JP2007304237A JP2007304237A JP2008127276A JP 2008127276 A JP2008127276 A JP 2008127276A JP 2007304237 A JP2007304237 A JP 2007304237A JP 2007304237 A JP2007304237 A JP 2007304237A JP 2008127276 A JP2008127276 A JP 2008127276A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- volume resistivity
- electric field
- sintered body
- nitride sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims description 11
- 230000005684 electric field Effects 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims abstract description 21
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims abstract description 20
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910000423 chromium oxide Inorganic materials 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims description 29
- 239000002994 raw material Substances 0.000 claims description 9
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 8
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 2
- 230000000052 comparative effect Effects 0.000 description 25
- 238000005245 sintering Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 1
- 229940075624 ytterbium oxide Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/20—Nitride
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Ceramic Products (AREA)
Abstract
Description
本発明は、静電チャック用窒化アルミニウム焼結体及びその形成方法に関する。より詳細に、本発明は、半導体ウェーハを支持する静電チャックに利用される窒化アルミニウム焼結体及びその形成方法に関する。 The present invention relates to an aluminum nitride sintered body for an electrostatic chuck and a method for forming the same. More specifically, the present invention relates to an aluminum nitride sintered body used for an electrostatic chuck that supports a semiconductor wafer and a method for forming the same.
半導体製造工程や液晶製造工程で半導体基板又はガラス基板を支持する静電チャックが使用されている。静電チャックは、大きくクーロン力を利用する方式とジョンソンラーベク力(Johnson−Rahbek‘s force)を利用する方式とに分類することができる。 An electrostatic chuck that supports a semiconductor substrate or a glass substrate in a semiconductor manufacturing process or a liquid crystal manufacturing process is used. Electrostatic chucks can be broadly classified into methods that use Coulomb force and methods that use Johnson-Rahbek's force.
クーロン力を利用する方式の静電チャックは、誘電体上下面に存在する互いに異なる電荷を有する粒子間の静電気的引力を利用してウェーハを固定する。この場合、誘電体は1×1015Ωcm以上が好ましい。しかし、半導体基板又はガラス基板が大型化されることにより、十分に大きい静電吸着力をウェーハ接触面全体に均一に形成しないという問題がある。 In the electrostatic chuck using the Coulomb force, the wafer is fixed using electrostatic attraction between particles having different charges existing on the upper and lower surfaces of the dielectric. In this case, the dielectric is preferably 1 × 10 15 Ωcm or more. However, when the semiconductor substrate or the glass substrate is enlarged, there is a problem that a sufficiently large electrostatic adsorption force is not uniformly formed on the entire wafer contact surface.
ジョンソンラーベク力を利用する方式の静電チャックは、相対的に低い体積抵抗率、例えば、1×108〜1×1015Ωcmの体積抵抗率を有する誘電体を利用して十分な吸着力を提供することができる。しかし、誘電体の体積抵抗率が1×108Ωcm以下である場合、漏洩電流が発生することがあり、誘電体の体積抵抗率を1×1011〜1×1015Ωcmの範囲に維持されることが必要である。 The electrostatic chuck using the Johnson rabek force has a sufficiently low attracting force by using a dielectric having a relatively low volume resistivity, for example, a volume resistivity of 1 × 10 8 to 1 × 10 15 Ωcm. Can be provided. However, when the volume resistivity of the dielectric is 1 × 10 8 Ωcm or less, leakage current may occur, and the volume resistivity of the dielectric is maintained in the range of 1 × 10 11 to 1 × 10 15 Ωcm. It is necessary to
静電チャックは、これまでに多くの提案があり、例えば、クーロン力を利用した方式の静電チャックとして、十分な吸着力を得ることが可能で、加工中にクラックの生じない静電チャック〔特許文献1参照〕、吸着力を維持しつつ、基板に付着するパーティクルを低減した静電チャック〔特許文献2参照〕などがあり、ジョンソン−ラーベック力を利用した方式の静電チャックとして、セラミックス層と樹脂層の誘電体層と、静電吸着力を発生させる電極を備えて、過剰なリーク電流の発生を抑制し、吸着特性の長期維持、及び基板の脱着応答性の向上を図った静電チャック〔特許文献3参照〕、通常250℃以上の高温雰囲気下においては高い吸着力が得られる窒化アルミニウム静電チャックに対し、窒化アルミニウム焼結体中に窒化チタンと、その他酸化イットリウム、酸化エルビウム、酸化イッテルビウムなどを含有させて200℃以下の温度雰囲気下においても十分な吸着力が得られるようにした静電チャック〔特許文献4参照〕などがある。
また、温度変化に伴う体積抵抗率の変化が小さい窒化アルミニウム焼結体として、サマリウムとランタンの少なくとも1種、鉄およびニッケルを含む窒化アルミニウム焼結体〔特許文献5参照〕、希土類元素を含む窒化アルミニウム焼結体〔特許文献6参照〕の提案がある。
There have been many proposals for an electrostatic chuck so far. For example, as an electrostatic chuck using a Coulomb force, a sufficient attracting force can be obtained, and an electrostatic chuck that does not crack during processing [ [Patent Document 1], there is an electrostatic chuck [refer to Patent Document 2] in which particles adhering to the substrate are reduced while maintaining the attractive force, and a ceramic layer as an electrostatic chuck using a Johnson-Rahbek force. And dielectric layer of resin layer, and electrodes that generate electrostatic adsorption force, suppress the generation of excessive leakage current, maintain the adsorption characteristics for a long time, and improve the desorption response of the substrate Chuck (refer to Patent Document 3), an aluminum nitride electrostatic chuck that can obtain a high adsorption force in a high temperature atmosphere of usually 250 ° C. or higher. When other yttrium oxide, erbium oxide, there is an electrostatic chuck which is adapted sufficient suction force can be obtained even at a temperature atmosphere of 200 ° C. or less contain a like ytterbium oxide [Patent Document 4].
