JP4972443B2 - Biomagnetic field measurement device - Google Patents

Biomagnetic field measurement device Download PDF

Info

Publication number
JP4972443B2
JP4972443B2 JP2007090204A JP2007090204A JP4972443B2 JP 4972443 B2 JP4972443 B2 JP 4972443B2 JP 2007090204 A JP2007090204 A JP 2007090204A JP 2007090204 A JP2007090204 A JP 2007090204A JP 4972443 B2 JP4972443 B2 JP 4972443B2
Authority
JP
Japan
Prior art keywords
waveform
template
magnetic field
subject
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007090204A
Other languages
Japanese (ja)
Other versions
JP2008245882A (en
Inventor
明彦 神鳥
邦臣 緒方
豪 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007090204A priority Critical patent/JP4972443B2/en
Publication of JP2008245882A publication Critical patent/JP2008245882A/en
Application granted granted Critical
Publication of JP4972443B2 publication Critical patent/JP4972443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,心臓磁場(心臓から発生する磁場)の生体磁場計測を行なう超伝導デバイスであるSQUID(Superconducting Quantum Interference Device:超伝導量子干渉素子)磁束計などの高感度磁束計を用いた磁場計測装置に関し,特に心臓磁場波形の標準的なテンプレート波形の作成方法・標準的なテンプレート波形の差分作成方法および表示方法・心臓磁場波形の領域分割方法に関する。   The present invention relates to a magnetic field measurement using a high-sensitivity magnetometer such as a SQUID (Superconducting Quantum Interference Device) flux meter, which is a superconducting device that performs biomagnetic field measurement of a cardiac magnetic field (a magnetic field generated from the heart). More particularly, the present invention relates to a standard template waveform generation method, a standard template waveform difference generation method and display method, and a cardiac magnetic field waveform region division method.

不整脈や虚血性心疾患などの心疾患の診断において,心筋内の電気生理学的現象を可視化できることは非常に重要である。心筋内の電気生理学的現象を可視化する装置の一つに,生体磁場計測装置がある。生体磁場計測装置は,心臓から生じる微弱な磁場(以下,心臓磁場と略記する)を非侵襲かつ非接触で多点計測でき,この心臓磁場データを用いて心筋内部に流れる電流分布を可視化できる。   In the diagnosis of heart diseases such as arrhythmia and ischemic heart disease, it is very important to be able to visualize electrophysiological phenomena in the myocardium. One of the devices that visualize electrophysiological phenomena in the myocardium is a biomagnetic field measurement device. The biomagnetic field measurement apparatus can measure a weak magnetic field (hereinafter abbreviated as “cardiac magnetic field”) generated from the heart in a non-invasive and non-contact manner, and can visualize the current distribution flowing inside the myocardium using the cardiac magnetic field data.

生体磁場計測装置を用いた心筋内電流分布の可視化方法として,電流アロー図(Current―arrow map,以下,CAMと略記する)が開発されている(例えば,非特許文献1,2を参照)。CAMとは,各計測点で測定される心臓磁場データの法線成分の微分から得られる2次元平面上のベクトルを,生体内電流分布とする方法である。被験者の正面と背面で計測された心臓磁場データからCAMを計算することで,心臓全体の心筋興奮伝播の様子を視覚化できる(例えば,非特許文献3を参照)。このCAMに基づく心臓疾患の解析法には,CAMの時系列画像からの異常興奮伝播の視覚化,心室の脱分極過程のCAMを用いた虚血部位の同定などがあり,臨床上の有効性が報告されている(例えば,非特許文献4,5を参照)。   As a method for visualizing the intramyocardial current distribution using the biomagnetic field measuring apparatus, a current-arrow map (hereinafter abbreviated as CAM) has been developed (see, for example, Non-Patent Documents 1 and 2). CAM is a method in which a vector on a two-dimensional plane obtained from differentiation of a normal component of cardiac magnetic field data measured at each measurement point is used as an in-vivo current distribution. By calculating CAM from cardiac magnetic field data measured at the front and back of the subject, the state of myocardial excitation propagation of the entire heart can be visualized (see, for example, Non-Patent Document 3). This CAM-based analysis method of heart disease includes visualization of abnormal excitation propagation from time-series images of CAM, identification of ischemic sites using CAM of ventricular depolarization process, and clinical effectiveness. Has been reported (for example, see Non-Patent Documents 4 and 5).

近年では,各被験者の核磁気共鳴イメージング画像(以下,MRI画像と略記する)から作成した3次元心臓モデル上に,CAMを投影する方法が開発されおり,視覚的に分かりやすい心筋内電流分布の表示方法が報告されている(例えば,特願2002−147051号,非特許文献6を参照)。   In recent years, a method of projecting a CAM on a three-dimensional heart model created from a nuclear magnetic resonance imaging image (hereinafter abbreviated as an MRI image) of each subject has been developed. A display method has been reported (for example, see Japanese Patent Application No. 2002-147051, Non-Patent Document 6).

H.Hosaka,et.al.,“ Visual determination of generators of the magnetocardiogram ",J.Electrocardiol.,vol.9,pp.426-432,1976H. Hosaka, et.al., “Visual determination of generators of the magnetocardiogram”, J. Electrocardiol., Vol. 9, pp. 426-432, 1976 T.Miyashita,et.al.,“ Construction of tangential vectors from normal cardiac magnetic field components ",Proc.20th Int.Conf.IEEE/EMBS(Hong Kong),pp.520-523,1998T.Miyashita, et.al., “Construction of tangential vectors from normal cardiac magnetic field components”, Proc. 20th Int. Conf. IEEE / EMBS (Hong Kong), pp. 520-523, 1998 K.Tsukada,et.al.,“ Noninvasive visualization of multiple simultaneously activated regions on torso magnetocardiographic maps during ventricular depolarization ",J.Electrocardiol.,vol.32,no.4,pp.305-313,1999K. Tsukada, et.al., “Noninvasive visualization of multiple simultaneously activated regions on torso magnetocardiographic maps during ventricular depolarization”, J. Electrocardiol., Vol. 32, no. 4, pp. 305-313, 1999 Y.Yamada,et.al.,“ Noninvasive diagnosis of arrhythmic foci by using magnetocardiogram-method and accuracy of magneto-anatomical mapping system- ",J.Arrhythmia,vol.16,no.5,pp.580-586,2000Y. Yamada, et.al., “Noninvasive diagnosis of arrhythmic foci by using magnetocardiogram-method and accuracy of magneto-anatomical mapping system-”, J. Arrhythmia, vol. 16, no. 5, pp. 580-586, 2000 A.Kandori,et.al.,“ A method for detecting myocardial abnormality by using a current-ratio map calculated from an exercise-induced magnetocardiogram ",Med.Biol.Eng.Comput.,vol.39,pp.29-34,2001A. Kandori, et.al., “A method for detecting myocardial abnormality by using a current-ratio map calculated from an exercise-induced magnetocardiogram", Med. Biol. Eng. Comput., Vol. 39, pp. 29-34 , 2001 K.Ogata,et.al.,“ Visualization method of current distribution in cardiac muscle using a heart model",Transactions of the japanese society for medical and biological engineering,vol.41,no.1,pp.25-33(2003)K. Ogata, et.al., “Visualization method of current distribution in cardiac muscle using a heart model”, Transactions of the japanese society for medical and biological engineering, vol. 41, no. 1, pp. 25-33 (2003 )

心臓の電気活動は、健常な場合の電気活動と、虚血や不整脈を原因とする異常な電気活動の負荷または欠如などの和によって構成されていると考えられる。   The electrical activity of the heart is considered to be composed of the sum of electrical activity in a healthy state and the load or absence of abnormal electrical activity due to ischemia or arrhythmia.

上述の従来の手法では,心臓の電気活動を2次元または3次元画像化が可能であるが、健常な電気活動と異常な電気活動を分離して表示または解析することができない。さらには、異常な活動領域を簡易に表示する領域表示手段をない。   In the above-described conventional method, the electrical activity of the heart can be two-dimensionally or three-dimensionally imaged, but normal electrical activity and abnormal electrical activity cannot be separated and displayed or analyzed. Furthermore, there is no area display means for simply displaying an abnormal activity area.

本発明の代表的な構成では、T波を含むST−Tコンポーネントのテンプレートを作成するST−Tテンプレート作成手段として、各被検者のST-Tコンポーネントに区分された波形を、T波の最も振幅の大きな時点から前と後ろの時間帯の2つの波形にそれぞれ分割する前後波形分割処理手段と、前記前後波形分割処理によって得られた前側波形の時間スケールを一定値に拡大する波形拡大処理を行う第1の拡大処理手段と、前記前後波形分割処理によって得られた後ろ側波形を第1の拡大処理手段によって使用された拡大率を用いて波形拡大処理を行う第2の拡大処理手段と、波形拡大処理後の前側波形と後側波形を連結する連結処理手段と、連結された各被検者の波形から加算平均化処理を行ってST-Tコンポーネントのテンプレートを得る波形加算平均化処理手段を有する。In a typical configuration of the present invention, as an ST-T template creation means for creating a template of an ST-T component including a T wave, the waveform divided into the ST-T components of each subject is the most of the T wave. A front and rear waveform division processing means for dividing each of the two waveforms in the time zone before and after the point of time when the amplitude is large, and a waveform enlargement processing for expanding the time scale of the front waveform obtained by the front and rear waveform division processing to a constant value. First expansion processing means for performing, and second expansion processing means for performing waveform expansion processing on the back side waveform obtained by the front and rear waveform division processing using the expansion ratio used by the first expansion processing means; A waveform processing average that obtains an ST-T component template by performing an averaging process from the waveform of each connected subject, and a connection processing means for connecting the front waveform and the rear waveform after waveform expansion processing A processing means.

心臓磁場波形を時間幅で分割される3つのコンポーネント(PQコンポーネント、QRSコンポーネント、ST-Tコンポーネント)に分割する。その後以下の処理を行う。
(1) PQコンポーネントとQRSコンポーネントは波形の後ろにゼロを挿入してデータ長を取り扱うデータの中で最大のデータ長に調整する。さらに心臓磁場の振幅値を正規化して1になるように計算する。
(2) ST-Tコンポーネントは、T波頂点の時間の前後で2つの波形に分割する。分割された前半部の波形を時間軸方向に1001msになるように波形拡大処理を第1の拡大率で行う。この第1の拡大率を用いて分割された後半部の波形を時間軸方向に拡大をおこなう。拡大された2つの波形を合成し、合成された波形の後ろにゼロを挿入してデータ長を取り扱うデータの中で最大のデータ長に調整する。さらに心臓磁場の振幅値を正規化して1になるように計算する。
(3) 複数個の健常者の各心臓磁場データで、上記(1)(2)の処理を行い、処理を行った複数個の各コンポーネントを用いて加算平均化処理を行い、テンプレート波形を作成する。
(4) (3)の処理を行った各コンポーネントのテンプレート波形を、コンポーネント毎に時間幅および振幅値を複数個の健常者の各心臓磁場データの平均値に調整を行い、平均的な心臓磁場波形のテンプレート波形を作成する。
(5) 評価を行いたい心臓磁場データで、上記(1)(2)の処理を行いデータ長および振幅値が調整された波形から、上記(3)によって作成されたテンプレート波形を差分処理する。差分を行った波形から、必要に応じて電流アロー図などの電流分布図を作成する。
(6) 評価を行いたい心臓磁場データ、または上記(1)、(2)、(3)、(4)、(5)の処理によって得られたテンプレート波形などを、測定領域の中を6つに分割した領域の中で、波形の特徴や電流分布の特徴などの表記を行う。
The cardiac magnetic field waveform is divided into three components (PQ component, QRS component, and ST-T component) divided by time width. Thereafter, the following processing is performed.
(1) The PQ component and QRS component are adjusted to the maximum data length among the data handling the data length by inserting zeros after the waveform. Further, the amplitude value of the cardiac magnetic field is normalized and calculated to be 1.
(2) The ST-T component is divided into two waveforms before and after the time of the T-wave apex. Waveform enlargement processing is performed at the first enlargement ratio so that the divided waveform of the first half part becomes 1001 ms in the time axis direction. The waveform of the second half divided by using the first enlargement ratio is enlarged in the time axis direction. Two enlarged waveforms are synthesized, and zeros are inserted after the synthesized waveforms to adjust the data length to the maximum data length among the data handling the data length. Further, the amplitude value of the cardiac magnetic field is normalized and calculated to be 1.
(3) Perform the processes (1) and (2) above on each of the cardiac magnetic field data of a plurality of healthy subjects, and perform the averaging process using each of the processed components to create a template waveform. To do.
(4) The template waveform of each component subjected to the processing in (3) is adjusted for each component by adjusting the time width and amplitude value to the average value of each cardiac magnetic field data of a plurality of healthy subjects, and the average cardiac magnetic field Create a waveform template.
(5) From the cardiac magnetic field data to be evaluated, the template waveform created in (3) is subjected to differential processing from the waveform in which the processing of (1) and (2) is performed and the data length and amplitude value are adjusted. A current distribution diagram such as a current arrow diagram is created from the waveform obtained by the difference as necessary.
(6) Cardiac magnetic field data to be evaluated or template waveforms obtained by the processes (1), (2), (3), (4) and (5) above in the measurement area. In the divided area, the features of the waveform and the current distribution are described.

本発明によれば,以下の効果がある。
(1)心臓磁場の平均的な磁場波形および電流パターンの把握がテンプレート作成手段によって容易にできること。
(2)測定領域を心臓磁場における特徴を利用して6つの領域に分割することにより、心臓の電気活動を領域ごとにおける所見が単純明快に行えること。
(3)各被験者の測定された心臓磁場波形から合成されたテンプレート波形を差分処理することにより、簡単に心臓で生じている異常な電気活動のみを把握しやすくなること。
The present invention has the following effects.
(1) The average magnetic field waveform and current pattern of the cardiac magnetic field can be easily grasped by the template creation means.
(2) By dividing the measurement region into six regions using the characteristics of the cardiac magnetic field, the heart's electrical activity can be simply and clearly found in each region.
(3) It is easy to grasp only abnormal electrical activity occurring in the heart by performing differential processing on the template waveform synthesized from the cardiac magnetic field waveform measured by each subject.

図1は、本発明の実施例の生体磁場計測装置の構成例を示す図である。磁気シールドルーム1の内部には、生体が搭載されるベッド7と、超電導量子干渉素子(Superconducting Quantum Interference Device: 以下SQUIDと呼ぶ)センサーを超伝導状態に保持するための冷媒(液体ヘリウムまたは液体窒素)を貯蔵するクライオスタット2と、クライオスタット2の位置を固定するためのガントリー3とが配置されている。SQUIDセンサーは、磁気シールドルーム1外部に配置される駆動回路4によって磁束計動作し、磁束計の出力はアンプフィルター・ユニット5を通り、コンピューター6に内臓されるアナログデジタル変換回路によってデジタルデータに変換されコンピューター6に格納される。また本実施例では超伝導を用いたSQUIDセンサーで説明を行っているが、必ずしも超電導のセンサーである必要はなく、例えば光ポンピング磁束計などの高感度磁束計を使用することができる。   FIG. 1 is a diagram illustrating a configuration example of a biomagnetic field measurement apparatus according to an embodiment of the present invention. Inside the magnetic shield room 1, a bed 7 on which a living body is mounted and a refrigerant (liquid helium or liquid nitrogen) for maintaining a superconducting quantum interference device (hereinafter referred to as SQUID) sensor in a superconducting state. ), And a gantry 3 for fixing the position of the cryostat 2 is disposed. The SQUID sensor operates as a magnetometer by a drive circuit 4 arranged outside the magnetic shield room 1, and the output of the magnetometer passes through an amplifier filter unit 5 and is converted into digital data by an analog-digital conversion circuit built in the computer 6. And stored in the computer 6. In this embodiment, the SQUID sensor using superconductivity is described. However, it is not always necessary to use a superconducting sensor, and a high-sensitivity magnetometer such as an optical pumping magnetometer can be used.

図2は、図1のクライオスタット2の内部に配置される検出コイル8の配列の例を示す図である。検出コイル8とSQUIDセンサーは一体で構成され、図2に示す例では、SQUIDセンサーと一体で構成された検出コイル8−1〜8−64は、8×8のマトリックス状に64本配置されている。マトリックス状の配置をすることで、本発明の電流ベクトルの計算を容易にしている。ここで本実施例では電流アロー図という手法を用いて電流ベクトルを計算する。電流アロー図は、法線方向磁場(Bz)を偏微分して求めた擬似的な電流ベクトルI(Ix=dBz/dy、Iy=−dBz/dx)と仮定して計算する手法である。しかし、電流ベクトルの計算法は、最小ノルム法やリードフィールドの逆行列を計算する方法などがあるため、必ずしも図2のような配置にする必要はない。   FIG. 2 is a diagram showing an example of the arrangement of the detection coils 8 arranged inside the cryostat 2 of FIG. The detection coil 8 and the SQUID sensor are configured integrally, and in the example shown in FIG. 2, 64 detection coils 8-1 to 8-64 configured integrally with the SQUID sensor are arranged in an 8 × 8 matrix. Yes. The arrangement of the matrix shape facilitates the calculation of the current vector of the present invention. Here, in this embodiment, the current vector is calculated using a method called a current arrow diagram. The current arrow diagram is a method of calculation assuming a pseudo current vector I (Ix = dBz / dy, Iy = −dBz / dx) obtained by partial differentiation of the normal magnetic field (Bz). However, the current vector calculation method includes a minimum norm method and a method of calculating an inverse matrix of the lead field, and therefore, the arrangement as shown in FIG. 2 is not necessarily required.

図3から図7を用いてテンプレート波形の作成方法を説明する。
最初に図3を用いたメインの処理フローを説明する。テンプレート開始30を行うと、最初にP波、QRS波、ST-T波の3つの部分に波形分割31される。各P波、QRS波、ST-T波の3つの部分でテンプレートを作成していくが、P波からQ波の始まりの時刻の波形をPQテンプレート35と呼び、QRS波の部分だけをQRSテンプレート34と呼び、S波の終点からT波の終わりまでの波形をST-Tテンプレート33と呼ぶ。この3つのテンプレートについては、図4と図5を用いてPQテンプレートおよびQRSテンプレートの作成法を説明し、図6と図7を用いてST-Tテンプレートの作成法を説明している。作成された3つのテンプレートを用いて、多くの被験者(ここでは464名)の正常な心臓磁場データの平均値から得られた時間幅と磁場強度(図14に示す値)にあわせる処理を行う。この処理はどちらを先に処理しても構わない。図3では処理36の時間幅の調整処理を先行して行い、続いて処理37の磁場強度の振幅幅の調整処理を行う。最後に合成処理38によって、3つのテンプレートを合成する処理を行う。以上の処理によって、テンプレート波形を作成することができる。
A template waveform creation method will be described with reference to FIGS.
First, the main processing flow using FIG. 3 will be described. When the template start 30 is performed, the waveform is first divided 31 into three parts: a P wave, a QRS wave, and an ST-T wave. A template is created with three parts, each P wave, QRS wave, and ST-T wave. The waveform from the P wave to the beginning of the Q wave is called the PQ template 35, and only the QRS wave part is the QRS template. A waveform from the end point of the S wave to the end of the T wave is called an ST-T template 33. For these three templates, the method for creating the PQ template and the QRS template is described with reference to FIGS. 4 and 5, and the method for creating the ST-T template is described with reference to FIGS. Using the created three templates, processing is performed in accordance with the time width and magnetic field strength (value shown in FIG. 14) obtained from the average value of normal cardiac magnetic field data of many subjects (here, 464 people). Either of these processes may be performed first. In FIG. 3, the time width adjustment process of process 36 is performed in advance, and then the process of adjusting the amplitude width of the magnetic field strength of process 37 is performed. Finally, a process for synthesizing the three templates is performed by the synthesis process 38. A template waveform can be created by the above processing.

次に図3で説明したPQテンプレート35またはQRSテンプレート34を作成するサブ処理フローを図4に示し、処理の模式図を図5によって説明する。ただし図4で示すフローは、PQテンプレートおよびQRSテンプレート毎に独立に処理が行われるが、ここでは処理フローが同じため一つの説明を行う。処理フローを開始41すると、データ長調整処理42が行われる。処理42は各被験者によって波形の時間幅が異なることため、全被験者(ここでは464人のデータ)の中でQRS波形またはPQ波形の最も長いデータ長になるようにゼロを各被験者のデータの後ろに挿入してデータ長の調整を行う(図5のデータ長調整処理51の模式図を参照)。ただし本処理42では、被験者のPQ時間やQRS時間が年齢や性別によって変化が小さいことがわかっているため、各被験者のPQ波形およびQRS波形の時間軸方向への拡大などは行なわずに、ゼロの値のみを延長して挿入している。次の振幅の正規化処理43では、心臓磁場波形において心臓から磁気センサーの間での距離の違いによって心臓磁場波形の磁場強度が変化するため、各被験者後との全てのチャンネルで計測された磁場波形の中で最も大きな磁場強度を持つ振幅値を1にする処理を行う(図5の振幅の正規化処理52の模式図を参照)。以上のように心臓磁場波形のPQ波形およびQRS波形の性質を知った上で最適な処理を行っている。最後に加算平均処理44において、各チャンネル毎に全被験者の磁場波形を加算平均処理によって、PQテンプレートおよびQRSテンプレートが作成できる(図5の加算平均処理53の模式図を参照)。加算平均処理44によってテンプレートが作成されると、メイン処理45によって、図3の処理36へと処理が継続されていく。   Next, a sub-processing flow for creating the PQ template 35 or QRS template 34 described in FIG. 3 is shown in FIG. 4, and a schematic diagram of the processing will be described with reference to FIG. However, the flow shown in FIG. 4 is processed independently for each PQ template and QRS template, but here, since the processing flow is the same, only one description will be given. When the process flow is started 41, a data length adjustment process 42 is performed. Since the time width of the waveform is different for each subject in the process 42, zero is set after each subject's data so that the longest data length of the QRS waveform or PQ waveform is obtained in all subjects (here, data of 464 people). To adjust the data length (see the schematic diagram of the data length adjustment processing 51 in FIG. 5). However, in this process 42, since it is known that the change in the PQ time and QRS time of the subject is small depending on the age and gender, the PQ waveform and the QRS waveform of each subject are not expanded in the time axis direction, and so on. Only the value of is extended and inserted. In the next amplitude normalization process 43, the magnetic field intensity of the cardiac magnetic field waveform changes due to the difference in the distance between the heart and the magnetic sensor in the cardiac magnetic field waveform, so the magnetic field measured in all channels after each subject. A process of setting the amplitude value having the largest magnetic field strength in the waveform to 1 is performed (see the schematic diagram of the amplitude normalization process 52 in FIG. 5). As described above, optimal processing is performed after knowing the characteristics of the PQ waveform and QRS waveform of the cardiac magnetic field waveform. Finally, in the averaging process 44, PQ templates and QRS templates can be created by adding and averaging the magnetic field waveforms of all subjects for each channel (see the schematic diagram of the averaging process 53 in FIG. 5). When the template is created by the averaging process 44, the main process 45 continues the process to the process 36 in FIG.

次に図3で説明したST-Tテンプレート33を作成するサブ処理フローを図6に示し、処理の模式図を図7によって説明する。ST-Tテンプレート作成開始61を行うと、最初に各被験者毎のS波の終わり(J点)からT波終わりまでの波形(ST-T波形)をT波の頂点を中心にして、ST-Tpeak波形とTpeak-Tend波形の二つに2分割する波形分割処理62を行う(図7の波形分割処理71の模式図を参照)。次に各被験者のST-Tpeak波形の時間幅を1001msになるように波形を拡大する第1の波形拡大処理63(図7の第1の波形拡大処理72の模式図を参照)を行う。次に前記第1の波形拡大処理63で使用した波形拡大率を用いて、各被験者のTpeak-Tend波形を時間幅方向に第2の波形拡大処理64(図7の第2の波形拡大処理73の模式図を参照)を行う。次に、前記第1の波形拡大処理63で得られた波形と、前記第2の波形拡大処理64で得られた波形とを連結して一つの波形に合成する波形合成処理65を行う。次に波形合成処理65で得られた全員の被験者のデータ長の中で最も長いデータ長に全ての被験者のデータ長がなるようにゼロを入れてデータ延長処理66を行う。次に各被験者の磁場の振幅値が1になるように正規化処理67を行う。最後に各チャネル毎の波形を全被験者のデータで加算平均処理68を行う。加算平均処理68が終了した後、メイン処理69に戻り、図3の処理36、37、38を行いテンプレート波形が完成する。   Next, a sub-processing flow for creating the ST-T template 33 described in FIG. 3 is shown in FIG. 6, and a schematic diagram of the processing will be described with reference to FIG. When ST-T template creation start 61 is performed, first, the waveform from the end of the S wave (J point) to the end of the T wave (ST-T waveform) for each subject is centered on the top of the T wave. A waveform division process 62 is performed to divide the waveform into two parts, a Tpeak waveform and a Tpeak-Tend waveform (see the schematic diagram of the waveform division process 71 in FIG. 7). Next, a first waveform expansion process 63 (see a schematic diagram of the first waveform expansion process 72 in FIG. 7) is performed to expand the waveform so that the time width of the ST-Tpeak waveform of each subject becomes 1001 ms. Next, using the waveform expansion rate used in the first waveform expansion process 63, the Tpeak-Tend waveform of each subject is converted into a second waveform expansion process 64 (second waveform expansion process 73 in FIG. 7) in the time width direction. (See the schematic diagram). Next, a waveform synthesizing process 65 for synthesizing the waveform obtained by the first waveform enlarging process 63 and the waveform obtained by the second waveform enlarging process 64 into one waveform is performed. Next, a data extension process 66 is performed by inserting zeros so that the data lengths of all the subjects become the longest data length among the data lengths of all subjects obtained in the waveform synthesis process 65. Next, normalization processing 67 is performed so that the amplitude value of the magnetic field of each subject becomes 1. Finally, an averaging process 68 is performed on the waveforms for each channel using the data of all subjects. After the averaging process 68 is completed, the process returns to the main process 69, and the processes 36, 37, and 38 of FIG. 3 are performed to complete the template waveform.

図3から図7に示した処理を行って得られたテンプレート波形の重ね合わせ波形を図8に、各チャンネルの配置に波形を表示したグリッドマップ波形を図9に示す。図8は、トレース81の上に64個の波形全てを重ね書きした波形82であり、これらの重ね合わせ波形82から明瞭にP波、QRS波、ST-T波が確認できる。図9のグリッドマップ波形91−1、91−2、…、91−64も明瞭に各波形が確認できる。以上のようにテンプレート波形を作成することにより平均的な心臓磁場の変化を理解することが容易に行える。   FIG. 8 shows a superimposed waveform of template waveforms obtained by performing the processing shown in FIGS. 3 to 7, and FIG. 9 shows a grid map waveform in which the waveforms are displayed in the arrangement of each channel. FIG. 8 shows a waveform 82 in which all 64 waveforms are overwritten on the trace 81. From these superimposed waveforms 82, P waves, QRS waves, and ST-T waves can be clearly confirmed. The grid map waveforms 91-1, 91-2,..., 91-64 in FIG. By creating a template waveform as described above, it is possible to easily understand an average cardiac magnetic field change.

図9に示したテンプレート波形のグリッドマップ表示の特にQRS波形の形状(101〜106)から、図10に示す6つの領域に分割する。M1に現れるのはQr型波形101、M2に現れるのはQS型波形102、M3に現れるのはqRs型波形103、M4に現れるのはrSr’型波形104、M5に現れるのはrS型波形105、M6に現れるのはRs型波形106である。心臓輪郭107から各部位は、M1が右室、M2が中隔近傍、M3が左室(上方)、M4が右室下壁、M5が心尖部、M6が左室側壁の位置に対応する。この領域分割手段によって、異常波形や異常電流アローの出現する部位を明記しやすくなるという利点があり、効率的に所見記載が可能となる。具体的にテンプレート波形を用いて領域分割手段の効果をまとめたのが、図15と図16である。図15と図16のように各領域(M1からM6)で典型的な波形のパターンや電流パターンが現れることが分かる。本実施例の6つの領域は心尖部へ向かう心臓の軸に対して垂直方向に3分割行い、心臓の軸方向に2分割することにより、心臓の部位を左上、中上、右上、左下、中下、右下というように簡易に表すことが可能である。この6つの領域分割は、本実施例に示したように平均的な心臓磁場の特徴についてテンプレート波形を用いて詳細に検討した結果得られた分割方法であり、容易に見出されるものではない。ただし本実施例では6つの領域に分割する手段を説明したが、これは6つに限定するものではなく、心臓の部位との位置関係が明確に理解できる分割方法を採用してもよい。   9 is divided into six regions shown in FIG. 10 from the shape (101 to 106) of the QRS waveform in the grid map display of the template waveform shown in FIG. Q1 waveform 101 appears in M1, QS waveform 102 appears in M2, qRs waveform 103 appears in M3, rSr ′ waveform 104 appears in M4, and rS waveform 105 appears in M5. , Ms is an Rs waveform 106. Each part from the heart contour 107 corresponds to the position of M1 in the right ventricle, M2 in the vicinity of the septum, M3 in the left ventricle (upper), M4 in the right ventricular lower wall, M5 in the apex, and M6 in the left ventricular side wall. This region dividing means has an advantage that it is easy to clearly specify a part where an abnormal waveform or an abnormal current arrow appears, and the findings can be efficiently described. FIG. 15 and FIG. 16 specifically summarize the effects of the area dividing means using the template waveform. It can be seen that typical waveform patterns and current patterns appear in each region (M1 to M6) as shown in FIGS. The six regions in this example are divided into three in the vertical direction with respect to the axis of the heart toward the apex and divided into two in the axial direction of the heart, so that the heart region is upper left, middle upper, upper right, lower left, middle It can be expressed simply as “bottom” or “bottom right”. These six area divisions are division methods obtained as a result of detailed examination of the characteristics of the average cardiac magnetic field using the template waveform as shown in the present embodiment, and are not easily found. However, in the present embodiment, the means for dividing into six regions has been described, but this is not limited to six, and a dividing method that can clearly understand the positional relationship with the heart region may be adopted.

図16のテンプレート波形から得られる電流アローの特徴を分かりやすく説明するため、図11から図13に各P、QRS,ST-T波形が出現する時刻における電流アローの変化を示す。
図11では、上段に示した重ね合わせ図のP波時刻11−1における電流アローの変化11−2を下段に示している。電流アローの変化11−2から主にM2の領域に右下方向に向かう右房興奮が認められる。
図12では、上段に示した重ね合わせ図のQRS波時刻12−1における電流アローの変化12−2を下段に示している。最初のQ波(230 - 236ms)の間では主に中隔ベクトルといわれる左室から右室に向かう電流がM4からM5にかけて認められる。次にR波ピーク近傍でM2とM5中心とした逆L字パターンの電流興奮が認められる。最後のS波ではM1とM2の境界領域付近に左上方向の電流が認められる。
In order to explain the characteristics of the current arrow obtained from the template waveform of FIG. 16 in an easy-to-understand manner, FIGS. 11 to 13 show changes in the current arrow at the time when each P, QRS, and ST-T waveform appears.
In FIG. 11, the change 11-2 of the current arrow at the P wave time 11-1 in the superimposed diagram shown in the upper part is shown in the lower part. From the current arrow change 11-2, right atrial excitement toward the lower right direction is recognized mainly in the region of M2.
In FIG. 12, the current arrow change 12-2 at the QRS wave time 12-1 in the superimposed diagram shown in the upper part is shown in the lower part. During the first Q wave (230-236ms), a current from the left ventricle to the right ventricle, mainly called the septal vector, is observed from M4 to M5. Next, the current excitation of the reverse L-shaped pattern centering on M2 and M5 is observed near the R wave peak. In the last S wave, a current in the upper left direction is recognized near the boundary region between M1 and M2.

図13では、上段に示した重ね合わせ図のT波時刻13−1における電流アローの変化13−2を下段に示している。T波では同じ電流のパターンが最初から最後まで生じることが分かる。主な電流はM2領域に右下方向に向かう電流として現れる。   In FIG. 13, the current arrow change 13-2 at the T wave time 13-1 in the superimposed diagram shown in the upper part is shown in the lower part. It can be seen that the same current pattern occurs from the beginning to the end in the T wave. The main current appears in the M2 region as a current toward the lower right.

以上がテンプレート波形作成の方法および効果と、6つの領域に分割する方法および効果を示してきた。   The above has shown the method and effect of creating a template waveform and the method and effect of dividing into six regions.

次に図8と図9に示したテンプレート波形を用いた差分波形を作成する手段について図17、図18、図19を用いて説明する。   Next, means for creating a differential waveform using the template waveform shown in FIGS. 8 and 9 will be described with reference to FIGS. 17, 18, and 19. FIG.

図17にメインの処理フローを示している。差分波形作成を開始すると、差分波形を作成する対象の波形を図3に示した波形分割処理31と同様に、差分対象波形(差分処理を行いたい対象の波形という意味であり、ここからは差分対象波形と呼ぶ)に対して波形分割処理171を行い、P波、QRS波、ST-T波の3つの部分に波形分割される。差分対象波形のPQテンプレート173、QRSテンプレート174、ST-Tテンプレート175の3つの部分でテンプレートを作成していく。(各テンプレート作成は図18,図19で説明を行う。)差分対象波形のテンプレート波形が各々できあがると、各テンプレート毎に、比較対象処理176を行う。差分対象波形のデータ長とテンプレート波形のデータ長との長い方に合わせるように処理177、178を行う。ただしここでいうテンプレート波形とは、図3の処理36以降を行っていないPQテンプレート35、QRSテンプレート34、ST-Tテンプレート33のことをいう。データ長が同じになった段階で差分対象波形からテンプレート波形を各チャンネルごとに行う差分処理179を行う。   FIG. 17 shows a main processing flow. When the differential waveform generation is started, the waveform of the target for generating the differential waveform is the same as the waveform division processing 31 shown in FIG. A waveform division process 171 is performed on the target waveform) to divide the waveform into three parts: a P wave, a QRS wave, and an ST-T wave. A template is created with three parts of the PQ template 173, the QRS template 174, and the ST-T template 175 of the difference target waveform. (The creation of each template will be described with reference to FIGS. 18 and 19.) When the template waveform of the difference target waveform is completed, the comparison target process 176 is performed for each template. Processes 177 and 178 are performed so as to match the data length of the difference target waveform and the data length of the template waveform. However, the template waveform here refers to the PQ template 35, the QRS template 34, and the ST-T template 33 that have not been subjected to the processing 36 and subsequent steps in FIG. At the stage where the data length becomes the same, a difference process 179 is performed in which a template waveform is performed for each channel from the difference target waveform.

図18には差分対象波形のPQテンプレートまたはQRSテンプレート作成の方法を示している。PQテンプレートとQRSテンプレートでは基本的には時間軸方法には正規化などの処理が必要ないため、作成開始181を行うと磁場の振幅値のみを1になるように正規化する正規化処理182のみを行い、メイン処理に戻る(183)。しかし、伝導遅延などが生じ時間軸方向にも波形拡大処理が必要な場合は、正規化処理182の前または後に波形拡大処理を挿入して行っても良い。   FIG. 18 shows a method of creating a PQ template or QRS template of a difference target waveform. Since the PQ template and QRS template basically do not require processing such as normalization in the time axis method, only the normalization processing 182 that normalizes only the amplitude value of the magnetic field to 1 when the creation start 181 is performed. And return to the main process (183). However, if a conduction delay or the like occurs and the waveform enlargement process is necessary in the time axis direction, the waveform enlargement process may be inserted before or after the normalization process 182.

図19に差分対象波形のST-Tテンプレート作成方法を説明している(図6のST-Tテンプレート作成方法とほぼ同じ手法である)。開始61を行うと、最初に差分対象波形のS波の終わりからT波終わりまでの波形(ST-T波形)をT波の頂点を中心にして、ST-Tpeak波形とTpeak-Tend波形の二つに2分割する波形分割処理192を行う。次に差分対象波形のST-Tpeak波形の時間幅を1001msになるように波形を拡大する第1の波形拡大処理193を行う。次に前記第1の波形拡大処理193で使用した波形拡大率を用いて、各被験者のTpeak-Tend波形を時間幅方向に第2の波形拡大処理194を行う。次に、前記第1の波形拡大処理193で得られた波形と、前記第2の波形拡大処理194で得られた波形とを連結して一つの波形に合成する波形合成処理195を行う。次に差分対象波形の全チャンネルの中で最も大きい磁場の振幅値が1になるように正規化処理196を行う。正規化処理196が行われた後、メイン処理197に戻り、図17の処理176、処理179を行い差分波形処理が完了する。   FIG. 19 illustrates an ST-T template creation method for a difference target waveform (this is almost the same method as the ST-T template creation method in FIG. 6). When the start 61 is performed, first, the waveform from the end of the S wave to the end of the T wave (ST-T waveform) of the difference target waveform is centered on the top of the T wave, and an ST-Tpeak waveform and a Tpeak-Tend waveform. A waveform division process 192 is performed to divide it into two. Next, a first waveform expansion process 193 is performed to expand the waveform so that the time width of the ST-Tpeak waveform of the difference target waveform is 1001 ms. Next, a second waveform expansion process 194 is performed on the Tpeak-Tend waveform of each subject in the time width direction using the waveform expansion ratio used in the first waveform expansion process 193. Next, a waveform synthesizing process 195 is performed in which the waveform obtained in the first waveform enlarging process 193 and the waveform obtained in the second waveform enlarging process 194 are connected and synthesized into one waveform. Next, normalization processing 196 is performed so that the amplitude value of the largest magnetic field among all the channels of the difference target waveform is 1. After the normalization process 196 is performed, the process returns to the main process 197, and the processes 176 and 179 in FIG. 17 are performed to complete the differential waveform process.

図20から図23を用いて、ST-T部分に関する差分処理の結果を健常者と虚血患者との間での違いを示す。   The difference between the healthy subject and the ischemic patient is shown in FIG. 20 to FIG.

図20に差分処理の健常者の典型例を示す。差分前の波形201ではST-T波形が明瞭に見えているのに対して、差分後の波形202ではほとんどST-T波形が見えないことが分かる。また、差分波形のST-T波形から電流アロー図203を作成するとほとんど電流が認められないくらい小さい値となっている。   FIG. 20 shows a typical example of a healthy person in the difference process. It can be seen that the ST-T waveform is clearly visible in the waveform 201 before the difference, whereas the ST-T waveform is hardly visible in the waveform 202 after the difference. Further, when the current arrow diagram 203 is created from the ST-T waveform of the differential waveform, the value is small enough that almost no current is recognized.

一方図21には典型的な虚血患者の差分処理の典型例を示す。差分前の波形211においてもST部において若干のST変化が認められるが、差分を行った差分後の波形212ではより顕著にST変化が認められる上に、T波全体が明瞭に残っている。また差分波形の電流アロー図213を作成すると、明瞭にM2領域の近傍に左下方向に向かう電流が認められる。   On the other hand, FIG. 21 shows a typical example of differential processing of a typical ischemic patient. Even in the waveform 211 before the difference, a slight ST change is recognized in the ST portion, but in the waveform 212 after the difference is performed, the ST change is more noticeable and the entire T wave remains clearly. Further, when the current arrow diagram 213 of the differential waveform is created, a current directed toward the lower left direction is clearly recognized in the vicinity of the M2 region.

図20、図21に示した典型例と同じ処理を、健常者454人分のデータと患者41人のデータを定量的にまとめたものが図22と図23である。図22にでは差分処理をした後の最大磁場強度・最大電流強度・トータルカレントベクトル量(TCV)について比較したものである。TCV(I)は各測定点での電流ベクトル(In)から以下のように計算される値である。

Figure 0004972443


図22には健常者群と虚血患者群でのそれぞれの平均値と分散の値を図示したものである。最大磁場強度を比較した図221、最大電流強度を比較した図222、TCV強度を比較した図223のどれを見ても2群間で大きな違いが認められる。次に図22の平均値に分散値(SD)1個分(1SD)あるいは2個分(2SD)を足したところを閾値として感度および特異度を求めたものが図23である。図23を見ると、1SDでおよそ75%程度の高い感度と85%程度の高い特異度が現れており、本実施例の手法の有効性が示されている。 FIGS. 22 and 23 show the same process as the typical example shown in FIGS. 20 and 21, and quantitatively summarize the data for 454 healthy persons and the data for 41 patients. FIG. 22 compares the maximum magnetic field intensity, the maximum current intensity, and the total current vector amount (TCV) after the difference processing. TCV (I) is a value calculated as follows from the current vector (I n ) at each measurement point.
Figure 0004972443


FIG. 22 shows the average value and the variance value in the healthy subject group and the ischemic patient group. There is a large difference between the two groups in any one of FIG. 221 comparing the maximum magnetic field strength, FIG. 222 comparing the maximum current strength, and FIG. 223 comparing the TCV strength. Next, FIG. 23 shows the sensitivity and specificity obtained with the threshold value obtained by adding one variance value (SD) (1SD) or two variance values (2SD) to the average value in FIG. As shown in FIG. 23, high sensitivity of about 75% and high specificity of about 85% appear in 1SD, which shows the effectiveness of the method of this example.

以上のようにST-T波形での差分処理による波形および電流アロー図は、虚血の有無および度合いを判定するのに有効であると考えられる。またPQ波形やQRS波形においても、ST−T波形と同様の処理を行うことにより、不整脈・伝導障害・虚血性心疾患などの異常興奮を可視化することが可能である。   As described above, the waveform and the current arrow diagram obtained by the differential processing with the ST-T waveform are considered to be effective for determining the presence and degree of ischemia. Also, PQ waveforms and QRS waveforms can be visualized for abnormal excitement such as arrhythmia, conduction disorder, and ischemic heart disease by performing the same processing as ST-T waveform.

本発明の実施例の装置構成例を示す図。The figure which shows the apparatus structural example of the Example of this invention. 本発明の実施例のセンサー配置例を示す図。The figure which shows the sensor arrangement example of the Example of this invention. 本発明の第一の実施例であるテンプレート波形作成のメインフローを示す図。The figure which shows the main flow of template waveform creation which is a 1st Example of this invention. 本発明の第一の実施例であるPQテンプレートおよびQRSテンプレートの作成サブフローを示す図。The figure which shows the creation subflow of the PQ template and QRS template which are the 1st Examples of this invention. 図4に示すPQテンプレートおよびQRSテンプレートの作成フローの模式図を示す図。The figure which shows the schematic diagram of the creation flow of the PQ template and QRS template which are shown in FIG. 本発明の第一の実施例であるST-Tテンプレートの作成サブフローを示す図。The figure which shows the creation subflow of the ST-T template which is the 1st Example of this invention. 図6に示すST-Tテンプレートの作成フローの模式図を示す図。The figure which shows the schematic diagram of the creation flow of the ST-T template shown in FIG. 本発明の第一の実施例である図3から図7の処理を用いて作成された心臓磁場のテンプレート波形を示す図。本図面では一枚のトレース上に64個のテンプレート波形を重ね書きした波形を示している。The figure which shows the template waveform of the cardiac magnetic field produced using the process of FIGS. 3-7 which is a 1st Example of this invention. This drawing shows a waveform in which 64 template waveforms are overwritten on one trace. 本発明の第一の実施例である図3から図7の処理を用いて作成された心臓磁場のテンプレート波形を示す図。本図面では各センサーの配置にテンプレート波形を表示している。The figure which shows the template waveform of the cardiac magnetic field produced using the process of FIGS. 3-7 which is a 1st Example of this invention. In this drawing, a template waveform is displayed in the arrangement of each sensor. 本発明の第二の実施例である、6つの分割領域と各領域に対応する典型的にQRS波形の形状を示す図。心臓磁場波形の特徴から分割領域が決定される。The figure which is the 2nd Example of this invention, and shows the shape of the QRS waveform typically corresponding to six division areas and each area | region. A divided region is determined from the characteristics of the cardiac magnetic field waveform. 本発明の第一および第二の実施例で示したテンプレート波形から得られる電流アロー図(P波)の時間変化を示す図と、6つの分割領域を同時に表示する実施例を示す図。The figure which shows the time change of the current arrow figure (P wave) obtained from the template waveform shown in the 1st and 2nd Example of this invention, and the figure which shows the Example which displays six division areas simultaneously. 本発明の第一および第二の実施例で示したテンプレート波形から得られる電流アロー図(QRS波)の時間変化を示す図と、6つの分割領域を同時に表示する実施例を示す図。The figure which shows the time change of the current arrow figure (QRS wave) obtained from the template waveform shown in the 1st and 2nd Example of this invention, and the figure which shows the Example which displays six division areas simultaneously. 本発明の第一および第二の実施例で示したテンプレート波形から得られる電流アロー図(T波)の時間変化を示す図と、6つの分割領域を同時に表示する実施例を示す図。The figure which shows the time change of the current arrow figure (T wave) obtained from the template waveform shown in the 1st and 2nd Example of this invention, and the figure which shows the Example which displays six division areas simultaneously. 本発明の第一の実施例のテンプレート波形作成手段に用いる平均的な磁場強度および時間幅の数値を表記した図。The figure which represented the numerical value of the average magnetic field strength and time width used for the template waveform preparation means of 1st Example of this invention. 本発明の第二の実施例の6つの分割領域における、第一の実施例で作成されたテンプレート波形の波形特徴をまとめた図。The figure which put together the waveform characteristic of the template waveform produced in the 1st Example in the six division area of the 2nd Example of this invention. 本発明の第二の実施例の6つの分割領域における、第一の実施例で作成されたテンプレート波形の電流アロー図の特徴をまとめた図。The figure which put together the characteristic of the current arrow figure of the template waveform produced in the 1st example in six division fields of the 2nd example of the present invention. 本発明の第三の実施例である差分波形を作成するメインフローを示す図。The figure which shows the main flow which produces the difference waveform which is the 3rd Example of this invention. 本発明の第三の実施例である差分波形を作成するPQテンプレートおよびQRSテンプレートのサブフローを示す図。The figure which shows the subflow of the PQ template and QRS template which produce the difference waveform which is the 3rd Example of this invention. 本発明の第三の実施例である差分波形を作成するST-Tテンプレートのサブフローを示す図。The figure which shows the subflow of the ST-T template which produces the difference waveform which is the 3rd Example of this invention. 本発明の第三の実施例である差分波形処理によって作成された健常者の差分前後の波形を示す図と、差分後の波形から得られる電流アロー図の時間変化を示す図。The figure which shows the waveform before and behind the difference of the healthy subject created by the difference waveform process which is the 3rd Example of this invention, and the figure which shows the time change of the current arrow figure obtained from the waveform after a difference. 本発明の第三の実施例である差分波形処理によって作成された虚血性心疾患患者の差分前後の波形を示す図と、差分後の波形から得られる電流アロー図の時間変化を示す図。The figure which shows the waveform before and behind the difference of the ischemic heart disease patient created by the difference waveform process which is the 3rd Example of this invention, and the figure which shows the time change of the current arrow figure obtained from the waveform after a difference. 本発明の第三の実施例である差分波形処理によって作成された差分波形から、最大磁場強度・最大電流強度・TCV強度を健常者群と虚血性心疾患群とで比較をしめした図。The figure which compared the maximum magnetic field intensity | strength, the maximum electric current intensity | strength, and the TCV intensity | strength in a healthy subject group and an ischemic heart disease group from the difference waveform produced by the difference waveform process which is the 3rd Example of this invention. 本発明の第三の実施例である差分波形処理によって作成された図22の健常者群(454人)と虚血性心疾患群(41人)とで(平均値+1SD)を閾値とした場合と、(平均値+2SD)を閾値とした場合とで、感度と特異度を計算した結果を示す図。ここでSDは標準偏差。When the healthy group (454 people) and the ischemic heart disease group (41 people) of FIG. 22 created by the differential waveform processing according to the third embodiment of the present invention are used as the threshold value (average value + 1SD) The figure which shows the result of having calculated sensitivity and specificity in the case where (average value + 2SD) is used as a threshold value. SD is the standard deviation.

符号の説明Explanation of symbols

1…磁気シールドルーム、2…クライオスタット、3…ガントリー、4…駆動回路、5…アンプフィルタ・ユニット、6…コンピューター、7…ベッド、検出コイル8−1〜8−64…検出コイル、30…テンプレート開始、31…波形分割、32…各波形のテンプレート作成手段、33…ST-Tテンプレート、34…QRSテンプレート、35…PQテンプレート、36…時間幅の調整処理手段、37…磁場強度の振幅幅の調整処理手段、38…合成処理手段、41…テンプレート作成開始手段、42、51…データ長延長手段、43、52…磁場強度の振幅値を正規化する手段、44、53…全被験者データの加算平均処理、45…メイン処理に戻る手段、61…ST波形テンプレート作成開始手段、62、71…波形の2分割手段、63、72…ST-Tpeak波形のデータ長を1001msにする時間軸方向への波形拡大手段、64、73…Tpeak-Tend波形の時間軸方向への波形拡大手段(拡大率は手段63で用いた値を使用)、65…ST-Tpeak波形とTpeak-Tend波形の波形合成手段、66…データ長を延長する手段、67…磁場の振幅値が1になるように正規化する手段、68…波形の加算平均化処理手段、69…メイン処理に戻る手段、81…トレース、82…図3から図7の手法によって作成された心臓磁場テンプレート波形の波形重ね合わせ図、91−1、91−2、〜91−64…各センサー位置に心臓磁場テンプレート波形を描画した図、101…M1領域、102…M2領域、103…M3領域、104…M4領域、105…M5領域、106…M6領域、107…心臓の輪郭、11−1…P波の電流アロー図描画の時間帯を示すウィンドー、11−2…P波時刻における電流アロー図の時間変化を示す図、11−3…6つの領域を示す図、12−1…QRS波の電流アロー図描画の時間帯を示すウィンドー、12−2…QRS波時刻における電流アロー図の時間変化を示す図、12−3…6つの領域を示す図、13−1…T波の電流アロー図描画の時間帯を示すウィンドー、13−2…T波時刻における電流アロー図の時間変化を示す図、13−3…6つの領域を示す図、171…差分対象波形の波形2分割手段、172…差分対象波形の各波形のテンプレート作成手段、173…差分対象波形のPQテンプレート作成手段、174…差分対象波形のQRSテンプレート作成手段、175…差分対象波形のST-Tテンプレート作成手段、176…差分対象波形のデータ長とテンプレート波形のデータ長を比較する手段、177…差分対象波形のデータ長をゼロを足してテンプレート波形のデータ長に合わせる手段、178…テンプレート波形のデータ長をゼロを足して差分対象波形のデータ長に合わせる手段、179…差分処理手段、181…差分対象波形のPQテンプレートまたはQRSテンプレート波形の作成開始手段、182…差分対象波形の振幅値を1にする正規化手段、183…メイン処理の戻る手段、191…差分対象波形のST-T波形テンプレート作成開始手段、192…差分対象波形のST-T波形の2分割手段、193…差分対象波形のST-Tpeak 波形の時間幅を1001msになるように波形を時間軸方向に拡大する波形拡大手段、194…差分対象波形のTpeak-Tend波形の時間幅を、前記処理193によって求めた各被験者毎の波形拡大率の値を用いて時間軸方向への波形拡大処理を行う波形拡大手段、195…2つのテンプレート波形の波形合成手段、196…差分対象波形の振幅値を1に正規化する正規化手段、197…メイン処理に戻る手段、201…健常者における差分前のST-T波形、202…健常者における差分後のST-T波形、203…健常者における差分後のST-T波形の時間における電流アロー図の時間変化を示す図、204…6つの領域を示す図、211…虚血患者における差分前のST-T波形、212…虚血患者における差分後のST-T波形、213…虚血患者における差分後のST-T波形の時間における電流アロー図の時間変化を示す図、214…6つの領域を示す図、221…最大磁場強度を比較した図、222…最大電流強度を比較した図、223…TCV強度を比較した図。 DESCRIPTION OF SYMBOLS 1 ... Magnetic shield room, 2 ... Cryostat, 3 ... Gantry, 4 ... Drive circuit, 5 ... Amplifier filter unit, 6 ... Computer, 7 ... Bed, Detection coil 8-1 to 8-64 ... Detection coil, 30 ... Template Start, 31 ... waveform division, 32 ... template creation means for each waveform, 33 ... ST-T template, 34 ... QRS template, 35 ... PQ template, 36 ... time width adjustment processing means, 37 ... amplitude width of magnetic field strength Adjustment processing means, 38 ... synthesis processing means, 41 ... template creation start means, 42, 51 ... data length extension means, 43, 52 ... means for normalizing the amplitude value of the magnetic field strength, 44, 53 ... addition of all subject data Average processing, 45 ... means for returning to the main processing, 61 ... ST waveform template creation start means, 62, 71 ... waveform dividing means, 63, 72 ... ST-Tp Waveform enlarging means in the time axis direction for setting the data length of the eak waveform to 1001 ms, 64, 73... Waveform enlarging means in the time axis direction for the Tpeak-Tend waveform (magnification rate uses the value used in the means 63), 65 ... ST-Tpeak waveform and Tpeak-Tend waveform synthesizing means, 66 ... means for extending the data length, 67 ... means for normalizing the amplitude value of the magnetic field to be 1, 68 ... means for adding and averaging the waveforms 69 ... Means for returning to the main processing, 81 ... Trace, 82 ... Waveform superposition diagram of cardiac magnetic field template waveforms created by the method of Figs. 3 to 7, 91-1, 91-2, ~ 91-64 ... each Drawing of cardiac magnetic field template waveform at sensor position, 101 ... M1 region, 102 ... M2 region, 103 ... M3 region, 104 ... M4 region, 105 ... M5 region, 106 ... M6 region, 107 ... heart outline, 11- 1… When drawing a P-wave current arrow diagram A window showing a band, 11-2 ... a diagram showing a time change of a current arrow diagram at a P wave time, 11-3 ... a diagram showing six regions, 12-1 ... a time zone for drawing a current arrow diagram of a QRS wave Window, 12-2... Time variation of current arrow diagram at QRS time, 12-3... Six regions, 13-1 Window of T wave current arrow drawing time zone, 13 -2 ... Diagram showing time variation of current arrow diagram at T wave time, 13-3 ... Diagram showing six regions, 171 ... Waveform dividing means for difference target waveform, 172 ... Template creation of each waveform of difference target waveform Means 173: PQ template creation means for the difference target waveform, 174 ... QRS template creation means for the difference target waveform, 175 ... ST-T template creation means for the difference target waveform, 176 ... Data length and template of the difference target waveform Means for comparing the data lengths of the first waveform, 177... Means for adjusting the data length of the difference target waveform by adding zero to the data length of the template waveform. 178..., Adding the data length of the template waveform by adding zero. , 181... Difference processing means, 181... PQ template or QRS template waveform generation start means for the difference target waveform, 182... Normalization means for setting the amplitude value of the difference target waveform to 1, 183. 191 ... ST-T waveform template creation start means for the difference target waveform, 192 ... ST-T waveform splitting means for the difference target waveform, 193 ... ST-Tpeak waveform time width of the difference target waveform to be 1001 ms Waveform enlarging means for enlarging the waveform in the time axis direction, 194... Enlarging the time width of the Tpeak-Tend waveform of the difference target waveform for each subject obtained by the processing 193 Magnifying means for performing waveform magnifying processing in the time axis direction using the values of 195..., Waveform synthesizing means for two template waveforms, 196... Normalizing means for normalizing the amplitude value of the difference target waveform to 1, 197. Means for returning to main processing, 201 ... ST-T waveform before difference in healthy person, 202 ... ST-T waveform after difference in healthy person, 203 ... Current arrow diagram at time of ST-T waveform after difference in healthy person FIG. 204 is a diagram showing temporal changes of 204, 204 is a diagram showing six regions, 211 is an ST-T waveform before the difference in the ischemic patient, 212 is an ST-T waveform after the difference in the ischemic patient, 213 is in the ischemic patient The figure which shows the time change of the current arrow figure in the time of the ST-T waveform after a difference, 214 ... The figure which shows six area | regions, 221 ... The figure which compared the maximum magnetic field intensity, 222 ... The figure which compared the maximum current intensity ... TCV intensity comparison .

Claims (2)

被検者の心臓から発生する心臓磁場を検出する磁場検出手段と
前記磁場検出手段によって得られた複数被検者の心臓磁場検出波形を、波形経過によりそれぞれ複数個のコンポーネントに分割する時間分割手段と
各コンポーネントごとに複数被検者の検出波形のデータの加算平均化処理を行って前記複数被検者の心臓磁場検出波形に基づく各コンポーネントのテンプレートを作成する複数の部分テンプレート作成手段と
作成された各コンポーネントのテンプレートを合成して前記複数被検者の心臓磁場検出波形に基づく心臓磁場のテンプレート波形を作成する波形合成手段を有する生体磁場計測装置において
前記被検者の部分テンプレート作成手段のうちT波を含むST−Tコンポーネントのテンプレートを作成するST−Tテンプレート作成手段は、各被検者のST-Tコンポーネントに区分された波形を、T波の最も振幅の大きな時点から前と後ろの時間帯の2つの波形にそれぞれ分割する前後波形分割処理手段と、前記前後波形分割処理によって得られた前側波形の時間スケールを一定値に拡大する波形拡大処理を行う第1の拡大処理手段と、前記前後波形分割処理によって得られた後ろ側波形を第1の拡大処理手段によって使用された拡大率を用いて波形拡大処理を行う第2の拡大処理手段と、波形拡大処理後の前側波形と後側波形を連結する連結処理手段と、連結された各被検者の波形から加算平均化処理を行ってST-Tコンポーネントのテンプレートを得る波形加算平均化処理手段を有することを特徴とする生体磁場計測装置
Magnetic field detection means for detecting a cardiac magnetic field generated from the subject's heart ;
Time division means for dividing a cardiac magnetic field detection waveform of a plurality of subjects obtained by the magnetic field detection means into a plurality of components, respectively, according to waveform progress ;
A plurality of partial template creation means for creating a template of each component based on the cardiac magnetic field detection waveform of the plurality of subjects by performing addition averaging processing of the data of the detection waveforms of the plurality of subjects for each component ;
In the biomagnetic field measurement apparatus having a waveform synthesizing unit that synthesizes the created template of each component and creates a template waveform of the cardiac magnetic field based on the cardiac magnetic field detection waveform of the plurality of subjects ,
The ST-T template creation means for creating the template of the ST-T component including the T wave among the partial template creation means of the subject includes the waveform divided into the ST-T components of each subject, Waveform division processing means for dividing the waveform into two waveforms in the time zone before and after the time point with the largest amplitude of the waveform, and waveform expansion for expanding the time scale of the front waveform obtained by the waveform division processing before and after to a constant value First enlargement processing means for performing processing, and second enlargement processing means for performing waveform enlargement processing on the rear side waveform obtained by the front and rear waveform division processing using the enlargement ratio used by the first enlargement processing means. And a connection processing means for connecting the front waveform and the rear waveform after the waveform enlargement processing, and an averaging process is performed from the waveform of each connected subject to obtain an ST-T component template A biomagnetic field measurement apparatus having waveform addition averaging processing means .
前記ST−Tテンプレート作成手段は、前記各被検者のST-Tコンポーネントに区分された波形の内の最も長いデータ長に全ての被検者の連結された波形のデータ長がなるようにゼロを付加するデータ延長処理と、各被検者の振幅値が1になるように各被検者の連結された波形を正規化する正規化処理とを実施する手段を更に有し、データ延長処理と正規化処理とを経た各被検者の波形を前記加算平均処理手段に集めてST-Tコンポーネントのテンプレートを得ることを特徴とする請求項1記載の生体磁場計測装置 The ST-T template creation means is configured such that the longest data length of the waveforms divided into the ST-T components of each subject is zero so that the data length of the waveforms connected to all the subjects is the same. Is further provided with means for performing a data extension process for adding the data and a normalization process for normalizing the connected waveform of each subject so that the amplitude value of each subject is 1. The biomagnetic field measurement apparatus according to claim 1, wherein a waveform of each subject that has undergone the normalization process and the waveform of each subject is collected in the arithmetic mean processing means to obtain a template of the ST-T component .
JP2007090204A 2007-03-30 2007-03-30 Biomagnetic field measurement device Expired - Fee Related JP4972443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090204A JP4972443B2 (en) 2007-03-30 2007-03-30 Biomagnetic field measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090204A JP4972443B2 (en) 2007-03-30 2007-03-30 Biomagnetic field measurement device

Publications (2)

Publication Number Publication Date
JP2008245882A JP2008245882A (en) 2008-10-16
JP4972443B2 true JP4972443B2 (en) 2012-07-11

Family

ID=39971551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090204A Expired - Fee Related JP4972443B2 (en) 2007-03-30 2007-03-30 Biomagnetic field measurement device

Country Status (1)

Country Link
JP (1) JP4972443B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106701B2 (en) * 1992-06-29 2000-11-06 ダイキン工業株式会社 Biomagnetic field measurement device
US5311867A (en) * 1993-01-04 1994-05-17 Biomagnetic Technologies, Inc. Detection and grouping analysis of cardiac cycles
JPH06237909A (en) * 1993-02-19 1994-08-30 Nippon Koden Corp Electrocardiogram data processor
JP3494883B2 (en) * 1998-03-31 2004-02-09 株式会社日立製作所 Biomagnetic field measurement device
JP3427811B2 (en) * 2000-03-13 2003-07-22 株式会社日立製作所 Biomagnetic field measurement device
JP3558047B2 (en) * 2001-03-29 2004-08-25 株式会社日立製作所 Biomagnetic measurement device
JP4718032B2 (en) * 2001-04-10 2011-07-06 フクダ電子株式会社 ECG information processing apparatus and ECG information processing method
JP3944383B2 (en) * 2001-11-16 2007-07-11 株式会社日立製作所 Cardiac magnetic field measuring device
JP4027746B2 (en) * 2002-08-07 2007-12-26 株式会社日立ハイテクノロジーズ Biomagnetic field measurement device
JP3738392B2 (en) * 2003-07-08 2006-01-25 株式会社中日電子 Biological signal estimation method

Also Published As

Publication number Publication date
JP2008245882A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
WO2005117695A1 (en) Cardiac magnetic field diagnostic apparatus and damaged cardiac muscle three-dimensional localization evaluating method
JP4027867B2 (en) Biomagnetic field measurement device
US20020173714A1 (en) Biomagnetic field measuring method and apparatus
US7668581B2 (en) Biomagnetic measurement apparatus
US7123952B2 (en) Cardiac magnetic field diagnozer for atrial flutter and atrial fibrillation and method for identifying electric turning path of atrial flutter and atrial fibrillation
CN115337016A (en) Method and device for evaluating myocardial ischemia based on current density vector diagram
JP3712349B2 (en) Surviving myocardial diagnostic apparatus and operating method thereof
JP2008142154A (en) Biological magnetic field measuring apparatus and parallel projection method to biological model
JP3835805B2 (en) Cardiac magnetic field diagnostic apparatus and operating method thereof
JP2022139170A (en) Biomagnetism measuring apparatus, biomagnetism measuring program, and cardiac magnetism signal processing method
JP3712350B2 (en) Cardiac magnetic field diagnostic apparatus for ventricular delayed potential and method for operating the same
JP4972443B2 (en) Biomagnetic field measurement device
Udovychenko et al. Current density distribution maps threshold processing
JP4791797B2 (en) Biomagnetic field measurement device
US20180028078A1 (en) Continuous and rapid quantification of stroke volume from magnetohydrodynamic voltages in magnetic resonance imaging
JP3921415B2 (en) Biomagnetic field measurement device
JP3809454B2 (en) Cardiac magnetic field diagnostic apparatus and operating method thereof
JP2002355229A (en) Method to analyze magnetic field and instrument to visualize current distribution
Iwai et al. Evaluation of sensor and analysis area in the signal source estimation by spatial filter for magnetocardiography
JP2003038455A (en) Organism activity analyzer
Krzyminiewski et al. Correlation of results of coronographic, SPECT examination and high resolution electrocardiography
JP2001252254A (en) Equipment for measuring biological magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4972443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees