JP4977786B1 - Method for producing polycarbonate resin pellets - Google Patents

Method for producing polycarbonate resin pellets Download PDF

Info

Publication number
JP4977786B1
JP4977786B1 JP2011025860A JP2011025860A JP4977786B1 JP 4977786 B1 JP4977786 B1 JP 4977786B1 JP 2011025860 A JP2011025860 A JP 2011025860A JP 2011025860 A JP2011025860 A JP 2011025860A JP 4977786 B1 JP4977786 B1 JP 4977786B1
Authority
JP
Japan
Prior art keywords
polycarbonate resin
water
resin
pellets
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011025860A
Other languages
Japanese (ja)
Other versions
JP2012162048A (en
Inventor
敏之 田尻
道生 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2011025860A priority Critical patent/JP4977786B1/en
Priority to KR1020127014144A priority patent/KR101201265B1/en
Priority to PCT/JP2012/051052 priority patent/WO2012108245A1/en
Priority to CN201280000639.9A priority patent/CN102781640B/en
Application granted granted Critical
Publication of JP4977786B1 publication Critical patent/JP4977786B1/en
Publication of JP2012162048A publication Critical patent/JP2012162048A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • C08G64/406Purifying; Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/421Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/005Using a particular environment, e.g. sterile fluids other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/143Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration at a location before or in the feed unit, e.g. influencing the material in the hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/762Vapour stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2469/00Use of PC, i.e. polycarbonates or derivatives thereof as filler

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】塩素化合物等の不純物含有量が極めて少なく、樹脂の劣化が少なくて黄変の発生がなく、ペレット外観が良好で、樹脂添加剤フリーで使用可能なポリカーボネート樹脂ペレットの提供。
【解決手段】1)特定の粉粒体形状のポリカーボネート樹脂を用い、2)酸素濃度が3容量%以下の不活性ガス雰囲気中を50cm以上落下移動させ、3)押出機の混練ゾーンにおいて、電気伝導度が30μS/cm以下の水を特定量注入し、4)ベント口を減圧状態にして吸引すると共に、樹脂中の水分濃度を10〜200ppmに調整し、5)ダイから押し出されたストランドを電気伝導度が30μS/cm以下の水中で冷却し、6)ストランドを70℃〜130℃でカッティングし、10〜200ppm含水するペレットを得、7)該ぺレットを湿潤雰囲気下で含水させ、元の含水率を超え、1300ppm以下に調整することを特徴とするポリカーボネート樹脂ペレットの製造方法。
【選択図】図1
Disclosed is a polycarbonate resin pellet that has an extremely small content of impurities such as a chlorine compound, little deterioration of the resin, does not cause yellowing, has a good pellet appearance, and can be used free of resin additives.
[MEANS FOR SOLVING PROBLEMS] (1) Using a polycarbonate resin having a specific granular shape, (2) dropping and moving by 50 cm or more in an inert gas atmosphere having an oxygen concentration of 3% by volume or less, (3) in the kneading zone of an extruder A specific amount of water having a conductivity of 30 μS / cm or less is injected, 4) the suction is performed with the vent port in a reduced pressure state, the water concentration in the resin is adjusted to 10 to 200 ppm, and 5) the strand extruded from the die. Cooled in water having an electric conductivity of 30 μS / cm or less, 6) cutting the strands at 70 ° C. to 130 ° C. to obtain pellets containing 10 to 200 ppm, and 7) allowing the pellets to contain water in a humid atmosphere. The manufacturing method of the polycarbonate resin pellet characterized by adjusting the moisture content to 1300 ppm or less.
[Selection] Figure 1

Description

本発明は、ポリカーボネート樹脂ペレットの製造方法に関し、さらに詳しくは、塩素化合物等の不純物含有量が極めて少なく、また樹脂の劣化が少なく黄変の発生がなく、ペレット外観が良好で、樹脂添加剤フリーで使用可能なポリカーボネート樹脂ペレットを製造する方法に関する。   The present invention relates to a method for producing polycarbonate resin pellets. More specifically, the content of impurities such as chlorine compounds is extremely small, the resin is hardly deteriorated, yellowing does not occur, the pellet appearance is good, and resin additives are free. The present invention relates to a method for producing polycarbonate resin pellets that can be used in the above.

ポリカーボネート樹脂は、汎用エンジニアリングプラスチックとして透明性、耐衝撃性、耐熱性、寸法安定性などに優れ、その優れた特性から、電気・電子・OA機器部品、機械部品、車輌用部品等の幅広い分野で使用されている。
電気電子機器には、シリコンウエハー、ディスク基板、データ記憶用ハードディスク、光記憶用ディスク、ICチップ、LCD用高機能基板ガラス等々の各種電気電子機器部品が部品として使用される。電気電子機器の製造においては、これら部品を組み立てラインに供するため、これら部品を運搬、移送する必要性があり、そのための搬送用ケースが用いられ、その材料としては、従来から、ポリカーボネート樹脂等の各種熱可塑性樹脂が用いられてきた。
Polycarbonate resin is a general-purpose engineering plastic that excels in transparency, impact resistance, heat resistance, dimensional stability, etc., and its excellent characteristics make it an excellent choice in a wide range of fields such as electrical / electronic / OA equipment parts, machine parts, and vehicle parts. in use.
Various electrical and electronic equipment parts such as a silicon wafer, a disk substrate, a data storage hard disk, an optical storage disk, an IC chip, and a high-performance substrate glass for LCD are used as parts in the electrical and electronic equipment. In the manufacture of electrical and electronic equipment, these parts must be transported and transported in order to be used in an assembly line, and a transport case for this purpose is used. Various thermoplastic resins have been used.

近年、電気電子機器部品は、その高性能化のための微細化、高密度化、高集積化にともない、製造環境、保管・移動中に発生、接触する汚染物質が、電気電子機器製品の歩留まり、品質、信頼性に大きな影響を及ぼすようになってきており、電気電子機器部品の微細化・高密度化・高集積化が進むにつれて、より高度な清浄度が必要になってきている。   In recent years, with the miniaturization, high density, and high integration of electrical and electronic equipment components, the pollutants that are generated and contacted during the manufacturing environment, storage, and movement are affected by the yield of electrical and electronic equipment products. The quality and reliability have been greatly influenced, and as the electrical and electronic equipment components have been miniaturized, densified, and highly integrated, a higher degree of cleanliness has become necessary.

ポリカーボネート樹脂、特に芳香族ジヒドロキシ化合物とホスゲンをメチレンクロライド溶媒中で反応させる、いわゆる界面重合法によるものは、僅かながらではあるが、メチレンクロライドやその他の塩素化合物を含有しており、またこれらの塩素化合物は溶融時に分解して酸性物質を発生させる。ポリカーボネート樹脂材料からこれら汚染原因物質を除去することにより、これを用いた搬送用ケースの信頼性を向上させることが期待される。   Polycarbonate resins, especially those obtained by reacting aromatic dihydroxy compounds and phosgene in a methylene chloride solvent, by so-called interfacial polymerization, contain methylene chloride and other chlorinated compounds to a small extent. The compound decomposes upon melting to generate an acidic substance. By removing these contaminants from the polycarbonate resin material, it is expected to improve the reliability of the transport case using the same.

ポリカーボネート樹脂に関するこのような問題を解決するために、溶融押出時に水を添加して不純物を除去する方法(例えば特許文献1参照)が知られ、さらに、特許文献2では、水添加の水を発泡させる方法が提案されている。しかしながら、これらの方法によるだけでは、その清浄度は、高度なレベルが要求される搬送用ケース等においては、十分といえる清浄度ではなく、さらに高レベルの清浄度を有するポリカーボネート樹脂成形材料を効率良く製造する方法が望まれていた。   In order to solve such problems relating to the polycarbonate resin, a method of removing impurities by adding water at the time of melt extrusion (for example, see Patent Document 1) is known. In Patent Document 2, foamed water is added. There is a proposed method. However, with these methods alone, the degree of cleanliness is not sufficient for transport cases that require a high level, and a polycarbonate resin molding material having a higher level of cleanliness is more efficient. A method of manufacturing well has been desired.

特公平5−48162号報Japanese Patent Publication No. 5-48162 特許第3776746号公報Japanese Patent No. 3776746

本発明の目的は、上記従来技術の問題点に鑑み、塩素化合物等の不純物含有量が極めて少なく、また樹脂の劣化が少なく黄変の発生がなく、ペレット外観が良好で、樹脂添加剤フリーで使用可能なポリカーボネート樹脂ペレットを製造する方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is that the content of impurities such as chlorine compounds is extremely small, the resin is hardly deteriorated, yellowing does not occur, the pellet appearance is good, and the resin additive is free. It is providing the method of manufacturing the polycarbonate resin pellet which can be used.

本発明者らは、上記課題を達成すべく、鋭意検討を重ねた結果、特定の比表面積と粒径のポリカーボネート樹脂を用い、それぞれ特定の、不活性ガス処理工程、水注入工程、減圧吸引工程、冷却工程、カッティング工程、熟成工程を組み合わせることにより、今まで達成できなかった極めて低いレベルの不純物含有量のポリカーボネート樹脂ペレットを得ることができることを見出し、本発明を完成させるに至った。   As a result of intensive studies in order to achieve the above-mentioned problems, the present inventors use a polycarbonate resin having a specific specific surface area and particle size, respectively, specific inert gas treatment process, water injection process, vacuum suction process, respectively. It was found that by combining the cooling step, the cutting step, and the aging step, polycarbonate resin pellets having an extremely low level of impurity content that could not be achieved until now can be obtained, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、微量のメチレンクロライドを含有するポリカーボネート樹脂から、メチレンクロライド含有量が低減されたポリカーボネート樹脂ペレットを製造する方法であって、
1)微量のメチレンクロライドを含有するポリカーボネートとして比表面積が0.008m/g以上で、50質量%以上が200〜2,000μmの粒径を有する粉粒体形状のポリカーボネート樹脂を用い、
2)粉粒体形状のポリカーボネート樹脂を、酸素濃度が3容量%以下の不活性ガス雰囲気中を50cm以上落下移動させる不活性ガス処理工程、
3)不活性ガス処理された粉粒体形状のポリカーボネート樹脂をベント式押出機に供給し、混練ゾーンにおいて、電気伝導度が30μS/cm以下である水を、ポリカーボネート樹脂100質量部に対し0.1〜2質量部注入する工程、
4)押出機の水注入部より下流側に設けられたベント口を減圧状態にして吸引することにより、溶融状態の樹脂から前記水と共にメチレンクロライドを吸引除去すると共に、樹脂中の水分濃度を10〜200ppmに調整する工程、
5)押出機のダイから押し出されたストランド状の溶融樹脂を電気伝導度が30μS/cm以下である水中に導入して冷却する工程、
6)ストランドを70℃〜130℃の範囲でカッティングし、水分を10〜200ppm含水するペレットを得る工程、
7)得られた、水分を10〜200ppm含有するペレットを湿潤雰囲気下に置くことにより更に含水させ、含水率を、ペレットの元の含水率を超え、1300ppm以下に調整する熟成工程
を含むことを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。
That is, according to the first invention of the present invention, a method for producing a polycarbonate resin pellet having a reduced methylene chloride content from a polycarbonate resin containing a small amount of methylene chloride,
1) As a polycarbonate containing a small amount of methylene chloride, a polycarbonate resin in the form of a granular material having a specific surface area of 0.008 m 2 / g or more and 50% by mass or more having a particle size of 200 to 2,000 μm is used.
2) An inert gas treatment step in which a polycarbonate resin in the form of granules is dropped and moved by 50 cm or more in an inert gas atmosphere having an oxygen concentration of 3% by volume or less,
3) The inert gas-treated polycarbonate resin in the form of granules is supplied to a vent-type extruder, and in the kneading zone, water having an electric conductivity of 30 μS / cm or less is added to 0.1 parts by mass of 100 parts by mass of the polycarbonate resin. Injecting 1 to 2 parts by mass;
4) By suctioning the vent port provided on the downstream side of the water injection portion of the extruder under reduced pressure, the methylene chloride is sucked and removed together with the water from the molten resin, and the water concentration in the resin is 10 Adjusting to ˜200 ppm,
5) A step of introducing and cooling the strand-shaped molten resin extruded from the die of the extruder into water having an electric conductivity of 30 μS / cm or less,
6) A step of cutting the strand in the range of 70 ° C to 130 ° C to obtain pellets containing 10 to 200 ppm of water,
7) including a aging step of further hydrating the obtained pellets containing 10 to 200 ppm of moisture in a wet atmosphere and adjusting the moisture content to exceed the original moisture content of the pellets and to 1300 ppm or less. A method for producing a polycarbonate resin pellet is provided.

また、本発明の第2の発明によれば、第1の発明において、熟成工程を経て得られた含水状態のペレットを乾燥する乾燥工程を更に行うことを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。   According to the second invention of the present invention, there is provided a method for producing polycarbonate resin pellets, characterized in that in the first invention, a drying step of drying the moisture-containing pellets obtained through the aging step is further performed. Provided.

また、本発明の第3の発明によれば、第1または2の発明において、粉粒体形状のポリカーボネート樹脂を不活性ガスで処理するに当たり、粉流体を落下状態で供給し、不活性ガスを下方から、粉粒体に対して向流となるように供給することを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。   According to the third invention of the present invention, in the first or second invention, when the polycarbonate resin in the form of a granule is treated with an inert gas, the powder fluid is supplied in a falling state, and the inert gas is supplied. A method for producing a polycarbonate resin pellet is provided, which is supplied from below so as to be countercurrent to the granular material.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、ベント式押出機のバレル中の酸素濃度を3容量%以下とすることを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。   According to a fourth invention of the present invention, in any one of the first to third inventions, the polycarbonate resin pellets characterized in that the oxygen concentration in the barrel of the vented extruder is 3% by volume or less. A manufacturing method is provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、水を注入する混練ゾーンが、樹脂の充満領域であり、樹脂圧力が0.5〜10MPaの範囲であることを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。   According to the fifth invention of the present invention, in any one of the first to fourth inventions, the kneading zone for injecting water is a resin-filled region, and the resin pressure is in the range of 0.5 to 10 MPa. A method for producing polycarbonate resin pellets is provided.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、押出機の減圧部での樹脂充満率が5〜30容量%である領域の長さが、8.0D(Dは押出機のシリンダー内径)以上であることを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。   According to the sixth invention of the present invention, in any one of the first to fifth inventions, the length of the region where the resin filling rate in the decompression section of the extruder is 5 to 30% by volume is 8. There is provided a method for producing polycarbonate resin pellets, characterized in that it is 0D (D is the cylinder inner diameter of the extruder) or more.

また、本発明の第7の発明によれば、第1〜6のいずれかの発明において、ストランドを冷却する水の温度が30〜90℃であることを特徴とするポリカーボネート樹脂ペレットの製造方法が提供される。   According to a seventh aspect of the present invention, there is provided the method for producing polycarbonate resin pellets according to any one of the first to sixth aspects, wherein the temperature of water for cooling the strand is 30 to 90 ° C. Provided.

また、本発明の第8の発明によれば、第1〜7のいずれかの発明の製造方法で製造されたポリカーボネート樹脂ペレットが提供される。   Moreover, according to the 8th invention of this invention, the polycarbonate resin pellet manufactured with the manufacturing method of the invention in any one of the 1st-7th is provided.

さらに、本発明の第9の発明によれば、第8の発明のポリカーボネート樹脂ペレットを用いたことを特徴とする電気電子機器部品搬送用ケースが提供される。   Furthermore, according to the ninth aspect of the present invention, there is provided an electric / electronic equipment component carrying case using the polycarbonate resin pellet of the eighth aspect.

本発明の熱可塑性樹脂組成物成形体の製造方法によれば、塩素化合物等の不純物含有量が極めて少なく、また樹脂の劣化が少なく黄変の発生がなく、ペレット外観が良好で、特に電気電子機器部品搬送用ケース等に好適な、樹脂添加剤フリーで使用可能なポリカーボネート樹脂ペレットを製造することができる。   According to the method for producing a thermoplastic resin composition molded body of the present invention, the content of impurities such as chlorine compounds is extremely small, the resin is hardly deteriorated, yellowing does not occur, the pellet appearance is good, and particularly the electric and electronic A polycarbonate resin pellet that can be used without using a resin additive, which is suitable for a case for conveying equipment parts, can be produced.

本発明に適用可能な供給機−ホッパー−押出機の構成例を示す図である。It is a figure which shows the structural example of the feeder-hopper-extruder applicable to this invention. (a)及び(b)は本発明における落下距離の定義を説明する図、(c)はポリカーボネート樹脂を段階的に落下させるためにホッパーシュート内に設ける部材の例を示す図である。(A) And (b) is a figure explaining the definition of the fall distance in this invention, (c) is a figure which shows the example of the member provided in a hopper chute | shoot in order to drop polycarbonate resin in steps. 本発明の実施例において使用した押出機のスクリュー構成を示す図である。It is a figure which shows the screw structure of the extruder used in the Example of this invention.

以下、本発明について実施形態および例示物を示して詳細に説明するが、本発明は当該実施形態及び例示物等に限定して解釈されるものではない。
なお、本願明細書において、「〜」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。また、「ppm」は、質量ppmを意味する。
Hereinafter, although an embodiment and an example thing are shown and explained in detail about the present invention, the present invention is limited to the embodiment, an example thing, etc., and is not interpreted.
In the specification of the present application, “to” is used in the sense of including the numerical values described before and after the lower limit and the upper limit unless otherwise specified. "Ppm" means mass ppm.

本発明は、微量のメチレンクロライドを含有するポリカーボネート樹脂から、メチレンクロライド含有量が低減されたポリカーボネート樹脂ペレットを製造する方法であって、
1)微量のメチレンクロライドを含有するポリカーボネートとして比表面積が0.008m/g以上で、50質量%以上が200〜2,000μmの粒径を有する粉粒体形状のポリカーボネート樹脂を用い、
2)粉粒体形状のポリカーボネート樹脂を、酸素濃度が3質量%以下の不活性ガス雰囲気中を50cm以上落下移動させる不活性ガス処理工程、
3)不活性ガス処理された粉粒体形状のポリカーボネート樹脂をベント式押出機に供給し、混練ゾーンにおいて、電気伝導度が30μS/cm以下である水を、ポリカーボネート樹脂100質量部に対し0.1〜2質量部注入する工程、
4)押出機の水注入部より下流側に設けられたベント口を減圧状態にして吸引することにより、溶融状態の樹脂から前記水と共にメチレンクロライドを吸引除去すると共に、樹脂中の水分濃度を10〜200ppmに調整する工程、
5)押出機のダイから押し出されたストランド状の溶融樹脂を電気伝導度が30μS/cm以下である水中に導入して冷却する工程、
6)ストランドを70℃〜130℃の範囲でカッティングし、水分を10〜200ppm含水するペレットを得る工程
7)得られた、水分を10〜200ppm含有するペレットを湿潤雰囲気下に置くことにより更に含水させ、含水率を、ペレットの元の含水率を超え、1300ppm以下に調整する熟成工程
を含むことを特徴とする。
The present invention is a method for producing polycarbonate resin pellets having a reduced methylene chloride content from a polycarbonate resin containing a small amount of methylene chloride,
1) As a polycarbonate containing a small amount of methylene chloride, a polycarbonate resin in the form of a granular material having a specific surface area of 0.008 m 2 / g or more and 50% by mass or more having a particle size of 200 to 2,000 μm is used.
2) An inert gas treatment step in which a polycarbonate resin in the form of granules is dropped and moved by 50 cm or more in an inert gas atmosphere having an oxygen concentration of 3% by mass or less,
3) The inert gas-treated polycarbonate resin in the form of granules is supplied to a vent-type extruder, and in the kneading zone, water having an electric conductivity of 30 μS / cm or less is added to 0.1 parts by mass of 100 parts by mass of the polycarbonate resin. Injecting 1 to 2 parts by mass;
4) By suctioning the vent port provided on the downstream side of the water injection portion of the extruder under reduced pressure, the methylene chloride is sucked and removed together with the water from the molten resin, and the water concentration in the resin is 10 Adjusting to ˜200 ppm,
5) A step of introducing and cooling the strand-shaped molten resin extruded from the die of the extruder into water having an electric conductivity of 30 μS / cm or less,
6) A step of cutting the strand in the range of 70 ° C to 130 ° C to obtain pellets containing 10 to 200 ppm of moisture. 7) Further placing the obtained pellets containing 10 to 200 ppm of moisture in a humid atmosphere And an aging step of adjusting the moisture content to exceed the original moisture content of the pellets and to 1300 ppm or less.

本発明に使用するポリカーボネート樹脂(A)としては、芳香族ポリカーボネート樹脂、脂肪族ポリカーボネート樹脂、芳香族−脂肪族ポリカーボネート樹脂が挙げられ、好ましくは、芳香族ポリカーボネート樹脂であり、具体的には、芳香族ジヒドロキシ化合物をホスゲン又は炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体又は共重合体が用いられる。   Examples of the polycarbonate resin (A) used in the present invention include an aromatic polycarbonate resin, an aliphatic polycarbonate resin, and an aromatic-aliphatic polycarbonate resin, preferably an aromatic polycarbonate resin. A thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is used.

芳香族ジヒドロキシ化合物としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、テトラメチルビスフェノールA、α,α´−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4´−ジヒドロキシジフェニルなどが挙げられる。また、ジヒドロキシ化合物の一部として、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物、又はシロキサン構造を有する両末端フェノール性OH基含有のポリマーもしくはオリゴマー等を併用すると、難燃性の高いポリカーボネート樹脂を得ることができる。
本発明で用いるポリカーボネート樹脂の好ましい例としては、ジヒドロキシ化合物として2,2−ビス(4−ヒドロキシフェニル)プロパン、又は2,2−ビス(4−ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とを併用したポリカーボネート樹脂が挙げられる。
Aromatic dihydroxy compounds include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), tetramethylbisphenol A, α, α'-bis (4-hydroxyphenyl) -p-diisopropylbenzene, hydroquinone, resorcinol 4,4'-dihydroxydiphenyl and the like. Further, as a part of the dihydroxy compound, when the above-mentioned aromatic dihydroxy compound is combined with one or more tetraalkylphosphonium sulfonates, or a polymer or oligomer containing both terminal phenolic OH groups having a siloxane structure, A highly flame-retardant polycarbonate resin can be obtained.
Preferred examples of the polycarbonate resin used in the present invention include 2,2-bis (4-hydroxyphenyl) propane as a dihydroxy compound, or 2,2-bis (4-hydroxyphenyl) propane and another aromatic dihydroxy compound. The polycarbonate resin used together is mentioned.

ポリカーボネート樹脂の製造方法は、特に制限はないが、通常、界面重合法(ホスゲン法)または溶融法(エステル交換法)の方法で製造される。   The method for producing the polycarbonate resin is not particularly limited, but it is usually produced by an interfacial polymerization method (phosgene method) or a melting method (transesterification method).

界面重合法における重合反応は、反応に不活性な有機溶媒、アルカリ水溶液の存在下で、通常pHを9以上に保ち、芳香族ジヒドロキシ化合物、ならびに、必要に応じて分子量調整剤(末端停止剤)および芳香族ジヒドロキシ化合物の酸化防止のための酸化防止剤を用い、ホスゲンと反応させた後、第三級アミンまたは第四級アンモニウム塩等の重合触媒を添加し、界面重合を行うことによってポリカ−ボネ−ト樹脂を得る。分子量調節剤の添加は、ホスゲン化時から重合反応開始時までの間であれば特に限定されない。なお、反応温度は、例えば、0〜40℃で、反応時間は、例えば、数分(例えば、10分)〜数時間(例えば、6時間)である。   In the interfacial polymerization method, the polymerization reaction is usually carried out in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, and the pH is usually kept at 9 or higher. And an antioxidant for preventing oxidation of the aromatic dihydroxy compound, and after reacting with phosgene, a polymerization catalyst such as a tertiary amine or a quaternary ammonium salt is added, and interfacial polymerization is carried out to obtain a polymer. A sulfonate resin is obtained. The addition of the molecular weight regulator is not particularly limited as long as it is from the time of phosgenation to the start of the polymerization reaction. In addition, reaction temperature is 0-40 degreeC, for example, and reaction time is several minutes (for example, 10 minutes)-several hours (for example, 6 hours), for example.

ここで、反応に不活性な有機溶媒としては、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素などが挙げられる。また、アルカリ水溶液に用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が挙げられる。   Here, examples of the organic solvent inert to the reaction include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene. Examples of the alkali compound used in the alkaline aqueous solution include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide.

分子量調節剤としては、一価のフェノ−ル性水酸基を有する化合物が挙げられ、m−メチルフェノ−ル、p−メチルフェノ−ル、m−プロピルフェノ−ル、p−プロピルフェノ−ル、p−tert−ブチルフェノ−ルおよびp−長鎖アルキル置換フェノ−ルなどが好ましく挙げられる。分子量調節剤の使用量は、芳香族ジヒドロキシ化合物100モルに対して、好ましくは50〜0.5モル、より好ましくは30〜1モルである。   Examples of the molecular weight regulator include compounds having a monovalent phenolic hydroxyl group, such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, and p-tert. Preferred examples include -butylphenol and p-long chain alkyl-substituted phenol. The amount of the molecular weight regulator used is preferably 50 to 0.5 mol, more preferably 30 to 1 mol, per 100 mol of the aromatic dihydroxy compound.

重合触媒としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン、ピリジン等の第三級アミン類、トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩などが挙げられる。   Polymerization catalysts include tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, pyridine, and quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, and triethylbenzylammonium chloride. Etc.

溶融法について説明すると、この製造方法における重合反応は、例えば、炭酸ジエステルと芳香族ジヒドロキシ化合物とのエステル交換反応である。炭酸ジエステルとしては、ジメチルカ−ボネ−ト、ジエチルカ−ボネ−ト、ジ−tert−ブチルカ−ボネ−ト等の炭酸ジアルキル化合物、ジフェニルカ−ボネ−トおよびジトリルカ−ボネ−ト等の置換ジフェニルカ−ボネ−ト等が例示される。炭酸ジエステルは、好ましくはジフェニルカ−ボネ−トまたは置換ジフェニルカ−ボネ−トであり、より好ましくはジフェニルカ−ボネ−トである。   Explaining the melting method, the polymerization reaction in this production method is, for example, a transesterification reaction between a carbonic acid diester and an aromatic dihydroxy compound. Examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate and di-tert-butyl carbonate, and substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate. An example is a bonate. The carbonic acid diester is preferably diphenyl carbonate or substituted diphenyl carbonate, more preferably diphenyl carbonate.

溶融エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率や、エステル交換反応時の減圧度を調整して、所望の分子量および末端水酸基量を調整した芳香族ポリカーボネート樹脂を得ることができる。通常、溶融エステル交換反応においては、芳香族ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用い、中でも1.001〜1.3モル、特に1.01〜1.2モル用いることが好ましい。また、より積極的な調整方法としては、反応時に別途、末端停止剤を添加する方法が挙げられ、この際の末端停止剤としては、一価フェノール類、一価カルボン酸類、炭酸ジエステル類が挙げられる。   In the melt transesterification reaction, usually, the mixing ratio of the carbonic acid diester and the aromatic dihydroxy compound and the degree of pressure reduction during the transesterification reaction are adjusted to obtain an aromatic polycarbonate resin having the desired molecular weight and terminal hydroxyl group content adjusted. be able to. Usually, in the melt transesterification reaction, the carbonic acid diester is used in an equimolar amount or more with respect to 1 mol of the aromatic dihydroxy compound. preferable. Further, as a more aggressive adjustment method, there is a method of adding a terminal terminator separately at the time of reaction, and examples of the terminal terminator in this case include monohydric phenols, monovalent carboxylic acids, and carbonic acid diesters. It is done.

本発明で使用するポリカーボネート樹脂は、上記界面重合法および溶融重合法のいずれで製造されたものでもよい。しかしながら、前記したように、界面重合法により製造されたポリカーボネート樹脂中には、重合溶媒、触媒、触媒失活剤および反応副生成物などに由来する塩化メチレンや未反応残基であるクロロホーメート基含有化合物等の塩素化合物を少なからず含有しており、本発明の対象とするに好ましい。そのため、本発明の方法は、界面重合法により製造されたポリカーボネート樹脂を使用するのに適している。   The polycarbonate resin used in the present invention may be produced by any of the above interfacial polymerization method and melt polymerization method. However, as described above, in the polycarbonate resin produced by the interfacial polymerization method, methylene chloride derived from a polymerization solvent, a catalyst, a catalyst deactivator, a reaction by-product and the like, and chloroformate which is an unreacted residue are included. It contains not a few chlorine compounds such as group-containing compounds and is preferable for the purpose of the present invention. Therefore, the method of the present invention is suitable for using a polycarbonate resin produced by an interfacial polymerization method.

ポリカーボネート樹脂の分子量は、溶媒としてメチレンクロライドを用い、25℃の温度で測定した溶液粘度より換算した粘度平均分子量で、通常10,000〜50,000の範囲であり、15,000〜30,000の範囲のものが好適であり、17,500〜27,000の範囲のものがより好適である。粘度平均分子量が10,000未満では機械的強度に劣り、50,000を越えると成形加工性に劣るので好ましくない。   The molecular weight of the polycarbonate resin is a viscosity average molecular weight converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent, and is usually in the range of 10,000 to 50,000, and 15,000 to 30,000. The thing of the range of this is suitable, and the thing of the range of 17,500-27,000 is more suitable. If the viscosity average molecular weight is less than 10,000, the mechanical strength is inferior, and if it exceeds 50,000, the moldability is inferior.

本発明で用いるポリカーボネート樹脂は、微量のメチレンクロライドを含有するものを対象にするが、ここで微量とは、塩素原子量に換算して、200ppm以下の塩素含有化合物を含有することをいう。界面重合法によるポリカーボネート樹脂は、重合系から取り出された際には、通常20ppm以上の塩素含有化合物を含有している。原料ポリカーボネート樹脂中のメチレンクロライドの通常の含有量は、10〜100ppmである。また塩素原子量に換算して200ppmを著しく超えて塩素含有化合物を含有するポリカーボネート樹脂では、本発明の方法を適用しても、それを本発明の目的に適う3ppm程度以下にするのは、難しくなる。   The polycarbonate resin used in the present invention is intended to contain a trace amount of methylene chloride. Here, the trace amount means that it contains 200 ppm or less of a chlorine-containing compound in terms of the amount of chlorine atoms. The polycarbonate resin obtained by the interfacial polymerization method usually contains 20 ppm or more of a chlorine-containing compound when taken out from the polymerization system. The normal content of methylene chloride in the raw material polycarbonate resin is 10 to 100 ppm. In addition, in a polycarbonate resin containing a chlorine-containing compound that significantly exceeds 200 ppm in terms of the amount of chlorine atoms, it is difficult to reduce it to about 3 ppm or less suitable for the purpose of the present invention even if the method of the present invention is applied. .

本発明において、ポリカーボネート樹脂は粉粒体形状を有するものとして、使用する。
具体的には、ポリカーボネート樹脂は、その50質量%以上が、JIS K0069(ふるい分け試験方法)に準拠した方法で測定した粒径分布で200〜2,000μm、好ましくは300〜2,000μm、さらに好ましくは400〜2,000μmの範囲内である粉粒体である。200μm未満や2,000μmを超える粒径を有する樹脂が50質量%を超えて含まれると、200μm未満の粒径を有する成分が舞い上がりやすく、フィーダーから押出機に定量的に供給することが困難になる。また、2,000μmを超える粒径を有する成分については、次の不活性ガスによる処理の効果が乏しくなる。
In the present invention, the polycarbonate resin is used as having a granular shape.
Specifically, 50% by mass or more of the polycarbonate resin is 200 to 2,000 μm, preferably 300 to 2,000 μm, more preferably, in a particle size distribution measured by a method based on JIS K0069 (screening test method). Is a granular material in the range of 400 to 2,000 μm. If a resin having a particle size of less than 200 μm or more than 2,000 μm is contained in an amount exceeding 50% by mass, components having a particle size of less than 200 μm are likely to rise, making it difficult to quantitatively supply from the feeder to the extruder. Become. Moreover, about the component which has a particle size exceeding 2,000 micrometers, the effect of the process by the following inert gas becomes scarce.

また、ポリカーボネート樹脂は、さらに、BET多点法により求めた比表面積が0.008m/g以上であり、好ましくは0.01m/g以上、更に好ましくは0.012m/g以上である。比表面積が0.008m/g未満と小さい場合、次の不活性ガスによる処理の効果が発現しにくい。 Further, the polycarbonate resin further has a specific surface area as determined by BET multipoint method 0.008 m 2 / g or more, preferably 0.01 m 2 / g or more, more preferably 0.012 m 2 / g or more . When the specific surface area is as small as less than 0.008 m 2 / g, the effect of the treatment with the next inert gas is hardly exhibited.

なお、本発明における粉粒体形状とは、上記のような微細な粒径分布を有する微粒であれば特に制限はなく、いわゆる粉体や、微細なペレット等の粒状物、顆粒状物、フレーク状物等をいう。   The shape of the granular material in the present invention is not particularly limited as long as it has a fine particle size distribution as described above, so-called powder, granular material such as fine pellets, granular material, flakes, etc. It refers to the shape.

また、ポリカーボネート樹脂は、半導体基板用容器等の、特に塩素等の半導体汚染物質の少ないことが要求される用途に用いられる場合は、汚染物質となる可能性のある添加剤等もなるべく添加せずに、所謂「添加剤フリー」で使用されるが、用途により、熱安定剤、酸化防止剤、離型剤、紫外線吸収剤、蛍光増白剤、顔料、染料、他のポリマー、難燃剤、耐衝撃改良剤、帯電防止剤、可塑剤、相溶化剤などの添加剤を含有することができる。これらの添加剤は一種または二種以上を配合してもよい。これらのうち、特に、熱安定剤と酸化防止剤を用いることが好ましい。   Polycarbonate resin should not be added as much as possible of additives that may become pollutants when used in applications that require a low amount of semiconductor pollutants such as chlorine, such as containers for semiconductor substrates. In addition, so-called "additive-free", depending on the application, heat stabilizer, antioxidant, mold release agent, UV absorber, fluorescent whitening agent, pigment, dye, other polymers, flame retardant, resistance Additives such as impact modifiers, antistatic agents, plasticizers and compatibilizers can be included. These additives may be used alone or in combination of two or more. Among these, it is particularly preferable to use a heat stabilizer and an antioxidant.

熱安定剤としては、特に制限はないが、例えばリン系化合物が好ましく挙げられる。リン系化合物としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸、酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第10族金属のリン酸塩、有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられる。   Although there is no restriction | limiting in particular as a heat stabilizer, For example, a phosphorus compound is mentioned preferably. Any known phosphorous compound can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, polyphosphoric acid, acidic pyrophosphoric acid metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, acidic calcium pyrophosphate, and phosphoric acid. Examples include Group 1 or Group 10 metal phosphates such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate, organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.

なかでも、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等の有機ホスファイトが好ましい。   Among them, triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl diphenyl phosphite, Dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) ) Organic phosphites such as octyl phosphite are preferred.

熱安定剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量部以下、より好ましくは0.5質量部以下である。熱安定剤が少なすぎると熱安定効果が不十分となる可能性があり、熱安定剤が多すぎると効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the heat stabilizer is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, more preferably 0.03 part by mass or more, based on 100 parts by mass of the polycarbonate resin. It is not more than part by mass, preferably not more than 0.7 part by mass, more preferably not more than 0.5 part by mass. If the amount of the heat stabilizer is too small, the heat stabilization effect may be insufficient. If the amount of the heat stabilizer is too large, the effect may reach a peak and may not be economical.

また、酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤が好ましく挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N´−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオナミド)、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスフォエート、3,3´,3´´,5,5´,5´´−ヘキサ−tert−ブチル−a,a´,a´´−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン,2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノール等が挙げられる。   Moreover, as an antioxidant, a hindered phenolic antioxidant is mentioned preferably, for example. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl). ) Propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-) tert-butyl-4-hydroxyphenylpropionamide), 2,4-dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl ] Methyl] phosphoate, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″ (Mesitylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4 -Hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert) -Butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4,6-bis (Octylthio) -1,3,5-triazin-2-ylamino) phenol and the like.

なかでも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、チバ・スペシャルテイ・ケミカルズ社製「イルガノックス1010」(登録商標、以下同じ)、「イルガノックス1076」、アデカ社製「アデカスタブAO−50」、「アデカスタブAO−60」等が挙げられる。
なお、酸化防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable. Specific examples of such phenolic antioxidants include “Irganox 1010” (registered trademark, the same shall apply hereinafter) manufactured by Ciba Specialty Chemicals, “Irganox 1076”, and “Adeka Stub” manufactured by Adeka. AO-50 "," ADK STAB AO-60 "and the like.
In addition, 1 type may contain antioxidant and 2 or more types may contain it by arbitrary combinations and a ratio.

酸化防止剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。酸化防止剤の含有量が前記範囲の下限値以下の場合は、酸化防止剤としての効果が不十分となる可能性があり、酸化防止剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the antioxidant is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, and usually 1 part by mass or less, preferably 0.5 part by mass with respect to 100 parts by mass of the polycarbonate resin. Or less. When the content of the antioxidant is less than or equal to the lower limit of the range, the effect as an antioxidant may be insufficient, and when the content of the antioxidant exceeds the upper limit of the range, There is a possibility that the effect reaches its peak and is not economical.

さらに、本発明におけるポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂、いわゆるマテリアルリサイクルされたポリカーボネート樹脂を使用してもよく、また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得た粉粒体等も使用可能である。再生されたポリカーボネート樹脂は、再生品ではない分粒体形状のポリカーボネート樹脂に混合して用いられ、混合量としては、全ポリカーボネート樹脂成分の80質量%以下であることが好ましく、より好ましくは50質量%以下、特には30質量%である。   Furthermore, as the polycarbonate resin in the present invention, not only a virgin raw material but also a polycarbonate resin regenerated from a used product, a so-called material recycled polycarbonate resin may be used. It is also possible to use a pulverized product obtained from the above or a granular material obtained by melting them. The regenerated polycarbonate resin is used by mixing with a non-recycled granule-shaped polycarbonate resin, and the mixing amount is preferably 80% by mass or less, more preferably 50% by mass of the total polycarbonate resin component. % Or less, in particular 30% by mass.

粉粒体形状のポリカーボネート樹脂は先ず、不活性ガスで処理される。
不活性ガスによる処理はポリカーボネート樹脂を特定の形状として、かつ特定の状態で行われる。
具体的には、微量のメチレンクロライドを含有するポリカーボネートとして比表面積が0.008m/g以上で、50質量%以上が200〜2,000μmの粒径とした粉粒体形状のポリカーボネート樹脂を用意し、このような粉粒体形状のポリカーボネート樹脂を、酸素濃度が3容量%以下の不活性ガス雰囲気中を50cm以上落下移動させることによって行う。
The polycarbonate resin in the form of a granular material is first treated with an inert gas.
The treatment with the inert gas is performed with the polycarbonate resin in a specific shape and in a specific state.
Specifically, as a polycarbonate containing a small amount of methylene chloride, a polycarbonate resin in the form of a granular material having a specific surface area of 0.008 m 2 / g or more and a particle size of 50 to 50% by mass of 200 to 2,000 μm is prepared. Then, such a granular-shaped polycarbonate resin is dropped and moved in an inert gas atmosphere having an oxygen concentration of 3% by volume or less by 50 cm or more.

ポリカーボネート樹脂をこのような特殊な形状とする理由は不活性ガスに接触する面積(表面)を大きくし、不活性ガスにより粉粒体の表面に残存する酸素を効率的に除去するためであり、また、落下移動させるのは、粉粒体を流動状態として不活性ガス中を移動させることにより処理効率を上げるためである。
ちなみに、容器中に粉粒体形状のポリカーボネート樹脂を収容し、容器中の雰囲気を不活性ガスで置換する方式では十分な処理が難しいとの結果が得られている。
落下移動は粉粒体形状のポリカーボネート樹脂を縦に載置した管状部材に下方から不活性ガスを流し、上方から定量供給機等で粉粒体形状のポリカーボネート樹脂を供給し、不活性ガス中を落下状態で移動させることによって行えば良い。
具体的には、50cm以上の高さのホッパー(押出し機のホッパー)の上から粉粒体形状のポリカーボネート樹脂を供給し落下させ、ホッパーの根元から不活性ガスを供給する方式が簡便な方式として挙げられる。
The reason why the polycarbonate resin has such a special shape is to increase the area (surface) in contact with the inert gas, and to efficiently remove oxygen remaining on the surface of the granular material by the inert gas, Further, the reason why the particles are moved down is to increase the processing efficiency by moving the powder particles in the inert gas.
By the way, it has been obtained that it is difficult to perform sufficient treatment with a method in which a granular polycarbonate resin is accommodated in a container and the atmosphere in the container is replaced with an inert gas.
In the drop movement, an inert gas is flowed from below into a tubular member in which a granular polycarbonate resin is placed vertically, and the granular polycarbonate resin is supplied from above using a quantitative feeder, etc. What is necessary is just to move by making it fall.
Specifically, a simple method is a method in which a polycarbonate resin in the form of a granular material is supplied and dropped from above a hopper having a height of 50 cm or more (a hopper of an extruder) and an inert gas is supplied from the base of the hopper. Can be mentioned.

以下、図面を用いて具体的な例につき説明する。
このような粉粒体形状のポリカーボネート樹脂は、原料供給機に貯蔵され、そこからフィーダー(定量供給機)によって、押出機上に設置されたホッパーシュートに供給される。
図1は、本発明に適用可能な供給機−ホッパー−押出機の構成例を示す図である。ホッパーシュートの底部は押出機の供給口に接続されており、ポリカーボネート樹脂はホッパーシュートを介して押出機に順次供給され、押出機内で溶融混練されてペレットなどの樹脂成形材料となる。
Hereinafter, specific examples will be described with reference to the drawings.
Such a polycarbonate resin in the form of a granular material is stored in a raw material supply machine, and is supplied from there to a hopper chute installed on the extruder by a feeder (quantitative supply machine).
FIG. 1 is a diagram showing a configuration example of a feeder-hopper-extruder applicable to the present invention. The bottom of the hopper chute is connected to the supply port of the extruder, and the polycarbonate resin is sequentially supplied to the extruder via the hopper chute, and melted and kneaded in the extruder to become a resin molding material such as pellets.

ポリカーボネート樹脂以外の他の成分を配合する場合には、その混合は押出機に投入される前の任意の段階で配合することができる。例えば、タンブラー、ヘンシェルミキサー、ブレンダーによって全成分を配合したのち、必要に応じてフィーダーを介してホッパーシュートに投入し、押出機に供給してもよい。押出機には一軸押出機、二軸押出機などが使用出来る。また、ポリカーボネート樹脂とは別経路でホッパーシュートに供給してもよい。   In the case of blending other components other than the polycarbonate resin, the mixing can be blended at an arbitrary stage before being charged into the extruder. For example, after all components are blended by a tumbler, a Henschel mixer, and a blender, they may be fed into a hopper chute via a feeder and supplied to an extruder as necessary. As the extruder, a single screw extruder, a twin screw extruder or the like can be used. Moreover, you may supply to a hopper chute | shoot with the path | route different from polycarbonate resin.

まず、本発明においては、押出機に材料を供給するホッパーシュート内部の雰囲気を、不活性ガスで置換する。本発明において、不活性ガスとは、希ガスに限らず、使用するポリカーボネート樹脂の粉粒体に対して不活性なガスを意味する。不活性ガスとしては、例えば窒素ガス、炭酸ガス、希ガス等が用いられ、特に窒素ガスが好ましく用いられる。   First, in the present invention, the atmosphere inside the hopper chute for supplying the material to the extruder is replaced with an inert gas. In the present invention, the inert gas means not only a rare gas but also a gas inert to the polycarbonate resin powder to be used. As the inert gas, for example, nitrogen gas, carbon dioxide gas, rare gas or the like is used, and nitrogen gas is particularly preferably used.

本発明において、ホッパーシュート内の雰囲気を置換するためにホッパーシュートへ供給される不活性ガスは乾燥状態で、純度は99容量%以上であることが好ましい。また、図1に点線で示すように、不活性ガスはホッパーシュートの押出機の供給口近くから、あるいはホッパーシュートの上部から供給することが可能であるが、供給口近く(最下部)から供給することが好ましい。これは、ポリカーボネート樹脂を落下させながら樹脂中の空気を雰囲気の不活性ガスと置換する上で、ホッパーシュート下部の雰囲気中に占める不活性ガス濃度が高く維持されることが望ましいからである。   In the present invention, the inert gas supplied to the hopper chute to replace the atmosphere in the hopper chute is preferably in a dry state and a purity of 99% by volume or more. In addition, as shown by a dotted line in FIG. 1, the inert gas can be supplied from the vicinity of the supply port of the hopper chute extruder or from the upper part of the hopper chute, but is supplied from the vicinity of the supply port (lowermost part). It is preferable to do. This is because it is desirable to maintain a high inert gas concentration in the atmosphere below the hopper chute when replacing the air in the resin with the inert gas in the atmosphere while dropping the polycarbonate resin.

ホッパーシュートは、その内部雰囲気の不活性ガス濃度を高く維持しつつ、置換された空気を外部に排出できる程度の気密性を有することが好ましい。不活性ガスは、ホッパーシュート内で置換された空気を排出させつつ、内部雰囲気の酸素濃度が低い状態が維持されるような流量で継続的に供給させる。具体的な流量は、ホッパーシュートの大きさや気密性に応じて適宜決定することができる。
また、本発明においては、粉粒体形状のポリカーボネート樹脂を不活性ガスで処理するに当たり、粉流体を落下状態で供給し、不活性ガスを下方から、粉粒体に対して向流となるように供給することが好ましい。
The hopper chute preferably has an airtightness enough to discharge the substituted air to the outside while maintaining a high inert gas concentration in the internal atmosphere. The inert gas is continuously supplied at a flow rate that maintains the low oxygen concentration in the internal atmosphere while discharging the air substituted in the hopper chute. The specific flow rate can be appropriately determined according to the size and airtightness of the hopper chute.
Further, in the present invention, when treating the polycarbonate resin in the form of a granular material with an inert gas, the powdered fluid is supplied in a falling state so that the inert gas is counterflowed to the granular material from below. It is preferable to supply to.

本発明においては、ホッパーシュート内雰囲気における酸素濃度は3容量%以下、好ましくは1容量%以下、より好ましくは0.5容量%以下、最も好ましくは0.1容量%以下となるように不活性ガスを供給することが好ましい。酸素濃度は、例えばホッパーシュート下部、押出機の供給口近傍で測定することができる。酸素濃度が3容量%を超えると、酸化劣化等による黄変の抑制効果、塩素化合物等の除去効果が十分得られない。
なお、不活性ガスは、ホッパーシュート内のみならず、押出機のバレル内にも供給することができる。
なお、前記したように、ポリカーボネート樹脂に他の成分を配合する場合には、ポリカーボネート樹脂については、分散した状態で不活性ガス雰囲気中を通過させてから押出機に供給する。具体的には、内部雰囲気が不活性ガスで置換されたホッパーシュート内を落下させて押出機に供給する。
In the present invention, the oxygen concentration in the atmosphere inside the hopper chute is 3% by volume or less, preferably 1% by volume or less, more preferably 0.5% by volume or less, and most preferably 0.1% by volume or less. It is preferable to supply gas. The oxygen concentration can be measured, for example, in the lower part of the hopper chute and in the vicinity of the supply port of the extruder. When the oxygen concentration exceeds 3% by volume, the effect of suppressing yellowing due to oxidative degradation or the like and the effect of removing chlorine compounds cannot be sufficiently obtained.
The inert gas can be supplied not only into the hopper chute but also into the barrel of the extruder.
As described above, when other components are blended in the polycarbonate resin, the polycarbonate resin is supplied to the extruder after passing through an inert gas atmosphere in a dispersed state. Specifically, the inside of the hopper chute where the internal atmosphere is replaced with an inert gas is dropped and supplied to the extruder.

上述のように、本発明では、粉粒体形状のポリカーボネート樹脂を、分散した状態でホッパーシュート内を落下するように供給することが好ましい。ここで、「分散した状態」とは、個々の樹脂粒子の表面が十分に雰囲気と接することが可能な状態を意味するが、特別な供給方法は不要であり、本発明の粉粒体形状のポリカーボネート樹脂を、ホッパー上部からスクリュー式の定量供給装置等を用いて連続的に(又は間歇的に)供給することで分散状態で落下することができる。分散状態ではなく、密集して或いは塊りとなって落下するような場合は好ましくない。   As described above, in the present invention, it is preferable to supply the polycarbonate resin in the form of granular material so as to fall in the hopper chute in a dispersed state. Here, the “dispersed state” means a state in which the surface of each resin particle can sufficiently come into contact with the atmosphere, but a special supply method is not required, and the granular shape of the present invention is not necessary. The polycarbonate resin can be dropped in a dispersed state by continuously (or intermittently) supplying the polycarbonate resin from the upper part of the hopper using a screw-type quantitative supply device or the like. It is not preferable in the case of falling in a dense state or a lump rather than in a dispersed state.

ただし、ポリカーボネート樹脂の表面の窪みなどに抱える空気を不活性ガスで十分に置換するため、粉粒体形状のポリカーボネート樹脂が、不活性ガス雰囲気中を鉛直距離で50cm以上、好ましくは80cm以上落下してから押出機の供給口に達するように供給する。
例えば、図1に示すように、フィーダーを用いてポリカーボネート樹脂をホッパーシュートに供給する場合、図2(a)に示すように、フィーダー出口の高さと、押出機の材料供給口(ホッパーシュート底部)との鉛直距離hを50cm以上とする。ただし、図2(b)に示すように、溶融混練する材料がホッパーシュート内に堆積する場合には、フィーダー出口の高さと、堆積した材料の頂点との鉛直距離hを50cm以上とする。
However, in order to sufficiently replace the air held in the depressions on the surface of the polycarbonate resin with an inert gas, the polycarbonate resin in the form of a granular material falls in an inert gas atmosphere at a vertical distance of 50 cm or more, preferably 80 cm or more. After that, feed it to reach the feed port of the extruder.
For example, as shown in FIG. 1, when a polycarbonate resin is supplied to a hopper chute using a feeder, as shown in FIG. 2 (a), the height of the feeder outlet and the material supply port of the extruder (hopper chute bottom) The vertical distance h is set to 50 cm or more. However, as shown in FIG. 2B, when the material to be melt-kneaded accumulates in the hopper chute, the vertical distance h between the height of the feeder outlet and the apex of the deposited material is set to 50 cm or more.

例えば、押出機として二軸押出機を用いる場合など、材料を少量ずつ押出機のシリンダー内に供給していく飢餓的材料供給法と呼ばれる飢餓供給(飢餓フィード)を行う場合には、図2(a)の状態となる。また、単軸押出機を用いる場合など、飢餓供給を行わない場合には、図2(b)の状態となる。従って、粉粒体形状のポリカーボネート樹脂がホッパーシュート内で50cm以上落下するように、押出機の種類や飢餓フィードの採用有無、押出速度、材料の供給量を決定する。飢餓フィードとすることにより、安定した押出しが行えることは確認されている。   For example, when using a twin-screw extruder as an extruder, when performing a starvation supply (starvation feed) called a starvation material supply method in which materials are supplied in small amounts into the cylinder of the extruder, FIG. It will be in the state of a). Moreover, when the starvation supply is not performed, such as when a single screw extruder is used, the state shown in FIG. Therefore, the type of the extruder, the presence / absence of the starvation feed, the extrusion speed, and the supply amount of the material are determined so that the polycarbonate resin in the form of granular material falls 50 cm or more in the hopper chute. It has been confirmed that stable extrusion can be performed by using a starvation feed.

なお、本発明において、粉粒体形状のポリカーボネート樹脂は、不活性ガス雰囲気中を実質的な鉛直距離で50cm以上落下すればよく、落下の過程は特に限定されない。1回で50cm以上落下しなくてもよい。また、例えば図2(c)に示すように、粉粒体形状のポリカーボネート樹脂が段階的(ジグザグ)に落下して押出機の材料供給口に到達するよう、ホッパーシュートの内面に、先端が下方へ傾斜した板状の部材(邪魔板)を1つ以上、何段か設けても良い。ホッパーシュート内に邪魔板が設けられている場合など、複数回段階的に落下した合計距離(ジグザグ距離)が50cm以上であってもよい。なお、落下とは自由落下に限定されず、下方への移動であればよい。従って、邪魔板の上を滑りながら下降した距離も落下距離に含まれる。   In the present invention, the polycarbonate resin in the form of a granular material may be dropped by 50 cm or more in an inert gas atmosphere at a substantial vertical distance, and the dropping process is not particularly limited. It is not necessary to drop more than 50 cm at a time. Also, for example, as shown in FIG. 2 (c), the tip of the polycarbonate resin in the form of a granule falls on the inner surface of the hopper chute so as to fall stepwise (zigzag) and reach the material supply port of the extruder. One or more plate-shaped members (baffle plates) inclined toward the surface may be provided. For example, when a baffle plate is provided in the hopper chute, the total distance (zigzag distance) dropped in a plurality of steps may be 50 cm or more. Note that the fall is not limited to free fall, and may be any downward movement. Therefore, the distance dropped while sliding on the baffle plate is also included in the fall distance.

粉粒体が堆積した状態ではなく、分散した状態で雰囲気(不活性ガス)と接する時間が長い方が、樹脂が含む空気と不活性ガスとの置換が進行するものと考えられる。邪魔板を設けた場合、1回の自由落下で50cm以上落下する場合よりもゆっくりとホッパーシュート内を落下するため、空気と不活性ガスとの置換効率が高くなる。
しかし、本発明が対象とするポリカーボネート樹脂は粒径の小さい粉粒体形状であるため、ペレットのような形状と比較すると空気抵抗が大きく、自由落下のスピードが小さいため、自由落下のみによっても空気が不活性ガスと置換される。
It is considered that the replacement of the air contained in the resin with the inert gas progresses when the time in contact with the atmosphere (inert gas) is longer in the dispersed state than in the state in which the particles are accumulated. When the baffle plate is provided, the air drops into the hopper chute more slowly than in the case of dropping 50 cm or more in one free fall, so that the replacement efficiency of air and inert gas is increased.
However, since the polycarbonate resin targeted by the present invention has a granular shape with a small particle size, the air resistance is larger than the shape like a pellet and the speed of free fall is small. Is replaced with an inert gas.

このように不活性ガス処理された粉粒体形状のポリカーボネート樹脂は、ベント式の押出機に供給される。そして、その混練ゾーンにおいて水を注入添加すると共にベントで脱気しながらポリカーボネート樹脂を溶融押出しする。
注入する水としては、電気伝導度が30μS/cm以下である水を使用する。電気伝導度が30μS/cmを超えると、得られるポリカーボネート樹脂ペレットの清浄度が悪化する。電気伝導度が得られるポリカーボネート樹脂ペレットの清浄度に影響する機構はまだ明らかではないが、イオン成分とポリカーボネートや不純物との相互作用によるのではと推察している。
水の好ましい電気伝導度は20μS/cm以下、より好ましくは10μS/cm以下、さらに好ましくは5μS/cm以下、特に好ましくは3μS/cm以下、最も好ましくは1μS/cm以下である。
なお、電気伝導度の測定は、導電率計を用い、測定温度25℃で行われる。
The polycarbonate resin in the form of a granular material that has been treated with an inert gas in this manner is supplied to a vent-type extruder. In the kneading zone, water is injected and added, and the polycarbonate resin is melt-extruded while degassing with a vent.
As water to be injected, water having an electric conductivity of 30 μS / cm or less is used. When the electrical conductivity exceeds 30 μS / cm, the cleanliness of the obtained polycarbonate resin pellets deteriorates. The mechanism that affects the cleanliness of polycarbonate resin pellets from which electrical conductivity is obtained is not yet clear, but it is presumed to be due to the interaction of ionic components with polycarbonate and impurities.
The electrical conductivity of water is preferably 20 μS / cm or less, more preferably 10 μS / cm or less, further preferably 5 μS / cm or less, particularly preferably 3 μS / cm or less, and most preferably 1 μS / cm or less.
The electrical conductivity is measured at a measurement temperature of 25 ° C. using a conductivity meter.

また、水の注入量は、ポリカーボネート樹脂100質量部に対し0.1〜2質量部である。注入する。水の注入量は、0.1質量部より少ないと水注入添加の効果が発現せず、ポリカーボネート樹脂中の塩素化合物が、塩素原子に換算して3ppm以下になり難く、また2質量部より多くなるとベント部における脱気が不十分になりポリカーボネート樹脂に対し加水分解等の悪影響を及ぼすようになる。また、多量の発生蒸気のために樹脂のベントアップを引き起こす。水の好ましい注入量は、ポリカーボネート樹脂100質量部に対し、0.15〜1.8質量部、より好ましくは0.2〜1.5質量部、さらには0.3〜1.2質量部、特には0.4〜1.0質量部である。   Moreover, the injection amount of water is 0.1 to 2 parts by mass with respect to 100 parts by mass of the polycarbonate resin. inject. If the amount of water injected is less than 0.1 parts by mass, the effect of adding water will not be exhibited, and the chlorine compound in the polycarbonate resin will be less than 3 ppm in terms of chlorine atoms, and more than 2 parts by mass. If it becomes, deaeration in a vent part will become inadequate and it will come to have a bad influence of hydrolysis etc. with respect to polycarbonate resin. In addition, a large amount of generated steam causes resin vent-up. The preferable amount of water to be injected is 0.15 to 1.8 parts by mass, more preferably 0.2 to 1.5 parts by mass, and further 0.3 to 1.2 parts by mass with respect to 100 parts by mass of the polycarbonate resin. In particular, it is 0.4 to 1.0 part by mass.

本発明で用いるベント付き押出機としては、一軸押出機でも二軸押出機でよいが、二軸押出機が好ましい。また、ベントの数は1箇所でも2箇所以上であってもよく、好ましくは2〜6箇所である。また水を注入添加する箇所は2箇所以上あってもよい。
押出機のスクリューのL/Dとしては、10〜80が好ましく、より好ましくは15〜70、より好ましくは20〜60である。短すぎると脱気が不足しやすく、長すぎると色調が悪化しやすい。
The extruder with a vent used in the present invention may be a single screw extruder or a twin screw extruder, but a twin screw extruder is preferred. Further, the number of vents may be one or two or more, and preferably 2 to 6. There may be two or more places where water is injected and added.
As L / D of the screw of an extruder, 10-80 are preferable, More preferably, it is 15-70, More preferably, it is 20-60. If it is too short, deaeration tends to be insufficient, and if it is too long, the color tone tends to deteriorate.

水を注入する混練ゾーンは、溶融したポリカーボネート樹脂が一杯に充満したところ(充満域)で行うのが好ましい。充満域とは、混練ゾーンのスクリューの、1ピッチ当たりの空間容量に対する樹脂の量(真密度による容量)の割合(充満率という。単位:容量%)で表すと、95容量%以上、好ましくは98容量%以上、より好ましくは99容量%以上をいい、特には100容量%の完全充満であることが好ましい。   The kneading zone for injecting water is preferably performed when the molten polycarbonate resin is fully filled (filled area). The filling area is 95% by volume or more, preferably expressed by the ratio of the amount of resin (capacity by true density) to the space capacity per pitch of the screw in the kneading zone (referred to as the filling rate. Unit: volume%), preferably 98% by volume or more, more preferably 99% by volume or more, particularly 100% by volume is preferable.

水の注入部分の樹脂圧力(混練部のシリンダー内圧力)は、0.5〜10MPaとすることが好ましく、より好ましくは1〜8MPa、より好ましくは2〜7MPaである。ポリカーボネート樹脂の圧力を高めて水を溶融ポリカーボネート樹脂中に分散させる。樹脂圧力が小さすぎるとメチレンクロライドの除去効果が小さく、大きすぎると樹脂が劣化し色調が悪化しやすい。   The resin pressure in the water injection portion (in-cylinder pressure in the kneading portion) is preferably 0.5 to 10 MPa, more preferably 1 to 8 MPa, and more preferably 2 to 7 MPa. The pressure of the polycarbonate resin is increased and water is dispersed in the molten polycarbonate resin. If the resin pressure is too small, the effect of removing methylene chloride is small, and if it is too large, the resin deteriorates and the color tone tends to deteriorate.

混練ゾーンにおける注水点の上流側には、樹脂圧力が高い域を設け、この下流側に注水点を設けることが好ましい。具体的には、押出機のスクリュー構成を、1)上流側にシールリングを設けた箇所の直後に注水点を設ける、あるいは2)上流方から順送りニーディングエレメントを設け、続いて逆送りニーディングエレメントを設け、この後に注水することが推奨される。
1)の方法は、シールリングとは、スクリューに嵌合されるリング状のものであって、流路の70〜90%程度を閉塞し樹脂の流れを滞留させ、これにより樹脂圧力を高めることができ、この直後の下流側に注水点を設ける。
また、2)の方法は、回転させると樹脂を下流側に送り出す順送りニーディングエレメントを設け、続いてその下流に、回転させると樹脂を上流側に戻そうとする逆送りニーディングエレメントを設けて、樹脂圧を高め、この後に注水する方法である。
It is preferable to provide a region where the resin pressure is high on the upstream side of the water injection point in the kneading zone and provide the water injection point on the downstream side. Specifically, the screw configuration of the extruder is as follows: 1) a water injection point is provided immediately after the location where the seal ring is provided on the upstream side, or 2) a progressive kneading element is provided from the upstream side, followed by reverse feed kneading. It is recommended that the element be installed and then watered.
In the method 1), the seal ring is a ring shape fitted to a screw, and closes about 70 to 90% of the flow path to retain the resin flow, thereby increasing the resin pressure. A water injection point is provided on the downstream side immediately after this.
Further, in the method 2), a forward kneading element for feeding the resin to the downstream side when rotated is provided, and then a reverse kneading element for returning the resin to the upstream side when rotated is provided. In this method, the resin pressure is increased and water is injected after this.

また、ベント式押出機のバレル(シリンダー)中の酸素濃度は、3容量%以下とすることが好ましい。3容量%以下とすることで、得られるポリカーボネート樹脂ペレットの黄変を防止しやすくなる。
バレル中の酸素濃度を3容量%以下とするには不活性ガスを押出し機のホッパー側(スクリューの根元)から注入すればよい。バレル中の酸素濃度は直接測定するのが困難であれば、大幅な相違は考えられないので、ホッパー下部の酸素濃度で代用する。
The oxygen concentration in the barrel (cylinder) of the vent type extruder is preferably 3% by volume or less. It becomes easy to prevent yellowing of the polycarbonate resin pellet obtained by setting it as 3 volume% or less.
In order to reduce the oxygen concentration in the barrel to 3% by volume or less, an inert gas may be injected from the hopper side (screw base) of the extruder. If it is difficult to directly measure the oxygen concentration in the barrel, a significant difference cannot be considered, so the oxygen concentration at the bottom of the hopper is substituted.

上記の混練ゾーンにおける水注入の後、押出機の下流側、すなわち押出機の先端部近傍に設けられたベント口を減圧状態にして吸引することにより、溶融状態の樹脂から水と共にメチレンクロライド等の揮発成分を吸引除去する。この吸引により樹脂が充満した混練部分の後から、スクリュー先端の充満域の間の非充満領域が減圧状態(減圧部)となる。
ベント口は、図示しない真空排気装置に連結され、減圧排気が行われる。前工程で水が分散された高温高圧状態のポリカーボネート樹脂は、ベント部では分散された水が急激な減圧により気化膨張し、発泡してポリカーボネート樹脂の表面積を拡大し、表面から水とともにメチレンクロライド等の揮発成分を揮発させる。
ベント口の減圧度は−0.05MPa以下、より好ましくは−0.07MPa以下、更に好ましくは−0.09MPa以下である。
溶融状態のポリカーボネート樹脂中の水分濃度は、押出機中の溶融樹脂を直接測定することは出来ないので、後述するペレット中の水分濃度で代用することとする。ダイ中における溶融樹脂中の水分濃度とペレット中の水分濃度との間に大幅な差が生じることは少ないと考えられる。
After water injection in the kneading zone, the vent port provided near the tip of the extruder, that is, near the tip of the extruder, is sucked in a reduced pressure state, so that methylene chloride and the like are melted together with water from the molten resin. Remove volatile components by suction. After the kneaded portion filled with the resin by this suction, the non-filled region between the full region of the screw tip is in a reduced pressure state (depressurized portion).
The vent port is connected to a vacuum exhaust device (not shown), and decompressed exhaust is performed. The polycarbonate resin in the high-temperature and high-pressure state in which water is dispersed in the previous process is vaporized and expanded by rapid decompression at the vent part, and foams to expand the surface area of the polycarbonate resin. From the surface together with water, methylene chloride, etc. Volatile components are volatilized.
The degree of vacuum at the vent port is −0.05 MPa or less, more preferably −0.07 MPa or less, and still more preferably −0.09 MPa or less.
The moisture concentration in the polycarbonate resin in the molten state cannot be directly measured with the molten resin in the extruder, so that the moisture concentration in the pellets described later is substituted. It is considered that there is little difference between the moisture concentration in the molten resin in the die and the moisture concentration in the pellet.

減圧部の長さは、スクリュー方向に8.0D(Dは押出機のシリンダー内径)以上の長さであることが好ましく、更に12D以上であることが好ましい。また、この減圧部の樹脂充満率は5〜30容量%であることが好ましい。溶融ポリカーボネート樹脂の充填率を充分に低くし、脱気を充分に行うことが好ましいためである。より好ましい樹脂充満率は8〜25容量%、より好ましくは10〜20容量%である。樹脂充満率が5容量%より低くなると処理できる樹脂量が少なくなるために生産性が落ちてしまう。   The length of the decompression part is preferably 8.0D (D is the cylinder inner diameter of the extruder) or more in the screw direction, and more preferably 12D or more. Moreover, it is preferable that the resin filling rate of this pressure reduction part is 5-30 volume%. This is because it is preferable to sufficiently reduce the filling rate of the molten polycarbonate resin and sufficiently perform deaeration. A more preferable resin filling rate is 8 to 25% by volume, and more preferably 10 to 20% by volume. When the resin filling rate is lower than 5% by volume, the amount of resin that can be processed decreases, and thus productivity decreases.

そして、押出し後(直後)のポリカーボネート樹脂中の水分濃度を10〜200ppmに調整する。水分濃度をこのような範囲にするのは、ポリカーボネート樹脂を劣化させることなくメチレンクロライド等を良好に除去するためであり、水分濃度を10ppm未満まで少なくように混練・ベントするとポリカーボネート樹脂が劣化しやすく、200ppmを超えた量とするとメチレンクロライド等も残存してしまう。また、このような範囲の水分含有量とすることで、水の可塑化効果によりストランドカットが安定するという効果も期待できる。
ポリカーボネート樹脂中の水分濃度は、好ましくは15〜150ppmであり、より好ましくは20〜100ppmである。押出し直後のポリカーボネート中の水分率の測定は、ストランドが冷却、カッティングされた後、3分以内に、真空乾燥機に入れ、室温で5分程度乾燥することにより、表面の吸着水のみ乾燥し、微量水分測定装置で測定することができる。
Then, the moisture concentration in the polycarbonate resin after extrusion (immediately after) is adjusted to 10 to 200 ppm. The reason for setting the moisture concentration in such a range is to remove methylene chloride and the like well without deteriorating the polycarbonate resin. When kneading and venting so that the moisture concentration is less than 10 ppm, the polycarbonate resin tends to deteriorate. If the amount exceeds 200 ppm, methylene chloride and the like also remain. Moreover, by setting it as the water content of such a range, the effect that a strand cut is stabilized by the plasticization effect of water can also be expected.
The water concentration in the polycarbonate resin is preferably 15 to 150 ppm, more preferably 20 to 100 ppm. The moisture content in the polycarbonate immediately after extrusion is measured by placing only the surface adsorbed water by placing it in a vacuum dryer within 3 minutes and drying at room temperature for about 5 minutes after the strand is cooled and cut. It can be measured with a trace moisture measuring device.

次に、ポリカーボネート樹脂は、押出機のダイからストランド状に押出され、水中に導入して冷却される。押出ダイの形状は特に制限はなく、公知のものが使用される。吐出ノズルのダイの直径は、押出し圧、所望するペレットの寸法にもよるが、通常2〜5mm程度である。押出された直後のポリカーボネート樹脂の温度は、通常300℃程度である。
ストランドは、引き取りローラーによって引き取られ、冷却槽に溜められた水中を搬送されるようにして、冷却される。樹脂の劣化を少なくするために、ストランドがダイから押し出されてから水に入るまでの時間は短い方が良い。通常は、ダイから押し出されてから1秒以内に水中に入るのが良い。
Next, the polycarbonate resin is extruded as a strand from the die of the extruder, introduced into water, and cooled. There is no restriction | limiting in particular in the shape of an extrusion die, A well-known thing is used. The diameter of the die of the discharge nozzle is usually about 2 to 5 mm, although it depends on the extrusion pressure and the desired pellet size. The temperature of the polycarbonate resin immediately after being extruded is usually about 300 ° C.
The strand is taken up by a take-up roller and cooled in such a manner that it is transported through the water stored in the cooling tank. In order to reduce the deterioration of the resin, it is better that the time from when the strand is pushed out of the die until entering the water is shorter. Normally, it is better to enter the water within 1 second after being pushed out of the die.

本発明では、この際、電気伝導度が30μS/cm以下である水中に導入する。使用する水の電気伝導度が30μS/cmを超えると、得られるポリカーボネート樹脂ペレットの清浄度が悪化する。水の好ましい電気伝導度は20μS/cm以下、より好ましくは10μS/cm以下、さらに好ましくは5μS/cm以下、特に好ましくは3μS/cm以下、最も好ましくは1μS/cm以下である。
冷却槽に溜められた水は経時的に劣化し、電気伝導度が上がるが、冷却水を常時供給し、槽から水をオーバーフローさせることにより、電気伝導度を所定の範囲(30μS/cm以下)に保つことができる。また、水槽の温度は位置により変わり、通常ストランドが水槽に入ったところが最も温度が高く、冷却されるに従い水槽の温度も下がる。水槽の温度が低すぎればストランドが過冷却され、水槽の温度が高ければストランドの温度が上がりすぎる。水槽の温度の好ましい範囲は、30℃から90℃、更に好ましい範囲は40℃〜70℃である。
In the present invention, at this time, it is introduced into water having an electric conductivity of 30 μS / cm or less. If the electrical conductivity of the water used exceeds 30 μS / cm, the cleanliness of the resulting polycarbonate resin pellets deteriorates. The electrical conductivity of water is preferably 20 μS / cm or less, more preferably 10 μS / cm or less, further preferably 5 μS / cm or less, particularly preferably 3 μS / cm or less, and most preferably 1 μS / cm or less.
The water stored in the cooling tank deteriorates with time, and the electrical conductivity increases. However, the electrical conductivity is kept within a predetermined range (30 μS / cm or less) by constantly supplying cooling water and causing the water to overflow from the tank. Can be kept in. Further, the temperature of the water tank varies depending on the position, and the temperature is usually highest when the strand enters the water tank, and the temperature of the water tank decreases as it cools. If the temperature of the water tank is too low, the strand is supercooled, and if the temperature of the water tank is high, the temperature of the strand is too high. A preferable range of the temperature of the water tank is 30 ° C to 90 ° C, and a more preferable range is 40 ° C to 70 ° C.

このように冷却されたストランドは、引き取りローラーによりペレタイザーに送られ、カッティングされて、ペレットとされる。カッティングは、ストランド温度が70〜130℃、好ましくは75〜125℃の範囲にある時に切断する。そして、水分を10〜200ppm、好ましくは15〜150ppm含有する含水ペレットを得る。得られた含水ペレットは押出機による過剰なせん断履歴を経ていないので、大幅な分子量低下や加水分解を起こすことなく、清浄度の高いペレットとなる。
ストランド温度が70℃を下回るとストランドが硬くなりすぎ、ペレタイザーで切断時に割れ、欠けが発生し易い、130℃を超えるとストランドが柔らかくなり、切断面にひげが発生したり、ペレットが変形しやすくなる。
なお、この際のストランド温度は非接触式の温度計によって測定すればよいが、簡便にはカッターによって切断されたペレットを収容する袋や容器中のペレットに温度計を差し込んで測定することによって代用すれば良い。
The strand cooled in this way is sent to a pelletizer by a take-up roller, and is cut into pellets. Cutting is performed when the strand temperature is in the range of 70-130 ° C, preferably 75-125 ° C. And the water-containing pellet which contains a water | moisture content 10-200 ppm, Preferably 15-150 ppm is obtained. Since the obtained water-containing pellet has not undergone an excessive shearing history by the extruder, it becomes a pellet having a high cleanliness without causing a significant molecular weight reduction or hydrolysis.
If the strand temperature falls below 70 ° C, the strand becomes too hard, and breakage and chipping are likely to occur when cutting with a pelletizer. If the strand temperature exceeds 130 ° C, the strand becomes soft, whiskers are generated on the cut surface, and the pellet is easily deformed. Become.
The strand temperature at this time may be measured with a non-contact type thermometer, but it is substituted by simply inserting a thermometer into the pellets in the bag or container containing the pellets cut by the cutter. Just do it.

更にカッターにより切断されたペレットを紙袋、紙製ドラム缶、金属容器等に入れ、湿潤した空気と接触させ熟成するのが好ましい。カッターにより切断されたペレットはそのままでは静電気が帯電し、空気中の粉塵や床のゴミを吸着し易い。この静電気を低減するには、除電器(例えば、イオナイザーSJ−M02:株式会社キーエンス製)で積極的に除電する方法もあるが、簡単にはペレットを金属容器等に入れ、湿潤空気と接触させることにより低減することができる。湿潤空気と触れることにより、ペレットの吸着水分量が増し、ペレット表面の電気伝導性が向上し、電荷漏洩の速度が早まること、あるいはペレットの体積的な吸湿により、ペレット全体の電気伝導性が向上することが理由と考えられる。ペレットの容器を金属とすることにより除電効果はより奏功すると考えられる。
いずれにしてもこの熟成工程により、粉塵やゴミの付着の少ない、ペレットを得ることができる。
Furthermore, it is preferable that the pellets cut by the cutter are put in a paper bag, a paper drum can, a metal container or the like and brought into contact with moist air to be aged. If the pellet cut by the cutter is left as it is, static electricity is charged, and it is easy to adsorb dust and floor dust in the air. In order to reduce this static electricity, there is a method of positively removing static electricity with a static eliminator (for example, ionizer SJ-M02: manufactured by Keyence Corporation), but simply put the pellet in a metal container etc. and contact with wet air. Can be reduced. Touching wet air increases the amount of moisture adsorbed on the pellet, improving the electrical conductivity of the pellet surface, increasing the rate of charge leakage, or improving the overall electrical conductivity of the pellet due to the volumetric moisture absorption of the pellet. The reason is to do. It is considered that the neutralization effect is more effective by using a metal pellet container.
In any case, the aging step can obtain a pellet with less dust and dust adhesion.

この熟成工程を長時間することにより、含水率が増え、電荷漏洩が進み、ペレットの帯電量が減り、粉塵やゴミの付着の少ないペレットを得ることができる。
その長時間の熟成方法としては、カッターで切断されたペレットが粉塵等で汚染されないうちに水蒸気透過率の比較的大きいポリエチレンの袋等に収容し、日単位、月単位で室内に置いて熟成させる方法である。この長時間処理の場合の温度、湿度は常温、常湿で良いが、勿論調温・調湿された環境で日にち、時間を調整し、含水率をコントロールするのが好ましい。
しかしながら、熟成工程の長さや、含水させる水分量にも限度があり、熟成後の含水率は1300ppm以下であることが望ましい。それを超え含水させると、当該含水したペレットを用いて所望の成形品を成形する時に樹脂が加水分解しやすくなり、成形品強度が低下する問題を生起する。またペレットの成形前に乾燥しても、乾燥に時間を要し生産性が低下する。好ましい含水率は1000ppm以下である。更に好ましくは700ppm以下である。ペレットに含水させることによって帯電防止するが、目標とする帯電量は10kV以下が好ましく、更に好ましくは8kV以下である。
By extending this aging step for a long time, the moisture content increases, charge leakage proceeds, the amount of charge of the pellets decreases, and a pellet with less dust and dust adhesion can be obtained.
As a long-term aging method, pellets cut with a cutter are stored in polyethylene bags with a relatively high water vapor transmission rate before being polluted with dust, etc., and placed in a room on a daily or monthly basis for aging. Is the method. The temperature and humidity in this long-time treatment may be room temperature and normal humidity, but of course, it is preferable to control the moisture content by adjusting the date and time in a temperature-controlled and humidity-controlled environment.
However, there is a limit to the length of the aging step and the amount of water to be hydrated, and the moisture content after aging is preferably 1300 ppm or less. If the water content is exceeded, the resin is easily hydrolyzed when a desired molded product is molded using the water-containing pellets, causing a problem that the strength of the molded product is lowered. Moreover, even if it is dried before the molding of the pellets, it takes time to dry and the productivity is lowered. A preferable moisture content is 1000 ppm or less. More preferably, it is 700 ppm or less. Although charging is prevented by containing the pellets with water, the target charge amount is preferably 10 kV or less, more preferably 8 kV or less.

ついで、熟成工程を経て得られた含水状態のペレットを乾燥する乾燥工程を更に行う。含水工程は除電して埃の吸着を押さえるのが目的であるが、ペレットを成形して成形品とする場合には含水量が多いとポリカーボネートが加水分解して、黄変等の原因となる。このため、成形品を成形する前に再びペレット中の含水量を調節する。
上記含水させたペレットは、乾燥処理が施され、含水率を50〜200ppmに調節される。乾燥処理は、熱風乾燥器で温度100〜130℃程度、好ましくは105〜125℃の範囲で、通常2〜10時間、好ましくは3〜7時間の範囲で行われる。
Next, a drying step of drying the water-containing pellets obtained through the aging step is further performed. The purpose of the water-containing step is to eliminate static electricity and suppress the adsorption of dust. However, when a pellet is formed into a molded product, if the water content is high, the polycarbonate is hydrolyzed, causing yellowing and the like. For this reason, the water content in the pellet is adjusted again before molding the molded product.
The pellets containing water are subjected to a drying treatment, and the water content is adjusted to 50 to 200 ppm. The drying treatment is performed in a hot air drier at a temperature of about 100 to 130 ° C, preferably in the range of 105 to 125 ° C, and usually in the range of 2 to 10 hours, preferably 3 to 7 hours.

本発明によって得られたポリカーボネート樹脂ペレット(乾燥処理後のペレット)は、任意の形状に成形して成形体として用いられる。成形体の形状、模様、色彩、寸法などに制限はなく、その成形体の用途に応じて任意に設定すればよい。
成形体の製造方法は、特に限定されず、ポリカーボネート樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
The polycarbonate resin pellets (pellets after drying treatment) obtained by the present invention are molded into an arbitrary shape and used as a molded body. There is no restriction | limiting in the shape of a molded object, a pattern, a color, a dimension, etc., What is necessary is just to set arbitrarily according to the use of the molded object.
The manufacturing method of a molded object is not specifically limited, The molding method generally employ | adopted about the polycarbonate resin composition can be employ | adopted arbitrarily. For example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, rapid heating mold were used. Molding method, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, etc. Is mentioned. A molding method using a hot runner method can also be used.

特に、本発明のポリカーボネート樹脂ペレットは、塩素化合物等の不純物含有量が極めて少なく、また樹脂の劣化が少なく黄変の発生がなく、樹脂添加剤フリーで使用可能なため、これらの特長を生かして、成形体の高いクリーン度が要求される電気電子機器等において幅広く使用することができ、特に電気電子機器部品搬送用ケースに有用である。   In particular, the polycarbonate resin pellet of the present invention has a very low content of impurities such as chlorine compounds, is less deteriorated in resin, does not cause yellowing, and can be used free of resin additives. It can be widely used in electrical and electronic equipment and the like that require a high degree of cleanness of the molded body, and is particularly useful for a case for conveying parts of electrical and electronic equipment.

電気電子機器部品搬送用ケースを製造するには、樹脂ペレットを、公知の方法で射出成形等により所望形状のケースに成形する。搬送用ケースとは、各種マガジン、トレイ、ボックス、容器等を含む。
なお、ここで電気電子機器部品とは、特に限定されないが、例えば、シリコンウエハー、ハードディスク、各種ディスク基板、ICチップ、LCD用高機能基板ガラス等の各種電気電子機器用の部品をいう。
In order to manufacture a case for conveying electrical and electronic equipment parts, resin pellets are formed into a case having a desired shape by injection molding or the like by a known method. The transfer case includes various magazines, trays, boxes, containers, and the like.
Here, the electric / electronic device components are not particularly limited, but include components for various electric / electronic devices such as silicon wafers, hard disks, various disk substrates, IC chips, and high-functional substrate glass for LCD.

以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to the following examples.

以下の実施例および比較例において、ポリカーボネート樹脂として、以下のポリカーボネート樹脂(PC−1)〜(PC−3)を使用した。   In the following examples and comparative examples, the following polycarbonate resins (PC-1) to (PC-3) were used as polycarbonate resins.

PC−1:
(ポリカーボネート樹脂(PC−1)の製造)
ハイドロサルファイトが溶解している苛性ソーダ水溶液にビスフェノール−Aを35℃で溶解したのち25℃まで冷却した水溶液と、5℃に冷却した塩化メチレンとを、内径6mmのステンレススチール製のパイプに連続的に供給して混合し、混合液をホモミキサーに通して乳化し、乳濁液を調製した。パイプへの供給量はビスフェノール−A16.31kg/hr、苛性ソーダ5.93kg/hr、水101.1kg/hr、ハイドロサルファイト0.018kg/hr、及び塩化メチレン68.0kg/hrである。
生成した乳濁液を内径6mmのパイプを経て、内径6mm、長さ34mのポリテトラフルオロエチレン樹脂製パイプリアクターに流入させた。パイプリアクターには同時に0℃に冷却した液化ホスゲンを7.5kg/hrで供給して反応させ、オリゴマーを生成させた。パイプリアクターの流速は1.7m/秒である。
なお、パイプリアクターでは温度は60℃まで上昇するが、外部冷却により出口では35℃であった。反応混合物は静置分離して水相と油相とに分離した。得られたオリゴマーのクロロホーメート濃度は0.47N、OH末端濃度は0.23N、オリゴマー濃度は27.7%であった。得られた油相から40kgを分取して、内容積200リットルのファウドラー翼付き反応槽に仕込んだ。次いで、これに塩化メチレン25kg、25%苛性ソーダ水溶液5.75kg、水41kg及びピリジン塩酸塩0.87g(0.020mol%対ビスフェノール−A)の触媒を加え、窒素雰囲気下、10℃で60分間360rpmで撹拌して重合反応を行い、全OH末端(OH末端基濃度:60μeq/g)ポリカーボネート樹脂を生成させた。
PC-1:
(Manufacture of polycarbonate resin (PC-1))
An aqueous solution in which bisphenol-A is dissolved in a caustic soda solution in which hydrosulfite is dissolved at 35 ° C. and then cooled to 25 ° C. and methylene chloride cooled to 5 ° C. are continuously added to a stainless steel pipe having an inner diameter of 6 mm. And the mixture was passed through a homomixer and emulsified to prepare an emulsion. The feed rates to the pipe are bisphenol-A 16.31 kg / hr, caustic soda 5.93 kg / hr, water 101.1 kg / hr, hydrosulfite 0.018 kg / hr and methylene chloride 68.0 kg / hr.
The produced emulsion was passed through a pipe reactor having an inner diameter of 6 mm and a polytetrafluoroethylene resin pipe reactor having an inner diameter of 6 mm and a length of 34 m. At the same time, liquefied phosgene cooled to 0 ° C. was supplied to the pipe reactor at 7.5 kg / hr to cause reaction to produce oligomers. The flow rate of the pipe reactor is 1.7 m / sec.
In the pipe reactor, the temperature rose to 60 ° C., but was 35 ° C. at the outlet due to external cooling. The reaction mixture was allowed to stand and separate into an aqueous phase and an oil phase. The resulting oligomer had a chloroformate concentration of 0.47 N, an OH terminal concentration of 0.23 N, and an oligomer concentration of 27.7%. 40 kg was fractionated from the obtained oil phase and charged into a reaction vessel with an internal volume of 200 liters equipped with a Faudler blade. Next, a catalyst of 25 kg of methylene chloride, 5.75 kg of 25% aqueous sodium hydroxide solution, 41 kg of water and 0.87 g of pyridine hydrochloride (0.020 mol% with respect to bisphenol-A) was added to this, and 360 rpm at 10 ° C. for 60 minutes in a nitrogen atmosphere. The polymerization reaction was carried out with stirring to produce a polycarbonate resin with all OH terminals (OH terminal group concentration: 60 μeq / g).

次いでこの反応混合液に(末端封止剤)のp−t−ブチルフェノール175g(3.92モル%対ビスフェノール−A)、25重量%苛性ソーダ水溶液105g、2重量%トリエチルアミン水溶液218g(0.10モル%対ビスフェノール−A)を添加し、更に1時間、360rpmの撹拌下に反応し続けた。その後、塩化メチレン30kg及び水7kgを加え、室温で20分間撹拌した後静置して、水相と有機相を分離した。この有機相に0.1規定の水酸化ナトリウム水溶液20kgを加えて15分間攪拌した後、静置して水相と有機相とに分離する洗浄操作を3回反復した。アルカリ洗浄後の有機相に0.1規定の塩酸20kgを加えて15分間撹拌した後、静置して水相と有機相とを分離した。この有機相に、純水20kgを加えて15分間撹拌した後、静置して水相と油相とに分離する洗浄操作を3回反復した結果、水相中に塩素イオンが検出されなくなったので、洗浄操作を中止した。有機相からニーダーで塩化メチレンを蒸発させて除き、得られた粉末を乾燥して、ポリカーボネート樹脂(PC−1)を得た。   Next, 175 g (3.92 mol% to bisphenol-A) of pt-butylphenol (end-capping agent), 105 g of 25 wt% aqueous sodium hydroxide solution, 218 g of 2 wt% aqueous triethylamine (0.10 mol%) was added to the reaction mixture. The bisphenol-A) was added and the reaction continued for an additional hour under stirring at 360 rpm. Thereafter, 30 kg of methylene chloride and 7 kg of water were added, and the mixture was stirred for 20 minutes at room temperature and allowed to stand to separate the aqueous phase and the organic phase. The organic phase was added with 20 kg of 0.1N aqueous sodium hydroxide solution, stirred for 15 minutes, and then allowed to stand to separate into an aqueous phase and an organic phase three times. 20 kg of 0.1 N hydrochloric acid was added to the organic phase after alkali washing, and the mixture was stirred for 15 minutes and then allowed to stand to separate the aqueous phase and the organic phase. The organic phase was added with 20 kg of pure water, stirred for 15 minutes, and then left to stand and separated into an aqueous phase and an oil phase three times. As a result, chlorine ions were not detected in the aqueous phase. Therefore, the washing operation was stopped. The methylene chloride was removed by evaporation from the organic phase with a kneader, and the resulting powder was dried to obtain a polycarbonate resin (PC-1).

PC−2:
上記PC−1を古川大塚鉄鋼社製のグラニュレーターHB189で、650rpmで粉砕したもの。
PC−3:
上記PC−1を日本製鋼所製TEX30αで、吐出量50kg/hr、スクリュー回転数200rpmで押出し、水槽で冷却し、ストランドカットして得られた粒状物。
PC-2:
PC-1 was pulverized at 650 rpm with a granulator HB189 manufactured by Furukawa Otsuka Steel.
PC-3:
A granular material obtained by extruding the PC-1 with Nippon Steel Works TEX30α at a discharge rate of 50 kg / hr and a screw rotation speed of 200 rpm, cooling in a water tank, and strand cutting.

なお、ポリカーボネート樹脂の比表面積は、試料を110℃、真空下(約1.3Pa以下)で3時間減圧加熱処理を行った後、カンタークローム社製粉体計測計オートソーブ1MPにて、液体窒素温度下で吸着等温線(吸着ガス:クリプトン)を測定し、得られた吸着等温線を用いてBET多点法にて求めた。
また、粒子径は、以下の様にして求めた。
1mm以上のメッシュを用い1mm以上の粒度分布、1mm以下は、レーザー回折散乱式粒度分布測定器(セイシン企業社製LMS−2000e)により粒度分布(湿式法)を求め、そこから体積平均粒子系を求めた。
また、粘度平均分子量は、ウベローデ粘度計を用いて、20℃における極限粘度[η]を測定し、
[η]=1.23×10−4×(Mv)0.83 の式より求めた。
さらに、メチレンクロライド量の測定を、後述の方法により、行った。
ポリカーボネート樹脂PC−1〜PC−3のメチレンクロライド量、粒径、粘度平均分子量を表1に示す。
The specific surface area of the polycarbonate resin was determined by subjecting the sample to 110 ° C. under vacuum (about 1.3 Pa or less) for 3 hours under reduced pressure, and then using a powder meter autosorb 1MP manufactured by Canterchrome at liquid nitrogen temperature. Then, the adsorption isotherm (adsorption gas: krypton) was measured by the BET multipoint method using the obtained adsorption isotherm.
The particle size was determined as follows.
The particle size distribution of 1 mm or more using a mesh of 1 mm or more, and 1 mm or less, the particle size distribution (wet method) is obtained by a laser diffraction scattering type particle size distribution measuring instrument (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.) Asked.
The viscosity average molecular weight is determined by measuring the intrinsic viscosity [η] at 20 ° C. using an Ubbelohde viscometer,
[Η] = 1.23 × 10 −4 × (Mv) Obtained from the equation 0.83 .
Further, the amount of methylene chloride was measured by the method described later.
Table 1 shows the amount of methylene chloride, particle size, and viscosity average molecular weight of the polycarbonate resins PC-1 to PC-3.

Figure 0004977786
Figure 0004977786

(実施例1)
噛み合い型同方向二軸スクリューベント式押出機(日本製鋼所製TEX30α、シリンダー長さ52.5D(Dはシリンダー内径))を使用し、図3のスクリュー構成Aを用いた。
図3に示す様に説明上、押出機のホッパー側からダイに向かってC1〜C15まで同一長さで区分けしている。
スクリュー構成Aは、図3に示す各ゾーンごとに、以下のように構成されている。
a)溶融ゾーン:長さ31.5D、リード1.5Dの順送りスクリューを連結した。
b)混練ゾーン:長さ4.0D
送り方向に向かって、順送りニーディングエレメント1D、逆送りニーディングエレメント0.5D及び順送りニーディングエレメント1.0D、直交ニーディングエレメント1.0D、逆送りスクリュー0.5Dからなる。尚、C10シリンダーには液注プラグを取り付け、プランジャーポンプで水を添加した。
c)減圧ゾーン:長さ17.0D、リード1.5Dの順送りスクリューを連結した。この17.0Dを減圧部の長さとした。
C14シリンダーには、減圧ベントを設置し、減圧度は−0.090MPaとした。
Example 1
A mesh configuration same direction twin screw vent type extruder (TEX30α manufactured by Nippon Steel Works, cylinder length 52.5D (D is cylinder inner diameter)) was used, and screw configuration A shown in FIG. 3 was used.
As shown in FIG. 3, for the sake of explanation, C1 to C15 are divided into the same length from the hopper side of the extruder toward the die.
The screw configuration A is configured as follows for each zone shown in FIG.
a) Melting zone: A forward feed screw having a length of 31.5D and a lead of 1.5D was connected.
b) Kneading zone: Length 4.0D
The feed kneading element 1D, the reverse feed kneading element 0.5D, the forward feed kneading element 1.0D, the orthogonal kneading element 1.0D, and the reverse feed screw 0.5D are formed in the feed direction. A liquid injection plug was attached to the C10 cylinder, and water was added with a plunger pump.
c) Decompression zone: A forward screw having a length of 17.0D and a lead of 1.5D was connected. This 17.0D was taken as the length of the decompression section.
The C14 cylinder was provided with a vacuum vent, and the degree of vacuum was -0.090 MPa.

図1に示した構成において、定量フィーダー(クボタ社製ベルトウェイングフィーダ ワイドレンジ B−WF)の材料供給口から二軸押出機の材料供給口までの距離(高さ)を85cmに設定した。略気密性を有するホッパーシュートを用い、二軸押出機の材料供給口近傍から上向きに、ポリカーボネート樹脂粉粒体と向流となるようにして、窒素ガス(純度99.9容量%)を35リットル/分の流量で供給した。二軸押出機の材料供給口近傍で、窒素ガスの供給口と対応する位置に設けた酸素濃度計(東レ(株)製 ジルコニア式酸素濃度計 LC−750L)により、ホッパーシュート内(ホッパー下部)の酸素濃度を測定し、酸素濃度が0.3容量%であることを確認した。
前記ポリカーボネート樹脂粉粒体(PC−1)を、定量フィーダーにより、窒素置換されたホッパーシュートに供給した。ポリカーボネート樹脂は、ホッパー下部に設けた計量フィーダーがあり、押出機に50kg/hrにて飢餓状態で供給されるようにした。
In the configuration shown in FIG. 1, the distance (height) from the material supply port of the quantitative feeder (belt weighing feeder wide range B-WF manufactured by Kubota Corporation) to the material supply port of the twin screw extruder was set to 85 cm. 35 liters of nitrogen gas (purity 99.9% by volume) using a hopper chute having substantially airtightness, facing upward from the vicinity of the material supply port of the twin-screw extruder so as to counter flow with the polycarbonate resin granules. / Min. In the vicinity of the material supply port of the twin screw extruder, in the hopper chute (lower hopper) by an oxygen concentration meter (zirconia oxygen concentration meter LC-750L manufactured by Toray Industries, Inc.) provided at a position corresponding to the nitrogen gas supply port The oxygen concentration was measured and it was confirmed that the oxygen concentration was 0.3% by volume.
The said polycarbonate resin granular material (PC-1) was supplied to the nitrogen-substituted hopper chute | shoot with the fixed quantity feeder. The polycarbonate resin has a measuring feeder provided at the lower part of the hopper, and was supplied to the extruder at 50 kg / hr in a starved state.

押出機のバレル設定温度を270℃、スクリュー回転数を400rpmとし、混練ゾーンにおいて、図3のスクリュー構成AのC10シリンダーに設置した液注プラグから、プランジャーポンプを用いて、電気伝導度が1.5μS/cmの2床3塔式純水装置で製造したイオン交換水を、ポリカーボネート樹脂100質量部に対し、0.5質量部注入した。なお、電気伝導度は、電気化学計器社製の導電率計を用いて、25℃で測定した。
減圧部ゾーンの樹脂充満率は13容量%で、混練ゾーンの樹脂充満率は99容量%であった。
なお、樹脂の充満率は、以下の式により、求めた。
吐出量(kg/時間)÷{樹脂の比重×(シリンダーの断面積−2つのスクリューの断面積)×リードの長さ×スクリュー回転数(/時間)}
また、樹脂圧センサーで、この注水部分の樹脂圧を測定すると、2.0MPaであった。
The barrel set temperature of the extruder is 270 ° C., the screw rotation speed is 400 rpm, and the electric conductivity is 1 using a plunger pump from the liquid injection plug installed in the C10 cylinder of the screw configuration A in FIG. 3 in the kneading zone. 0.5 parts by mass of ion-exchanged water produced by a 2-bed, 3-tower pure water apparatus of 5 μS / cm was injected with respect to 100 parts by mass of the polycarbonate resin. The electrical conductivity was measured at 25 ° C. using a conductivity meter manufactured by Electrochemical Instruments.
The resin filling rate in the reduced pressure zone was 13% by volume, and the resin filling rate in the kneading zone was 99% by volume.
In addition, the filling rate of resin was calculated | required with the following formula | equation.
Discharge rate (kg / hour) / {resin specific gravity × (cylinder cross-sectional area−two screw cross-sectional area) × lead length × screw rotation speed (/ hour)}
Further, when the resin pressure in the water injection portion was measured with a resin pressure sensor, it was 2.0 MPa.

次いで、C14シリンダーのベント口から、減圧度が−0.09MPaとなるように、真空ポンプで吸引して、水と揮発成分を吸引除去することにより、樹脂中の水分濃度を38ppmになるように調整した。
次に、押出機の先端の押出ノズルから、直径4mmの円形断面のストランドとして押し出した。押出された直後のストランド温度は、310℃であった。
押出されたストランドを、電気伝導度が1.5μS/cmの2床3塔式純水装置で製造したイオン交換水を収容した水槽に導入して冷却した。水槽は水をオーバフローすることにより、温度を40℃〜70℃の範囲に調整した。
ストランドは103℃まで冷却され、ペレタイザーに挿入してカッティングした。ストランド温度が130℃を超えるとカッターに巻きつき良好なペットは得られなかった。切断面にもヒゲが見られた。また、70℃より低いとカッティング時にペレットが割れるなどの不都合を生じ、意匠が低下した。103℃カッティングされたペレットは切断面も美しく良好な形状であった。カッティング後3分以内にペレットを室温の真空乾燥機に室温で5分入れペレット表面に付着した水を取り除きペレットの水分率を測定した。
Next, the water concentration in the resin is adjusted to 38 ppm by sucking and removing water and volatile components from the vent opening of the C14 cylinder with a vacuum pump so that the degree of vacuum is -0.09 MPa. It was adjusted.
Next, it extruded from the extrusion nozzle of the front-end | tip of an extruder as a strand of a circular cross section with a diameter of 4 mm. The strand temperature immediately after extrusion was 310 ° C.
The extruded strand was introduced into a water tank containing ion-exchanged water produced by a two-bed / three-column pure water apparatus having an electric conductivity of 1.5 μS / cm and cooled. The water tank was adjusted to a temperature range of 40 ° C. to 70 ° C. by overflowing water.
The strand was cooled to 103 ° C., inserted into a pelletizer and cut. When the strand temperature exceeded 130 ° C., a good pet wound around the cutter could not be obtained. Beard was also seen on the cut surface. On the other hand, when the temperature is lower than 70 ° C., the pellets are broken at the time of cutting, and the design is lowered. The pellets cut at 103 ° C. had a beautiful and good cut surface. Within 3 minutes after cutting, the pellets were placed in a vacuum dryer at room temperature for 5 minutes at room temperature to remove the water adhering to the pellet surface, and the moisture content of the pellets was measured.

次いで、このペレットをステンレス丸型タンク(10L容積、型式ST−24:湘南科学株から購入)に3kg入れ蓋を開放し、湿潤空気に3時間触れさせ熟成させた。3時間後に取り出したペレットの水分率と帯電量を測定した。結果を表3に示す。
なお、水分率測定は微量水分測定装置(三菱化学社製 CA−100)を用いて測定した。
帯電量はハンディーセンサーSK−030(キーエンス社製)で測定した。
Next, 3 kg of this pellet was placed in a stainless round tank (10 L capacity, model ST-24: purchased from Shonan Scientific Co., Ltd.), the lid was opened, and the pellet was aged by being exposed to wet air for 3 hours. The moisture content and charge amount of the pellets taken out after 3 hours were measured. The results are shown in Table 3.
The moisture content was measured using a trace moisture measuring device (CA-100, manufactured by Mitsubishi Chemical Corporation).
The charge amount was measured with a handy sensor SK-030 (manufactured by Keyence Corporation).

また、得られたペレットのメチレンクロライド含有量と溶出塩素濃度は、以下の方法で測定した。
(メチレンクロライドの測定方法)
窒素ガスの70ml/分の流通下で、300℃に設定した気化装置(MCI社製UA−21)の加熱炉に、ペレット4g以上をセットし、発生したガス及び窒素ガスをジオキサン20ml及び内部標準(クロロホルム0.08mg/mlジオキサン溶液)5mlを入れた吸収管(13±1℃に冷却)に60分間導入。得られた吸収液をFlame Ionization Detector付きガスクロマトグラフィ(島津製作所社製GC−14A)にて測定(内部標準法)した。
測定条件は以下の通りである。
カラム
・SUSカラム 3mmφ×2m
・充填剤 silicone DC−550 25%
80/100mesh
Celite545 sk DMCS
・カラム温度 60℃
インジェクション温度 250℃
ディテクター温度 250℃
・ガス 空気 0.60kg/cm
水素 0.60kg/cm
キャリアガス(ヘリウム) 1.15kg/cm
・試料注入量 3μL
Further, the methylene chloride content and the eluted chlorine concentration of the obtained pellets were measured by the following methods.
(Measurement method of methylene chloride)
Under a flow of 70 ml / min of nitrogen gas, set 4 g or more of pellets in a heating furnace of a vaporizer (UA-21 manufactured by MCI) set at 300 ° C., and generate 20 ml of dioxane and an internal standard for the generated gas and nitrogen gas. (Chloroform 0.08 mg / ml dioxane solution) introduced into an absorption tube (cooled to 13 ± 1 ° C.) containing 5 ml for 60 minutes. The obtained absorbing solution was measured (internal standard method) with a gas chromatography with a Frame Ionization Detector (GC-14A manufactured by Shimadzu Corporation).
The measurement conditions are as follows.
Column ・ SUS column 3mmφ × 2m
・ Filler silicon DC-550 25%
80/100 mesh
Celite545 sk DMCS
・ Column temperature 60 ℃
Injection temperature 250 ℃
Detector temperature 250 ℃
・ Gas air 0.60kg / cm 2
Hydrogen 0.60kg / cm 2
Carrier gas (helium) 1.15 kg / cm 2
・ Sample injection volume 3μL

(溶出塩素濃度の測定方法)
純水で洗浄済みの蓋付きポリプロピレン製容器にペレット50gと純水100gを仕込み、50℃のクリーンオーブン内に3時間保持後、ペレットと水相を分離し、得られた水相を濃縮モジュール(日本ダイオネクス社製試料濃縮モジュールSPU−300)を具備したイオンクロマトグラフ(日本ダイオネクス社製イオンクロマトグラフDX−AQ)を用い、液相中の塩素イオン成分を測定(絶対検量線法)した。測定条件は以下の通りである。
・カラム 日本ダイオネクス社製分析カラム AS12A
日本ダイオネクス社製ガードカラム AG12A
日本ダイオネクス社製濃縮カラム AG4A−SC
・サプレッサー 日本ダイオネクス社製サプレッサーASRS300 4mm
・溶離液 2.7mM炭酸ナトリウム+0.3mM炭酸水素ナトリウム
・溶離液流量 1.5ml/分
・試料注入量(濃縮装置設定条件) 1.5ml/分にて4分間、濃縮カラムに流通・濃縮
・検出感度 RANGE:3μS 温度補正:1.7/℃
・サプレッサー電流値 50mA
(Measurement method of elution chlorine concentration)
A polypropylene container with a lid that has been washed with pure water is charged with 50 g of pellets and 100 g of pure water, kept in a clean oven at 50 ° C. for 3 hours, and then the pellets and the aqueous phase are separated. A chloride ion component in the liquid phase was measured (absolute calibration curve method) using an ion chromatograph (Nippon Dionex Corporation's ion chromatograph DX-AQ) equipped with a sample concentration module SPU-300 manufactured by Nippon Dionex. The measurement conditions are as follows.
・ Column Analytical column AS12A manufactured by Nippon Dionex
Guard column AG12A made by Nippon Dionex
Concentrated column AG4A-SC manufactured by Nippon Dionex
・ Suppressor Nippon Dionex Suppressor ASRS300 4mm
・ Eluent: 2.7 mM sodium carbonate + 0.3 mM sodium bicarbonate ・ Eluent flow rate: 1.5 ml / min ・ Sample injection volume (concentrator setting conditions) Flow and concentrate in the concentration column at 1.5 ml / min for 4 minutes Detection sensitivity RANGE: 3 μS Temperature correction: 1.7 / ° C
・ Suppressor current value 50mA

さらに、得られたペレットを、120℃で5時間加熱乾燥し、住友重機社製射出成形機SH100を用い、シリンダー温度290℃、金型温度80℃の条件で、100mm×100mm×3mmの平板状の成形品を成形した。シルバー(銀条)や気泡の発生がない良好な成形品が得られた。   Furthermore, the obtained pellet was heat-dried at 120 ° C. for 5 hours, and a flat plate shape of 100 mm × 100 mm × 3 mm was used under the conditions of a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. using an injection molding machine SH100 manufactured by Sumitomo Heavy Industries. The molded product was molded. A good molded article free from silver (silver strip) and air bubbles was obtained.

得られた平板状成形品を用いて、色調(イエローインデックス(YI値))の測定を行った。
イエローインデックス(YI値)は、JIS K−7105に準じ、上記3mm厚の平板を試験片とし、日本電色工業社製のSE2000型分光式色彩計で測定した。
以上の評価結果を表3に示した。
The color tone (yellow index (YI value)) was measured using the obtained flat molded article.
The yellow index (YI value) was measured according to JIS K-7105, using the above-mentioned 3 mm-thick flat plate as a test piece, with a SE2000 type spectral colorimeter manufactured by Nippon Denshoku Industries Co., Ltd.
The above evaluation results are shown in Table 3.

(実施例2)
PC−1の代わりにPC−2を使用した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(実施例3)
窒素ガスの供給量を増やし、ホッパーシュート内の酸素濃度を0.1容量%以下とした以外は実施例1と同様にして、ぺレットの製造を行った。結果を表3に示す。
(実施例4)
窒素ガスの供給量を減らし、ホッパーシュート内の酸素濃度を2.1容量%とした以外は実施例1と同様にして、ぺレットの製造を行った。結果を表3に示す。
(Example 2)
Pellets were produced in the same manner as in Example 1 except that PC-2 was used instead of PC-1. The results are shown in Table 3.
Example 3
A pellet was manufactured in the same manner as in Example 1 except that the supply amount of nitrogen gas was increased and the oxygen concentration in the hopper chute was 0.1% by volume or less. The results are shown in Table 3.
Example 4
A pellet was manufactured in the same manner as in Example 1 except that the supply amount of nitrogen gas was reduced and the oxygen concentration in the hopper chute was 2.1% by volume. The results are shown in Table 3.

(実施例5)
定量フィーダー(クボタ社製 ベルトウェイングフィーダ ワイドレンジ B−WF)の材料供給口から二軸押出機の材料供給口までの距離(高さ)を60cmに設定した以外は実施例1と同様にして、ぺレットの製造を行った。結果を表3に示す。
(Example 5)
Except that the distance (height) from the material supply port of the quantitative feeder (Belt Weighing Feeder Wide Range B-WF manufactured by Kubota) to the material supply port of the twin screw extruder was set to 60 cm, the same as in Example 1. The pellets were manufactured. The results are shown in Table 3.

(実施例6)
注水量を0.2質量部にした以外は実施例1と同様にして、ぺレットの製造を行った。結果を表3に示す。
(実施例7)
注水量を1.5質量部とした以外は実施例1と同様にして、ぺレットの製造を行った。結果を表3に示す。
(Example 6)
A pellet was produced in the same manner as in Example 1 except that the amount of water injected was 0.2 parts by mass. The results are shown in Table 3.
(Example 7)
A pellet was produced in the same manner as in Example 1 except that the amount of water injected was 1.5 parts by mass. The results are shown in Table 3.

(実施例8)
混床式純水装置で作られた電気伝導度0.5μS/cmの純水を注水した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(Example 8)
Pellets were produced in the same manner as in Example 1 except that pure water having an electric conductivity of 0.5 μS / cm made with a mixed bed pure water apparatus was poured. The results are shown in Table 3.

(実施例9)
二床三塔型純水装置による純水と水道水とを混ぜて、電気伝導度9μS/cmの水を注水した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(実施例10)
二床三塔型純水装置による純水と水道水とを混ぜて、電気伝導度17μS/cmの水を注水した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
Example 9
Pellets were produced in the same manner as in Example 1 except that pure water and tap water were mixed using a two-bed / three-column type pure water apparatus, and water having an electric conductivity of 9 μS / cm was injected. The results are shown in Table 3.
(Example 10)
Pellets were produced in the same manner as in Example 1 except that pure water and tap water were mixed with a two-bed / three-column type pure water apparatus, and water having an electric conductivity of 17 μS / cm was injected. The results are shown in Table 3.

(実施例11)
水槽に混床式純水装置で作られた電気伝導度0.5μS/cmの純水を満たし、ストランドを冷却した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(実施例12)
水槽に二床三塔型純水装置による純水と水道水とを混ぜて、電気伝導度9μS/cmの水を満たし、ストランドを冷却した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(実施例13)
水槽に二床三塔型純水装置による純水と水道水とを混ぜて、電気伝導度17μS/cmの水を満たし、ストランドを冷却した以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(Example 11)
Pellets were produced in the same manner as in Example 1 except that the water tank was filled with pure water having an electric conductivity of 0.5 μS / cm made with a mixed bed pure water device and the strand was cooled. The results are shown in Table 3.
(Example 12)
The pellets were produced in the same manner as in Example 1 except that the water tank was mixed with pure water and tap water by a two-bed / three-column pure water device, filled with water having an electric conductivity of 9 μS / cm, and cooled in the strand. went. The results are shown in Table 3.
(Example 13)
The pellets were produced in the same manner as in Example 1 except that the water tank was mixed with pure water and tap water by a two-bed / three-column type pure water device, filled with water having an electric conductivity of 17 μS / cm, and the strand was cooled. went. The results are shown in Table 3.

(実施例14)
水槽冷却距離を短くし、カッティング時のストランド温度を118℃に上げた以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(実施例15)
水槽冷却距離を長くし、カッティング時のストランド温度を79℃に下げた他は実施例1と同様にしてペレットの製造を行った。結果を表3に示す。
(実施例16)
熟成工程を7時間にした以外は実施例1と同様にして、ペレットの製造を行った。結果を表3に示す。
(Example 14)
Pellets were produced in the same manner as in Example 1 except that the water bath cooling distance was shortened and the strand temperature during cutting was increased to 118 ° C. The results are shown in Table 3.
(Example 15)
Pellets were produced in the same manner as in Example 1 except that the water bath cooling distance was increased and the strand temperature during cutting was lowered to 79 ° C. The results are shown in Table 3.
(Example 16)
Pellets were produced in the same manner as in Example 1 except that the aging step was 7 hours. The results are shown in Table 3.

なお、表3以下において、「ペレット形状」および「総合評価」の欄の○×は、下記表2の基準で判定した。

Figure 0004977786
In Table 3 and below, “X” in the columns of “pellet shape” and “overall evaluation” were determined according to the criteria in Table 2 below.
Figure 0004977786

Figure 0004977786
Figure 0004977786

(比較例1)
PC−1の代わりにPC−3を用いた以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(Comparative Example 1)
Pellets were produced in the same manner as in Example 1 except that PC-3 was used instead of PC-1. The results are shown in Table 4.

(比較例2)
窒素ガスの供給量を減らし、ホッパーシュート内の酸素濃度を4.0容量%とした以外は実施例1と同様にして、ぺレットの製造を行った。結果を表4に示す。
(比較例3)
窒素の供給をやめ、ホッパーシュート内の酸素濃度を21容量%とした他は実施例1と同様にして、ぺレットの製造を行った。結果を表4に示す。
(Comparative Example 2)
A pellet was produced in the same manner as in Example 1 except that the supply amount of nitrogen gas was reduced and the oxygen concentration in the hopper chute was 4.0% by volume. The results are shown in Table 4.
(Comparative Example 3)
A pellet was produced in the same manner as in Example 1 except that the supply of nitrogen was stopped and the oxygen concentration in the hopper chute was changed to 21% by volume. The results are shown in Table 4.

(比較例4)
定量フィーダー(クボタ社製 ベルトウェイングフィーダ ワイドレンジ B−WF)の材料供給口から二軸押出機の材料供給口までの距離(垂直高さ)を40cmに設定した以外は実施例1と同様にして、ぺレットの製造を行った。結果を表4に示す。
(Comparative Example 4)
The same as Example 1 except that the distance (vertical height) from the material supply port of the quantitative feeder (Belt Weighing Feeder Wide Range B-WF manufactured by Kubota) to the material supply port of the twin screw extruder was set to 40 cm. The pellets were manufactured. The results are shown in Table 4.

(比較例5)
二床三塔型純水装置による純水と水道水とを混ぜて、電気伝導度33μS/cmの水を注水した以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(比較例6)
水槽に二床三塔型純水装置による純水と水道水とを混ぜて、電気伝導度33μS/cmの水を満たし、ストランドを冷却した他は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(Comparative Example 5)
Pellets were produced in the same manner as in Example 1 except that pure water and tap water were mixed using a two-bed / three-column type pure water apparatus, and water having an electric conductivity of 33 μS / cm was injected. The results are shown in Table 4.
(Comparative Example 6)
The pellets were produced in the same manner as in Example 1 except that the water tank was mixed with pure water and tap water by a two-bed / three-column pure water device, filled with water having an electric conductivity of 33 μS / cm, and cooled in the strand. went. The results are shown in Table 4.

(比較例7)
注水をやめた以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(比較例8)
注水量を0.05質量部とした以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(Comparative Example 7)
Pellets were produced in the same manner as in Example 1 except that the water injection was stopped. The results are shown in Table 4.
(Comparative Example 8)
Pellets were produced in the same manner as in Example 1 except that the amount of water injected was 0.05 parts by mass. The results are shown in Table 4.

(比較例9)
注水量を2.5質量部とした以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
押出し終了時にベントを空けると樹脂が上がって来ていた(ベントアップ。長時間の連続生産では真空系が樹脂により閉塞する可能性があり、安定生産は無理と判断された)。
(Comparative Example 9)
Pellets were produced in the same manner as in Example 1 except that the amount of water injected was 2.5 parts by mass. The results are shown in Table 4.
When the vent was opened at the end of extrusion, the resin had risen (vent up. In a long-term continuous production, the vacuum system could be blocked by the resin, and it was judged that stable production was impossible).

(比較例10)スクリュー回転数を900rpmにした以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。 (Comparative Example 10) Pellets were produced in the same manner as in Example 1 except that the screw rotation speed was 900 rpm. The results are shown in Table 4.

(比較例11)
水槽冷却距離を短くし、カッティング時のストランド温度を132℃まで上げた以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(比較例12)
水槽冷却距離を長くし、カッティング時のストランド温度を65℃まで下げた以外は実施例1と同様にして、ペレットの製造を行った。結果を表4に示す。
(比較例13)
実施例1において、熟成工程を経ずペレットの帯電量を測定した。帯電量は10.2kVであり、空気中の塵が吸着し易かった。結果を表4に示す。
(Comparative Example 11)
Pellets were produced in the same manner as in Example 1 except that the water tank cooling distance was shortened and the strand temperature during cutting was increased to 132 ° C. The results are shown in Table 4.
(Comparative Example 12)
Pellets were produced in the same manner as in Example 1 except that the water tank cooling distance was increased and the strand temperature during cutting was lowered to 65 ° C. The results are shown in Table 4.
(Comparative Example 13)
In Example 1, the charge amount of the pellet was measured without going through the aging process. The charge amount was 10.2 kV, and dust in the air was easily adsorbed. The results are shown in Table 4.

Figure 0004977786
Figure 0004977786

(実施例17)
スクリュー回転数を700rpmにした以外は実施例1と同様にして、ペレットの製造を行った。
結果を表5に示す。
(実施例18)
吐出量を70kg/hr、スクリュー回転数を300rpmにした他は実施例1と同様にしてペレットの製造を行った。結果を表5に示す。
(Example 17)
Pellets were produced in the same manner as in Example 1 except that the screw rotation speed was 700 rpm.
The results are shown in Table 5.
(Example 18)
Pellets were produced in the same manner as in Example 1 except that the discharge amount was 70 kg / hr and the screw rotation speed was 300 rpm. The results are shown in Table 5.

(実施例19)
スクリュー構成を、図3のスクリュー構成Bとした以外は実施例18と同様にして、ペレットを製造した。スクリュー構成Bとは、スクリュー構成Aの減圧ゾーンのスクリューのリードを1.0Dとした構成である。結果を表5に示す。
(Example 19)
Pellets were produced in the same manner as in Example 18 except that the screw configuration was changed to the screw configuration B in FIG. The screw configuration B is a configuration in which the screw lead in the decompression zone of the screw configuration A is 1.0D. The results are shown in Table 5.

(実施例20)
スクリュー構成を、図3のスクリュー構成Cとした以外は実施例1と同様にして、ペレットを製造した。
スクリュー構成Cとは、以下の構成を有する。
a)溶融ゾーン:長さ31.5D、リード1.5Dの順送りスクリューを連結した。
b)混練ゾーン:長さ4.5D
送り方向に向かって、順送りニーディングエレメント1.0D、逆送りニーディングエレメント0.5D及び順送りニーディングエレメント1.0D、直交ニーディングエレメント1.0D、逆送りニーディング1.0からなる。
c)減圧ゾーン:長さ16.5D、リード1.5Dの順送りスクリューを連結した。
結果を表5に示す。
(Example 20)
Pellets were produced in the same manner as in Example 1 except that the screw configuration was changed to the screw configuration C in FIG.
The screw configuration C has the following configuration.
a) Melting zone: A forward feed screw having a length of 31.5D and a lead of 1.5D was connected.
b) Kneading zone: Length 4.5D
The feed kneading element 1.0D, the reverse feed kneading element 0.5D, the forward feed kneading element 1.0D, the orthogonal kneading element 1.0D, and the reverse feed kneading 1.0 are formed in the feed direction.
c) Depressurization zone: A forward screw having a length of 16.5D and a lead of 1.5D was connected.
The results are shown in Table 5.

(実施例21)
スクリュー構成を、図3のスクリュー構成Dとした以外は実施例1と同様にして、ペレットを製造した。
a)溶融ゾーン:長さ41.5D、リード1.5Dの順送りスクリューを連結した。
b)混練ゾーン:長さ4.0D
送り方向に向かって、順送りニーディングエレメント1D、逆送りニーディングエレメント0.5D及び順送りニーディングエレメント1.0D、直交ニーディングエレメント1.0D、逆送りスクリュー0.5Dからなる。なお、C13シリンダーには液注プラグを取り付け、プランジャーポンプで水を添加した。
c)減圧ゾーン:長さ7.0D、リード1.5Dの順送りスクリューを連結した。この樹脂送りゾーンを減圧部の長さとした。
結果を表5に示す。
(Example 21)
Pellets were produced in the same manner as in Example 1 except that the screw configuration was changed to the screw configuration D in FIG.
a) Melting zone: A forward feed screw having a length of 41.5D and a lead of 1.5D was connected.
b) Kneading zone: Length 4.0D
The feed kneading element 1D, the reverse feed kneading element 0.5D, the forward feed kneading element 1.0D, the orthogonal kneading element 1.0D, and the reverse feed screw 0.5D are formed in the feed direction. In addition, the liquid injection plug was attached to C13 cylinder, and water was added with the plunger pump.
c) Decompression zone: A forward feed screw having a length of 7.0D and a lead of 1.5D was connected. This resin feed zone was the length of the decompression section.
The results are shown in Table 5.

Figure 0004977786
Figure 0004977786

(実施例22)
実施例1において、ペレットを乾燥すること無しに、住友重機社製射出成形機SH100を用い、シリンダー温度290℃、金型温度80℃の条件で、100mm×100mm×3mmの平板状の成形品を成形した。極めて僅かながらシルバー(銀条)見られたが問題の無い範囲であった。
(Example 22)
In Example 1, a plate-shaped molded product of 100 mm × 100 mm × 3 mm was used without drying the pellets, using an injection molding machine SH100 manufactured by Sumitomo Heavy Industries, Ltd. under conditions of a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. Molded. Although very slightly silver (silver strip) was seen, it was in a range where there was no problem.

本発明の製造方法によれば、塩素化合物等の不純物含有量が極めて少なく、また樹脂の劣化が少なくて黄変の発生がなく、ペレット外観が良好で、樹脂添加剤フリーで使用可能なポリカーボネート樹脂ペレットを製造することができ、極めて清浄度の高い高品質の成形品が得られるので、電気電子部品分野等での広い分野に適用でき、産業上の利用性は非常に高い。   According to the production method of the present invention, the content of impurities such as chlorine compounds is extremely low, the resin is hardly deteriorated, yellowing does not occur, the pellet appearance is good, and the resin can be used free of resin additives. Since pellets can be manufactured and a high-quality molded product with extremely high cleanliness can be obtained, it can be applied to a wide range of fields such as electrical and electronic parts, and industrial applicability is very high.

Claims (9)

微量のメチレンクロライドを含有するポリカーボネート樹脂から、メチレンクロライド含有量が低減されたポリカーボネート樹脂ペレットを製造する方法であって、
1)微量のメチレンクロライドを含有するポリカーボネートとして比表面積が0.008m/g以上で、50質量%以上が200〜2,000μmの粒径を有する粉粒体形状のポリカーボネート樹脂を用い、
2)粉粒体形状のポリカーボネート樹脂を、酸素濃度が3容量%以下の不活性ガス雰囲気中を50cm以上落下移動させる不活性ガス処理工程、
3)不活性ガス処理された粉粒体形状のポリカーボネート樹脂をベント式押出機に供給し、混練ゾーンにおいて、電気伝導度が30μS/cm以下である水を、ポリカーボネート樹脂100質量部に対し0.1〜2質量部注入する工程、
4)押出機の水注入部より下流側に設けられたベント口を減圧状態にして吸引することにより、溶融状態の樹脂から前記水と共にメチレンクロライドを吸引除去すると共に、樹脂中の水分濃度を10〜200ppmに調整する工程、
5)押出機のダイから押し出されたストランド状の溶融樹脂を電気伝導度が30μS/cm以下である水中に導入して冷却する工程、
6)ストランドを70℃〜130℃の範囲でカッティングし、水分を10〜200ppm含水するペレットを得る工程、
7)得られた、水分を10〜200ppm含有するペレットを湿潤雰囲気下に置くことにより更に含水させ、含水率を、ペレットの元の含水率を超え、1300ppm以下に調整する熟成工程
を含むことを特徴とするポリカーボネート樹脂ペレットの製造方法。
A method for producing a polycarbonate resin pellet having a reduced methylene chloride content from a polycarbonate resin containing a small amount of methylene chloride,
1) As a polycarbonate containing a small amount of methylene chloride, a polycarbonate resin in the form of a granular material having a specific surface area of 0.008 m 2 / g or more and 50% by mass or more having a particle size of 200 to 2,000 μm is used.
2) An inert gas treatment step in which a polycarbonate resin in the form of granules is dropped and moved by 50 cm or more in an inert gas atmosphere having an oxygen concentration of 3% by volume or less,
3) The inert gas-treated polycarbonate resin in the form of granules is supplied to a vent-type extruder, and in the kneading zone, water having an electric conductivity of 30 μS / cm or less is added to 0.1 parts by mass of 100 parts by mass of the polycarbonate resin. Injecting 1 to 2 parts by mass;
4) By suctioning the vent port provided on the downstream side of the water injection portion of the extruder under reduced pressure, the methylene chloride is sucked and removed together with the water from the molten resin, and the water concentration in the resin is 10 Adjusting to ˜200 ppm,
5) A step of introducing and cooling the strand-shaped molten resin extruded from the die of the extruder into water having an electric conductivity of 30 μS / cm or less,
6) A step of cutting the strand in the range of 70 ° C to 130 ° C to obtain pellets containing 10 to 200 ppm of water,
7) including a aging step of further hydrating the obtained pellets containing 10 to 200 ppm of moisture in a wet atmosphere and adjusting the moisture content to exceed the original moisture content of the pellets and to 1300 ppm or less. A method for producing polycarbonate resin pellets.
熟成工程を経て得られた含水状態のペレットを乾燥する乾燥工程を更に行うことを特徴とする請求項1に記載のポリカーボネート樹脂ペレットの製造方法。   The method for producing a polycarbonate resin pellet according to claim 1, further comprising a drying step of drying the moisture-containing pellet obtained through the aging step. 粉粒体形状のポリカーボネート樹脂を不活性ガスで処理するに当たり、粉流体を落下状態で供給し、不活性ガスを下方から、粉粒体に対して向流となるように供給することを特徴とする請求項1または2に記載のポリカーボネート樹脂ペレットの製造方法。   When processing a polycarbonate resin in the form of a granular material with an inert gas, the powdered fluid is supplied in a falling state, and the inert gas is supplied from below so as to be countercurrent to the granular material. The manufacturing method of the polycarbonate resin pellet of Claim 1 or 2. ベント式押出機のバレル中の酸素濃度を3容量%以下とすることを特徴とする請求項1乃至3のいずれかに記載のポリカーボネート樹脂ペレットの製造方法。   The method for producing a polycarbonate resin pellet according to any one of claims 1 to 3, wherein the oxygen concentration in the barrel of the vent type extruder is 3% by volume or less. 水を注入する混練ゾーンが、樹脂の充満領域であり、樹脂圧力が0.5〜10MPaの範囲であることを特徴とする請求項1乃至4のいずれかに記載のポリカーボネート樹脂ペレットの製造方法。   The method for producing polycarbonate resin pellets according to any one of claims 1 to 4, wherein the kneading zone for injecting water is a resin-filled region and the resin pressure is in the range of 0.5 to 10 MPa. 押出機の減圧部での樹脂充満率が5〜30容量%である領域の長さが、8.0D(Dは押出機のシリンダー内径)以上であることを特徴とする請求項1乃至5のいずれかに記載のポリカーボネート樹脂ペレットの製造方法。   The length of the region where the resin filling rate in the decompression part of the extruder is 5 to 30% by volume is 8.0 D or more (D is the cylinder inner diameter of the extruder) or more. The manufacturing method of the polycarbonate resin pellet in any one. ストランドを冷却する水の温度が30〜90℃であることを特徴とする請求項1乃至6のいずれかに記載のポリカーボネート樹脂ペレットの製造方法。   The temperature of the water which cools a strand is 30-90 degreeC, The manufacturing method of the polycarbonate resin pellet in any one of the Claims 1 thru | or 6 characterized by the above-mentioned. 請求項1乃至7のいずれか1項に記載の製造方法で製造されたポリカーボネート樹脂ペレット。   The polycarbonate resin pellet manufactured with the manufacturing method of any one of Claims 1 thru | or 7. 請求項8に記載のポリカーボネート樹脂ペレットを用いたことを特徴とする電気電子機器部品搬送用ケース。   A case for conveying parts of electrical and electronic equipment, wherein the polycarbonate resin pellet according to claim 8 is used.
JP2011025860A 2011-02-09 2011-02-09 Method for producing polycarbonate resin pellets Active JP4977786B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011025860A JP4977786B1 (en) 2011-02-09 2011-02-09 Method for producing polycarbonate resin pellets
KR1020127014144A KR101201265B1 (en) 2011-02-09 2012-01-19 Method for producing polycarbonate pellet
PCT/JP2012/051052 WO2012108245A1 (en) 2011-02-09 2012-01-19 Process for production of polycarbonate resin pellets
CN201280000639.9A CN102781640B (en) 2011-02-09 2012-01-19 Process for production of polycarbonate resin pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025860A JP4977786B1 (en) 2011-02-09 2011-02-09 Method for producing polycarbonate resin pellets

Publications (2)

Publication Number Publication Date
JP4977786B1 true JP4977786B1 (en) 2012-07-18
JP2012162048A JP2012162048A (en) 2012-08-30

Family

ID=46638463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025860A Active JP4977786B1 (en) 2011-02-09 2011-02-09 Method for producing polycarbonate resin pellets

Country Status (4)

Country Link
JP (1) JP4977786B1 (en)
KR (1) KR101201265B1 (en)
CN (1) CN102781640B (en)
WO (1) WO2012108245A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264809B2 (en) * 2012-09-26 2018-01-24 三菱ケミカル株式会社 Method for producing polycarbonate resin
WO2014148577A1 (en) 2013-03-21 2014-09-25 日本ゼオン株式会社 Slurry for lithium ion secondary battery porous film, production method therefor, separator for lithium ion secondary battery, and lithium ion secondary battery
JP6247515B2 (en) * 2013-12-06 2017-12-13 帝人株式会社 Molded product and manufacturing method thereof
CN104710636B (en) * 2015-02-16 2016-02-24 聊城鲁西聚碳酸酯有限公司 A kind of system and technique preparing polycarbonate sheet
JP6543969B2 (en) * 2015-03-09 2019-07-17 三菱エンジニアリングプラスチックス株式会社 Method for producing aromatic polycarbonate resin molded article
JP6464835B2 (en) * 2015-03-09 2019-02-06 三菱エンジニアリングプラスチックス株式会社 Method for producing molded product of aromatic polycarbonate resin
CN107922629B (en) * 2015-08-11 2021-03-30 三菱工程塑料株式会社 Polycarbonate resin pellet and method for producing same
WO2017159727A1 (en) * 2016-03-15 2017-09-21 出光興産株式会社 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device
KR20180078906A (en) * 2016-12-30 2018-07-10 롯데첨단소재(주) Container for precision member and method for preparing the same
JP7037721B2 (en) * 2017-12-08 2022-03-17 日立金属株式会社 Manufacturing method of pressure sensor and pressure sensor
KR20210063644A (en) * 2019-11-25 2021-06-02 주식회사 엘지화학 Extruder
KR20210063643A (en) * 2019-11-25 2021-06-02 주식회사 엘지화학 Extruder
CN114536583A (en) * 2022-01-17 2022-05-27 中山市武汉理工大学先进工程技术研究院 Thermoplastic resin high-temperature melt extrusion molding and granulating method capable of sufficiently removing oxygen
LU502091B1 (en) 2022-05-13 2023-11-13 saperatec GmbH Method and apparatus for removing low molecular impurities from an impure extrudable material
WO2024042778A1 (en) * 2022-08-24 2024-02-29 三菱エンジニアリングプラスチックス株式会社 Fibrous filler stirring/supplying device, supply method, manufacturing method, and manufacturing method for thermoplastic resin composition
WO2024048485A1 (en) * 2022-09-01 2024-03-07 三菱瓦斯化学株式会社 Method for producing polycarbonate resin molded product

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266524A (en) * 1988-09-01 1990-03-06 Konica Corp Wavelength conversion element
JPH0454151A (en) * 1990-06-25 1992-02-21 Seiko Epson Corp Ester compound
JPH0966524A (en) * 1995-06-20 1997-03-11 Mitsubishi Gas Chem Co Inc Manufacture of polycarbonate resin pellet
JP2855572B2 (en) * 1996-01-16 1999-02-10 旭化成工業株式会社 Polycarbonate pellet and method for producing the same
JP2000052402A (en) * 1998-08-05 2000-02-22 Teijin Chem Ltd Production of aromatic polycarbonate molded product
JP2003094435A (en) * 2001-09-25 2003-04-03 Teijin Ltd Method for manufacturing crystalline aromatic polycarbonate granular molded object
DE60327509D1 (en) * 2002-01-23 2009-06-18 Idemitsu Kosan Co AROMATIC POLYCARBONATE RESIN, MANUFACTURING METHOD, MOLDING FOR OPTICAL PARTS AND OPTICAL PART
JP4544043B2 (en) * 2005-06-08 2010-09-15 三菱エンジニアリングプラスチックス株式会社 Powder raw material supply apparatus and method
JP2008018594A (en) * 2006-07-12 2008-01-31 Teijin Chem Ltd Manufacturing method of polycarbonate resin pellet and housing feed container of silicon wafer or magnetic disk formed from pellet
KR101436659B1 (en) * 2007-02-02 2014-09-01 데이진 가부시키가이샤 Polycarbonate resin and method for producing the same
JP2009184266A (en) * 2008-02-07 2009-08-20 Mitsubishi Engineering Plastics Corp Molding system of polycarbonate resin molded article, molding process, and polycarbonate resin molded article
JP5324354B2 (en) * 2009-08-12 2013-10-23 三菱エンジニアリングプラスチックス株式会社 Method for producing polycarbonate resin molding material

Also Published As

Publication number Publication date
KR101201265B1 (en) 2012-11-14
KR20120101665A (en) 2012-09-14
WO2012108245A1 (en) 2012-08-16
JP2012162048A (en) 2012-08-30
CN102781640A (en) 2012-11-14
CN102781640B (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP4977786B1 (en) Method for producing polycarbonate resin pellets
TWI438239B (en) Flame retardancy polycarbonate composition
KR102520297B1 (en) Polycarbonate resin pellets and manufacturing method thereof
KR101913449B1 (en) Method for producing polycarbonate, and polycarbonaet pellets
JP5324354B2 (en) Method for producing polycarbonate resin molding material
KR20160037896A (en) Polycarbonate resin composition for thin optical component, and thin optical component
KR20120115234A (en) Polycarbonate resin composition and molded article
JP6275077B2 (en) Polycarbonate resin composition
WO2012111721A1 (en) Polycarbonate resin composition
KR20120117755A (en) Polycarbonate resin composition and molded article
KR101622905B1 (en) Polycarbonate resin pellet for thin optical members and method for manufacturing same
KR102103030B1 (en) Production method of molded article of polycarbonate resin, and molded article of polycarbonate resin
KR20120120142A (en) Polycarbonate resin composition and molded article
EP0870791B1 (en) Reducing ionic impurities content in polycarbonate resins
KR20180014821A (en) The dehydration method of the polymer and the polymer produced therefrom
JP2012067294A (en) Polycarbonate resin composition and molding
JP2014180856A (en) Method for manufacturing extrusion-molded polycarbonate resin article
JP2010275466A (en) Polycarbonate resin pellet, method for producing the same and molded article of the same
JP6056248B2 (en) Method for producing polycarbonate resin
JP2021080328A (en) Method for producing polycarbonate resin composition
JP2016113570A (en) Polycarbonate resin composition for supercritical foam molding and molded article
JP2022027579A (en) Method for producing polycarbonate resin composition pellet
JP6438291B2 (en) Polycarbonate resin composition for supercritical foam molding and molded product
JP2022027580A (en) Method for producing polycarbonate resin composition pellet
JP2022027581A (en) Method for producing polycarbonate resin composition pellet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250