Further, as an aluminum nitride sintered body having a small volume resistivity change with temperature change, an aluminum nitride sintered body containing at least one of samarium and lanthanum, iron and nickel (see Patent Document 5), and a nitride containing a rare earth element There is a proposal of an aluminum sintered body (see Patent Document 6).
又、静電チャックに所定の電圧を印加すると漏洩電流が非線形的に増加する。この時の漏洩電流(I)と印加電圧(V)は下記の式1(式中、Iは漏洩電流、Vは印加電圧、aは非線形係数、kは比例常数)である。
式1において、印加電圧Vに対する漏洩電流Iの増加係数である非線形係数aの値が1.0以下の値を有することが好ましい。 In Formula 1, it is preferable that the value of the nonlinear coefficient a which is an increase coefficient of the leakage current I with respect to the applied voltage V has a value of 1.0 or less.
従って、本発明の目的は、従来技術における問題点を解決すべく、印加された電圧に対して一定範囲の体積抵抗率を有することができる静電チャック用窒化アルミニウム焼結体、およびその窒化アルミニウム焼結体の形成方法を提供することにある。 Accordingly, an object of the present invention is to solve the problems in the prior art, and an aluminum nitride sintered body for an electrostatic chuck that can have a volume resistivity within a certain range with respect to an applied voltage, and the aluminum nitride. It is providing the formation method of a sintered compact.
上記目的を達成すべく本発明の静電チャック用窒化アルミニウム焼結体は、クロム酸化物0.1〜1.0重量%と、残部が窒化アルミニウムで全体を100重量%とした組成でなっている。
この静電チャック用窒化アルミニウム焼結体は、体積抵抗率が常温で1×1013〜1×1015Ωcmであり、また印加電圧に対して体積抵抗率の変化が小さく、100V/mmの電場における体積抵抗率に対し、3000V/mmの電場における体積抵抗率の変化率が、5%以内である。
In order to achieve the above object, the aluminum nitride sintered body for an electrostatic chuck according to the present invention has a composition in which the chromium oxide is 0.1 to 1.0% by weight, the balance is aluminum nitride and the whole is 100% by weight. Yes.
This aluminum nitride sintered body for electrostatic chucks has a volume resistivity of 1 × 10 13 to 1 × 10 15 Ωcm at room temperature, a small change in volume resistivity with respect to an applied voltage, and an electric field of 100 V / mm. The volume resistivity change rate in an electric field of 3000 V / mm is within 5% of the volume resistivity at.
また、本発明の窒化アルミニウム焼結体は、クロム酸0.1〜1.0重量%と、イットリウム酸化物1.0〜3.0重量%と、残部が窒化アルミニウムで全体を100重量%とした組成とすることもできる。この場合も、体積抵抗率が常温で1×1013〜1×1015Ωcmであり、また印加電圧に対して体積抵抗率の変化が小さく、100V/mmの電場における体積抵抗率に対し、3000V/mmの電場における体積抵抗率の変化率が、5%以内である。 Moreover, the aluminum nitride sintered body of the present invention comprises 0.1 to 1.0% by weight of chromic acid, 1.0 to 3.0% by weight of yttrium oxide, the balance being aluminum nitride and 100% by weight as a whole. The composition can also be made. Also in this case, the volume resistivity is 1 × 10 13 to 1 × 10 15 Ωcm at room temperature, the change in volume resistivity is small with respect to the applied voltage, and 3000 V with respect to the volume resistivity in an electric field of 100 V / mm. The rate of change of volume resistivity in an electric field of / mm is within 5%.
本発明の静電チャック用窒化アルミニウム焼結体は、主原料である窒化アルミニウム粉末を準備する段階と、これにクロム酸0.1〜1.0重量%を加えて全体を100重量%とした組成の原料粉末を成型する段階と、原料粉末を焼成する段階とを有して形成される。 The aluminum nitride sintered body for an electrostatic chuck of the present invention is a step of preparing an aluminum nitride powder as a main raw material, and 0.1 to 1.0% by weight of chromic acid is added thereto to make 100% by weight as a whole. The method includes forming a raw material powder having a composition and firing the raw material powder.
また、イットリウム酸化物を加えた組成では、原料粉末を成型する段階において窒化アルミニウム粉末にクロム酸0.1〜1.0重量%と共にイットリウム酸化物1.0〜3.0重量%を加えて全体を100重量%とした組成にする。 In addition, in the composition in which yttrium oxide is added, the whole powder is obtained by adding 1.0 to 3.0% by weight of yttrium oxide together with 0.1 to 1.0% by weight of chromic acid to the aluminum nitride powder at the stage of forming the raw material powder. The composition is adjusted to 100% by weight.
本発明による静電チャック用窒化アルミニウム焼結体は、アルミニウム窒化物を主成分とし、クロム酸化物0.1〜1.0重量%を加えて全体で100重量%とした組成でなっており、窒化アルミニウム焼結体の体積抵抗率は、常温で1×1013Ωcm〜1×1015Ωcmである。 The aluminum nitride sintered body for an electrostatic chuck according to the present invention is composed of aluminum nitride as a main component, and 0.1 to 1.0% by weight of chromium oxide and 100% by weight as a whole, The volume resistivity of the aluminum nitride sintered body is 1 × 10 13 Ωcm to 1 × 10 15 Ωcm at room temperature.
窒化アルミニウム焼結体の組成において、クロム酸化物が0.1重量%未満であるとき、窒化アルミニウム焼結体の高印加電圧時の体積抵抗率が1×1013Ωcm以下に低下し、1.0重量%を超えても窒化アルミニウム焼結体でも高印加電圧時に体積抵抗率が1×1013Ωcm以下に低下する。又、0.1重量%未満又は1.0重量%超過のクロム酸化物を含む窒化アルミニウム焼結体では、100V/mmの電場における体積抵抗率に対し、3000V/mmの電場における体積抵抗率の変化率が大きくなる。 In the composition of the aluminum nitride sintered body, when the chromium oxide is less than 0.1% by weight, the volume resistivity of the aluminum nitride sintered body at a high applied voltage is reduced to 1 × 10 13 Ωcm or less. Even when the content exceeds 0% by weight, the volume resistivity decreases to 1 × 10 13 Ωcm or less at a high applied voltage even when the sintered aluminum nitride is used. In addition, in the aluminum nitride sintered body containing less than 0.1 wt% or more than 1.0 wt% chromium oxide, the volume resistivity at an electric field of 3000 V / mm is compared with the volume resistivity at an electric field of 100 V / mm. The rate of change increases.
また、本発明による静電チャック用窒化アルミニウム焼結体は、その焼結性を向上させるために、さらに酸化イットリウムを加えることとし、窒化アルミニウムを主成分とし、これにクロム酸化物0.1〜1.0重量%と、酸化イットリウム1.0〜3.0重量%を加えて全体で100重量%とした組成とすることもできる。 In addition, the aluminum nitride sintered body for electrostatic chucks according to the present invention is further added with yttrium oxide in order to improve the sinterability, and contains aluminum nitride as a main component, and chromium oxide 0.1 to It is also possible to obtain a composition that is 100% by weight by adding 1.0% by weight and 1.0 to 3.0% by weight of yttrium oxide.
この組成で、酸化イットリウムが1.0重量%未満のとき、窒化アルミニウム焼結体の焼結性が悪くなり、相対密度が低下することがあり、酸化イットリウムが3.0重量%を超えたときには、窒化アルミニウム焼結体の体積抵抗率は増加する反面、100V/mmの電場における体積抵抗率に対し、3000V/mmの電場における体積抵抗率の変化率が大きくなることがある。 With this composition, when the yttrium oxide is less than 1.0% by weight, the sinterability of the aluminum nitride sintered body is deteriorated, and the relative density may be lowered. When the yttrium oxide exceeds 3.0% by weight Although the volume resistivity of the aluminum nitride sintered body increases, the rate of change in volume resistivity at an electric field of 3000 V / mm may be larger than the volume resistivity at an electric field of 100 V / mm.
次に窒化アルミニウム焼結体の形成方法について述べる。まず、クロム酸0.1〜1.0重量%と、残部が窒化アルミニウムで全体を100重量%とした組成割合で窒化アルミニウム粉末とクロム酸化物粉末を混合し、さらに溶媒に入れて混合した後、乾燥粉砕する。溶媒の例として、無水エタノールが挙げられる。 Next, a method for forming an aluminum nitride sintered body will be described. First, after mixing aluminum nitride powder and chromium oxide powder in a composition ratio of 0.1 to 1.0% by weight of chromic acid and the balance being aluminum nitride and the whole being 100% by weight, and further mixed in a solvent , Dry and pulverize. An example of the solvent is absolute ethanol.
また、別の実施の形態では、クロム酸0.1〜1.0重量%と、イットリウム酸化物1.0〜3.0重量%と、残部が窒化アルミニウムで全体を100重量%とした組成割合で窒化アルミニウム粉末とクロム酸化物粉末、およびイットリウム酸化物粉末を混合し、さらに溶媒に入れて混合した後、乾燥粉砕する。 In another embodiment, the composition ratio is 0.1 to 1.0% by weight of chromic acid, 1.0 to 3.0% by weight of yttrium oxide, the balance being aluminum nitride and the whole being 100% by weight. The aluminum nitride powder, the chromium oxide powder, and the yttrium oxide powder are mixed with each other, and further mixed in a solvent, followed by drying and pulverizing.
次いで、窒化アルミニウム粉末にクロム酸化物粉末、第二の実施の形態ではさらにイットリウム酸化物粉末が加えられた粉末混合物を焼結して窒化アルミニウム焼結体とする。 Next, a powder mixture obtained by adding chromium oxide powder to the aluminum nitride powder and further adding yttrium oxide powder in the second embodiment is sintered to obtain an aluminum nitride sintered body.
焼結工程における焼結温度は、好ましくは1700〜1850℃、さらに好ましくは1750〜1800℃とし、好ましくは1〜10時間、さらに好ましくは2〜5時間焼成する。焼結維持時間が1時間未満では窒化アルミニウム焼結体の相対密度が低下することがある。また、焼結時間が10時間を超えることは焼結体の性状には実質弊害がないが、長時間行うことの利点もなく、経済的に不利になる。 The sintering temperature in the sintering step is preferably 1700 to 1850 ° C., more preferably 1750 to 1800 ° C., preferably 1 to 10 hours, more preferably 2 to 5 hours. If the sintering maintenance time is less than 1 hour, the relative density of the aluminum nitride sintered body may decrease. In addition, if the sintering time exceeds 10 hours, the properties of the sintered body are not substantially detrimental, but there is no advantage of performing for a long time, which is economically disadvantageous.
このように製造された本発明による窒化アルミニウム焼結体は常温で1×1013Ωcm〜1×1015Ωcm範囲の体積抵抗率を有する。又、この焼結体は、低電場に比べて、高電場での体積抵抗率の変化が小さい特徴をもつ。すなわち、100V/mmの電場における体積抵抗率(A)と、3000V/mmの電場における体積抵抗率(B)の比(A/B)が小さく、電圧の影響が少ないことが確認された。 The aluminum nitride sintered body according to the present invention thus manufactured has a volume resistivity in the range of 1 × 10 13 Ωcm to 1 × 10 15 Ωcm at room temperature. Further, this sintered body has a feature that a change in volume resistivity at a high electric field is small as compared with a low electric field. That is, it was confirmed that the ratio (A / B) of the volume resistivity (A) in the electric field of 100 V / mm and the volume resistivity (B) in the electric field of 3000 V / mm is small, and the influence of the voltage is small.
1.窒化アルミニウム焼結体の製造
窒化アルミニウム:
99.9%以上の酸素を除き、平均粒径が1.29μmの高純度還元窒化アルミニウム粉末を使用した。この高純度還元窒化アルミニウム中の主な不純物は、酸素;0.84重量%、炭素;31.0×10−3重量%、カリウム;0.8×10−3重量%、シリコン;0.9×10−3重量%、及び鉄;0.4×10−3重量%であることを確認した。
1. Manufacture of sintered aluminum nitride Aluminum nitride:
High purity reduced aluminum nitride powder having an average particle size of 1.29 μm was used except for 99.9% or more of oxygen. The main impurities in this high-purity reduced aluminum nitride are oxygen; 0.84 wt%, carbon; 31.0 × 10 −3 wt%, potassium; 0.8 × 10 −3 wt%, silicon; 0.9 It confirmed that it was * 10 <-3> weight% and iron; 0.4 * 10 <-3> weight%.
窒化アルミニウム焼結体用粉末の調製:
窒化アルミニウム粉末に、クロム酸化物(Cr2O3)0.1重量%と、イットリウム酸化物(Y2O3)1.0重量%を混合して全体を100重量%とした原料粉末混合物とし、ナイロン製の容器中、無水エタノールを加えてアルミナボールを利用して20時間ウェット混合した。混合後、溶媒を除いてから80℃で乾燥した後、アルミナ乳鉢を利用して粉砕した。80メッシュ篩を通して、窒化アルミニウム焼結体用粉末とした。
Preparation of powder for sintered aluminum nitride:
Mixing aluminum nitride powder with 0.1% by weight of chromium oxide (Cr 2 O 3 ) and 1.0% by weight of yttrium oxide (Y 2 O 3 ) to obtain a raw material powder mixture with a total of 100% by weight. In a nylon container, absolute ethanol was added and wet mixed using an alumina ball for 20 hours. After mixing, after removing the solvent, the mixture was dried at 80 ° C. and then ground using an alumina mortar. A powder for an aluminum nitride sintered body was obtained through an 80-mesh sieve.
窒化アルミニウム焼結体の製造:
実施例1;窒化アルミニウム焼結体用粉末を、直径210mmの黒鉛モールドに装入し、高温加圧焼結炉でプレス圧力0.1MPa下で1750℃の焼結温度で3時間焼成した後、自然冷却させて窒化アルミニウム焼結体とした。
Production of sintered aluminum nitride:
Example 1 After the powder for aluminum nitride sintered body was placed in a graphite mold having a diameter of 210 mm and fired at a sintering temperature of 1750 ° C. under a press pressure of 0.1 MPa for 3 hours in a high-temperature pressure sintering furnace, It was naturally cooled to obtain an aluminum nitride sintered body.
実施例2、3;クロム酸化物の含量を除いては、実施例1と同じ方法で窒化アルミニウム焼結体を製造した。各実施例による組成を表1に示す。 Examples 2 and 3 An aluminum nitride sintered body was produced in the same manner as in Example 1 except for the chromium oxide content. The composition according to each example is shown in Table 1.
比較例1、2;クロム酸化物の含量を除いては、実施例1と同じ方法で窒化アルミニウム焼結体を製造した。各比較例による組成を表1に示す。 Comparative Examples 1 and 2 Aluminum sintered bodies were produced in the same manner as in Example 1 except for the content of chromium oxide. The composition according to each comparative example is shown in Table 1.
実施例4〜6;クロム酸化物及びイットリウム酸化物の含量を除いて実施例1と同じ方法で窒化アルミニウム焼結体を製造した。各実施例による組成を表2に示す。 Examples 4 to 6: Aluminum nitride sintered bodies were produced in the same manner as in Example 1 except for the contents of chromium oxide and yttrium oxide. The composition according to each example is shown in Table 2.
比較例3〜8; クロム酸化物及びイットリウム酸化物の含量を除いて実施例1と同じ方法で窒化アルミニウム焼結体を製造した。各比較例による組成を表2に示す Comparative Examples 3 to 8: An aluminum nitride sintered body was produced in the same manner as in Example 1 except for the chromium oxide and yttrium oxide contents. The composition according to each comparative example is shown in Table 2.
2.窒化アルミニウム焼結体の体積抵抗率
測定方法;窒化アルミニウム焼結体を、直径210mm、厚さ0.5mmの円板状試験片を製作し、電極形状を主電極直径26mm、保護電極直径38mmとし、電場を印加した。この場合、電場は100、250、500、1000、2000、及び3000V/mmになるように設定し、電圧印加時間は60秒を基準として体積抵抗率を測定した。又、印加電圧による漏洩電流値を測定した後、漏洩電流値に対するログ(log)値を最小自乗法を利用して得られた1次関数の傾きで非線形係数(a)を求めた。
結果;実施例及び比較例で製造された窒化アルミニウム焼結体を用いて静電チャック用窒化アルミニウム焼結体の体積抵抗率を測定した結果を、表3及び図1〜図5に示す。
2. Volume resistivity measurement method of aluminum nitride sintered body: A disk-shaped test piece having a diameter of 210 mm and a thickness of 0.5 mm was manufactured from the aluminum nitride sintered body, and the electrode shape was set to a main electrode diameter of 26 mm and a protective electrode diameter of 38 mm. An electric field was applied. In this case, the electric field was set to 100, 250, 500, 1000, 2000, and 3000 V / mm, and the volume resistivity was measured based on the voltage application time of 60 seconds. Further, after measuring the leakage current value due to the applied voltage, the nonlinear coefficient (a) was obtained by the slope of the linear function obtained by using the least square method for the log value with respect to the leakage current value.
Results: The results of measuring the volume resistivity of the aluminum nitride sintered bodies for electrostatic chucks using the aluminum nitride sintered bodies produced in the examples and comparative examples are shown in Table 3 and FIGS.
表3及び図1〜図5を参照すると、全組成100重量%に対し、クロム酸化物0.1重量%未満又は1.0重量%を超える比較例1及び2では、クロム酸化物0.1〜1.0重量%を含む窒化アルミニウム焼結体である実施例に比べて、高印加電場で体積抵抗率が顕著に減少していることが確認できる。特に、比較例1及び2では、窒化アルミニウム焼結体の試片に3000V/mmの電場が印加されると、100V/mmの電場の場合と比較して、顕著に体積抵抗率が小さくなっていることが確認できる。 Referring to Table 3 and FIGS. 1 to 5, in Comparative Examples 1 and 2 where the chromium oxide is less than 0.1 wt% or more than 1.0 wt% with respect to 100 wt% of the total composition, the chromium oxide is 0.1 wt%. It can be confirmed that the volume resistivity is remarkably reduced at a high applied electric field as compared with the example of the aluminum nitride sintered body containing ˜1.0% by weight. In particular, in Comparative Examples 1 and 2, when an electric field of 3000 V / mm is applied to a specimen of an aluminum nitride sintered body, the volume resistivity is remarkably reduced as compared with the case of an electric field of 100 V / mm. It can be confirmed.
具体的に、比較例1による窒化アルミニウム焼結体に100V/mmの電場が印加されたとき体積抵抗率が2.93×1014Ωcmである反面、3000V/mmの電場が印加されたとき体積抵抗率が8.95×1012Ωcmである。従って、100V/mmの電場に対する体積抵抗率(A)と3000V/mmの電場に対するそれぞれの体積抵抗率(B)の比(A/B)は32.7であり、高電場が印加されたとき体積抵抗率が顕著に減少することが確認できる。 Specifically, the volume resistivity is 2.93 × 10 14 Ωcm when an electric field of 100 V / mm is applied to the aluminum nitride sintered body according to Comparative Example 1, while the volume is when an electric field of 3000 V / mm is applied. The resistivity is 8.95 × 10 12 Ωcm. Therefore, the ratio (A / B) of the volume resistivity (A) with respect to the electric field of 100 V / mm and the volume resistivity (B) with respect to the electric field of 3000 V / mm is 32.7, and when the high electric field is applied It can be confirmed that the volume resistivity is remarkably reduced.
比較例2による窒化アルミニウム焼結体に100V/mmの電場が印加されたとき体積抵抗率が7.43×1014Ωcmである反面、3000V/mmの電場が印加されたとき3.73×1012Ωcmとなる。従って、体積抵抗率の比(A/B)は199である。比較例2による窒化アルミニウム焼結体に高電場が印加されたとき体積抵抗率が顕著に減少することが確認できる。 When an electric field of 100 V / mm is applied to the aluminum nitride sintered body according to Comparative Example 2, the volume resistivity is 7.43 × 10 14 Ωcm, while it is 3.73 × 10 when an electric field of 3000 V / mm is applied. 12 Ωcm. Therefore, the volume resistivity ratio (A / B) is 199. It can be confirmed that the volume resistivity is remarkably reduced when a high electric field is applied to the aluminum nitride sintered body according to Comparative Example 2.
一方、イットリウム酸化物1.0重量%未満又は3.0重量%を超える比較例3〜5及び比較例6〜8では、本発明によるイットリウム酸化物1.0〜3.0重量%を含む窒化アルミニウム焼結体に比べて、体積抵抗率が減少していることが確認できる。特に、3000V/mmの電場が窒化アルミニウム焼結体の試片に印加されたとき、100V/mmの電場の場合と比較して体積抵抗率が減少している。 On the other hand, in Comparative Examples 3 to 5 and Comparative Examples 6 to 8 of less than 1.0% by weight or more than 3.0% by weight of yttrium oxide, nitriding containing 1.0 to 3.0% by weight of yttrium oxide according to the present invention It can be confirmed that the volume resistivity is reduced as compared with the aluminum sintered body. In particular, when an electric field of 3000 V / mm is applied to a specimen of an aluminum nitride sintered body, the volume resistivity is reduced as compared to the case of an electric field of 100 V / mm.
比較例3の窒化アルミニウム焼結体に100V/mmの電場が印加されたとき、体積抵抗率が2.01×1014Ωcmである反面、3000V/mmの電場が印加されたときの体積抵抗率は8.91×1013Ωcmである。従って、100V/mmの電場における体積抵抗率(A)と3000V/mmの電場における体積抵抗率(B)の比(A/B)は2.26である。比較例3の窒化アルミニウム焼結体に高電場が印加されたとき、体積抵抗率が小さくなることが確認できる。比較例4では、100V/mmの電場が印加されたとき、体積抵抗率が2.13×1014Ωcmであり、3000V/mmの電場が印加されたとき、9.26×1013Ωcmとなり、体積抵抗率の比(A/B)は2.30である。 When an electric field of 100 V / mm is applied to the aluminum nitride sintered body of Comparative Example 3, while the volume resistivity is 2.01 × 10 14 Ωcm, the volume resistivity when an electric field of 3000 V / mm is applied. Is 8.91 × 10 13 Ωcm. Therefore, the ratio (A / B) of the volume resistivity (A) at an electric field of 100 V / mm to the volume resistivity (B) at an electric field of 3000 V / mm is 2.26. When a high electric field is applied to the aluminum nitride sintered body of Comparative Example 3, it can be confirmed that the volume resistivity decreases. In Comparative Example 4, the volume resistivity is 2.13 × 10 14 Ωcm when an electric field of 100 V / mm is applied, and 9.26 × 10 13 Ωcm when an electric field of 3000 V / mm is applied, The volume resistivity ratio (A / B) is 2.30.
比較例5では、100V/mmの電場が印加されたとき、体積抵抗率が2.18×1014Ωcmであり、3000V/mmの電場が印加されたとき、9.56×1013Ωcmであり、体積抵抗率の比(A/B)は2.28である。 In Comparative Example 5, the volume resistivity is 2.18 × 10 14 Ωcm when an electric field of 100 V / mm is applied, and 9.56 × 10 13 Ωcm when an electric field of 3000 V / mm is applied. The volume resistivity ratio (A / B) is 2.28.
イットリウム酸化物が3.0重量%を超える窒化アルミニウム焼結体の場合、比較例6の窒化アルミニウム焼結体に100V/mmの電場が印加されたとき、体積抵抗率が2.31×1015Ωcmであり、3000V/mmの電場が印加されると9.70×1014Ωcmとなる。従って、100V/mmの電場における体積抵抗率(A)と3000V/mmの電場における体積抵抗率(B)の比(A/B)は、2.38である。 In the case of an aluminum nitride sintered body in which the yttrium oxide exceeds 3.0 wt%, the volume resistivity is 2.31 × 10 15 when an electric field of 100 V / mm is applied to the aluminum nitride sintered body of Comparative Example 6. It is 9.70 × 10 14 Ωcm when an electric field of 3000 V / mm is applied. Therefore, the ratio (A / B) of the volume resistivity (A) at an electric field of 100 V / mm to the volume resistivity (B) at an electric field of 3000 V / mm is 2.38.
比較例6による窒化アルミニウム焼結体に高電場が印加されると、体積抵抗率が顕著に減少することが確認できる。
比較例7では、100V/mmの電場では体積抵抗率が2.35×1015Ωcmであり、3000V/mmの電場では9.90×1014Ωcmであり、体積抵抗率の比(A/B)は、2.37である。比較例7による窒化アルミニウム焼結体に高電場が印加されると、体積抵抗率が顕著に減少することが確認できる。
When a high electric field is applied to the aluminum nitride sintered body according to Comparative Example 6, it can be confirmed that the volume resistivity is remarkably reduced.
In Comparative Example 7, the volume resistivity was 2.35 × 10 15 Ωcm at an electric field of 100 V / mm, and 9.90 × 10 14 Ωcm at an electric field of 3000 V / mm, and the volume resistivity ratio (A / B ) Is 2.37. When a high electric field is applied to the aluminum nitride sintered body according to Comparative Example 7, it can be confirmed that the volume resistivity is remarkably reduced.
比較例8では、100V/mmの電場での体積抵抗率が2.65×1015Ωcmであり、3000V/mmの電場では8.38×1014Ωcmとなり、体積抵抗率の比(A/B)は3.16である。比較例8による窒化アルミニウム焼結体に高電場が印加されると、体積抵抗率が顕著に減少することが確認できる。 In Comparative Example 8, the volume resistivity at an electric field of 100 V / mm is 2.65 × 10 15 Ωcm, and at an electric field of 3000 V / mm, it is 8.38 × 10 14 Ωcm, and the volume resistivity ratio (A / B ) Is 3.16. When a high electric field is applied to the aluminum nitride sintered body according to Comparative Example 8, it can be confirmed that the volume resistivity is remarkably reduced.
一方、本発明による窒化アルミニウム焼結体(実施例1〜6)では、100V/mmの電場における体積抵抗率と、3000V/mmの電場における体積抵抗率との変化率、すなわち、100V/mmの電場における体積抵抗率(A)と3000V/mmの電場における体積抵抗率(B)の比(A/B)は1.5以下であり、印加電圧場による変化が小さく、非線形係数が0.1以下である。従って、印加電圧が増加しときも漏洩電流の増加を相対的に低くすることができる。 On the other hand, in the aluminum nitride sintered bodies according to the present invention (Examples 1 to 6), the rate of change between the volume resistivity in an electric field of 100 V / mm and the volume resistivity in an electric field of 3000 V / mm, that is, 100 V / mm. The ratio (A / B) of the volume resistivity (A) in the electric field to the volume resistivity (B) in the electric field of 3000 V / mm is 1.5 or less, the change due to the applied voltage field is small, and the nonlinear coefficient is 0.1. It is as follows. Therefore, even when the applied voltage increases, the increase in leakage current can be relatively reduced.
以上に説明したように、本発明による窒化アルミニウム焼結体は、体積抵抗率が常温で1×1013〜1×1015Ωcmであり、100V/mmから3000V/mmに印加電圧を高くしても、体積抵抗率の変化が小さく、体積抵抗率の変化率が相対的に低い窒化アルミニウム焼結体である。
又、この静電チャック用窒化アルミニウム焼結体は、優れた漏洩電流特性を有する。
As described above, the aluminum nitride sintered body according to the present invention has a volume resistivity of 1 × 10 13 to 1 × 10 15 Ωcm at room temperature, and the applied voltage is increased from 100 V / mm to 3000 V / mm. Also, the aluminum nitride sintered body has a small volume resistivity change and a relatively low volume resistivity change rate.
This aluminum nitride sintered body for electrostatic chucks has excellent leakage current characteristics.
以上、本発明の実施例によって詳細に説明したが、本発明はこれに限定されず、本発明が属する技術分野において通常の知識を有するものであれば本発明の思想と精神を離れることなく、本発明を修正または変更できる。 As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the embodiments, and as long as it has ordinary knowledge in the technical field to which the present invention belongs, without departing from the spirit and spirit of the present invention, The present invention can be modified or changed.
Claims (8)
前記窒化アルミニウム粉末にクロム酸0.1〜1.0重量%を加えて全体を100重量%とした組成の原料粉末を成型する段階と、
前記原料粉末を焼成する段階と、を有することを特徴とする静電チャック用窒化アルミニウム焼結体の形成方法。 Preparing an aluminum nitride powder;
Molding a raw material powder having a composition of 100 wt% of the whole by adding 0.1 to 1.0 wt% of chromic acid to the aluminum nitride powder;
Firing the raw material powder, and a method of forming an aluminum nitride sintered body for an electrostatic chuck.
前記窒化アルミニウム粉末にクロム酸0.1〜1.0重量%とイットリウム酸化物1.0〜3.0重量%を加えて全体を100重量%とした組成の原料粉末を成型する段階と、
前記原料粉末を焼成する段階と、を有することを特徴とする静電チャック用窒化アルミニウム焼結体の形成方法。 Preparing an aluminum nitride powder;
Molding a raw material powder having a composition of 100 wt% in total by adding 0.1 to 1.0 wt% chromic acid and 1.0 to 3.0 wt% yttrium oxide to the aluminum nitride powder;
Firing the raw material powder, and a method of forming an aluminum nitride sintered body for an electrostatic chuck.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2006-0116194 | 2006-11-23 | ||
KR1020060116194A KR101256878B1 (en) | 2006-11-23 | 2006-11-23 | Aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008127276A true JP2008127276A (en) | 2008-06-05 |
JP4939379B2 JP4939379B2 (en) | 2012-05-23 |
Family
ID=39553479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007304237A Active JP4939379B2 (en) | 2006-11-23 | 2007-11-26 | Aluminum nitride sintered body for electrostatic chuck |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4939379B2 (en) |
KR (1) | KR101256878B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010129673A (en) * | 2008-11-26 | 2010-06-10 | Kyocera Corp | The electrostatic adsorption method of electrostatic chuck and held object |
JP2012178552A (en) * | 2011-02-04 | 2012-09-13 | Sumitomo Osaka Cement Co Ltd | Electrostatic chuck member |
KR101195009B1 (en) * | 2009-01-30 | 2012-10-29 | 한국세라믹기술원 | Manufacturing method of aluminum nitride ceramics |
JP2020521706A (en) * | 2017-06-30 | 2020-07-27 | ミコ セラミックス リミテッド | Aluminum nitride sintered body and member for semiconductor manufacturing apparatus including the same |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62153173A (en) * | 1985-06-28 | 1987-07-08 | 株式会社東芝 | Aluminum nitride sintered body and manufacture |
JPS62167260A (en) * | 1986-01-21 | 1987-07-23 | 株式会社東芝 | Luminescent sintered body |
JPS6317262A (en) * | 1986-07-10 | 1988-01-25 | 株式会社東芝 | Aluminum nitride sintered body |
JPH03290371A (en) * | 1990-02-05 | 1991-12-20 | Ngk Spark Plug Co Ltd | Sintered aluminum nitride and production thereof |
JPH09315867A (en) * | 1996-03-29 | 1997-12-09 | Ngk Insulators Ltd | Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck |
JPH10279358A (en) * | 1997-03-31 | 1998-10-20 | Kyocera Corp | Semi-insulating aluminum nitride sintered compact |
JPH11260899A (en) * | 1998-03-10 | 1999-09-24 | Nippon Steel Corp | Electrostatic chuck |
JP2000031255A (en) * | 1998-04-06 | 2000-01-28 | Applied Materials Inc | Ceramic board supporter with surface comprising material which reduces donor effect and manufacture thereof |
JP2001114563A (en) * | 1999-10-14 | 2001-04-24 | Tokai Konetsu Kogyo Co Ltd | Ceramic resistor and its production |
JP2003313078A (en) * | 2002-04-18 | 2003-11-06 | Taiheiyo Cement Corp | Aluminum nitride sintered compact and electrostatic chuck using the same |
JP2004002139A (en) * | 2002-04-22 | 2004-01-08 | Ngk Insulators Ltd | Aluminum nitride material and member for manufacturing semiconductor |
JP2005041765A (en) * | 2003-07-07 | 2005-02-17 | Ngk Insulators Ltd | Aluminum nitride sintered body, electrostatic chuck, electrically conductive component, component for apparatus for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered body |
JP2005294648A (en) * | 2004-04-01 | 2005-10-20 | Ngk Insulators Ltd | Electrostatic chuck and method for manufacturing the same |
JP2007112705A (en) * | 2005-09-22 | 2007-05-10 | Osaka Industrial Promotion Organization | Electroconductive ceramics and their manufacturing method and member for semiconductor manufacturing device |
-
2006
- 2006-11-23 KR KR1020060116194A patent/KR101256878B1/en active IP Right Grant
-
2007
- 2007-11-26 JP JP2007304237A patent/JP4939379B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62153173A (en) * | 1985-06-28 | 1987-07-08 | 株式会社東芝 | Aluminum nitride sintered body and manufacture |
JPS62167260A (en) * | 1986-01-21 | 1987-07-23 | 株式会社東芝 | Luminescent sintered body |
JPS6317262A (en) * | 1986-07-10 | 1988-01-25 | 株式会社東芝 | Aluminum nitride sintered body |
JPH03290371A (en) * | 1990-02-05 | 1991-12-20 | Ngk Spark Plug Co Ltd | Sintered aluminum nitride and production thereof |
JPH09315867A (en) * | 1996-03-29 | 1997-12-09 | Ngk Insulators Ltd | Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck |
JPH10279358A (en) * | 1997-03-31 | 1998-10-20 | Kyocera Corp | Semi-insulating aluminum nitride sintered compact |
JPH11260899A (en) * | 1998-03-10 | 1999-09-24 | Nippon Steel Corp | Electrostatic chuck |
JP2000031255A (en) * | 1998-04-06 | 2000-01-28 | Applied Materials Inc | Ceramic board supporter with surface comprising material which reduces donor effect and manufacture thereof |
JP2001114563A (en) * | 1999-10-14 | 2001-04-24 | Tokai Konetsu Kogyo Co Ltd | Ceramic resistor and its production |
JP2003313078A (en) * | 2002-04-18 | 2003-11-06 | Taiheiyo Cement Corp | Aluminum nitride sintered compact and electrostatic chuck using the same |
JP2004002139A (en) * | 2002-04-22 | 2004-01-08 | Ngk Insulators Ltd | Aluminum nitride material and member for manufacturing semiconductor |
JP2005041765A (en) * | 2003-07-07 | 2005-02-17 | Ngk Insulators Ltd | Aluminum nitride sintered body, electrostatic chuck, electrically conductive component, component for apparatus for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered body |
JP2005294648A (en) * | 2004-04-01 | 2005-10-20 | Ngk Insulators Ltd | Electrostatic chuck and method for manufacturing the same |
JP2007112705A (en) * | 2005-09-22 | 2007-05-10 | Osaka Industrial Promotion Organization | Electroconductive ceramics and their manufacturing method and member for semiconductor manufacturing device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010129673A (en) * | 2008-11-26 | 2010-06-10 | Kyocera Corp | The electrostatic adsorption method of electrostatic chuck and held object |
KR101195009B1 (en) * | 2009-01-30 | 2012-10-29 | 한국세라믹기술원 | Manufacturing method of aluminum nitride ceramics |
JP2012178552A (en) * | 2011-02-04 | 2012-09-13 | Sumitomo Osaka Cement Co Ltd | Electrostatic chuck member |
JP2020521706A (en) * | 2017-06-30 | 2020-07-27 | ミコ セラミックス リミテッド | Aluminum nitride sintered body and member for semiconductor manufacturing apparatus including the same |
US11508586B2 (en) | 2017-06-30 | 2022-11-22 | Mico Ceramics Ltd. | Aluminum nitride sintered body and member for semiconductor manufacuting apparatus comprising same |
JP7181898B2 (en) | 2017-06-30 | 2022-12-01 | ミコ セラミックス リミテッド | Aluminum nitride sintered body and member for semiconductor manufacturing equipment containing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4939379B2 (en) | 2012-05-23 |
KR20080046785A (en) | 2008-05-28 |
KR101256878B1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5363132B2 (en) | Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material | |
JP4447750B2 (en) | Aluminum nitride sintered body and semiconductor manufacturing member | |
JP4987238B2 (en) | Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method | |
JP2005314215A (en) | Dense cordierite sintered body and method of manufacturing the same | |
JP6901642B1 (en) | Electrostatic chuck and its manufacturing method | |
KR20170141340A (en) | Sintered ceramics for electrostatic chuck and manufacturing method of the same | |
US8231964B2 (en) | Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus | |
JP4939379B2 (en) | Aluminum nitride sintered body for electrostatic chuck | |
JP6052976B2 (en) | Electrostatic chuck dielectric layer and electrostatic chuck | |
JP4043219B2 (en) | Electrostatic chuck | |
JP2010018853A (en) | Thermally sprayed ceramic film and corrosion-resistant member using the same | |
JP5117892B2 (en) | Yttrium oxide material and member for semiconductor manufacturing equipment | |
JP2003313078A (en) | Aluminum nitride sintered compact and electrostatic chuck using the same | |
JP2001244246A (en) | Focus ring | |
JP2008288428A (en) | Electrostatic chuck | |
KR101217253B1 (en) | Dielectric materials with black color for electrostatic chuck and manufacturing method of the same | |
KR100940019B1 (en) | High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body | |
JP2002319614A (en) | Electrostatic chuck | |
JP2004292267A (en) | Alumina sintered body and its production method | |
JP4585129B2 (en) | Electrostatic chuck | |
TW200418123A (en) | Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed | |
KR102551215B1 (en) | Ceramic Composition, Electrostatic Chuck, and Manufacturing Method of Electrostatic Chuck | |
JP6386935B2 (en) | Silicon carbide material | |
JP2023150882A (en) | Electrostatic chuck dielectric layer and electrostatic chuck including the same | |
KR100381589B1 (en) | Aluminum nitride sintered bodies and semiconductor-producing members including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4939379 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |