JP4972532B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4972532B2
JP4972532B2 JP2007320752A JP2007320752A JP4972532B2 JP 4972532 B2 JP4972532 B2 JP 4972532B2 JP 2007320752 A JP2007320752 A JP 2007320752A JP 2007320752 A JP2007320752 A JP 2007320752A JP 4972532 B2 JP4972532 B2 JP 4972532B2
Authority
JP
Japan
Prior art keywords
compressor
compressors
air conditioner
temperature
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007320752A
Other languages
Japanese (ja)
Other versions
JP2009144950A (en
Inventor
信一郎 永松
博之 川口
純一郎 手塚
優 太田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007320752A priority Critical patent/JP4972532B2/en
Priority to PCT/JP2008/072395 priority patent/WO2009075286A1/en
Publication of JP2009144950A publication Critical patent/JP2009144950A/en
Application granted granted Critical
Publication of JP4972532B2 publication Critical patent/JP4972532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0205Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/01Load in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/04Settings
    • F04B2207/043Settings of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、自己始動式同期電動機にて駆動する圧縮機を複数台搭載した、蒸気圧縮冷凍サイクルを利用する空気調和機に関し、快適性と信頼性を確保し、消費電力の低減を図る空気調和機に好適である。 The present invention relates to an air conditioner using a vapor compression refrigeration cycle, which is equipped with a plurality of compressors driven by a self-starting synchronous motor, and to ensure comfort and reliability and to reduce power consumption. Suitable for the machine.

従来の空気調和機において、搭載される圧縮機は、省エネルギ―性に優れたインバータ駆動によるDCブラシレス同期モータを使用したもの、及び商用電源にて自己始動する誘導モータを使用したものが一般的ではあるが、前記同期モータと誘導モータの特徴を併せ持ち、起動時には誘導モータで起動し、起動後は商用電源周波数にて同期モータとして駆動することにより、回路損失が少なく高効率で、電源への高調波発生のない、自己始動式同期電動機を搭載した圧縮機及び冷凍空調機が提案されている(特許文献1、2参照)。   In a conventional air conditioner, the compressor mounted is generally one that uses a DC brushless synchronous motor driven by an inverter that excels in energy savings, or one that uses an induction motor that self-starts with a commercial power supply. However, it has the characteristics of the synchronous motor and the induction motor. It starts with the induction motor at the time of start-up, and after the start-up, it is driven as a synchronous motor at the commercial power supply frequency. A compressor and a refrigeration air conditioner equipped with a self-starting synchronous motor that does not generate harmonics have been proposed (see Patent Documents 1 and 2).

また、消費電力の低減を目的とし、デマンドコントローラーとそのコントローラーによって負荷制御される複数の空調機間にシーケンサーを設けるとともに、前記複数の空調機にリレーを取り付け、そのリレーとシーケンサーとを接続して各空調機のコンプレッサーをシーケンサーが制御できるようにし、上記シーケンサーが所定数のリレーを順に所定時間停止して残りを作動し、その停止と作動とを常時繰り返して行い、一方、前記デマンドコントローラーから負荷を停止させる負荷制御指令が出力されると、上記負荷指令制御に基づいて予め決められた順位で空調機を停止するようにした空調機の台数制御方法がある(特許文献3、図1参照)。   In addition, for the purpose of reducing power consumption, a sequencer is provided between the demand controller and a plurality of air conditioners that are load-controlled by the controller, a relay is attached to the plurality of air conditioners, and the relay and the sequencer are connected. The sequencer can control the compressor of each air conditioner, and the sequencer stops the predetermined number of relays in order for a predetermined time and activates the rest. When a load control command for stopping the air conditioner is output, there is a method for controlling the number of air conditioners in which the air conditioners are stopped in a predetermined order based on the load command control (see Patent Document 3 and FIG. 1). .

特開2005―180748号公報JP 2005-180748 A 特開2003―134773号公報JP 2003-134773 A 特開平10―89744号公報Japanese Patent Laid-Open No. 10-89744

上記従来技術においては、自己始動式同期電動機にて駆動する圧縮機は、起動時、通常電流に比べ過大な始動電流が発生するため、前記電動機内回転子に装備された永久磁石に対して逆励磁の磁界が発生し、減磁と呼ばれる磁力の低下がおこる恐れがある。永久磁石の磁力低下が起こると、電動機効率の低下により運転電流の過昇を招き、最悪の場合、同期運転が継続出来なくなる恐れがあり、圧縮機としての機能を有さなくなる。 In the above-described prior art, a compressor driven by a self-starting synchronous motor generates an excessive starting current compared with a normal current at the time of start-up, so that the reverse of the permanent magnet provided in the rotor in the motor. An exciting magnetic field is generated, and there is a risk of a decrease in magnetic force called demagnetization. When the magnetic force of the permanent magnet is reduced, the operating current is excessively increased due to the reduction of the motor efficiency. In the worst case, the synchronous operation may not be continued and the function as a compressor is not provided.

減磁が起こりうる条件として、磁界を発生させる電流と、磁石温度に決定され、磁石種類、磁石配置方法にて変化するもの、同一モータにおいては図1に示す関係で表される。この関係から分かるように磁石温度が高温になれば、許容される電流値は小さくなる。このため磁石部が高温時においては、自己始動式同期電動機を有する圧縮機は起動できない。   The conditions under which demagnetization can occur are determined by the current that generates the magnetic field and the magnet temperature, and change depending on the magnet type and magnet arrangement method. The same motor is represented by the relationship shown in FIG. As can be seen from this relationship, the allowable current value decreases as the magnet temperature increases. For this reason, the compressor having the self-starting synchronous motor cannot be started when the magnet portion is at a high temperature.

複数台の前記自己始動式同期電動機にて駆動する圧縮機空調機を有する空気調和機において、運転負荷の増減に応じて運転圧縮機台数を制御する必要があるが、運転中に磁石部温度高温となり、停止した圧縮機の場合、次回起動させるためには予想される運転電流に対して許容できる磁石温度以下となる必要があるため、停止後の圧縮機磁石温度が許容値になるまで起動できず、結果、快適性は大きく損なわれる場合がある。   In an air conditioner having compressor air conditioners driven by a plurality of self-starting synchronous motors, it is necessary to control the number of operating compressors according to the increase or decrease in operating load. In the case of a stopped compressor, it is necessary to be below the allowable magnet temperature for the expected operating current in order to start the next time, so it can be started until the compressor magnet temperature after the stop reaches an allowable value. As a result, comfort may be greatly impaired.

圧縮機運転寿命の平均化の観点から、複数台の圧縮機を有する空気調和機において、起動させる圧縮機の順番は運転時間の少ないものから起動させることが望ましいが、前記磁石温度の高い圧縮機を停止させた場合において、磁石温度が許容温度以下となるまで起動できないため、この間、能力不足による快適性を損なう恐れがある。   From the viewpoint of averaging the compressor operating life, in an air conditioner having a plurality of compressors, it is desirable that the compressors to be started be started in ascending order of operating time. When the magnet is stopped, it cannot be started until the magnet temperature becomes equal to or lower than the permissible temperature. During this time, comfort may be impaired due to insufficient capacity.

また消費電力削減の目的から、外部からのデマンド信号に応じて空調機消費電力が所定の消費電力以下となるよう圧縮機運転台数を制御する必要があるが、この場合も減少させる圧縮機順位を前記圧縮機運転時間のみで決定した場合にも、磁石温度の考慮から前記不具合と同じ現象が予想される。   In addition, for the purpose of reducing power consumption, it is necessary to control the number of compressors operated so that the power consumption of the air conditioner is less than or equal to the predetermined power consumption according to the demand signal from the outside. Even when it is determined only by the compressor operating time, the same phenomenon as the above problem is expected from the consideration of the magnet temperature.

本発明の目的は、圧縮機運転時間の平準化と磁石温度上昇の抑制を両立させ、負荷に応じて最大限に空調能力を確保し、快適性を損なうことなく電動機の信頼性の確保することを両立した空気調和機とその制御方法を提供することにある。   An object of the present invention is to achieve both the leveling of the compressor operation time and the suppression of the magnet temperature rise, to ensure the maximum air conditioning capacity according to the load, and to ensure the reliability of the motor without impairing the comfort. Is to provide an air conditioner and a control method thereof.

上記課題を解決するため、本発明は、電動機で駆動される複数台の圧縮機と、空調負荷を算出してこの負荷に応じた前記圧縮機の台数を制御運転する制御部を備えた空気調和機であって、前記制御部は前記圧縮機の運転時間を検出する運転時間検出部と、前記電動機の温度を検出する温度検出部を備えて、前記圧縮機の運転台数の増加指令では温度のより低い圧縮機を優先して運転開始し、前記圧縮機の運転台数の減少指令では温度のより高い圧縮機を優先して停止することを特徴とする。   In order to solve the above-described problems, the present invention provides an air conditioner including a plurality of compressors driven by an electric motor and a control unit that calculates an air conditioning load and controls and operates the number of compressors according to the load. The control unit includes an operation time detection unit that detects an operation time of the compressor, and a temperature detection unit that detects a temperature of the electric motor. The operation is started with priority on the lower compressor, and the compressor having a higher temperature is prioritized and stopped by the command to reduce the number of operating compressors.

また、前記制御部は、前記圧縮機の運転台数の増加指令では許容温度以下であって運転時間の少ない圧縮機を優先して運転開始する。   In addition, the control unit preferentially starts a compressor that has an allowable temperature or less and a short operation time in accordance with an instruction to increase the number of operating compressors.

また、前記制御部は、前記圧縮機の運転台数の減少指令では許容温度以下であって運転時間の長い圧縮機を優先して運転停止する。   Further, the control unit preferentially shuts down the compressor having a long operating time that is equal to or lower than the allowable temperature in the command to reduce the number of operating compressors.

また、前記制御部は、外部からの消費電力のデマンド設定から圧縮機の台数を決定し、デマンド設定の消費電力内で圧縮機台数を運転制御する。   Further, the control unit determines the number of compressors from a demand setting of power consumption from the outside, and controls the number of compressors within the power consumption of the demand setting.

また、前記制御部は、前記圧縮機の運転台数の増加指令時において、停止中の圧縮機の中に許容温度以下の圧縮機がない場合、外部に接続した外部空気調和機に起動指令を発する。   In addition, the control unit issues a start command to an external air conditioner connected to the outside if there is no compressor having an allowable temperature or lower among the stopped compressors when the command to increase the number of operating compressors is given. .

また、前記複数台の圧縮機の運転状態を表示すると共に、停止理由が電動機の温度検知条件によることを表示する表示器を備えている。   In addition, an operating state of the plurality of compressors is displayed, and an indicator for displaying that the reason for the stop is due to the temperature detection condition of the motor is provided.

また、前記圧縮機を駆動する電動機は自己始動式同期電動機である。   The motor for driving the compressor is a self-starting synchronous motor.

さらに本発明は、電動機で駆動される複数台の圧縮機と、空調負荷を算出してこの負荷に応じた前記圧縮機の台数を制御する制御部を備えた空気調和機の制御方法であって、前記圧縮機の運転台数の増加指令では前記電動機の温度のより低い圧縮機を優先して運転開始し、前記圧縮機の運転台数の減少指令では電動機の温度のより高い圧縮機を優先して停止することを特徴とする。   Furthermore, the present invention is a method for controlling an air conditioner comprising a plurality of compressors driven by an electric motor, and a controller that calculates an air conditioning load and controls the number of the compressors according to the load. In the command to increase the number of operating compressors, the compressor with the lower temperature of the motor is given priority to start operation, and in the command to decrease the number of operating compressors, the compressor with the higher motor temperature is given priority. It is characterized by stopping.

また、前記圧縮機の運転台数の増加指令では前記電動機の許容温度以下であって運転時間の少ない圧縮機を優先して運転開始する。   In addition, according to the command to increase the number of operating compressors, the compressor starts with priority given to the compressor that is not more than the allowable temperature of the motor and has a short operating time.

また、前記圧縮機の運転台数の減少指令では許容温度以下であって運転時間の長い圧縮機を優先して運転停止する。   Further, according to the command to reduce the number of compressors to be operated, a compressor having a long operating time and a temperature lower than the allowable temperature is preferentially stopped.

また、前記圧縮機の運転台数の増加指令時において、停止中の圧縮機の中に許容温度以下の圧縮機がない場合、前記制御部から外部空気調和機に起動指令を発する。   In addition, when there is no compressor having a temperature equal to or lower than the allowable temperature among the stopped compressors when the command to increase the number of operating compressors is issued, a start command is issued from the control unit to the external air conditioner.

また、前記圧縮機を駆動する電動機は自己始動式同期電動機である。   The motor for driving the compressor is a self-starting synchronous motor.

本発明によれば、永久磁石を内蔵する自己始動式同期電動機にて駆動する圧縮機を複数台有する空気調和機において、電動機内磁石温度上昇による圧縮機機能低下を防ぎ、運転圧縮機容量及び台数不足による快適性を損ねることない。また、利用者のデマンド要求に対しても、最大限に空調能力を確保し、消費電力の低減と信頼性の確保を両立した空気調和機を得ることができる。   According to the present invention, in an air conditioner having a plurality of compressors driven by a self-starting synchronous motor having a built-in permanent magnet, it is possible to prevent deterioration of the compressor function due to increase in the magnet temperature in the motor, and the operating compressor capacity and the number of compressors. No loss of comfort due to lack. In addition, it is possible to obtain an air conditioner that secures the air conditioning capability to the maximum with respect to the demands of the user and achieves both reduction of power consumption and ensuring of reliability.

以下、本発明の実施例について図2、図3を参照して説明する。図2は冷凍サイクルの構成図である。1は可変速電動機にて駆動される容量可変式圧縮機(第1圧縮機)、2は自己始動式同期電動機にて駆動される2台の圧縮機(第2圧縮機)、3は四方弁、4は熱源側熱交換器、5は室外膨張装置、6は電動弁、7冷媒量調節噐、8は室外送風機、64は前記各部分と後述の室内ユニットの動作を制御する室外ユニット制御部であり、室外ユニット13を構成する。 Embodiments of the present invention will be described below with reference to FIGS. FIG. 2 is a configuration diagram of the refrigeration cycle. 1 is a variable displacement compressor (first compressor) driven by a variable speed motor, 2 is two compressors (second compressor) driven by a self-starting synchronous motor, and 3 is a four-way valve 4 is a heat source side heat exchanger, 5 is an outdoor expansion device, 6 is an electric valve, 7 is a refrigerant amount adjusting rod, 8 is an outdoor blower, and 64 is an outdoor unit control unit that controls the operation of each of the above-described parts and an indoor unit described later. And constitutes the outdoor unit 13.

また、9は電動膨脹弁、10は利用側熱交換器、11は室内送風機、73、74は吸込み空気と吹出し空気の温度を計測するサーミスタで、室内ユニット12を構成する。72は室内ユニット制御部で、室内ユニット12個々の動作開始、停止、風量、設定温度、設定湿度などを設定するリモコンである。さらに、室内ユニット12は、液接続配管14、ガス接続配管15で室外ユニット13に連結され、空気調和は、圧縮機1、2台の圧縮機2、室外機送風機7、室内送風機11の運転により、空気と熱交換して行われる。   Further, 9 is an electric expansion valve, 10 is a use side heat exchanger, 11 is an indoor blower, 73 and 74 are thermistors that measure the temperature of the intake air and the blown air, and constitute the indoor unit 12. Reference numeral 72 denotes an indoor unit control unit, which is a remote controller for setting the operation start, stop, air volume, set temperature, set humidity and the like of each indoor unit 12. Furthermore, the indoor unit 12 is connected to the outdoor unit 13 by a liquid connection pipe 14 and a gas connection pipe 15, and air conditioning is performed by operating the compressor 1, the two compressors 2, the outdoor unit blower 7, and the indoor blower 11. This is done by exchanging heat with air.

圧縮機2は、回路損失が少なく高効率で電源への高調波発生のない、自己始動式同期電動機にて駆動されるが、電動機内の磁石温度を計測するためのサーミスタ16(詳細は後述)を、圧縮機の電動機部分の表面に備える。75は外部制御部であり、運転全体の開始・停止やデマンド信号(電力量のカット)などにより集中制御を行うための端末である。   The compressor 2 is driven by a self-starting synchronous motor with low circuit loss, high efficiency, and no generation of harmonics to the power source. The thermistor 16 for measuring the magnet temperature in the motor (details will be described later). Is provided on the surface of the motor portion of the compressor. An external control unit 75 is a terminal for performing centralized control by starting / stopping the entire operation, a demand signal (cutting of electric energy), and the like.

ここで、電動膨脹弁9を室内ユニット12に配置しているので、圧縮機1及び2の容量が可変あるいは固定速である違いや、室内ユニット12が単独か複数台かの違いに関わらず、室内ユニット12の構成を変えることなく、各々の製品群に対し共通なものとして使用できる。   Here, since the electric expansion valve 9 is arranged in the indoor unit 12, regardless of whether the capacity of the compressors 1 and 2 is variable or fixed speed, whether the indoor unit 12 is single or plural, Without changing the configuration of the indoor unit 12, it can be used in common for each product group.

本実施例の動作を説明する。冷房運転の場合、冷媒は図で実線矢印の方向に流れ、圧縮機1及び2から吐出されたガス冷媒は四方弁3を通過し複数の冷媒通路で構成する熱源側機熱交換器4で凝縮する。凝縮された冷媒は冷媒量調節噐7に入り、冷媒量調節噐7より導出した液冷媒は、室外ユニット13と室内ユニット12を接続する液接続配管14において、配管長に応じた圧力損失により気液二層流となって電動膨脹弁9に入る。電動膨脹弁9は任意の絞り量設定可能な膨脹装置であり、電動膨脹弁9にて減圧された冷媒は、蒸発器となる利用側熱交換器10に送られ、冷媒が蒸発し、室内空気は冷却される。蒸発した冷媒はガス接続配管15を通過して、圧縮機1及び2の吸入側に戻る。
次に暖房運転の場合を説明する。暖房運転では四方弁3の切り替えにより、点線矢印の向きに冷媒が流れる。圧縮機1及び2から吐出された冷媒は四方弁3、ガス接続配管15を通過し、利用側熱交換器10で放熱して凝縮し、暖房を行う。凝縮液は電動膨脹弁9で絞られ膨脹し、液接続配管14内を気液二相で搬送され室外ユニット13へ送られる。そして、液接続配管14の圧力損失によりさらに大きなかわき度になった冷媒は、熱源側熱交換器4に送られる。蒸発器となる熱源側熱交換器4にはいった二相の冷媒は、蒸発してかわき度の大きな状態になり、四方弁3を通過して圧縮機1及び2に戻る。
なお、冷房時には電動膨脹弁9が、暖房時には電動膨張弁5が圧縮機1及び2の吸入側の過熱度が少し付くように制御することで、湿り圧縮により圧縮機1及び2の効率が悪い状態で運転されることが無く、空気調和機の効率がより良い状態で運転することができる。
The operation of this embodiment will be described. In the cooling operation, the refrigerant flows in the direction of the solid arrow in the figure, and the gas refrigerant discharged from the compressors 1 and 2 passes through the four-way valve 3 and condenses in the heat source side machine heat exchanger 4 configured by a plurality of refrigerant passages. To do. The condensed refrigerant enters the refrigerant amount adjustment rod 7, and the liquid refrigerant derived from the refrigerant amount adjustment rod 7 is vaporized in the liquid connection pipe 14 connecting the outdoor unit 13 and the indoor unit 12 due to pressure loss according to the pipe length. It enters the electric expansion valve 9 as a liquid two-layer flow. The electric expansion valve 9 is an expansion device in which an arbitrary throttle amount can be set. The refrigerant decompressed by the electric expansion valve 9 is sent to the use-side heat exchanger 10 serving as an evaporator, and the refrigerant evaporates, and the indoor air Is cooled. The evaporated refrigerant passes through the gas connection pipe 15 and returns to the suction side of the compressors 1 and 2.
Next, the case of heating operation will be described. In the heating operation, the refrigerant flows in the direction of the dotted arrow by switching the four-way valve 3. The refrigerant discharged from the compressors 1 and 2 passes through the four-way valve 3 and the gas connection pipe 15, dissipates heat in the use side heat exchanger 10, condenses, and performs heating. The condensate is squeezed and expanded by the electric expansion valve 9, transported in the liquid connection pipe 14 in two phases, and sent to the outdoor unit 13. Then, the refrigerant having a greater degree of clearance due to the pressure loss of the liquid connection pipe 14 is sent to the heat source side heat exchanger 4. The two-phase refrigerant that has entered the heat source side heat exchanger 4 serving as an evaporator evaporates into a state with a high degree of draft, passes through the four-way valve 3 and returns to the compressors 1 and 2.
The efficiency of the compressors 1 and 2 is poor due to wet compression by controlling the electric expansion valve 9 during cooling and the electric expansion valve 5 during heating so that the degree of superheat on the suction side of the compressors 1 and 2 is slightly increased. Therefore, the air conditioner can be operated with better efficiency.

図3は、室外ユニット13の内部構成図で、図3と同一部分は同一符号で示し、合わせて他の構成要素との接続関係も示す。   FIG. 3 is an internal configuration diagram of the outdoor unit 13, in which the same parts as those in FIG.

66は空調負荷算出部で、前記室内ユニット制御部72の設定温度とサーミスタ73、74で計測された吸込み空気と吹出し空気の温度を受けて、利用側の空調負荷を算出して冷媒の適正な循環量等を決め、指令信号を出す。67は圧縮機台数制御部で、上記指令信号を受けて圧縮機の運転台数(on台数)を制御する。ここでは、第1圧縮機1と第2圧縮機2を制御している。68は容量可変式圧縮機容量制御部で、上記指令信号を受けてインバータ(図示せず)の周波数を制御し、第1圧縮機1に制御信号を送っている。前記制御部66〜68は運転制御部65を構成している。   Reference numeral 66 denotes an air conditioning load calculation unit which receives the set temperature of the indoor unit control unit 72 and the temperatures of the intake air and the blown air measured by the thermistors 73 and 74, calculates the air conditioning load on the use side, and determines the appropriate refrigerant. Determine the amount of circulation and issue a command signal. A compressor number control unit 67 receives the command signal and controls the number of compressors operated (on number). Here, the first compressor 1 and the second compressor 2 are controlled. Reference numeral 68 denotes a variable capacity compressor capacity control unit which receives the command signal, controls the frequency of an inverter (not shown), and sends a control signal to the first compressor 1. The control units 66 to 68 constitute an operation control unit 65.

69は通信部で、室外ユニット内の各圧縮機1、2、室内ユニット制御部72、外部制御部75及び外部空気調和機100との間で信号を授受する。70は各圧縮機の運転時間を検出する運転時間検出部、71は各圧縮機のサーミスタ16の計測結果から圧縮機駆動用の各電動機の温度を検出する温度検出部である。   Reference numeral 69 denotes a communication unit that exchanges signals with the compressors 1 and 2 in the outdoor unit, the indoor unit control unit 72, the external control unit 75, and the external air conditioner 100. Reference numeral 70 denotes an operation time detection unit that detects the operation time of each compressor, and reference numeral 71 denotes a temperature detection unit that detects the temperature of each motor for driving the compressor from the measurement result of the thermistor 16 of each compressor.

なお、室外ユニット制御部64内の前記各部66〜68と70、71は、前記通信部69を介して他の部分と信号の授受を行う。
図4は、本実施例の空気調和機を運転中の負荷変動時における、室外ユニット制御部64による圧縮機台数制御動作のフローチャートを示す。ステップ(S)17で室内ユニット12からの負荷情報が室内ユニット制御部72を介して室外ユニット13に備えられた空調負荷算出制御部66に伝送され、適正冷媒循環量を算出し、S18で必要となる圧縮機台数N1を決定する。次のS19で現在の運転中圧縮機台数をN2として、N2>N1の場合Yに進む。この場合、運転中の圧縮機台数を減少させる必要があるが、S20で現在運転中の複数の圧縮機の電動機(磁石)温度をサーミスタ16で計測し、最大温度Tonmaxを温度検出部71で検出する。
The units 66 to 68, 70, and 71 in the outdoor unit control unit 64 exchange signals with other parts via the communication unit 69.
FIG. 4 shows a flowchart of the operation of controlling the number of compressors by the outdoor unit controller 64 when the load changes during operation of the air conditioner of the present embodiment. In step (S) 17, load information from the indoor unit 12 is transmitted to the air conditioning load calculation control unit 66 provided in the outdoor unit 13 via the indoor unit control unit 72, and an appropriate refrigerant circulation amount is calculated. The number N1 of compressors to be determined is determined. In next S19, the current number of operating compressors is set to N2, and if N2> N1, the process proceeds to Y. In this case, it is necessary to reduce the number of operating compressors. In S20, the motor (magnet) temperatures of a plurality of compressors currently operating are measured by the thermistor 16, and the maximum temperature Tonmax is detected by the temperature detecting unit 71. To do.

次いでS21で予め設定された圧縮機起動時の許容上限の磁石温度T1とTonmaxが比較される。この結果、T1≦Tonmaxの場合はYへ進み、次のS22で該当する圧縮機を優先して停止させる。またT1>Tonmaxの場合はNに進み、次のS23で、運転中の圧縮機の内で最も運転時間の長い圧縮機を優先して停止させる。なお、運転時間は常時、各圧縮機について運転時間検出部70で検出されて記憶されている。   Next, in S21, the allowable upper limit magnet temperature T1 and Tonmax at the time of starting the compressor are compared. As a result, if T1 ≦ Tonmax, the process proceeds to Y, and the corresponding compressor is preferentially stopped in the next S22. If T1> Tonmax, the process proceeds to N, and in the next S23, the compressor having the longest operating time among the operating compressors is preferentially stopped. The operation time is always detected and stored by the operation time detector 70 for each compressor.

これにより運転中の圧縮機の中で、磁石温度が起動時の許容上限温度T1を超えた圧縮機を優先して停止させるので、停止している時間を出来る限り長くとって放熱することができ、次回起動時に許容上限磁石温度T1を超えてしまって起動できなくなる現象を回避できる。   As a result, among the operating compressors, the compressor whose magnet temperature exceeds the allowable upper limit temperature T1 at the time of starting is preferentially stopped, so that the heat can be dissipated by taking as long as possible for the stopped time. Thus, it is possible to avoid the phenomenon that the allowable upper limit magnet temperature T1 is exceeded at the next startup and the startup cannot be performed.

S19でNと判断され、S24で運転中の圧縮機台数N2<N1の場合には、運転停止中の圧縮機を起動させる必要があるためS25に進む。S25では、現在停止中の複数の圧縮機の磁石温度Toff(n)をサーミスタ16からの計測により温度検出部71で検出し、S26でToff(n)<T1に該当する圧縮機の中で一番運転時間の短い圧縮機を起動させる。これにより起動時、磁石温度が許容上限温度を超えることで発生する減磁を防ぐと共に、圧縮機運転時間を平準化することができる。
前記圧縮機増減制御を必要な圧縮機台数に到達するまで行うことで、負荷変動に応じた適正冷媒循環量を供給することが可能となり、快適性と信頼性を両立した運転が可能となる。
図5に圧縮機運転中の制御フローを示す。圧縮機内電動機に流れる電流は、起動時に比べて起動後の同期運転中はより小さくなる。よって図1に記載の関係から、運転中の許容磁石温度上限値T2は、起動時許容磁石温度T1に対してT2>T1の関係が成り立つ。
S28で圧縮機運転中において起動時に磁石温度がT1より低い場合であっても、その後の運転中で吸入過熱度の上昇等の負荷上昇による圧縮機運転状態の変化により、S29で圧縮機磁石温度Ton(n)がTon(n)>T2となる場合が起こりうる。この場合S30に進み、ただちに当該圧縮機を全て運転を停止することで、永久磁石の減磁による圧縮機機能低下を回避し、信頼性を確保することができる。
T1及びT2に関しては、その磁石の種類固有のバラツキやサーミスタの誤差、温度応答遅れを踏まえ、十分裕度をもった値に設定することが望ましい。
図6に全圧縮機の停止状態から起動する場合の制御フローを示す。室内ユニット12からの運転指令及び負荷情報に従い、S32で圧縮機の必要台数N1を決定し、圧縮機は順番に起動されていく。具体的には順次起動により運転中となった圧縮機台数N2がN2=N1となるまで、S34でN1とN2を比較しながら運転台数を増加させる。
If it is determined N in S19 and the number of operating compressors N2 <N1 in S24, it is necessary to start the compressors that have been stopped, and the process proceeds to S25. In S25, the magnet temperature Toff (n) of the plurality of compressors that are currently stopped is detected by the temperature detection unit 71 by measurement from the thermistor 16, and in S26, one of the compressors corresponding to Toff (n) <T1 is detected. Start the compressor with a short running time. Thereby, at the time of start-up, demagnetization that occurs when the magnet temperature exceeds the allowable upper limit temperature can be prevented, and the compressor operation time can be leveled.
By performing the compressor increase / decrease control until the required number of compressors is reached, it is possible to supply an appropriate refrigerant circulation amount according to the load fluctuation, and it is possible to perform an operation that satisfies both comfort and reliability.
FIG. 5 shows a control flow during compressor operation. The current flowing through the motor in the compressor is smaller during synchronous operation after startup than when starting up. Therefore, from the relationship shown in FIG. 1, the allowable magnet temperature upper limit value T2 during operation satisfies the relationship of T2> T1 with respect to the allowable magnet temperature T1 at the time of start-up.
Even if the magnet temperature is lower than T1 at the time of start-up during the compressor operation in S28, the compressor magnet temperature in S29 due to a change in the compressor operation state due to a load increase such as an increase in suction superheat during the subsequent operation. There may be a case where Ton (n) satisfies Ton (n)> T2. In this case, the process proceeds to S30, and all the compressors are immediately stopped to avoid the deterioration of the compressor function due to the demagnetization of the permanent magnet, thereby ensuring the reliability.
Regarding T1 and T2, it is desirable to set a value having a sufficient margin in consideration of variation specific to the magnet type, thermistor error, and temperature response delay.
FIG. 6 shows a control flow in the case of starting from the stopped state of all the compressors. In accordance with the operation command and load information from the indoor unit 12, the required number N1 of compressors is determined in S32, and the compressors are started in order. Specifically, the number of operating units is increased while comparing N1 and N2 in S34 until the number of compressors N2 that are in operation due to sequential activation becomes N2 = N1.

増加中(N1>N2)は、図4の圧縮機台数を増加させる場合と同様に、S35で停止中の圧縮機の磁石温度Toff(n)と起動時の許容上限磁石温度T1とを比較し、Toff(n)>T1の場合、S36でToff(n)>T1に該当しない停止圧縮機の中で一番運転時間の短い圧縮機から順次起動させる。これにより起動する圧縮機の磁石温度が、起動時許容上限磁石温度T1を超えることで生じる減磁を回避し、信頼性を確保することができる。なお、S36で停止中の圧縮機がすべてToff(n)>T1に該当する場合は起動しない。S34でN1=N2の場合は、S38で圧縮機起動中というS31の動作を終了し、通常の図4の制御へ移行する。   During the increase (N1> N2), as in the case of increasing the number of compressors in FIG. 4, the magnet temperature Toff (n) of the compressor stopped in S35 is compared with the allowable upper limit magnet temperature T1 at startup. When Toff (n)> T1, in S36, the compressors having the shortest operating time among the stopped compressors not corresponding to Toff (n)> T1 are sequentially started. Thereby, it is possible to avoid the demagnetization that occurs when the magnet temperature of the compressor to be started exceeds the allowable upper limit magnet temperature T1 at the time of starting, and to ensure reliability. In addition, when all the compressors stopped in S36 satisfy Toff (n)> T1, the compressor is not started. If N1 = N2 in S34, the operation of S31 in which the compressor is being activated is terminated in S38, and the control shifts to the normal control of FIG.

図7に前記自己始動式同期圧縮機の外観図を、図8にその内部構造及び磁石温度推定用サーミスタの取り付け位置を示す。図8に示す通り前記圧縮機において、冷媒を圧縮する圧縮部と、電動機部の位置は離れており、一般的に使われる圧縮機吐出ガス温度測定サーミスタは、吐出配管近傍または圧縮機部近傍に取り付けられることが多い。本実施例では、サーミスタを磁石部温度を測定するために設けている。サーミスタは電動機内部又はその近傍に設置することが望ましいが、電動機内磁石にサーミスタを取付けて情報を伝送させることは信頼性上、及びコストの面からも実現困難である。本実施例では図8に示すように一番電動機部に近い圧縮機外周表面にサーミスタ16を設けることで電動機内磁石温度を測定する際、最も誤差を小さくすることが可能である。
図9は外部制御部75からのデマンド信号を受信時における圧縮機台数制御のフローチャートを示す。
FIG. 7 shows an external view of the self-starting synchronous compressor, and FIG. 8 shows the internal structure and the attachment position of the thermistor for estimating the magnet temperature. As shown in FIG. 8, in the compressor, the compressor section for compressing the refrigerant and the motor section are separated from each other, and a commonly used compressor discharge gas temperature measurement thermistor is disposed near the discharge pipe or the compressor section. Often installed. In this embodiment, a thermistor is provided for measuring the magnet temperature. Although it is desirable to install the thermistor in or near the electric motor, it is difficult to realize the transmission of information by attaching the thermistor to the magnet in the electric motor in terms of reliability and cost. In this embodiment, as shown in FIG. 8, by providing the thermistor 16 on the outer peripheral surface of the compressor closest to the motor portion, it is possible to minimize the error when measuring the magnet temperature in the motor.
FIG. 9 shows a flowchart for controlling the number of compressors when receiving a demand signal from the external control unit 75.

デマンド信号による消費電力制限時には予め設定された消費電力量を越えないよう圧縮機容量及び台数を制御する。冷媒循環量を低減する方法として、容量可変式圧縮機により冷媒循環量を低減する方法と容量固定式の圧縮機台数を減少させる方法がある。一般に全ての圧縮機を容量可変式圧縮機にするのは高価であるため、本実施例では容量可変式圧縮機と容量固定式圧縮機の組み合わせにより冷媒循環量の容量制御を行う。
全ての圧縮機にはカレントトランス等の電流値を計測できる装置(図示せず)を有し、又は圧力センサ又は冷媒凝縮温度及び冷媒蒸発温度による高圧圧力及び低圧圧力と容量可変式の場合は可変容量及び運転圧縮機台数による関数またはテーブル値により運転電流を推定する機能を有し、運転中の空気調和機の総電流は常に制御を実施する例えば室外ユニット制御部14に制御情報として伝送される。S37で外部入力信号又は予め設定された時間等により消費電力制限制御が有効となった場合、S38で必要な圧縮機運転台数を算出し、以降の動作フローのS38〜47は、図4のS19〜S27のフロートと同様に圧縮機台数を増減させる。以上の制御を行うことにより制限消費電力内で要求された最大限の空調能力を実現することができる。
図10は外部接続された外部空気調和機100を圧縮機台数制御に用いた場合のフローチャートを示す。このフローチャートのS48〜S56は図4のS17〜S25と同一である。
図10のS55で現在の運転中圧縮機台数N2<必要圧縮機台数N1の場合、停止中の圧縮機を起動させるが、S57で当該室外ユニット内の停止中の全圧縮機がToff(n)>Toffmaxの場合、当該室外ユニット内の圧縮機を起動させることが出来ないので、S59にて外部接続された外部空気調和機100に起動指令を発する。具体的には外部接続された外部空気調和機100に搭載された室外ユニット内の、Toff(n)≦Toffmaxを満たす停止中の圧縮機のうち、最も運転時間の短い圧縮機を起動させることで、冷媒の必要循環量不足による快適性の劣化を回避することができる。
図11は、圧縮機の停止理由を表示した表示器の例を示す。図11において室外ユニット13に表示器62を設け、表示器62にはLED等のランプにより圧縮機の運転状況を示している。62aは運転中を表示するランプ、62bは温度条件により運転禁止状態を表示するランプである。ここで、運転禁止状態とは停止中の圧縮機の電動機の温度が起動時の許容上限磁石温度T1以上にある状態を示す。停止時間の経過により温度が下がればこのランプは消灯する。
When the power consumption is limited by the demand signal, the compressor capacity and the number are controlled so as not to exceed the preset power consumption. As a method for reducing the refrigerant circulation amount, there are a method for reducing the refrigerant circulation amount using a variable capacity compressor and a method for reducing the number of fixed capacity compressors. In general, since it is expensive to use variable capacity compressors for all the compressors, in this embodiment, the capacity control of the refrigerant circulation amount is performed by combining a variable capacity compressor and a fixed capacity compressor.
All compressors have a device (not shown) that can measure the current value, such as a current transformer, or are variable if the pressure sensor or the high-pressure pressure and low-pressure pressure based on the refrigerant condensing temperature and the refrigerant evaporating temperature are variable. It has a function of estimating the operating current by a function or table value depending on the capacity and the number of operating compressors, and the total current of the operating air conditioner is always transmitted as control information to, for example, the outdoor unit controller 14 that performs control. . When the power consumption restriction control is enabled by an external input signal or a preset time in S37, the necessary number of compressors to be operated is calculated in S38, and S38 to 47 in the subsequent operation flow are S19 in FIG. The number of compressors is increased / decreased similarly to the float of S27. By performing the above control, it is possible to realize the maximum air conditioning capacity required within the limited power consumption.
FIG. 10 shows a flowchart when the externally connected external air conditioner 100 is used for controlling the number of compressors. S48 to S56 in this flowchart are the same as S17 to S25 in FIG.
If the current number of operating compressors N2 <the required number of compressors N1 in S55 of FIG. 10, the stopped compressors are started, but in S57, all the stopped compressors in the outdoor unit are Toff (n) If> Toffmax, since the compressor in the outdoor unit cannot be started, a start command is issued to the external air conditioner 100 connected externally in S59. Specifically, by starting the compressor with the shortest operating time among the stopped compressors satisfying Toff (n) ≦ Toffmax in the outdoor unit mounted on the external air conditioner 100 connected to the outside. Therefore, it is possible to avoid deterioration of comfort due to a shortage of the necessary circulation amount of the refrigerant.
FIG. 11 shows an example of a display that displays the reason for stopping the compressor. In FIG. 11, the outdoor unit 13 is provided with a display 62, and the display 62 indicates the operation state of the compressor by a lamp such as an LED. Reference numeral 62a denotes a lamp for indicating that the operation is in progress, and reference numeral 62b denotes a lamp for indicating the operation prohibited state depending on the temperature condition. Here, the operation prohibited state indicates a state in which the temperature of the motor of the stopped compressor is equal to or higher than the allowable upper limit magnet temperature T1 at the time of startup. If the temperature drops due to the elapse of the stop time, this lamp goes off.

図11の表示器では、第1圧縮機は運転中であり、第2圧縮機は運転停止中であるが起動可能であり、第3圧縮機は運転停止中であるが温度条件で起動禁止の状態を示している。この表示器によれば、サービス時の前記室外ユニットの運転状況が確認しやすく、メンテナンス性向上に好適である。また、本情報は検知温度と共に、有線及び無線伝送によって外部情報端末等に送信されることで直接設置現場に行かなくても、前記室外ユニット運転状況を確認することが可能である。   In the display shown in FIG. 11, the first compressor is in operation, the second compressor is in operation but can be started, and the third compressor is in operation, but the start is prohibited due to temperature conditions. Indicates the state. According to this display, it is easy to confirm the operation status of the outdoor unit at the time of service, and it is suitable for improving the maintainability. Further, this information is transmitted together with the detected temperature to an external information terminal or the like by wired or wireless transmission, so that it is possible to check the outdoor unit operation status without going directly to the installation site.

運転電流と温度による減磁作用の説明図。Explanatory drawing of the demagnetization effect | action by operating current and temperature. 本発明実施例の空気調和機の冷凍サイクルの構成図。The block diagram of the refrigerating cycle of the air conditioner of an Example of this invention. 本発明実施例の室外ユニットの内部構成。The internal structure of the outdoor unit of an Example of this invention. 本発明実施例の運転中の負荷変動による圧縮機台数制御のフローチャート。The flowchart of compressor number control by the load fluctuation | variation in driving | operation of this invention Example. 本発明実施例の圧縮機運転中の制御フロー。The control flow during the compressor driving | operation of this invention Example. 本発明実施例の起動時の圧縮機台数制御のフローチャート。The flowchart of the compressor number control at the time of starting of this invention Example. 本発明実施例の自己始動式同期電動機を用いた圧縮機外観図。1 is an external view of a compressor using a self-starting synchronous motor according to an embodiment of the present invention. 圧縮機内部構成及びサーミスタ取付部拡大図。The compressor internal structure and thermistor attachment part enlarged view. 本発明実施例のデマンド信号受信時の圧縮機台数制御のフローチャート。The flowchart of compressor number control at the time of the demand signal reception of an Example of this invention. 本発明実施例の外部接続の空気調和機による圧縮機台数制御のフローチャート。The flowchart of compressor number control by the externally connected air conditioner of an Example of this invention. 圧縮機停止理由を表示する表示器の説明図。Explanatory drawing of the indicator which displays the compressor stop reason.

符号の説明Explanation of symbols

1…圧縮機(容量可変式)、2…圧縮機(容量固定式)、3…四方弁、4…熱源側熱交換器、5…室外膨張装置、6…電動弁、7…冷媒量調節器、8…室外送風機、9…電動膨張弁、10…利用側熱交換器、11…室内送風機、12…室内機、13…室外機、14…液接続配管、15…ガス接続配管、16…サーミスタ(磁石温度計測用)、62…表示器(圧縮機運転状態表示部)、64…制御部(室外ユニット制御部)、67…圧縮機台数制御部、69…通信部、70…運転時間検出部、71…温度検出部、100…外部空気調和機、T1、T2…許容温度。   DESCRIPTION OF SYMBOLS 1 ... Compressor (capacity variable type), 2 ... Compressor (capacity fixed type), 3 ... Four-way valve, 4 ... Heat source side heat exchanger, 5 ... Outdoor expansion device, 6 ... Electric valve, 7 ... Refrigerant amount regulator , 8 ... outdoor blower, 9 ... electric expansion valve, 10 ... use side heat exchanger, 11 ... indoor blower, 12 ... indoor blower, 13 ... outdoor unit, 14 ... liquid connection pipe, 15 ... gas connection pipe, 16 ... thermistor (For magnet temperature measurement), 62 ... indicator (compressor operation state display part), 64 ... control part (outdoor unit control part), 67 ... compressor number control part, 69 ... communication part, 70 ... operating time detection part , 71 ... temperature detector, 100 ... external air conditioner, T1, T2 ... allowable temperature.

Claims (12)

電動機で駆動される複数台の圧縮機と、空調負荷を算出してこの負荷に応じた前記圧縮機の台数を制御運転する制御部を備えた空気調和機であって、
前記制御部は前記圧縮機の運転時間を検出する運転時間検出部と、前記電動機の温度を検出する温度検出部を備え、前記圧縮機の運転台数の増加指令では温度のより低い圧縮機を優先して運転開始し、前記圧縮機の運転台数の減少指令では温度のより高い圧縮機を優先して停止することを特徴とする空気調和機。
An air conditioner including a plurality of compressors driven by an electric motor, and a control unit that calculates an air conditioning load and controls and operates the number of the compressors according to the load,
The control unit includes an operation time detection unit that detects an operation time of the compressor, and a temperature detection unit that detects a temperature of the electric motor, and prioritizes a compressor having a lower temperature in an instruction to increase the number of operating compressors. The air conditioner is characterized in that the operation is started and the compressor having a higher temperature is preferentially stopped according to the command to reduce the number of operating compressors.
前記制御部は、前記圧縮機の運転台数の増加指令では許容温度以下であって運転時間の少ない圧縮機を優先して運転開始することを特徴とする請求項1記載の空気調和機。   2. The air conditioner according to claim 1, wherein the control unit preferentially starts a compressor that has a temperature lower than an allowable temperature and has a short operation time according to an instruction to increase the number of operating compressors. 前記制御部は、前記圧縮機の運転台数の減少指令では許容温度以下であって運転時間の長い圧縮機を優先して運転停止することを特徴とする請求項1または2記載の空気調和機。   3. The air conditioner according to claim 1, wherein the control unit preferentially shuts down a compressor having a long operating time that is equal to or lower than an allowable temperature in a command to reduce the number of operating compressors. 前記制御部は、外部からの消費電力のデマンド設定から圧縮機の台数を決定し、デマンド設定の消費電力内で圧縮機台数を運転制御することを特徴とする請求項1〜3のいずれかに記載の空気調和機。   The said control part determines the number of compressors from the demand setting of the power consumption from the outside, and carries out operation control of the number of compressors within the power consumption of a demand setting. The air conditioner described. 前記制御部は、前記圧縮機の運転台数の増加指令時において、停止中の圧縮機の中に許容温度以下の圧縮機がない場合、外部に接続した外部空気調和機に起動指令を発することを特徴とする請求項1〜4のいずれかに記載の空気調和機。   The control unit issues a start command to an external air conditioner connected to the outside if there is no compressor having an allowable temperature or lower among the stopped compressors when the command to increase the number of operating compressors is given. The air conditioner according to any one of claims 1 to 4, wherein 前記複数台の圧縮機の運転状態を表示すると共に、停止理由が電動機の温度検知条件によることを表示する表示器を備えたことを特徴とする請求項1〜5のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 5, further comprising an indicator for displaying an operating state of the plurality of compressors and displaying that the reason for the stop is due to a temperature detection condition of the electric motor. Machine. 前記圧縮機を駆動する電動機は、自己始動式同期電動機であることを特徴とする請求項1〜6のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 6, wherein the motor that drives the compressor is a self-starting synchronous motor. 電動機で駆動される複数台の圧縮機と、空調負荷を算出してこの負荷に応じた前記圧縮機の台数を制御する制御部を備えた空気調和機の制御方法であって、
前記圧縮機の運転台数の増加指令では前記電動機の温度のより低い圧縮機を優先して運転開始し、前記圧縮機の運転台数の減少指令では電動機の温度のより高い圧縮機を優先して停止することを特徴とする空気調和機の制御方法。
A control method of an air conditioner comprising a plurality of compressors driven by an electric motor, and a control unit that calculates an air conditioning load and controls the number of the compressors according to the load,
In the command to increase the number of operating compressors, the compressor with lower temperature of the motor is given priority to start operation, and in the command to decrease the number of operating compressors, the compressor with higher motor temperature is given priority to stop. A control method for an air conditioner.
前記圧縮機の運転台数の増加指令では前記電動機の許容温度以下であって運転時間の少ない圧縮機を優先して運転開始することを特徴とする請求項8記載の空気調和機の制御方法。   9. The method of controlling an air conditioner according to claim 8, wherein, in accordance with an instruction to increase the number of operating compressors, the compressor is started with priority given to a compressor having a temperature lower than an allowable temperature of the motor and having a short operating time. 前記圧縮機の運転台数の減少指令では許容温度以下であって運転時間の長い圧縮機を優先して運転停止することを特徴とする請求項8または9記載の空気調和機の制御方法。   The method of controlling an air conditioner according to claim 8 or 9, wherein in the command to reduce the number of operating compressors, the compressor having a long operating time is preferentially stopped with a temperature lower than an allowable temperature. 前記圧縮機の運転台数の増加指令時において、停止中の圧縮機の中に許容温度以下の圧縮機がない場合、前記制御部から外部空気調和機に起動指令を発することを特徴とする請求項8〜10のいずれかに記載の空気調和機の制御方法。   The start-up command is issued from the control unit to the external air conditioner when there is no compressor having an allowable temperature or lower among the stopped compressors when the command to increase the number of operating compressors is given. The control method of the air conditioner in any one of 8-10. 前記圧縮機を駆動する電動機は、自己始動式同期電動機であることを特徴とする請求項8〜11のいずれかに記載の空気調和機の制御方法。   The method of controlling an air conditioner according to any one of claims 8 to 11, wherein the electric motor that drives the compressor is a self-starting synchronous motor.
JP2007320752A 2007-12-12 2007-12-12 Air conditioner Expired - Fee Related JP4972532B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007320752A JP4972532B2 (en) 2007-12-12 2007-12-12 Air conditioner
PCT/JP2008/072395 WO2009075286A1 (en) 2007-12-12 2008-12-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320752A JP4972532B2 (en) 2007-12-12 2007-12-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2009144950A JP2009144950A (en) 2009-07-02
JP4972532B2 true JP4972532B2 (en) 2012-07-11

Family

ID=40755528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320752A Expired - Fee Related JP4972532B2 (en) 2007-12-12 2007-12-12 Air conditioner

Country Status (2)

Country Link
JP (1) JP4972532B2 (en)
WO (1) WO2009075286A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021502A1 (en) * 2011-08-11 2013-02-14 三菱電機株式会社 Demand control device for facility equipment
WO2015059800A1 (en) * 2013-10-24 2015-04-30 株式会社日立産機システム Water supply device
CN106461279B (en) 2014-05-12 2019-01-18 松下知识产权经营株式会社 Refrigerating circulatory device
JP6229594B2 (en) * 2014-05-29 2017-11-15 三菱電機株式会社 Demand control device
JP6213781B2 (en) * 2014-11-14 2017-10-18 三菱重工冷熱株式会社 External controller control method
JP6479213B2 (en) * 2015-11-27 2019-03-06 三菱電機株式会社 Refrigeration cycle equipment
WO2018100623A1 (en) * 2016-11-29 2018-06-07 三菱電機株式会社 Control system and control device
CN107131118B (en) * 2017-05-02 2019-01-04 辽宁工程技术大学 A kind of pressure fan group linkage mixed control method
CN109210732B (en) * 2018-08-29 2021-03-23 重庆美的通用制冷设备有限公司 Over-temperature protection method and device for air conditioning unit, air conditioning unit and electronic equipment
CN109458695A (en) * 2018-10-31 2019-03-12 奥克斯空调股份有限公司 A kind of demagnetization guard method of power-off compressor and device
JP7421057B2 (en) * 2019-06-03 2024-01-24 ダイキン工業株式会社 Equipment management device and heat source system
US20220228766A1 (en) * 2019-06-03 2022-07-21 Daikin Industries, Ltd. Device management apparatus, heat source system, management apparatus, and device management system
JP7305042B2 (en) * 2020-04-27 2023-07-07 三菱電機株式会社 Air conditioning system and method for controlling power consumption of air conditioning system
WO2023135741A1 (en) * 2022-01-14 2023-07-20 三菱電機株式会社 Variable speed driving device, blower and refrigeration cycle device including same, and driving control method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178584A (en) * 1985-02-01 1986-08-11 Daikin Ind Ltd Operation controller for compressor
JPH0510607A (en) * 1991-06-28 1993-01-19 Toshiba Corp Air conditioner
JPH07293977A (en) * 1994-04-28 1995-11-10 Matsushita Refrig Co Ltd Control device for air conditioner
JPH1089744A (en) * 1996-09-11 1998-04-10 Rapoole:Kk Number of operating set control method of air conditioner and device for the same
JP2001280259A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerant compressor
JP2001330291A (en) * 2000-05-23 2001-11-30 Sanyo Electric Co Ltd Air conditioning unit
JP4134899B2 (en) * 2003-12-18 2008-08-20 株式会社日立製作所 Refrigeration air conditioner

Also Published As

Publication number Publication date
JP2009144950A (en) 2009-07-02
WO2009075286A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4972532B2 (en) Air conditioner
CN107860103B (en) Control method and device of multi-split system and system with control device
JP3992195B2 (en) Air conditioner
JP5404333B2 (en) Heat source system
JP5404110B2 (en) Air conditioner
JP5558400B2 (en) Heat source system and number control method for heat source system
US6109533A (en) Air conditioner and refrigerant heater outlet temperature control method
WO2010137344A1 (en) Air-conditioning device
WO2019035198A1 (en) Air conditioner
EP1367259A1 (en) Freezer
JP4440883B2 (en) Air conditioner
US6102114A (en) Multi-room air conditioning system
JPH0828984A (en) Air conditioner
JP5407342B2 (en) Air conditioner
JP2007192422A (en) Multi-room type air conditioner
JP2008275216A (en) Air conditioner
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP5761065B2 (en) Air conditioner
JP5677198B2 (en) Air cooling heat pump chiller
JP2011007482A (en) Air conditioner
JPH11287524A (en) Natural circulation combination type air-conditioner
JP6351409B2 (en) Air conditioner
WO1997004277A1 (en) Low temperature refrigerating device having small refrigerating capacity change
JP2010175098A (en) Demand control system of air conditioner
JP2012207866A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees