JP3427811B2 - Biomagnetic field measurement device - Google Patents

Biomagnetic field measurement device

Info

Publication number
JP3427811B2
JP3427811B2 JP2000073921A JP2000073921A JP3427811B2 JP 3427811 B2 JP3427811 B2 JP 3427811B2 JP 2000073921 A JP2000073921 A JP 2000073921A JP 2000073921 A JP2000073921 A JP 2000073921A JP 3427811 B2 JP3427811 B2 JP 3427811B2
Authority
JP
Japan
Prior art keywords
equation
magnetic field
waveform
state
current vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000073921A
Other languages
Japanese (ja)
Other versions
JP2001252253A (en
Inventor
明彦 神鳥
豪 宮下
啓二 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000073921A priority Critical patent/JP3427811B2/en
Publication of JP2001252253A publication Critical patent/JP2001252253A/en
Application granted granted Critical
Publication of JP3427811B2 publication Critical patent/JP3427811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,成人,小児,母体内の
胎児等の心臓や脳等から発生する微弱な生体磁場を計測
するSQUID(Superconducting Q
uantumInterference Devic
e:超伝導量子干渉素子)磁束計を用いる生体磁場計測
装置に関する。
The present invention relates to an SQUID (Superconducting Q) for measuring a weak biomagnetic field generated from the heart, brain, etc. of an adult, a child, a fetus in a mother's body, etc.
QuantumInterference Device
e: Superconducting quantum interference device) The present invention relates to a biomagnetic field measuring apparatus using a magnetometer.

【0002】[0002]

【従来の技術】従来,心電計により計測された心電図を
用いる心筋虚血の判定では,ST波(S波とT波の間に
於ける心電波形)が生じる時間帯(心筋の不応期に対応
する時間帯)に於いて,心電波形が基線より上昇又は下
降しているか否かの判定,更に,心電波形が上昇又は下
降している場合には上昇又は下降の持続時間が長いか否
か等を判定して,虚血性疾患の判定を行なっていた。し
かし,これらの方法では,十分にST波の生じる時間帯
で心電波形の変化が見られない限り判定は困難であっ
た。そのため狭心症等の場合,運動負荷試験を行ないS
T波の変化を計測していた。
2. Description of the Related Art Conventionally, in the determination of myocardial ischemia using an electrocardiogram measured by an electrocardiograph, a time zone (a myocardial refractory period) in which an ST wave (an electrocardiographic waveform between an S wave and a T wave) occurs. (In the time zone corresponding to), whether the electrocardiographic waveform is rising or falling from the baseline, and when the electrocardiographic waveform is rising or falling, the duration of rising or falling is long. Whether or not, the ischemic disease was determined. However, with these methods, the determination was difficult unless a change in the electrocardiographic waveform was observed during the time period when the ST wave was sufficiently generated. Therefore, in the case of angina, etc., perform an exercise load test S
I was measuring changes in the T wave.

【0003】一方,生体磁場計測装置,特に心臓から発
生する微弱な磁場を測定する心臓磁場計測装置(以下,
心磁計という)では,心臓から発生する法線方向(z方
向又は生体の面に垂直な方向)の磁場Bz(t)をx方
向,y方向に偏微分して得られる(数1),(数2)を
x成分,y成分とする電流ベクトルI'(t)(I'x
(t),I'y(t))によって,電流ベクトルを2次
元に表示し,心臓の筋肉の電気生理学的活動を表わす電
流ベクトルの分布図(アローマップ)として得られるこ
とは知られている。
On the other hand, a biomagnetic field measuring apparatus, especially a cardiac magnetic field measuring apparatus for measuring a weak magnetic field generated from the heart (hereinafter referred to as
The magnetocardiograph) is obtained by partially differentiating a magnetic field Bz (t) generated in the normal direction (z direction or a direction perpendicular to the plane of the living body) from the heart in x direction and y direction (Equation 1), ( A current vector I ′ (t) (I′x) where x is the x component and y is the equation 2)
It is known that (t), I'y (t)) can be used to display a current vector in two dimensions and obtain it as a distribution map (arrow map) of the current vector representing electrophysiological activity of heart muscle. .

【0004】[0004]

【数1】 I'x(t)=dBz(t)/dy …(数1)[Equation 1] I′x (t) = dBz (t) / dy (Equation 1)

【0005】[0005]

【数2】 I'y(t)=−dBz(t)/dx …(数2)[Equation 2] I′y (t) = − dBz (t) / dx (Equation 2)

【0006】[0006]

【発明が解決しようとする課題】従来技術の生体磁場計
測装置では,計測された磁場波形から得られた電流ベク
トルの大きさを定量的に評価する方法は皆無であり,上
記で説明した心電計で計測された心電図による判定方法
と同様にして,計測された磁場波形の変化のみで判定し
ているに過ぎなかった。そのため,診断により有効な情
報を得るための磁場波形の解析法が望まれていた。
In the biomedical field measuring apparatus of the prior art, there is no method for quantitatively evaluating the magnitude of the current vector obtained from the measured magnetic field waveform. Similar to the determination method based on the electrocardiogram measured by a meter, the determination was made only based on the changes in the measured magnetic field waveform. Therefore, an analysis method of the magnetic field waveform to obtain more effective information by diagnosis has been desired.

【0007】本発明の目的は,成人,小児,母体内の胎
児等の心臓から発生する微弱な磁場を測定する生体磁場
計測装置(心磁計)により計測された磁場波形を解析し
て,虚血性心疾患(心筋梗塞,狭心症等),心筋症を簡
易に識別することが可能な画面表示を行ない,診断に有
用な情報を提供することにある。
An object of the present invention is to analyze the magnetic field waveform measured by a biomagnetic field measuring apparatus (magnetocardiograph) for measuring a weak magnetic field generated from the heart of an adult, a child, a fetus in the mother's body, etc. The purpose of the present invention is to provide information useful for diagnosis by displaying a screen on which heart disease (myocardial infarction, angina, etc.) and cardiomyopathy can be easily identified.

【0008】[0008]

【課題を解決するための手段】本発明の生体磁場計測装
置(心磁計)の第1の構成では,2次元に配列された複
数のSQUID磁束計を使用して生体の心臓から発生す
る磁場(以下,心磁場という)を計測する(以下,計測
された磁場波形を心磁波形という)。心磁波形は,P波
が生じる時間帯の前の時間帯,P波とQ波が生じる間の
時間帯の少なくとも一方の所定の時点で,全ての計測点
(以下,チャネルともいう)に関してベースライン合わ
せが行なわれ表示装置の表示画面に表示される。
In the first configuration of the biomagnetic field measuring apparatus (magnetocardiograph) of the present invention, a plurality of SQUID magnetometers arranged two-dimensionally are used to generate a magnetic field from a heart of a living body ( Hereinafter, the magnetic field of the magnetocardiography) is measured (hereinafter, the measured magnetic field waveform is referred to as the magnetocardiographic waveform). The magnetocardiographic waveform is based on all measurement points (hereinafter, also referred to as channels) at a predetermined time point in the time period before the time period in which the P wave occurs and in the time period between the time periods in which the P wave and the Q wave occur. The lines are aligned and displayed on the display screen of the display device.

【0009】S波とT波の生じる間の時間帯で,t=T
1の時点とt=T2(但し,T2>T1)の時点で計測
されたi番目のチャネルの心磁場の法線成分(Bzi
(T1),Bzi(T2))を用いて,演算処理装置
は,(数3),(数4)に基づいてT1の時点に於い
て,電流ベクトルIiのx成分(Ixi(T1)),電
流ベクトルIiのy成分(Iyi(T1))を,(数
5),(数6)に基づいてT2の時点に於いて,電流ベ
クトルIiのx成分(Ixi(T2)),電流ベクトル
Iiのy成分(Iyi(T2))を,それぞれ計算す
る。
In the time zone between the generation of the S wave and the T wave, t = T
1 and the normal component of the magnetocardiographic field of the i-th channel (Bzi) measured at time t = T2 (however, T2> T1)
Using (T1), Bzi (T2)), the arithmetic processing unit, based on (Equation 3) and (Equation 4), at time T1, the x component (Ixi (T1)) of the current vector Ii, The y component (Iyi (T1)) of the current vector Ii is calculated based on (Equation 5) and (Equation 6) at time T2, and the x component (Ixi (T2)) of the current vector Ii and the current vector Ii The y component (Iyi (T2)) is calculated.

【0010】[0010]

【数3】 Ixi(T1)=dBzi(T1)/dy …(数3)[Equation 3] Ixi (T1) = dBzi (T1) / dy (Equation 3)

【0011】[0011]

【数4】 Iyi(T1)=−dBzi(T1)/dx …(数4)[Equation 4] Iyi (T1) =-dBzi (T1) / dx (Equation 4)

【0012】[0012]

【数5】 Ixi(T2)=dBzi(T2)/dy …(数5)[Equation 5] Ixi (T2) = dBzi (T2) / dy (Equation 5)

【0013】[0013]

【数6】 Iyi(T2)=−dBzi(T2)/dx …(数6) 更に演算処理装置は,Ixi(T1),Iyi(T1)
を全てのチャネル(全チャネル数をNとする)について
計算し,(数7),(数8)に基づいて,Ixi(T
1),Iyi(T1)を全てのチャネルについて加算し
て,I1x,I1yを成分とする合成電流ベクトルI1
を計算し,Ixi(T2),Iyi(T2)を全てのチ
ャネルについて計算し,(数9),(数10)に基づい
て,Ixi(T2),Iyi(T2)を全てのチャネル
について加算して,I2x,I2yを成分とする合成電
流ベクトルI2を計算する。なお,(数7)〜(数1
0)に於いて,Σは加算記号を示し加算は,i=1,
2,…,Nについて行なう。
[Equation 6] Iyi (T2) = − dBzi (T2) / dx (Equation 6) Further, the arithmetic processing device is Ixi (T1), Iyi (T1)
Is calculated for all channels (the total number of channels is N), and based on (Equation 7) and (Equation 8), Ixi (T
1) and Iyi (T1) are added for all channels, and a combined current vector I1 having I1x and I1y as components
And Ixi (T2) and Iyi (T2) are calculated for all channels, and Ixi (T2) and Iyi (T2) are added for all channels based on (Equation 9) and (Equation 10). Then, a combined current vector I2 having I2x and I2y as components is calculated. Note that (Equation 7) to (Equation 1)
0), Σ indicates an addition symbol, and addition is i = 1,
2, ..., N.

【0014】[0014]

【数7】 I1x=ΣIxi(T1) …(数7)[Equation 7] I1x = ΣIxi (T1) (Equation 7)

【0015】[0015]

【数8】 I1y=ΣIyi(T1) …(数8)[Equation 8] I1y = ΣIyi (T1) (Equation 8)

【0016】[0016]

【数9】 I2x=ΣIxi(T2) …(数9)[Equation 9] I2x = ΣIxi (T2) (Equation 9)

【0017】[0017]

【数10】 I2y=ΣIyi(T2) …(数10) (数7),(数8)に基づいて得られた合成電流ベクト
ルI1は,I1xを横軸,I1yを縦軸として表示装置
の表示画面に2次元プロットされ,(数9),(数1
0)に基づいて得られた合成電流ベクトルI2は,I2
xを横軸,I2yを縦軸として表示装置の表示画面に2
次元プロットされる。
[Equation 10] I2y = ΣIyi (T2) (Equation 10) The combined current vector I1 obtained based on (Equation 7) and (Equation 8) is displayed on the display device with I1x as the horizontal axis and I1y as the vertical axis. Two-dimensional plot is made on the screen, and (Equation 9) and (Equation 1)
0), the resultant current vector I2 is I2
2 on the display screen of the display device with x as the horizontal axis and I2y as the vertical axis.
The dimension is plotted.

【0018】演算処理装置は,(数11)に基づいて角
度θ1を計算し,θ1が角度を示す直線又は数値により
合成電流ベクトルI1が表示画面に表示され,また,演
算処理装置は,(数12)に基づいて角度θ2を計算
し,θ2が角度を示す直線又は数値により合成電流ベク
トルI2が表示画面に表示される。
The arithmetic processing unit calculates the angle θ1 based on (Equation 11), and the combined current vector I1 is displayed on the display screen by a straight line or a numerical value where θ1 indicates the angle. The angle θ2 is calculated based on 12), and the combined current vector I2 is displayed on the display screen by a straight line or a numerical value indicating the angle θ2.

【0019】[0019]

【数11】 θ1=arctan(I1y/I1x) …(数11)[Equation 11] θ1 = arctan (I1y / I1x) (Equation 11)

【0020】[0020]

【数12】 θ2=arctan(I2y/I2x) …(数12) また,演算処理装置は,T1の時点於ける合成電流ベク
トルI1とT2の時点に於ける合成電流ベクトルI2と
の差分を計算し,(数13)に示すΔIxをx成分,
(数14)に示すΔIyをy成分とする差分合成電流ベ
クトルΔIを計算する。
[Mathematical formula-see original document] θ2 = arctan (I2y / I2x) (Equation 12) Further, the arithmetic processing unit calculates the difference between the combined current vector I1 at the time point T1 and the combined current vector I2 at the time point T2. , ΔIx shown in (Equation 13) is the x component,
The differential combined current vector ΔI having ΔIy shown in (Equation 14) as the y component is calculated.

【0021】[0021]

【数13】 ΔIx=(I2x−I1x) …(数13)[Equation 13] ΔIx = (I2x−I1x) (Equation 13)

【0022】[0022]

【数14】 ΔIy=(I2y−I1y) …(数14) (数13),(数14)に基づいて得られた差分合成電
流ベクトルΔIは,ΔIxを横軸,ΔIyを縦軸として
表示装置の表示画面に2次元プロットされる。
[Expression 14] ΔIy = (I2y−I1y) (Expression 14) The differential combined current vector ΔI obtained based on (Expression 13) and (Expression 14) is a display device with ΔIx as the horizontal axis and ΔIy as the vertical axis. 2D plot on the display screen of.

【0023】演算処理装置は,(数15)に基づいて角
度Δθを計算し,Δθが角度を示す直線又は数値により
差分合成電流ベクトルΔIの表示画面に表示される。
The arithmetic processing unit calculates the angle Δθ based on (Equation 15), and Δθ is displayed on the display screen of the differential combined current vector ΔI by a straight line or a numerical value indicating the angle.

【0024】[0024]

【数15】 Δθ=arctan(ΔIy/ΔIx) …(数15) 表示装置の表示画面には,T1の時点又はT2の時点で
の合成電流ベクトルI1,I2の絶対値(スカラー)で
ある|I1|,|I2|の何れか一方を横軸に,差分合
成電流ベクトルΔIの絶対値(スカラー)である|ΔI
|を縦軸にして2次元プロットされ,また,表示画面に
は,(数16)〜(数19)により計算される,差分合
成電流ベクトルの絶対値|ΔI|と,合成電流ベクトル
の絶対値|I1|,|I2|の何れかとの比の値γ1〜
γ4の何れかを計算し,γ1〜γ4の何れかの値が表示
される
Δθ = arctan (ΔIy / ΔIx) (Equation 15) The display screen of the display device is the absolute value (scalar) of the combined current vectors I1 and I2 at time T1 or T2 | I1 The absolute value (scalar) of the differential combined current vector ΔI is | ΔI, with one of | and | I2 |
Is plotted two-dimensionally with | as the vertical axis, and on the display screen, the absolute value | ΔI | of the differential combined current vector and the absolute value of the combined current vector calculated by (Equation 16) to (Equation 19) The value γ1 to the ratio of either | I1 | or | I2 |
Calculate any of γ4 and display any of γ1 to γ4

【0025】[0025]

【数16】 γ1=|I1|/|ΔI| …(数16)[Equation 16] γ1 = | I1 | / | ΔI | (Equation 16)

【0026】[0026]

【数17】 γ2=|ΔI|/|I1| …(数17)[Equation 17] γ2 = | ΔI | / | I1 | (Equation 17)

【0027】[0027]

【数18】 γ3=|I2|/|ΔI| …(数18)[Equation 18] γ3 = | I2 | / | ΔI | (Equation 18)

【0028】[0028]

【数19】 γ4=|ΔI|/|I2| …(数19) 本発明の第1の構成によれば,心筋の虚血又は繊維化に
伴って変化する電気生理学的活動に起因して心筋内を流
れる電流の大きさや方向を,簡単な解析方法により求め
ることが可能であり,診断に有用な情報として表示画面
に表示することができる。
Γ4 = | ΔI | / | I2 | (Equation 19) According to the first configuration of the present invention, the myocardium is caused by the electrophysiological activity that changes with ischemia or fibrosis of the myocardium. The magnitude and direction of the current flowing inside can be obtained by a simple analysis method, and can be displayed on the display screen as information useful for diagnosis.

【0029】本発明の生体磁場計測装置(心臓磁場計測
装置(心磁計))の第2の構成では,上記の第1の構成
と同様に,計測された心磁波形は,P波が生じる時間帯
の前の時間帯,P波とQ波が生じる間の時間帯の少なく
とも一方で,全てのチャネルに関してベースライン合わ
せが行なわれ表示装置の表示画面に表示される。
In the second configuration of the biomagnetic field measuring apparatus (cardiac magnetic field measuring apparatus (magnetocardiograph)) of the present invention, the measured magnetocardiographic waveform is the time when the P wave is generated, as in the first configuration. Baseline alignment is performed for all channels and displayed on the display screen of the display device in at least one of the time zone before the band and the time zone during which the P and Q waves occur.

【0030】QRS波の生じる間の時間帯の所定の時間
区画Ts〜Teの各時点jで,i=1,2,…,Nの各
チャネルについての電流ベクトルIiを,計測されたi
番目のチャネルの心磁場の法線成分(Bzi(tj),
Bzi(tj))を用いて,演算処理装置は,(数2
0),(数21)に基づいてtjの時点に於いて,電流
ベクトルIiのx成分(Ixi(tj)),電流ベクト
ルIiのy成分(Iyi(tj))を計算する。
The current vector Ii for each channel of i = 1, 2, ..., N is measured i at each time point j in a predetermined time section Ts to Te of the time zone during which the QRS wave is generated.
The normal component of the magnetic field of the th channel (Bzi (tj),
Using Bzi (tj), the arithmetic processing unit
0) and (Equation 21), at time tj, the x component (Ixi (tj)) of the current vector Ii and the y component (Iyi (tj)) of the current vector Ii are calculated.

【0031】[0031]

【数20】 Ixi(tj)=dBzi(tj)/dy …(数20)[Equation 20] Ixi (tj) = dBzi (tj) / dy (Equation 20)

【0032】[0032]

【数21】 Iyi(tj)=−dBzi(tj)/dx …(数21) 更に演算処理装置は,各チャネルの電流ベクトルIiの
絶対値である|Ii|を(数22)に基づいて計算し,
|Ii|を(数23)により積分してチャネルiの積分
電流量Isiを計算する。(数23)に於いて|Ii|
を積分する時間範囲は上記の所定の時間区画Ts〜Te
である。
Iyi (tj) =-dBzi (tj) / dx (Equation 21) Further, the arithmetic processing unit calculates | Ii | which is the absolute value of the current vector Ii of each channel based on (Equation 22). Then
| Ii | is integrated by (Equation 23) to calculate the integrated current amount Isi of the channel i. In equation (23) | Ii |
The time range for integrating is the above-mentioned predetermined time section Ts to Te.
Is.

【0033】[0033]

【数22】 |Ii|=√{(Ixi)2+(Iyi)2)} …(数22)[Equation 22] | Ii | = √ {(Ixi) 2 + (Iyi) 2 )} (Equation 22)

【0034】[0034]

【数23】 Isi=∫|Ii|dt …(数23) ここで,同一の被検体の心臓の異なる2つの状態(状態
A,状態Bとする)で計測された心磁波形に基づいて
(数23)により計算されたチャネルi(i=1,2,
…,N)の積分電流量を,Iai,Ibiとする。例え
ば,状態Aは運動負荷前の状態であり安静時にある状
態,状態Bは運動負荷後の状態である。
[Equation 23] Isi = ∫ | Ii | dt (Equation 23) Here, based on magnetocardiogram waveforms measured in two different states (state A and state B) of the same subject's heart ( Channel i (i = 1, 2,
,, N) are integrated currents Iai and Ibi. For example, state A is a state before exercise load and is at rest, and state B is a state after exercise load.

【0035】演算処理装置は,Aの状態で計測された心
磁波形から計算されたチャネルiの所定の時間区間での
積分電流量Iaiと,Bの状態で計測された心磁波形か
ら計算されたチャネルiの所定の時間区間での積分電流
量Ibiとの積分電流量比δiを,(数24)又は(数
25)により計算する。
The arithmetic processing unit is calculated from the integrated current amount Iai in a predetermined time section of the channel i calculated from the magnetocardiographic waveform measured in the A state and the magnetocardiographic waveform measured in the B state. The integral current amount ratio δi with respect to the integral current amount Ibi in the predetermined time section of the channel i is calculated by (Equation 24) or (Equation 25).

【0036】[0036]

【数24】 δi=Iai/Ibi …(数24)[Equation 24] δi = Iai / Ibi (Equation 24)

【0037】[0037]

【数25】 δi=Ibi/Iai …(数25) また,演算処理装置は,(数26),(数27)に基づ
いて,積分電流量Iai,積分電流量Ibiをそれぞれ
全てのチャネルについて加算して,加算電流量Ita,
Itbを計算する。なお,(数26)〜(数27)に於
いて,Σは加算記号を示し加算は,i=1,2,…,N
について行なう。
Δi = Ibi / Iai (Equation 25) Further, the arithmetic processing unit adds the integrated current amount Iai and the integrated current amount Ibi for all channels based on (Equation 26) and (Equation 27). Then, the added current amount Ita,
Calculate Itb. In (Equation 26) to (Equation 27), Σ indicates an addition symbol, and addition is i = 1, 2, ..., N
Do about.

【0038】[0038]

【数26】 Ita=ΣIai …(数26)[Equation 26] Ita = ΣIai (Equation 26)

【0039】[0039]

【数27】 Itb=ΣIbi …(数27) 更に,演算処理装置は,チャネルiの積分電流量比δ
i,加算電流量Ita,Itbを使用して,(数28)
又は(数29)に基づいて,チャネルiの電流量比εi
をi=1,2,…,Nについて計算し,等しい電流量比
をもつ点を内挿外挿により求め,等しい電流量比をもつ
点を結ぶ等高線に表現される電流量比分布図(CRM:
Current Ratio Mapという)を求め
る。求められた電流量比分布図は表示装置の表示画面
に,白黒表示又はカラー表示される。(数28)では
(数24)に示すδiを使用し,(数29)では(数2
5)を使用する。
[Equation 27] Itb = ΣIbi (Equation 27) Further, the arithmetic processing device is configured such that the integrated current amount ratio δ of the channel i is
i, using the added current amounts Ita and Itb, (Equation 28)
Alternatively, based on (Equation 29), the current amount ratio εi of channel i
Are calculated for i = 1, 2, ..., N, points having the same current amount ratio are obtained by interpolation and extrapolation, and a current amount ratio distribution map (CRM) represented by contour lines connecting points having the same current amount ratio is calculated. :
Current Ratio Map). The obtained current amount ratio distribution map is displayed in black and white or in color on the display screen of the display device. In (Equation 28), δi shown in (Equation 24) is used, and in (Equation 29), (Equation 2)
Use 5).

【0040】[0040]

【数28】 εi=δi×(Itb/Ita) …(数28)[Equation 28] εi = δi × (Itb / Ita) (Equation 28)

【0041】[0041]

【数29】 εi=δi×(Ita/Itb) …(数29) 本発明の第2の構成によれば,運動負荷後に誘発される
微弱な電流の運動負荷前に求められた微弱な電流からの
変化量を求めることができ,求められた微弱な電流の変
化量を等高線として表わす電流量比分布図を,診断に有
用な情報として表示画面に表示することによって,心筋
の狭窄部位(又は虚血部位)を容易に推定することが可
能である。
[Equation 29] εi = δi × (Ita / Itb) (Equation 29) According to the second configuration of the present invention, from the weak current obtained before the exercise load of the weak current induced after the exercise load, Of the myocardial stenosis (or imaginary region) by displaying the current amount ratio distribution map, which shows the calculated amount of weak current change as contour lines, as useful information for diagnosis. It is possible to easily estimate the blood site).

【0042】本発明では,計測された磁場波形を簡単な
解析方法で解析して,虚血性心疾患(心筋梗塞,狭心症
等),心筋症を容易に識別することが可能な画面表示を
行なうことができ,心臓の診断に有用な情報を提供する
ことができる。
In the present invention, the measured magnetic field waveform is analyzed by a simple analysis method, and a screen display capable of easily identifying ischemic heart disease (myocardial infarction, angina, etc.) and cardiomyopathy is displayed. Can be performed and can provide useful information for heart diagnosis.

【0043】[0043]

【発明の実施の形態】以下,本発明の実施例を図面を参
照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0044】(実施例1)図1は本発明の実施例1の生
体磁場計測装置(心臓磁場計測装置(心磁計))の構成
例を示す図である。図1に示すように,磁気シールドル
ーム1の内部には,被検体が横になるベッド7とSQU
ID磁束計を超伝導状態に保持するための冷媒(液体ヘ
リウム又は液体窒素)が貯蔵されたクライオスタット2
と,クライオスタット2を機械的に保持するガントリー
3が配置されている。ベッド7は,X方向とY方向とZ
方向に移動可能である。シールドルーム1の外部にはS
QUID磁束計の駆動回路4と,駆動回路4の出力を増
幅してフィルタリングするアンプフィルタユニット5
と,アンプフィルタユニット5の出力をデータとして取
り込み,取り込こまれたデータの演算処理を行なう演算
処理装置(コンピュータ)6とが配置されている。演算
処理装置(コンピュータ)6は表示装置を具備してお
り,演算処理装置による演算処理結果が表示装置の表示
画面に表示される。また,演算処理装置とは別に配置さ
れる表示装置の表示画面に演算処理結果が表示すること
もできる。
(Embodiment 1) FIG. 1 is a diagram showing a configuration example of a biomagnetic field measuring apparatus (cardiac magnetic field measuring apparatus (magnetocardiograph)) of Embodiment 1 of the present invention. As shown in FIG. 1, inside the magnetically shielded room 1, the bed 7 on which the subject lies and the SQUA.
A cryostat 2 in which a refrigerant (liquid helium or liquid nitrogen) for holding the ID magnetometer in a superconducting state is stored
And a gantry 3 for mechanically holding the cryostat 2 is arranged. Bed 7 has X direction, Y direction and Z
It can move in any direction. S outside the shield room 1
The drive circuit 4 of the QUID magnetometer and an amplifier filter unit 5 for amplifying and filtering the output of the drive circuit 4
And an arithmetic processing unit (computer) 6 that takes in the output of the amplifier filter unit 5 as data and performs arithmetic processing of the taken-in data. The arithmetic processing unit (computer) 6 is provided with a display device, and the arithmetic processing result by the arithmetic processing unit is displayed on the display screen of the display unit. Further, the calculation processing result can be displayed on the display screen of the display device arranged separately from the calculation processing device.

【0045】図2は実施例1に於いてクライオスタット
2の内部の底部近傍に配置される複数のSQUID磁束
計の配置例を示す図である。図2に示すように,心臓か
ら発生する微弱な磁場を測定する64個のSQUID磁
束計202は,8×8の正方格子の各格子点に2次元に
配置されている。各SQUID磁束計は,検出コイルと
補償コイルとを有する1次微分型検出コイルを有し,法
線方向(z方向,体表面に対して垂直な方向)の磁場を
検出する。実施例1では,1次微分型検出コイルのベー
スラインを50mmとして,検出コイルの直径を18m
mとした。
FIG. 2 is a diagram showing an arrangement example of a plurality of SQUID magnetometers arranged near the bottom inside the cryostat 2 in the first embodiment. As shown in FIG. 2, 64 SQUID magnetometers 202 for measuring a weak magnetic field generated from the heart are two-dimensionally arranged at each lattice point of an 8 × 8 square lattice. Each SQUID magnetometer has a first-order differential type detection coil having a detection coil and a compensation coil, and detects a magnetic field in the normal direction (z direction, direction perpendicular to the body surface). In the first embodiment, the baseline of the first-order differential type detection coil is 50 mm, and the diameter of the detection coil is 18 m.
m.

【0046】被検体の剣状突起の上方に,8×8の正方
格子の格子点(3,7)の位置に配置されるSQUID
磁束計201がくるようにして,複数のSQUID磁束
計による心磁場の計測範囲を設定して,クライオスタッ
トの下面と被検体の心臓との位置合わせを行なった。
The SQUID arranged above the xiphoid process of the subject at the lattice point (3, 7) of the 8 × 8 square lattice.
With the magnetometer 201 coming, the measurement range of the cardiac magnetic field by a plurality of SQUID magnetometers was set, and the lower surface of the cryostat and the heart of the subject were aligned.

【0047】図3は,本発明の実施例1に於いて求めら
れた,健常人の,R波及びT波のピーク,ST波が生じ
る時間帯での時点T1での,心磁場(Bz)の等しい点
を結ぶ等磁場線図,電流ベクトルの分布図,計測された
1チャネルから64チャネルの心磁波形を重ね書きした
波形が表示される表示装置の画面表示の例を示す図であ
る。図3に示すように表示画面の上段に,健常人のR波
のピークが生じる時点で求められた電流ベクトルの分布
図(アローマップ)301,ST波(S波とT波の間に
於ける心磁波形)が生じる時間帯での時点T1で求めら
れた電流ベクトルの分布図(アローマップ)302,T
波のピークが生じる時点で求められた電流ベクトルの分
布図(アローマップ)303がそれぞれ表示され,図3
に示すように表示画面の下段に,1チャネルから64チ
ャネルの心磁波形を重ね書きした波形304,Q波の始
まりの時点を示す線305がそれぞれ表示されている。
FIG. 3 shows the cardiac magnetic field (Bz) at the time point T1 in the time zone in which the peaks of the R wave and the T wave and the ST wave of the healthy person obtained in the first embodiment of the present invention are obtained. FIG. 5 is a diagram showing an example of a screen display of a display device in which an isomagnetic field line diagram connecting points equal to each other, a distribution diagram of current vectors, and waveforms obtained by superimposing measured magnetocardiographic waveforms of 1 to 64 channels are displayed. As shown in FIG. 3, in the upper part of the display screen, the distribution diagram (arrow map) 301 of the current vector obtained at the time when the peak of the R wave of a healthy person occurs, the ST wave (between the S wave and the T wave). Distribution diagram (arrow map) 302, T of the current vector obtained at time T1 in the time zone in which the magnetocardiogram waveform) occurs
The distribution map (arrow map) 303 of the current vector obtained at the time when the wave peak occurs is displayed, respectively.
As shown in, the waveform 304 in which the magnetocardiographic waveforms of channels 1 to 64 are overwritten, and the line 305 indicating the start point of the Q wave are displayed at the bottom of the display screen.

【0048】図3に示す各時点での電流ベクトルの分布
図の作成は,計測された法線方向(z方向)の心磁場
(Bz)を,(数1),(数2)によりI'x,I'yを
計算して作成し,各時点での電流ベクトルの分布図は強
度を規格化して表示している。心臓の脱分極過程を反映
するR波のピークが生じる時点での電流ベクトルの分布
図301とT波のピークが生じる時点の電流ベクトルの
分布図303とを比較すると,流れる電流の方向がほぼ
同じ方向であることが分かる。
The distribution of the current vector at each time point shown in FIG. 3 is created by using the measured magnetocardiographic field (Bz) in the normal direction (z direction) as I'from (Equation 1) and (Equation 2). x and I'y are calculated and created, and the distribution diagram of the current vector at each time point is displayed with the intensity standardized. Comparing the current vector distribution diagram 301 at the time when the R wave peak reflects the depolarization process of the heart and the current vector distribution diagram 303 at the time when the T wave peak occurs, the flowing current directions are almost the same. It turns out to be the direction.

【0049】また心臓の心筋細胞が不応期(細胞への刺
激に反応しない時期)の時間帯でありST波が生じる時
間帯の時点T1での電流ベクトルの分布図302に於い
ても,電流ベクトルの分布図301,303とほぼ同じ
方向に電流が流れていることが分かる。不応期に於ける
電流の流れる方向の変化は,虚血性心疾患や心筋症等の
心筋の繊維化の状態を敏感に反映する可能性がある。実
施例1では不応期の時間帯(ST波が生じる時間)で流
れる電流の方向,大きさの微小な変化に注目して,心臓
疾患を定量的に評価することを目的としている。
Also, in the current vector distribution diagram 302 at the time point T1 of the time zone in which the cardiac muscle cells of the heart are in the refractory period (the time when they do not respond to the stimulation to the cells) and the ST wave is generated, the current vector It can be seen that the current flows in almost the same direction as the distribution diagrams 301 and 303 in FIG. Changes in the direction of current flow during the refractory period may sensitively reflect the state of myocardial fibrosis such as ischemic heart disease and cardiomyopathy. The first embodiment aims at quantitatively evaluating a heart disease by paying attention to minute changes in the direction and magnitude of the current flowing in the refractory period (time when ST wave occurs).

【0050】ST波が生じる時間帯のある時点tでの電
流の方向,大きさの変化を定量的に評価するため,計測
点i(チャネルi)で計測される法線方向の磁場Bzi
(t)から求められる電流ベクトルIi(t)のベクト
ル和である,電流ベクトル和I(t)(合成電流ベクト
ル)を(数30)〜(数32)により計算する。(数3
0)〜(数32)に於いて,Σは加算記号を示し加算
は,i=1,2,…,N(=64)について行なう。合
成電流ベクトルIのx方向の成分Ix(t),y方向の
成分Iy(t)は,(数31),(数32)により求め
られる。なお,合成電流ベクトルIi(t)のx方向の
成分Ixi(t),y方向の成分Iyi(t)は,(数
33),(数34)により求められる。
In order to quantitatively evaluate the change in the direction and magnitude of the current at a certain time t in the time zone in which the ST wave is generated, the magnetic field Bzi in the normal direction measured at the measurement point i (channel i) is measured.
The current vector sum I (t) (combined current vector), which is the vector sum of the current vector Ii (t) obtained from (t), is calculated from (Equation 30) to (Equation 32). (Equation 3
0) to (Equation 32), Σ indicates an addition symbol, and the addition is performed for i = 1, 2, ..., N (= 64). The component Ix (t) in the x direction and the component Iy (t) in the y direction of the combined current vector I are obtained by (Equation 31) and (Equation 32). The component Ixi (t) in the x direction and the component Iyi (t) in the y direction of the combined current vector Ii (t) are obtained from (Equation 33) and (Equation 34).

【0051】[0051]

【数30】 I(t)=ΣIi(t) …(数30)[Equation 30] I (t) = ΣIi (t) (Equation 30)

【0052】[0052]

【数31】 Ix(t)=ΣIxi(t)=ΣdBzi(t)/dy …(数31)[Equation 31] Ix (t) = ΣIxi (t) = ΣdBzi (t) / dy (Equation 31)

【0053】[0053]

【数32】 Iy(t)=ΣIyi(t)=−ΣdBzi(t)/dx …(数32)[Equation 32] Iy (t) = ΣIyi (t) = − ΣdBzi (t) / dx (Equation 32)

【0054】[0054]

【数33】 Ixi(t)=dBzi(t)/dy …(数33)[Expression 33] Ixi (t) = dBzi (t) / dy (Equation 33)

【0055】[0055]

【数34】 Iyi(t)=−dBzi(t)/dx …(数34) (数30)により求められる合成電流ベクトル和I
(t)は,時点tに於いて,心臓の各部位を流れる主電
流(心筋細胞が電気的に活動している場合に流れる電
流)がある程度同じ方向を向いて広がりをもつ場合,主
電流が閉回路をなして心臓の各部位を流れて元の部位に
戻ってくる帰還電流は相殺されて,主に主電流による合
成電流ベクトルを簡単に推定できる方法であると考えら
れる。主電流の向きは(数35)に示す角度ζにより計
算される。
(34) Iyi (t) =-dBzi (t) / dx (Equation 34) Combined current vector sum I obtained by (Equation 30)
(T) is the main current flowing through each part of the heart at time t (current flowing when myocardial cells are electrically active) spreads in the same direction to some extent. It is considered that the feedback current that flows through each part of the heart in a closed circuit and returns to the original part is canceled out, and the combined current vector mainly due to the main current can be easily estimated. The direction of the main current is calculated by the angle ζ shown in (Equation 35).

【0056】[0056]

【数35】 ζ=arctan{Iy(t)/Ix(t)} …(数35) 図4は,本発明の実施例1に於いて単一ダイポールモデ
ルで作成された磁場(Bz)の等しい点を結ぶ等磁場線
図,合成電流ベクトルの分布図を説明する図である。図
4は,(数30)〜(数32)により合成電流ベクトル
を推定する方法を単一ダイポールモデルを用いて確認し
た結果を示す図である。ダイポール401は,ダイポー
ルの大きさが1(μA・mm)であり,ダイポールの位
置が(X=25mm,Y=25mm,Z=−80mm)
にあり,斜め45度右下方に向いて固定されていると仮
定している(ダイポール401は図4(a)に示す矢印
の先端に存在する)。従って,(数30)〜(数34)
の各辺は時点tに依存しない。検出コイルは50mmの
ベースラインをもつものとして法線成分(Bz)の磁場
強度を,複数のSQUID磁束計が配置される計測面4
02で計算し,計測点i(チャネルi(i=1,2,
…,N(=64)でのBziを求めた。
Ζ = arctan {Iy (t) / Ix (t)} (Equation 35) FIG. 4 shows the same magnetic field (Bz) created by the single dipole model in the first embodiment of the present invention. It is a figure explaining the isomagnetic field diagram which connects a point, and the distribution diagram of a synthetic | combination electric current vector. FIG. 4 is a diagram showing a result of confirming a method for estimating a combined current vector by using (Equation 30) to (Equation 32) using a single dipole model. The dipole 401 has a dipole size of 1 (μA · mm) and a dipole position (X = 25 mm, Y = 25 mm, Z = −80 mm).
And it is assumed that it is fixed at an angle of 45 degrees to the lower right (the dipole 401 exists at the tip of the arrow shown in FIG. 4A). Therefore, (Equation 30) to (Equation 34)
Each side of is independent of time t. Assuming that the detection coil has a baseline of 50 mm, the magnetic field strength of the normal component (Bz) is measured, and the measurement surface 4 on which a plurality of SQUID magnetometers are arranged.
The measurement point i (channel i (i = 1, 2,
, And Bzi at N (= 64) was obtained.

【0057】図4(a)は,単一ダイポール401が発
生する磁場の法線成分(Bz)から複数のSQUID磁
束計が配置される計測面402での磁場(Bz)の等し
い点を結ぶ等磁場線図,計測面402での合成電流ベク
トルIiのx方向の成分Ixi,y方向の成分Iyiを
(数33),(数34)により計算して得た電流ベクト
ルの分布図を示す。
In FIG. 4A, the normal line component (Bz) of the magnetic field generated by the single dipole 401 is connected to points having the same magnetic field (Bz) on the measurement surface 402 where a plurality of SQUID magnetometers are arranged. The magnetic field diagram and the distribution diagram of the current vector obtained by calculating the component Ixi in the x direction and the component Iyi in the y direction of the combined current vector Ii on the measurement plane 402 by (Equation 33) and (Equation 34) are shown.

【0058】図4(b)は,図4(a)に示す電流ベク
トルの分布図の結果を用いて,(数31),(数32)
の加算により得た合成電流ベクトルを,合成電流ベクト
ルのx方向の成分をIx軸,y方向の成分をIy軸とす
る2次元空間にプロットした結果を示し,合成電流ベク
トルの先端の位置を計算点404により示す。図4
(b)では,計算点404と仮定したダイポールの方向
と比較するため,仮定した電流ダイポール401の方向
403も図示してある。また,主電流の向きを表わす角
度ζは(数35)により計算され,計算により得られた
角度ζが,主電流の向きを仮定した45°にほぼ一致し
て推定されていることが分かる。
FIG. 4B uses the results of the current vector distribution chart shown in FIG. 4A to obtain (Equation 31) and (Equation 32).
The combined current vector obtained by the addition of is plotted in a two-dimensional space in which the x-direction component of the combined current vector is the Ix axis and the y-direction component is the Iy axis. This is indicated by the point 404. Figure 4
In (b), the assumed direction 403 of the current dipole 401 is also shown in order to compare the calculated point 404 with the assumed dipole direction. Further, it can be seen that the angle ζ representing the direction of the main current is calculated by (Equation 35), and the angle ζ obtained by the calculation is estimated to substantially match 45 ° assuming the direction of the main current.

【0059】以上の結果から,ST波形が生じる時間帯
での時点t=T1と時点t=T2に於ける,合成電流ベ
クトル和(合成電流ベクトル)I1,I2を(数3
6),(数37)により計算する。(数36),(数3
7)に於いて,Σは加算記号を示し加算は,i=1,
2,…,N(=64)について行なう。Ii(T1),
Ii(T2)は,チャネルiで計測される法線方向の磁
場Bzi(T1),Bzi(T2)から求められる合成
電流ベクトルである。
From the above results, the combined current vector sums (combined current vectors) I1 and I2 at time t = T1 and time t = T2 in the time zone in which the ST waveform occurs are calculated by
6) and (Equation 37). (Equation 36), (Equation 3)
In 7), Σ indicates an addition symbol and addition is i = 1,
2, ..., N (= 64). Ii (T1),
Ii (T2) is a combined current vector obtained from the magnetic fields Bzi (T1) and Bzi (T2) in the normal direction measured in the channel i.

【0060】[0060]

【数36】 I1=ΣIi(T1) …(数36)[Equation 36] I1 = ΣIi (T1) (Equation 36)

【0061】[0061]

【数37】 I2=ΣIi(T2) …(数37) T1とT2は,図3に示すQ波の始まる時点を示す線3
05を起点として設定した異なる2つの時点を示してお
り,心拍数を考慮して(数38),(数39)から求め
るものとする。標準的なT1の時点は,線305を起点
としてこの起点から,QRS波が出現する時間帯の時間
の約2倍程度の時間180msだけ離れた時点として,
標準的なT2の時点はT1の時点から30ms離れた点
とする。
[Equation 37] I2 = ΣIi (T2) (Equation 37) T1 and T2 are lines 3 indicating the time points when the Q wave shown in FIG. 3 starts.
Two different time points set with 05 as the starting point are shown, and the heart rate is taken into consideration to obtain from (Equation 38) and (Equation 39). The standard time point of T1 is a time point that is 180 ms, which is about twice the time of the time zone in which the QRS wave appears, from this starting point with the line 305 as the starting point.
The standard T2 time point is a point 30 ms away from the T1 time point.

【0062】[0062]

【数38】 T1=0.18/√(Trr) …(数38)[Equation 38] T1 = 0.18 / √ (Trr) (Equation 38)

【0063】[0063]

【数39】 T2=0.21/√(Trr) …(数39) (数38),(数39)に於いて,TrrはR−R間隔
(interval)を示し,Trrは,返して出現す
るPQRST波の各波の繰返しのうち,R波の繰返しの
時間間隔を示す。R−R間隔は,個人,疾病により変化
するので,計測された心磁波形の時間軸を,R−R間隔
(=Trr)を用いて規格化する。Trrは秒の単位で
表わされるが,(数38),(数39)に於ける計算で
は,Trrの単位は無次元化して使用する。即ち,規格
化された心磁波形では,R−R間隔は1秒に規格化され
ている。(数38),(数39)のT1,T2はTrr
により規格化された値である。
T2 = 0.21 / √ (Trr) (Equation 39) In (Equation 38) and (Equation 39), Trr indicates the RR interval (interval), and Trr returns and appears. The time interval of the repetition of the R wave is shown among the repetitions of the PQRST wave. Since the RR interval changes depending on the individual and the disease, the time axis of the measured magnetocardiographic waveform is standardized using the RR interval (= Trr). Although Trr is expressed in units of seconds, the unit of Trr is made dimensionless and used in the calculations in (Equation 38) and (Equation 39). That is, in the standardized magnetocardiogram waveform, the RR interval is standardized to 1 second. T1 and T2 of (Equation 38) and (Equation 39) are Trr.
Is a value standardized by.

【0064】更に,ST波形が生じる時間帯での電流の
微弱な変化をとらえるため,(数36),(数37)か
ら(数40)に基づいて差分合成電流ベクトルΔIを計
算する。
Furthermore, in order to detect a weak change in the current in the time zone in which the ST waveform occurs, the differential combined current vector ΔI is calculated based on (Equation 36) and (Equation 37) to (Equation 40).

【0065】[0065]

【数40】 ΔI=I2−I1 …(数40) 差分合成電流ベクトルΔIのx方向の成分,y方向の成
分は,(数13),(数14)により計算される。(数
40)は言い換えると,心磁波形の時間軸の時点T1で
全チャネルの心磁波形をベースライン補正しベースライ
ンを合せ,心磁波形の時間軸の時点T2での電流ベクト
ルの分布を用いて(数37)を計算したことと等価であ
る。
ΔI = I2-I1 (Equation 40) The x-direction component and the y-direction component of the differential combined current vector ΔI are calculated by (Equation 13) and (Equation 14). (Equation 40) In other words, at the time T1 of the time axis of the magnetocardiogram, the magnetocardiographic waveforms of all channels are baseline-corrected and the baselines are aligned, and the distribution of the current vector at time T2 of the magnetocardiographic waveform is calculated. It is equivalent to using (Equation 37) to calculate.

【0066】図5は,本発明の実施例1に於いて成人の
健常者29例に関して心磁波形を計測し,心磁波形を解
析して得た合成電流ベクトルの分布図の表示画面の例を
示す図である。図5では,ST波形を特徴付ける指標を
検討するための図である。図5(a)は,(数36)に
より求めた時点T1に於ける合成電流ベクトルの分布図
の表示画面の例,図5(b)は(数37)により求めた
時点T2に於ける合成電流ベクトルの分布図の表示画面
の例,図5(c)は,(数40)により求めた差分合成
電流ベクトルΔIの結果の表示画面の例をそれぞれ示
す。図5(d)は,ST波形の時間変化の様相,例え
ば,ST波形の平坦度を評価するため,合成電流ベクト
ルI1の絶対値|I1|と差分合成電流ベクトルΔIの
絶対値|ΔI|の関係を示す表示画面の例である。
FIG. 5 shows an example of a display screen of the distribution diagram of the composite current vector obtained by measuring the magnetocardiogram waveform and analyzing the magnetocardiogram waveform for 29 healthy adults in the first embodiment of the present invention. FIG. FIG. 5 is a diagram for examining an index that characterizes the ST waveform. FIG. 5A is an example of a display screen of the distribution diagram of the combined current vector at the time point T1 obtained by (Equation 36), and FIG. 5B is the composition at the time point T2 obtained by (Equation 37). An example of the display screen of the distribution diagram of the current vector, and FIG. 5C shows an example of the display screen of the result of the differential combined current vector ΔI obtained by (Equation 40). FIG. 5 (d) shows the time variation of the ST waveform, for example, the absolute value | I1 | of the combined current vector I1 and the absolute value | ΔI | of the difference combined current vector ΔI for evaluating the flatness of the ST waveform. It is an example of a display screen showing a relationship.

【0067】図5(a),図5(b)に示す結果から,
心磁波形の時間軸の規格化に使用したR−R間隔の値
(=Trr)と,成人の健常者の実際のR−R間隔の値
のばらつきのため,Trrにより規格化されたT1,T
2の値にばらつきが存在するが,ほぼ左胸部下方へ向か
う合成電流ベクトルが検出されている。更に,心電図で
使用される電気軸の指標を合成電流ベクトルと同時に表
示すると,正常値といわれる電気軸の指標の値である−
30°から+110°の間に,29例の全ての例に関す
る合成電流ベクトルがプロットされている。
From the results shown in FIGS. 5 (a) and 5 (b),
Due to the variation in the RR interval value (= Trr) used for normalizing the time axis of the magnetocardiographic waveform and the actual RR interval value of an adult healthy person, T1, which is standardized by Trr, is T
Although there are variations in the value of 2, the combined current vector that is almost downward to the left chest is detected. Furthermore, when the index of the electric axis used in the electrocardiogram is displayed at the same time as the combined current vector, it is the value of the index of the electric axis, which is said to be a normal value.
Between 30 ° and + 110 °, the combined current vectors for all 29 examples are plotted.

【0068】図5(c)に示すように,差分合成電流ベ
クトルΔIのx方向の成分,y方向の成分のプロットで
は,図5(a),図5(b)に示すプロットと比較して
ばらつきが抑えられ,29例の全ての例に関する合成電
流ベクトルが,左胸下方(0°から+90°)へ向かう
方向に検出されている。図5(c)には,合成電流ベク
トルの方向性を明瞭にするするため,近似直線Aも同時
に表示している。近似直線Aは(数41)により表され
る。
As shown in FIG. 5C, the plot of the x-direction component and the y-direction component of the differential combined current vector ΔI is compared with the plots shown in FIGS. 5A and 5B. The variation is suppressed, and the combined current vectors for all 29 cases are detected in the direction toward the lower left chest (from 0 ° to + 90 °). In FIG. 5C, the approximate straight line A is also displayed in order to clarify the directionality of the combined current vector. The approximate straight line A is represented by (Equation 41).

【0069】[0069]

【数41】 (I2y−I1y)=−0.46(I2x−I1x) …(数41) 図5(d)に示すように,ST波形が生じる時間帯での
短時間の区間(T2−T1)=30msで生じる心磁波
形の変化を反映するプロットから,合成電流ベクトルI
1の絶対値|I1|と差分合成電流ベクトルΔIの絶対
値|ΔI|との関係は近似直線Bで近似できることが分
かる。近似直線Bは(数42)により表される。なお,
近似直線Bは,図7,図8に示す表示画面の例にも実施
例1の特徴の理解を容易とするため示している。
(I2y−I1y) = − 0.46 (I2x−I1x) (Expression 41) As shown in FIG. 5 (d), a short period (T2-T1) in the time zone in which the ST waveform occurs. ) = 30 ms, the combined current vector I
It is understood that the relationship between the absolute value | I1 | of 1 and the absolute value | ΔI | of the differential combined current vector ΔI can be approximated by the approximation line B. The approximate straight line B is represented by (Equation 42). In addition,
The approximate straight line B is also shown in the examples of the display screens shown in FIGS. 7 and 8 for easy understanding of the features of the first embodiment.

【0070】[0070]

【数42】 |ΔI|=|I2−I1|=0.47|I1|+6.1 …(数42) 次に,被検体の心臓と複数のSQUID磁束計が配列さ
れる計測面との距離によって,実施例1により得られる
合成電流ベクトルの分布図がどのように変化するかを確
認するため,被検体が搭載されるベッドの高さ方向だけ
を20mmずつ変化させて心磁波形の計測を行なった。
[Expression 42] | ΔI | = | I2-I1 | = 0.47 | I1 | +6.1 (Expression 42) Next, the distance between the heart of the subject and the measurement surface on which the plurality of SQUID magnetometers are arranged. In order to confirm how the distribution map of the composite current vector obtained in Example 1 changes, the magnetocardiographic waveform is measured by changing only the height direction of the bed on which the subject is mounted by 20 mm. I did.

【0071】図6は,本発明の実施例1に於いて被検体
の心臓と計測面との距離を順次20mmずつ遠ざけた6
カ所の位置,0mm(通常の測定状態である),20m
m,40mm,60mm,80mm,100mmに於い
て,成人の健常者について心磁波形を計測し,心磁波形
を解析して得た合成電流ベクトルの分布図の表示画面の
例を示す図である。
FIG. 6 shows that in the first embodiment of the present invention, the distance between the heart of the subject and the measurement surface is sequentially increased by 20 mm.
Position of the place, 0mm (normal measurement condition), 20m
It is a figure which shows the example of the display screen of the distribution chart of the synthetic | combination electric current vector which measured the magnetocardiogram waveform about the healthy adult person in m, 40 mm, 60 mm, 80 mm, and 100 mm, and analyzed the magnetocardiogram waveform. .

【0072】図6(a)は,(数36)により求めた時
点T1に於ける合成電流ベクトルの分布図の表示画面の
例,図6(b)は,(数37)により求めた時点T2に
於ける合成電流ベクトルの分布図の表示画面の例,図6
(c)は,(数40)により求めた差分合成電流ベクト
ルΔIの結果の表示画面の例をそれぞれ示す。
FIG. 6A shows an example of the display screen of the distribution diagram of the combined current vector at the time point T1 obtained by (Equation 36), and FIG. 6B shows the time point T2 obtained by (Equation 37). Example of display screen of combined current vector distribution map in Japan, Fig. 6
(C) shows an example of a display screen of the result of the differential combined current vector ΔI obtained by (Equation 40).

【0073】図6(a)から図6(d)に於いてプロッ
トしている6点のデータでは,合成電流ベクトル,差分
合成電流ベクトルが最も大きい点が,計測面が体表面に
最も近い状態(0mm:通常の測定状態)でのデータを
示し,合成電流ベクトル,差分合成電流ベクトルが小さ
くなるにつれ,20mmづつ離れた位置に対応するデー
タとなっている。
In the data of 6 points plotted in FIGS. 6 (a) to 6 (d), the point where the combined current vector and the difference combined current vector are the largest is the state where the measurement surface is closest to the body surface. The data in (0 mm: normal measurement state) is shown, and as the combined current vector and the difference combined current vector become smaller, the data correspond to positions separated by 20 mm.

【0074】図6(a),図6(b),図6(c)の何
れの合成電流ベクトルの分布図での方向性は,被検体の
心臓と計測面との距離に依存しないことが分かる。図6
(d)に示すように,ST波形が生じる時間帯での短時
間の区間(T2−T1)=30msで生じる心磁波形の
変化を反映するプロットから,合成電流ベクトルI1の
絶対値|I1|と差分合成電流ベクトルΔIの絶対値|
ΔI|との関係は近似直線Cで近似できることが分か
る。近似直線Cは(数43)により表される。
The directionality in any of the distribution diagrams of the combined current vectors of FIGS. 6A, 6B, and 6C may not depend on the distance between the heart of the subject and the measurement surface. I understand. Figure 6
As shown in (d), the absolute value | I1 | of the combined current vector I1 can be determined from the plot that reflects the change in the magnetocardiographic waveform that occurs in the short period (T2-T1) = 30 ms in the time zone in which the ST waveform occurs. And the absolute value of the differential combined current vector ΔI |
It can be seen that the relationship with ΔI | can be approximated by the approximation line C. The approximate straight line C is represented by (Equation 43).

【0075】[0075]

【数43】 |ΔI|=|I2−I1|=0.62|I1|+6.5 …(数43) 図5(d)に示す近似直線B((数42))と図6
(d)に示すの近似直線C((数43))を比較する
と,近似直線B,Cは,ほとんど傾きが同じであること
が分かる。従って,図5(d)に示す近似直線Bに沿う
各プロット点の変化は心磁場の発生源と計測面との距離
のばらつきによって生じるものと考えられ,近似直線B
の直角方向での各プロット点のばらつきは,心筋の電気
生理学的活動の個人差,心臓疾患の種類の差を主に反映
している量(大きさ)であると推定される。
[Expression 43] | ΔI | = | I2-I1 | = 0.62 | I1 | +6.5 (Expression 43) The approximate straight line B ((Expression 42)) shown in FIG.
Comparing the approximate straight lines C ((43)) shown in (d), it can be seen that the approximate straight lines B and C have almost the same inclination. Therefore, it is considered that the change of each plot point along the approximate straight line B shown in FIG. 5D is caused by the variation in the distance between the source of the magnetic field and the measurement surface.
It is estimated that the variation of each plotted point in the right angle direction is a quantity (size) mainly reflecting individual differences in electrophysiological activity of the myocardium and differences in types of heart disease.

【0076】以上説明したように,健常者の心磁波形か
ら求めた合成電流ベクトルの分布図では,心磁波形の時
点T1での磁場強度と,時点T1から30ms経過した
時点T2で心磁波形の磁場強度との変化量との関係は,
心臓と計測面との距離の変化が近似直線Bに沿う方向で
変化するように表われ,近似直線Bの直角方向でのプロ
ット点のばらつきが,個人差,心臓疾患の種類の差を反
映するような相関関係が存在することがわかった。この
相関関係を心臓疾患をもつ患者の心磁波形の解析に適用
した例について以下説明する。
As described above, in the distribution diagram of the composite current vector obtained from the magnetocardiogram waveform of a healthy person, the magnetic field strength at the time T1 of the magnetocardiogram waveform and the magnetocardiogram waveform at the time T2 when 30 ms have elapsed from the time T1. The relationship between the magnetic field strength of and the amount of change is
The change in the distance between the heart and the measurement surface appears to change in the direction along the approximate straight line B, and the variation of the plot points in the direction perpendicular to the approximate straight line B reflects the individual difference and the difference in the type of heart disease. It was found that such a correlation exists. An example in which this correlation is applied to the analysis of the magnetocardiographic waveform of a patient with heart disease will be described below.

【0077】図7は,本発明の実施例1に於いて心筋虚
血である心筋梗塞(MI)10例の患者,狭心症(A
P)10例の患者に関して心磁波形を計測し,心磁波形
を解析して得た合成電流ベクトルの分布図の表示画面の
例を示す図である。
FIG. 7 shows patients with myocardial infarction (MI), which is myocardial ischemia, in Example 1 of the present invention.
P) It is a figure which shows the example of the display screen of the distribution map of the synthetic | combination electric current vector which measured the magnetocardiogram waveform about 10 patients and analyzed the magnetocardiogram waveform.

【0078】図8は,本発明の実施例1に於いて心筋症
である肥大型心筋症(HCM)4例の患者,拡張型心筋
症(DCM)3例の患者,拘束型心筋症(RCM)1例
の患者に関して心磁波形を計測し,心磁波形を解析して
得た合成電流ベクトルの分布図の表示画面の例を示す図
である。図7,図8の(a)〜(d)に示す縦軸,横軸
は,健常者ついての解析結果を示す図5,図6の(a)
〜(d)に示す縦軸,横軸と同じであるので説明を省略
する。
FIG. 8 shows patients with hypertrophic cardiomyopathy (HCM), which is a cardiomyopathy in Example 1 of the present invention, patients with dilated cardiomyopathy (DCM), and restricted cardiomyopathy (RCM). ) It is a figure which shows the example of the display screen of the distribution map of the synthetic | combination electric current vector which measured the magnetocardiogram waveform about one patient and analyzed the magnetocardiogram waveform. The vertical and horizontal axes shown in (a) to (d) of FIGS. 7 and 8 show the analysis results of the healthy person in FIGS. 5 and 6 (a).
Since the vertical axis and horizontal axis shown in (d) to (d) are the same, description thereof will be omitted.

【0079】心筋梗塞(MI)の患者では,図7の
(a)〜(c)に示す合成電流ベクトルの分布図のプロ
ット点では,正常値といわれる電気軸の指標の値である
−30°から+110°の範囲に入らない場合が多く,
図7(d)に示す合成電流ベクトルの分布図のプロット
点では,時点T1での合成電流ベクトルの大きさが大き
い値であるにもかかわらず,|ΔI|=|I2−I1|
の値が小さい場合があることが分かる。
In patients with myocardial infarction (MI), at the plot points of the distribution map of the composite current vector shown in FIGS. 7 (a) to 7 (c), the value of the electric axis index, which is said to be normal, is -30 °. Often does not fall within the range of + 110 °,
At the plot points of the distribution diagram of the combined current vector shown in FIG. 7D, | ΔI | = | I2-I1 | even though the value of the combined current vector at time T1 is large.
It can be seen that the value of may be small.

【0080】ここで,心臓疾患をもつ患者と正常者との
境界線として,図5(d)に示す近似直線Bと平行な境
界線Dを設定して,境界線Dよりも左側の領域が正常領
域であり,正常領域に正常者に関するプロット点がプロ
ットされるものと想定すると,2例が正常領域から逸脱
していることが分かる。境界線Dは(数44)により表
される。
Here, a boundary line D parallel to the approximate straight line B shown in FIG. 5D is set as a boundary line between a patient with heart disease and a normal person, and an area on the left side of the boundary line D is Assuming that it is a normal region and plot points relating to a normal person are plotted in the normal region, it can be seen that two cases deviate from the normal region. The boundary line D is represented by (Equation 44).

【0081】[0081]

【数44】 |ΔI|=|I2−I1|=0.47|I1|−235 …(数44) 一方,狭心症(AP)の患者では,安静時では虚血にな
っている部分が少ないため,図5に示した健常者のプロ
ット点に比較的類似している。狭心症(AP)の患者で
の合成電流ベクトルの分布図では合成電流ベクトルは,
図5に示した健常者の合成電流ベクトルの分布図での合
成電流ベクトルに近い方向性と強度をもっていることが
分かる。しかし,合成電流ベクトルの方向性を示す図7
(a),図7(b)に示す例では,合成電流ベクトルの
大きさは小さいが,合成電流ベクトルの方向が正常値の
範囲(−30°から+110°)を逸脱してプロット点
が5例あることが分かる。
[Expression 44] | ΔI | = | I2-I1 | = 0.47 | I1 | -235 (Expression 44) On the other hand, in a patient with angina (AP), there is a part that is ischemic at rest. Since it is small, it is relatively similar to the plot points of the healthy person shown in FIG. In the distribution map of the synthetic current vector in patients with angina (AP), the synthetic current vector is
It can be seen that it has directionality and strength close to the synthetic current vector in the distribution diagram of the synthetic current vector of the healthy person shown in FIG. However, as shown in FIG.
In the example shown in FIGS. 7A and 7B, the magnitude of the combined current vector is small, but the direction of the combined current vector deviates from the normal value range (−30 ° to + 110 °) and the plot points are 5 points. I know there are examples.

【0082】図8に示す例では,肥大型心筋症(HC
M)4例,拡張型心筋症(DCM)3例,拘束型心筋症
(RCM)1例の,全て例に於いて合成電流ベクトルの
大きさに大きなばらつきがあるという特徴がある。合成
電流ベクトルの大きさにばらつきがあるため,時点T1
での合成電流ベクトルの大きさと時点T1と時点T2で
の合成電流ベクトルの大きさの変化量との関係を表わす
図8(d)では,(数44)で表される境界線Dを超え
る5例の症例が検出され,|ΔI|を指標とする効果が
明らかに見られる。
In the example shown in FIG. 8, hypertrophic cardiomyopathy (HC
In all cases, M) 4 cases, dilated cardiomyopathy (DCM) 3 cases, and restricted cardiomyopathy (RCM) 1 case, there is a large variation in the magnitude of the synthetic current vector. Since the magnitude of the combined current vector varies, time T1
In FIG. 8D showing the relationship between the magnitude of the combined current vector at time point T1 and the amount of change in the magnitude of the combined current vector at time points T1 and T2, the boundary line D expressed by (Equation 44) is exceeded. An example case is detected, and the effect of using | ΔI | as an index is clearly seen.

【0083】図5〜図8に示した結果から,心臓疾患を
もつ患者と正常者との境界を以下のように考えることに
する。T1の時点とT2の時点での合成電流ベクトルの
分布図(図5〜図8の(a),(b))での合成電流ベ
クトルの方向が−30°から+110°の範囲を正常領
域とする第1の基準(指標)と,差分合成電流ベクトル
の分布図(図5〜図8の(c))での差分合成電流ベク
トルの方向が0°から+90°の範囲を正常領域とする
第2の基準(指標)と,時点T1での合成電流ベクトル
の大きさと時点T1と時点T2での合成電流ベクトルの
大きさの変化量との関係を表わす場合(図7〜図8
(d))には,(数44)で表される境界線Dの近似直
線Bの側の領域(図7〜図8(d)では境界線より左
側)を正常領域とする第3の基準(指標)とを設定す
る。第1から第3の基準(指標)を全て満たすプロット
点を正常と考え,第1から第3の基準(指標)の何れか
一つの基準(指標)が正常範囲を超える場合には,陽性
と判断することとした。
From the results shown in FIGS. 5 to 8, the boundary between a patient with heart disease and a normal person will be considered as follows. In the distribution diagrams of the combined current vectors at the time points of T1 and T2 ((a) and (b) of FIGS. 5 to 8), the range of −30 ° to + 110 ° is the normal region. The first criterion (index) to be used and the normal range is a range in which the direction of the differential combined current vector in the distribution diagram of the differential combined current vector ((c) of FIGS. 5 to 8) is from 0 ° to + 90 °. In the case of representing the relationship between the criterion (index) of No. 2 and the magnitude of the combined current vector at the time point T1 and the change amount of the magnitude of the combined current vector at the time points T1 and T2 (FIGS. 7 to 8).
In (d)), the third criterion in which the region on the side of the approximation line B of the boundary line D represented by (Equation 44) (left side of the boundary line in FIGS. 7 to 8D) is the normal region (Index) and are set. A plot point that satisfies all the first to third criteria (index) is considered normal, and if any one of the first to third criteria (index) exceeds the normal range, it is regarded as positive. It was decided to judge.

【0084】図9は,以上説明した第1から第3の基準
(指標)を使用して,本発明の実施例1の図5,図7,
図8に示した結果から陽性(心筋異常)と考えられた陽
性の数を示す図である。図9に示すように,健常者29
例について陽性は0例であり,心筋梗塞10例について
は陽性は8例,狭心症10例については5例が陽性,肥
大型心筋症4例については4例が陽性,拡張型心筋症3
例については3例が陽性,拘束型心筋症1例も陽性と判
断された。以上の結果から,心筋が虚血状態で壊死に近
い状態や繊維化した状態等がある場合には,以上説明し
た実施例1の解析方法により,心臓疾患をもつ患者と正
常者とを識別可能なことが分かった。
FIG. 9 uses the first to third criteria (indexes) described above, and FIGS. 5 and 7 of the first embodiment of the present invention.
It is a figure which shows the number of positives considered to be positive (myocardial abnormality) from the result shown in FIG. As shown in FIG. 9, 29
0 positive cases, 8 positive cases for 10 myocardial infarctions, 5 positive cases for 10 angina, 4 positive cases for 4 hypertrophic cardiomyopathy, 3 dilated cardiomyopathy
Regarding the cases, 3 cases were positive and 1 case of restrictive cardiomyopathy was also positive. From the above results, when the myocardium is in an ischemic state and has a state close to necrosis, a fibrotic state, etc., it is possible to distinguish between a patient with a heart disease and a normal person by the analysis method of Example 1 described above. I found out.

【0085】しかし,心筋梗塞については10人全てを
検出できておらず,陽性として判断されなかった2例中
の1例は陳旧性心筋梗塞と判断されており,梗塞が起き
てから時間が経過すると,ST波形が生じる時間帯での
心磁波形の変化が小さくなることの影響かもしれないと
考えられた。
However, with regard to myocardial infarction, all 10 patients could not be detected, and 1 out of the 2 cases not judged as positive was judged as old myocardial infarction, and the time after the occurrence of infarction occurred. It was thought that this might be due to the fact that changes in the magnetocardiogram waveform during the time period in which the ST waveform occurs decreased as time passed.

【0086】以上説明したように,ST波形が生じる時
間帯での合成電流ベクトルの分布図を作成することによ
り心筋の虚血を判断するのに有用な情報を得ることがで
きることが分かった。実施例1の解析方法は,ST波形
が生じる時間帯での合成電流ベクトルの分布図の作成に
限定されるものではなく,例えば,P波,Q波,R波,
S波,T波等の何れかの波が生じる時間帯に於いても適
用可能であり,特に,心筋梗塞を示す異常Q波(R波よ
りも高い振幅をもつQ波)が生じる場合等には,合成電
流ベクトルの分布図による解析は有用であると考えられ
る。
As described above, it has been found that it is possible to obtain useful information for determining myocardial ischemia by creating a distribution map of the synthetic current vector in the time zone in which the ST waveform occurs. The analysis method according to the first embodiment is not limited to the creation of the distribution map of the combined current vector in the time zone in which the ST waveform occurs, and, for example, P wave, Q wave, R wave,
It can be applied even in the time zone in which either S wave, T wave, etc. occur, and especially when abnormal Q wave (Q wave having amplitude higher than R wave) indicating myocardial infarction occurs. Therefore, the analysis using the distribution map of the combined current vector is considered useful.

【0087】(実施例2)次に,主に狭心症(AP)を
運動負荷によって識別する実施例2について説明する。
実施例2に於いても,実施例1と同様に図1に示す生体
磁場計測装置(心臓磁場計測装置(心磁計))を使用し
て,図2に示した測定範囲で心磁波形の計測を行なって
いる。
(Embodiment 2) Next, embodiment 2 will be described, which mainly identifies angina (AP) by exercise load.
In Example 2 as well, using the biomagnetic field measuring apparatus (cardiac magnetic field measuring apparatus (magnetocardiograph)) shown in FIG. 1 as in Example 1, measurement of the magnetocardiographic waveform in the measurement range shown in FIG. Are doing.

【0088】実施例2では,演算処理装置は,異なる状
態Aと状態Bにある被検体の心臓から発生する磁場を外
来磁場が遮蔽された空間で検出する複数のSQUID磁
束計により検出された磁場波形を表わすデータを収集し
て,複数のSQUID磁束計により検出された磁場波形
の時間軸を第1の所定の時点で合わせる処理と,磁場波
形のベースラインを磁場波形の時間軸の第2の所定の時
点で合わせる処理と,磁場波形が検出された各点につい
て磁場波形(又は,該各点について磁場波形から求めた
電流ベクトルの大きさ)を所定の時点Tsと,所定の時
点Tsと異なる所定の時点Teとの時間区間で積分して
積分値を求める処理とを,状態A,状態Bのそれぞれの
状態で検出された磁場波形について行ない,状態Aに対
応する積分値SAと状態Bに対応する積分値SBからS
A/SB又はSB/SAで定義される第1の比を各点に
ついて求める処理と,積分値をそれぞれ各点について加
算して積分値の加算値を求める処理と,状態Aに対応す
る加算値RAと状態Bに対応する加算値RBからRA/
RB又はRB/RAで定義される第2の比を求める処理
と,各点についての第1の比と第2の比との積を求める
処理と,第1の比と第2の比との積の等しい点を結ぶ等
高線図を表わすデータを求める処理とを行なう。得られ
た等高線図(電流量比分布図(CRM:Current
RatioMapping))が表示装置の表示画面
に表示される。
In the second embodiment, the arithmetic processing unit detects the magnetic fields generated by the hearts of the subject in different states A and B in the space in which the external magnetic field is shielded, and the magnetic fields detected by the plurality of SQUID magnetometers. A process of collecting data representing waveforms and aligning the time axes of the magnetic field waveforms detected by the plurality of SQUID magnetometers at a first predetermined time point, and setting the baseline of the magnetic field waveforms to the second axis of the magnetic field waveform time axis. The process of matching at a predetermined time point and the magnetic field waveform (or the magnitude of the current vector obtained from the magnetic field waveform for each point) at each point where the magnetic field waveform is detected are different from the predetermined time point Ts and the predetermined time point Ts. A process of obtaining an integrated value by integrating in a time section with a predetermined time point Te is performed on the magnetic field waveform detected in each of the states A and B, and an integrated value SA corresponding to the state A is obtained. S from the integral value SB corresponding to the state B
A process for obtaining the first ratio defined by A / SB or SB / SA for each point, a process for obtaining the added value of the integrated value by adding the integrated values for each point, and the added value corresponding to the state A RA / RA from the added value RB corresponding to the state B to RA /
Of the process of obtaining a second ratio defined by RB or RB / RA, the process of obtaining the product of the first ratio and the second ratio for each point, and the process of obtaining the first ratio and the second ratio. A process of obtaining data representing a contour map connecting points having the same product is performed. The obtained contour map (current amount ratio distribution map (CRM: Current)
RatioMapping)) is displayed on the display screen of the display device.

【0089】通常,狭心症は冠状動脈の一部が狭窄を起
こすことが原因と考えられている。冠状動脈に狭窄があ
る状態で酸素を消費する運動を行なうと,心筋に十分に
血液が行かず虚血状態が発生し,胸痛等の自覚症状が発
生する。運動によって虚血状態が誘発されるものを労作
性狭心症と呼び,精神的なストレス等から冠状動脈が収
縮し虚血状態になるものを攣縮性狭心症と呼ぶ。通常,
労作性狭心症は12誘導心電図を装着して運動負荷前後
のST波形が生じる時間帯での心電波形の変化を見るこ
とが一般的である。しかし,12誘導心電図を用いた方
法では,ST波形が生じる時間帯での波形変化が起きる
ような強い運動負荷をかけなればならず,患者には大変
負担となっていた。また,狭窄の度合いがひどい場合で
は,ST波が生じる時間帯で心電波形の変化がおきるよ
うな運動負荷をかけられないことが多い。実施例2で
は,労作性狭心症をST波形が生じる時間帯で磁場波
形,心電波形が変化しない運動負荷の場合でも虚血があ
ることを識別する解析方法を提案するものである。
Generally, angina is considered to be caused by a part of coronary artery causing stenosis. Exercise that consumes oxygen in the presence of stenosis in the coronary artery causes insufficient ischemia in the myocardium, resulting in an ischemic condition and subjective symptoms such as chest pain. The one in which the ischemic state is induced by exercise is called exertional angina, and the one in which the coronary arteries contract due to mental stress or the like to become ischemic is called spastic angina. Normal,
For exertional angina, it is common to wear a 12-lead electrocardiogram and observe changes in the electrocardiographic waveform during a time period in which an ST waveform before and after exercise occurs. However, in the method using the 12-lead electrocardiogram, it is necessary to apply a strong exercise load that causes a waveform change in the time zone in which the ST waveform occurs, which is a great burden to the patient. In addition, when the degree of stenosis is severe, it is often impossible to apply an exercise load that causes a change in the electrocardiographic waveform during the time period when the ST wave occurs. Example 2 proposes an analysis method for identifying exertion angina even in the case of an exercise load in which the magnetic field waveform and the electrocardiographic waveform do not change in the time zone in which the ST waveform occurs.

【0090】実施例1で説明したように,運動負荷前後
に於けるST波形の心電波形の変化は虚血の状態を表わ
すものとして多く使用されてきた。しかし,ST波形を
生じる時間帯での心磁波形の変化は微弱なため,実施例
1で説明したように,心磁波形を時間積分して得た合成
電流ベクトルの分布図等を使用してS/Nを向上させる
しかなかった。実施例1の方法は,安静時に於いても虚
血が生じている場合の虚血の有無の識別には有用である
が,運動負荷を行なってもST波形を生じる時間帯でで
心磁波形の変化がほとんどない場合の虚血の有無の識別
には不向きである。
As described in the first embodiment, the change in the electrocardiographic waveform of the ST waveform before and after the exercise load has been often used as an indicator of the state of ischemia. However, since the change of the magnetocardiographic waveform in the time zone in which the ST waveform is generated is weak, as described in the first embodiment, the distribution map of the combined current vector obtained by time integration of the magnetocardiographic waveform is used. There was no choice but to improve S / N. The method of Example 1 is useful for distinguishing the presence or absence of ischemia when ischemia occurs even at rest, but the magnetocardiogram waveform is generated in the time zone in which the ST waveform is generated even when exercise load is applied. It is not suitable for identifying the presence or absence of ischemia when there is little change in

【0091】一方,運動負荷前後の心電図のR波の動き
について研究も行われてきている。体表面心電図を用い
た実験によって,運動負荷前後の心電図のR波の波高値
の変化は,健常者と狭心症の患者とでは異なり,虚血患
者のR波が生じる時間帯で電位が変化する部位と,ST
波形が生じる時間帯で電位が変化する部位とがほぼ一致
するという報告がされている。実施例2では,心磁波形
の磁場強度の強いR波が生じる時間帯の近傍の磁場波形
を用いて虚血状態を識別する解析方法を考案した。
On the other hand, studies have also been conducted on the movement of the R wave of the electrocardiogram before and after exercise load. According to the experiment using body surface electrocardiogram, the change of the peak value of the R wave of the electrocardiogram before and after the exercise load is different between the healthy person and the angina patient, and the potential changes in the time zone of the R wave of the ischemic patient. Part to be done, ST
It has been reported that the region where the potential changes in the time period in which the waveform occurs is almost the same. In Example 2, an analysis method for identifying an ischemic state was devised by using a magnetic field waveform in the vicinity of a time zone in which an R wave having a strong magnetic field intensity of the magnetocardiographic waveform is generated.

【0092】図10は,本発明の実施例2に於ける解析
方法を説明する図である。図10(a)に示すように,
ある時点(例えば,R波のピークの時点(Tp))のあ
る計測点i(チャネルi)での安静(Rest)時の心
磁波形から求めた電流をIi(Tp)とする。安静時で
は健常者も虚血患者でも同じ電流Ii(Tp)をもつと
する。運動負荷(Exercise)後に於いて,健常
者では電流がAi(Tp)×Ii(Tp)に変化し,虚
血患者ではAi(Tp)×{Ii(Tp)+Bi(T
p)}に変化するものと仮定する。
FIG. 10 is a diagram for explaining an analysis method according to the second embodiment of the present invention. As shown in FIG.
The current obtained from the magnetocardiogram waveform at rest (Rest) at a measurement point i (channel i) at a certain time point (for example, the time point of the R wave peak (Tp)) is defined as Ii (Tp). At rest, it is assumed that both a healthy person and an ischemic patient have the same current Ii (Tp). After exercise (Exercise), the current changes to Ai (Tp) × Ii (Tp) in healthy subjects and Ai (Tp) × {Ii (Tp) + Bi (T) in ischemic patients.
p)}.

【0093】図10(a)に於ける変化をより顕著に表
わすために,チャネルiでの運動負荷前後の電流の比
(第1の比という)αi(Tp),βi(Tp)を,
(数45),(数46)により計算すると図10(b)
となる。分子を運動負荷(Exercise)後の電流
とし,分母を運動負荷(Rest)前の電流とする。比
αi(Tp)によって健常者での電流の変化量が,比β
i(Tp)により虚血患者での電流の変化量が計算でき
る。
In order to show the change in FIG. 10 (a) more conspicuously, the ratio of the currents before and after the exercise load in channel i (referred to as the first ratio) αi (Tp) and βi (Tp) are
Calculation using (Equation 45) and (Equation 46) results in FIG.
Becomes The numerator is the current after exercise (Exercise), and the denominator is the current before exercise (Rest). By the ratio αi (Tp), the change amount of the current in a healthy person is
The amount of change in current in an ischemic patient can be calculated from i (Tp).

【0094】[0094]

【数45】 αi(Tp)=Ai(Tp)×Ii(Tp)/Ii(Tp)=Ai(Tp) …(数45)[Equation 45] αi (Tp) = Ai (Tp) × Ii (Tp) / Ii (Tp) = Ai (Tp)                                                             … (Equation 45)

【0095】[0095]

【数46】 βi(Tp)=Ai(Tp)×{Ii(Tp)+Bi(Tp)}/Ii(Tp) =Ai(Tp)×{1+(Bi(Tp)/Ii(Tp))} …(数46) 図10(b)で得られる比αi(Tp),βi(Tp)
の個人差をなくすために図10(c)に示す規格化を行
なう。規格化は,(数47),(数48)に示すよう
に,図10(a)に示した負荷前後の電流量の絶対値を
加算した加算値の比(第2の比)を,図10(b)で得
られた比αi(Tp),βi(Tp)に逆数(分母を負
荷後の電流量の絶対値の加算値,分子を負荷前の電流量
の絶対値の加算値)にしてかけ算することにより行な
う。(数47),(数48)に於いて,Σは加算記号を
示し加算は,i=1,2,…,N(=64)について行
なう。
Βi (Tp) = Ai (Tp) × {Ii (Tp) + Bi (Tp)} / Ii (Tp) = Ai (Tp) × {1+ (Bi (Tp) / Ii (Tp))} (Equation 46) Ratios αi (Tp) and βi (Tp) obtained in FIG.
The standardization shown in FIG. 10C is performed to eliminate the individual difference. As shown in (Formula 47) and (Formula 48), the normalization is performed by calculating the ratio (second ratio) of the added value obtained by adding the absolute values of the current amounts before and after the load shown in FIG. 10 (b) The ratios αi (Tp) and βi (Tp) obtained by reciprocal (the denominator is the sum of the absolute values of the current after loading, and the numerator is the sum of the absolute values of the current before loading) It is done by multiplying. In (Equation 47) and (Equation 48), Σ indicates an addition symbol, and addition is performed for i = 1, 2, ..., N (= 64).

【0096】(数47),(数48)により計算される
α0i(Tp)の等しい点を結ぶマッピング,β0i
(Tp)の等しい点を結ぶマッピングによるマップを電
流量比分布図(CRM:Current Ratio
Mapping)と呼ぶ。
Mapping connecting points of equal α0i (Tp) calculated by (Equation 47) and (Equation 48), β0i
A map obtained by mapping points having the same (Tp) is used as a current amount ratio distribution map (CRM: Current Ratio).
Mapping).

【0097】[0097]

【数47】 α0i(Tp)=αi(Tp)×{Σ|Ii(Tp)|}/{Σ|Ai(Tp) ×Ii(Tp)|} …(数47)[Equation 47] α0i (Tp) = αi (Tp) × {Σ | Ii (Tp) |} / {Σ | Ai (Tp) × Ii (Tp) |} (Equation 47)

【0098】[0098]

【数48】 β0i(Tp)=βi(Tp)×{Σ|Ii(Tp)|}/{Σ|Ai(Tp) ×(Ii(Tp)+Bi(Tp))|} …(数48) (数47),(数48)を用いて規格化を行なうと,健
常者では電流の変化量の値Ai(Tp)が全チャネルで
一定値に近い値をもつならば,α0i(Tp)は(数4
9)に示すように1に近い値になると考えられる。一
方,虚血患者では虚血に伴って変化する電流の変化量の
値Bi(Tp)が局所的に存在するので,Bi(Tp)
の全チャネルに関する加算値は0に近いと考えられ,虚
血患者では(数50)に示す条件が満たされれば,β0
i(Tp)は(数51)となり,虚血による変化量だけ
が検出可能と考えられる。
[Formula 48] β0i (Tp) = βi (Tp) × {Σ | Ii (Tp) |} / {Σ | Ai (Tp) × (Ii (Tp) + Bi (Tp)) |} (Formula 48) ( If normalization is performed using (47) and (48), if the value Ai (Tp) of the amount of change in current has a value close to a constant value in all channels in a healthy person, α0i (Tp) becomes ( Number 4
It is considered that the value will be close to 1 as shown in 9). On the other hand, in an ischemic patient, the value Bi (Tp) of the amount of change in the current that changes with ischemia is locally present, so Bi (Tp)
Is considered to be close to 0 for all channels, and in the ischemic patient, if the condition shown in (Equation 50) is satisfied, β0
i (Tp) is (Equation 51), and it is considered that only the amount of change due to ischemia can be detected.

【0099】[0099]

【数49】 α0i(Tp)≒1 …(数49)[Equation 49] α0i (Tp) ≈1 (Formula 49)

【0100】[0100]

【数50】 ΣBi(Tp)<ΣIi(Tp) …(数50)[Equation 50] ΣBi (Tp) <ΣIi (Tp) (Equation 50)

【0101】[0101]

【数51】 β0i(Tp)≒1+{Bi(Tp)/Ii(Tp)} …(数51) 図10では分かりやすく説明するため,安静(Res
t)時のデータを分母にし,負荷(Exercise)
後のデータを分子として示したが,図14〜図17に示
す実際の計算結果では,安静時の心磁波形の方が負荷後
の心磁波形より振幅が大きいため(図12,図13を参
照),分母を負荷後のデータとし,分子を安静時のデー
タとして計算を行なっている。
[Formula 51] β0i (Tp) ≈1 + {Bi (Tp) / Ii (Tp)} (Formula 51) For easy understanding in FIG.
The data at time t) is used as the denominator, and the load (Exercise)
Although the latter data is shown as a numerator, the actual calculation results shown in FIGS. 14 to 17 show that the magnetocardiogram waveform at rest has a larger amplitude than the magnetocardiogram waveform after loading (see FIGS. 12 and 13). ), The denominator is the post-load data, and the numerator is the rest data.

【0102】以上の説明では,R波のピークの時点(T
p)でα0i(Tp),β0i(Tp)を求めたが,図
14〜図17に示す結果は,(数52),(数53),
(数54)に基づいて,QRS波の心磁波形を所定の時
間区画Ts〜Teで積分して,即ち,心磁波形の時間変
化から求めた電流の時間変化,Ii(t),Ai(t)
×Ii(t),Ai(t)×{Ii(t)+Bi
(t)}を所定の時間区画Ts〜Teで積分して,これ
らの積分値をそれぞれ,(数44)〜(数48)に於け
るIi(Tp)の値,Ai(Tp)×Ii(Tp)の
値,Ai(Tp)×(Ii(Tp)+Bi(Tp))の
値として使用して,(数44)〜(数48)に基づいて
求められたα0i(Tp)の等しい点を結ぶマッピン
グ,β0i(Tp)の等しい点を結ぶマッピングを行な
った結果を示す図である。図14〜図17に示すマップ
を電流量比分布図(CRM:Current Rati
o Mapping)と呼ぶ。図14〜図17では,電
流量比分布図は被検体の輪郭図に心臓の概略位置を合せ
て表示されている。
In the above description, the time point of the peak of the R wave (T
α0i (Tp) and β0i (Tp) were obtained in p), and the results shown in FIGS. 14 to 17 are (Expression 52), (Expression 53),
Based on (Equation 54), the magnetocardiogram waveform of the QRS wave is integrated in predetermined time sections Ts to Te, that is, the temporal change of the current obtained from the temporal change of the magnetocardiographic waveform, Ii (t), Ai ( t)
× Ii (t), Ai (t) × {Ii (t) + Bi
(T)} is integrated in a predetermined time section Ts to Te, and these integrated values are Ii (Tp) values in (Equation 44) to (Equation 48), Ai (Tp) × Ii ( Tp) and the value of Ai (Tp) × (Ii (Tp) + Bi (Tp)) are used to find the equal points of α0i (Tp) obtained based on (Equation 44) to (Equation 48). It is a figure which shows the result of having performed the mapping which connects, and the mapping which connects the points with equal (beta) 0i (Tp). The maps shown in FIGS. 14 to 17 are converted into current amount ratio distribution diagrams (CRM: Current Ratio).
o Mapping). 14 to 17, the current amount ratio distribution diagram is displayed with the outline position of the heart aligned with the contour diagram of the subject.

【0103】[0103]

【数52】 ∫Ii(t)dt→Ii(Tp) …(数52)[Equation 52] ∫ Ii (t) dt → Ii (Tp) (Equation 52)

【0104】[0104]

【数53】 ∫{Ai(t)×Ii(t)}dt→Ai(Tp)×Ii(Tp)…(数53)[Equation 53] ∫ {Ai (t) × Ii (t)} dt → Ai (Tp) × Ii (Tp) ... (Equation 53)

【0105】[0105]

【数54】 ∫{Ai(t)×(Ii(t)+Bi(t))}dt→ Ai(Tp)×(Ii(Tp)+Bi(Tp)) …(数54) 図11は本発明の実施例2に於ける心磁波形の計測の手
順の例を示す図である。外来磁場がシールドされた空間
(例えば,ベッドが配置される磁気シールドルーム内の
空間,又は,ベッドが配置される外来磁場がシールドさ
れた空間)で安静状態の12誘導心電図の計測と心磁波
形の計測を同時に計測を行なう。次に,Master’
s 2 step法と呼ばれる階段歩行による運動負荷
を行なう。Master’s 2 step法はトレッ
ドミル等の方法に比べて負荷量の少ない検査法であり,
患者にとって負担が少ない検査法である。負荷量は年
齢,性別によって変化させている。運動負荷中は12誘
導心電図でモニタしながら患者の様態を観察し,患者が
苦しくなる場合には即座に運動負荷を中断する。負荷
後,患者は直ちに外来磁場がシールドされた空間に入っ
て,心磁波形の計測と12誘導心電図の計測を同時に計
測を受ける。負荷終了後,直ちに心磁波形の計測のため
に患者の心臓とクライオスタットの下面との位置合わせ
を行ない,負荷終了後約45秒から1分半の間で負荷直
後の心磁場の計測を行ない,十分に患者が安静状態に戻
るまで負荷終了後から約5分から10分の間を1分間隔
で心磁波形の計測を行なった。患者の心臓とクライオス
タットの下面との位置関係がずれていない状態での負荷
前後の心磁波形のデータを使うため,負荷から十分に時
間が経過した後のデータを安静時のデータとして使用し
た。
∫ {Ai (t) × (Ii (t) + Bi (t))} dt → Ai (Tp) × (Ii (Tp) + Bi (Tp)) (Equation 54) FIG. 11 shows the present invention. FIG. 8 is a diagram showing an example of a procedure of measuring a magnetocardiographic waveform in Example 2. Measurement of 12-lead electrocardiogram and magnetocardiographic waveform in a resting state in a space in which the external magnetic field is shielded (for example, a space in a magnetically shielded room in which the bed is placed, or a space in which the external magnetic field is placed in which the bed is placed) Are measured at the same time. Next, Master '
Exercise load by stair walking called s 2 step method is performed. The Master's 2 step method is an inspection method that requires less load than methods such as treadmills.
It is a test method that is less burdensome for patients. The load varies with age and gender. During exercise load, the patient's condition is observed while monitoring with a 12-lead electrocardiogram, and when the patient becomes distressed, the exercise load is immediately stopped. After the load, the patient immediately enters the space in which the external magnetic field is shielded and simultaneously receives the magnetocardiographic waveform measurement and the 12-lead electrocardiographic measurement. Immediately after loading, the patient's heart is aligned with the lower surface of the cryostat to measure the magnetocardiographic waveform, and the magnetic field immediately after loading is measured about 45 seconds to 1 and a half minutes after the loading is completed. The magnetocardiographic waveform was measured at 1-minute intervals from about 5 minutes to 10 minutes after the end of the load until the patient sufficiently returned to the resting state. Since the data of the magnetocardiogram waveform before and after the load was used when the positional relationship between the patient's heart and the lower surface of the cryostat was not misaligned, the data after sufficient time from the load was used as the data at rest.

【0106】以上説明した図11に基づいて説明した心
磁波形の計測の手順に従い,健常者4例,労作性狭心症
6例,攣縮性狭心症2例について,心磁波形の計測を行
なった。なお,労作性狭心症6例中の2例についてはバ
ルーン治療(PTCA)の前後で2回心磁波形の計測を
行なった。
According to the procedure for measuring the magnetocardiographic waveform described with reference to FIG. 11 described above, the magnetocardiographic waveform was measured for 4 healthy subjects, 6 exertional angina pectoris, and 2 spastic angina pectoris. I did. In addition, in 2 out of 6 cases of exertional angina, magnetocardiographic waveforms were measured twice before and after balloon treatment (PTCA).

【0107】図12は,本発明の実施例2に於いて健常
者の運動負荷前後での64チャネルSQUID磁束計で
計測した心磁波形を表示する表示画面の例を示す図であ
る。図12(a)は,健常人の負荷前後の64チャネル
の磁場波形を並べて表示している。チャネル121のR
波のピークの時点(Tp)を基準として,負荷前後での
心磁波形を重ね合わせた。図12(b)は,チャネル1
22の心磁波形の拡大表示である。安静時の心磁波形1
25(実線)と負荷直後の心磁波形124(点線)とを
重ね合せて表示している。図12(a),図12(b)
に示すQRS波の波形から,健常人では負荷前後で変化
がほとんど無いことが分かる。図12(b)には,(数
51)〜(数53)に於ける,QRS波の心磁波形の積
分区間123(40ms),所定の時間区画Ts〜Te
を示しおり,Ts=(Tp−20)ms,Te=(Tp
+20)msである。
FIG. 12 is a diagram showing an example of a display screen for displaying magnetocardiographic waveforms measured by the 64-channel SQUID magnetometer before and after exercise of a healthy person in the second embodiment of the present invention. In FIG. 12A, magnetic field waveforms of 64 channels before and after the load of a healthy person are displayed side by side. Channel 121 R
The magnetocardiogram waveforms before and after the load were superimposed on the basis of the time point (Tp) of the wave peak. FIG. 12B shows channel 1
22 is an enlarged display of 22 magnetocardiographic waveforms. Resting magnetocardiogram 1
25 (solid line) and the magnetocardiographic waveform 124 (dotted line) immediately after the load are superimposed and displayed. 12 (a) and 12 (b)
From the waveform of the QRS wave shown in (1), it can be seen that there is almost no change in the healthy person before and after the load. In FIG. 12B, the integration section 123 (40 ms) of the magnetocardiographic waveform of the QRS wave in (Equation 51) to (Equation 53) and predetermined time sections Ts to Te are shown.
, Ts = (Tp-20) ms, Te = (Tp
+20) ms.

【0108】図13は,本発明の実施例2に於いて狭心
症患者の運動負荷前後での64チャネルSQUID磁束
計で計測した心磁波形の表示画面を示す図である。図1
3は図12と同様に運動負荷前後でST波形に変化が生
じた場合のQRS波の心磁波形を示す。図13(a)於
いてもチャネル131のR波のピークの時点(Tp)を
基準として,負荷前後での心磁波形を重ね合わせた。図
13(b)は,チャネル132の心磁波形の拡大表示で
ある。安静時の心磁波形135(実線)と負荷直後の心
磁波形134(点線)とを重ね合せて表示している。図
13(b)には,(数51)〜(数53)に於ける,Q
RS波の心磁波形の積分区間133(40ms),所定
の時間区画Ts〜Teを示しおり,Ts=(Tp−2
0)ms,Te=(Tp+20)msである。図13に
示すように,負荷前後では,ST波形に於ける心磁波形
の変化量と同程度の心磁波形の変化がQRS波にも生じ
ていることが分かる。ST波形の心磁波形と同様にR波
の心磁波形も変化していることから,R波の近傍の心磁
波形を用いて虚血の状態を示す変化量が得られると考え
られる。
FIG. 13 is a diagram showing a display screen of magnetocardiographic waveforms measured by a 64-channel SQUID magnetometer before and after exercise load of an angina patient in Example 2 of the present invention. Figure 1
Similarly to FIG. 12, 3 shows the magnetocardiogram waveform of the QRS wave when the ST waveform changes before and after the exercise load. Also in FIG. 13A, the magnetocardiographic waveforms before and after the load are superimposed on the basis of the time point (Tp) of the R wave peak of the channel 131. FIG. 13B is an enlarged display of the magnetocardiogram waveform of the channel 132. The magnetocardiographic waveform 135 at rest (solid line) and the magnetocardiographic waveform 134 immediately after loading (dotted line) are superimposed and displayed. In FIG. 13B, Q in (Equation 51) to (Equation 53)
The integration section 133 (40 ms) of the magnetocardiographic waveform of the RS wave and a predetermined time section Ts to Te are shown, and Ts = (Tp-2
0) ms and Te = (Tp + 20) ms. As shown in FIG. 13, it can be seen that, before and after the load, a change in the magnetocardiographic waveform that is similar to the amount of change in the magnetocardiographic waveform in the ST waveform also occurs in the QRS wave. Since the magnetocardiogram waveform of the R wave changes as well as the magnetocardiogram waveform of the ST waveform, it is considered that the magnetocardiogram waveform in the vicinity of the R wave can be used to obtain the amount of change indicating the state of ischemia.

【0109】図14は,本発明の実施例2に於いて労作
性狭心症の4例に関する解析結果である電流量比分布図
を患者の輪郭に重ねて示す表示画面の例を示す図であ
る。図14(a)は左冠動脈左回旋枝が狭窄している結
果を示し,図14(b)は右冠動脈が狭窄している結果
を示し,図14(c),図14(d)は左冠動脈前下行
枝が狭窄している結果を示している。運動負荷によっ
て,ST波形の心電波形の変化が心電図上に現れ,陽性
反応が生じたものは図14(d)の場合のみであり,他
の3例については運動負荷によって陽性反応は誘発され
なかった。図14(a)に示す電流量比分布図のピーク
141は左胸上部に位置し,左回旋枝の存在部位に対応
して出現している。図14(b)に示す電流量比分布図
のピーク142は右胸上方に位置し,右冠動脈の存在部
位に対応して出現している。図14(c),図14
(d)に示す電流量比分布図のピーク143,144は
左冠動脈前下行枝の存在部位に対応して出現している。
図14(a)〜図14(c)に示すように,運動負荷に
よってST波形の心磁波形の変化が誘発されない場合で
も電流量比分布図を用いることによって,狭窄部位(又
は虚血部位)を推定可能なことが分かる。
FIG. 14 is a diagram showing an example of a display screen in which a current amount ratio distribution chart which is an analysis result regarding four cases of exertional angina in the second embodiment of the present invention is superimposed on the contour of the patient. is there. Fig. 14 (a) shows the result of stenosis of the left circumflex of the left coronary artery, Fig. 14 (b) shows the result of stenosis of the right coronary artery, and Figs. 14 (c) and 14 (d) show the left. The result shows that the anterior descending coronary artery is stenotic. A change in the ST electrocardiographic waveform on the electrocardiogram appeared due to the exercise load, and the positive reaction occurred only in the case of Fig. 14 (d). In the other three cases, the positive reaction was induced by the exercise load. There wasn't. The peak 141 of the current amount ratio distribution chart shown in FIG. 14A is located in the upper left chest and appears corresponding to the site where the left circumflex branch exists. The peak 142 of the current amount ratio distribution chart shown in FIG. 14B is located above the right chest and appears corresponding to the existing site of the right coronary artery. 14 (c) and 14
The peaks 143 and 144 in the current amount ratio distribution chart shown in (d) appear corresponding to the existing site of the left anterior descending coronary artery.
As shown in FIGS. 14 (a) to 14 (c), even when the change in the magnetocardiographic waveform of the ST waveform is not induced by the exercise load, by using the current amount ratio distribution map, the stenotic site (or ischemic site) It is understood that can be estimated.

【0110】図15は,本発明の実施例2に於いて健常
者の4例に関する解析結果である電流量比分布図を患者
の輪郭に重ねて示す表示画面の例を示す図である。図1
5(a)〜図15(d)に示す4例の電流量比分布図で
はピーク151,152,153,154が存在する
が,図14(a)〜図14(d)に示す電流量比分布図
にと比較すると等高線の数が少なく,ピークの値が小さ
いことが分かる。また,攣縮性狭心症2例に於いても負
荷では狭窄が誘発されず,図15とほぼ同等の電流量比
分布図であったため,電流量比分布図は図示しない。
FIG. 15 is a diagram showing an example of a display screen in which a current amount ratio distribution chart, which is an analysis result of four healthy subjects in the second embodiment of the present invention, is superimposed on the contour of the patient. Figure 1
Peaks 151, 152, 153, and 154 are present in the current amount ratio distribution diagrams of the four examples shown in FIGS. 5 (a) to 15 (d), but the current amount ratios shown in FIGS. 14 (a) to 14 (d) are present. Compared with the distribution chart, it can be seen that the number of contour lines is small and the peak value is small. Further, in the two cases of spastic angina, stenosis was not induced by the load, and the current amount ratio distribution diagram was almost the same as that in FIG. 15, so the current amount ratio distribution diagram is not shown.

【0111】図16は,本発明の実施例2に於いて左冠
動脈前下行枝に狭窄がある労作性狭心症疾患の解析例を
示し,バルーン治療(PTCA)前と治療後1週間後に
於ける心磁波形の表示画面の例,電流量比分布図を患者
の輪郭に重ねて示す表示画面の例を示す図である。図1
6に示す症例では,PTCA前後の心磁波形ではST波
形が優位に変化した。図16(A)はPTCA手術前の
心磁波形,電流量比分布図を示し,図16(B)はPT
CA手術後の心磁波形,電流量比分布図を示す。図16
(A),図16(B)に於ける(I)は運動負荷後の直
後1分後の64チャネルの心磁波形の重ね合せ波形を示
す。図16(A),図16(B)に於ける(II)は安
静状態に戻った時点から5分後の64チャネルの心磁波
形の重ね合せ波形を示す。図16(A),図16(B)
に於ける(III)は電流量比分布図を示す。図16
(A)(I)に示す心磁波形161ではST波形が大き
く時間変化していることが分かる。図16(A)(I
I)に示す5分後の心磁波形162ではST波形の大き
な変化は消失していることが分かる。図16(A)(I
II)は,心磁波形161,心磁波形162を用いて作
成した電流量比分布図である。図16(A)(III)
に示す電流量比分布図でのピーク163は,図14
(c)(d)に示す電流量比分布図でのピーク144と
同様に左冠動脈前下行枝領域に出現していることが分か
る。図16(B)に示すPTCA治療後の1週間後の心
磁波形を見ると,負荷の直後での心磁波形164と安静
時の心磁波形165ではST波の変化はほとんどないこ
とが分かる。ST波の変化がないにもかかわらず,図1
6(B)(III)に示す電流量比分布図ではピーク1
66がなお大きく出現している。
FIG. 16 shows an example of analysis of exertional angina pectoris with stenosis in the left anterior descending coronary artery in Example 2 of the present invention, before balloon treatment (PTCA) and one week after the treatment. FIG. 7 is a diagram showing an example of a display screen of a magnetocardiogram waveform and an example of a display screen in which a current amount ratio distribution chart is superimposed on the contour of the patient. Figure 1
In the case shown in 6, the ST waveform was predominantly changed in the magnetocardiographic waveform before and after PTCA. FIG. 16 (A) shows a magnetocardiogram waveform and current amount ratio distribution diagram before PTCA operation, and FIG. 16 (B) shows PT.
The magnetocardiogram waveform after CA operation and the current amount ratio distribution chart are shown. FIG.
(A) and (I) in FIG. 16 (B) show superposed waveforms of magnetocardiographic waveforms of 64 channels 1 minute after the exercise load. (II) in FIGS. 16 (A) and 16 (B) shows a superposed waveform of magnetocardiographic waveforms of 64 channels 5 minutes after the time of returning to the rest state. 16 (A) and 16 (B)
(III) in Fig. 3 shows a current amount ratio distribution chart. FIG.
It can be seen that in the magnetocardiographic waveform 161 shown in (A) and (I), the ST waveform greatly changes with time. 16 (A) (I
It can be seen that in the magnetocardiographic waveform 162 after 5 minutes shown in I), the large change in the ST waveform has disappeared. 16 (A) (I
II) is a current amount ratio distribution chart created using the magnetocardiographic waveform 161 and the magnetocardiographic waveform 162. 16 (A) (III)
The peak 163 in the current amount ratio distribution chart shown in FIG.
It can be seen that, similar to the peak 144 in the current amount ratio distribution charts shown in (c) and (d), it appears in the left anterior descending coronary artery region. Looking at the magnetocardiogram waveforms after one week after the PTCA treatment shown in FIG. 16B, it can be seen that there is almost no change in the ST wave between the magnetocardiogram waveform 164 immediately after the load and the magnetocardiogram waveform 165 at rest. . Fig. 1 despite no change in ST wave
6 (B) (III) shows the peak 1 in the current amount ratio distribution chart.
66 still appears big.

【0112】図17は,本発明の実施例2に於いて左冠
動脈前下行枝に狭窄がある労作性狭心症疾患の解析例を
示し,バルーン治療(PTCA)前と治療後1ヶ月後に
於ける心磁波形の表示画面の例,電流量比分布図を患者
の輪郭に重ねて示す表示画面の例を示す図である。
FIG. 17 shows an analysis example of exertional angina disease having a stenosis in the left anterior descending coronary artery in Example 2 of the present invention, before balloon treatment (PTCA) and one month after the treatment. FIG. 7 is a diagram showing an example of a display screen of a magnetocardiogram waveform and an example of a display screen in which a current amount ratio distribution chart is superimposed on the contour of the patient.

【0113】図17(A)はPTCA前の心磁波形,電
流量比分布図を示し,図17(B)はPTCA後の心磁
波形,電流量比分布図を示す。図17(A)(I),
(II)に示す心磁波形171と心磁波形172とを比
較すると,ST波形の変化は両者の間にないことが分か
る。ST波形の変化が有意に出現しないにも関わらず,
図17(III)に示す電流量比分布図にはピーク17
3が出現していることが分かる。図17(A)に示す症
例は左回旋枝狭窄であり,図14(a)に示した左回旋
枝狭窄の症例とよく似た電流量比分布図のパターンが得
られていることが分かる。図17(B)はPTCA後1
ヶ月経過して測定した心磁波形,電流量比分布図であ
る。図17(B)(I),(II)に示す心磁波形17
4と心磁波形175とを比較すると,図17(A)の場
合と同様にST波形に変化がないことが分かる。心磁波
形174,心磁波形175では常に異常Q波が出現して
おり,PTCA後に一部の心筋に於いて心筋梗塞を起こ
していると考えられた。電流量比分布図にはピーク17
6は存在するが等高線の数も少なく,図15に示した健
常者の電流量比分布図のパターンと良く似ており,電流
量比分布図のピークが小さいパターンになっている。
FIG. 17A shows a magnetocardiogram waveform before PTCA and a current amount ratio distribution diagram, and FIG. 17B shows a magnetocardiogram waveform after PTCA and a current amount ratio distribution diagram. 17 (A) (I),
Comparing the magnetocardiogram waveform 171 and the magnetocardiogram waveform 172 shown in (II), it can be seen that there is no change in the ST waveform between them. Although the ST waveform change does not appear significantly,
In the current amount ratio distribution chart shown in FIG.
It can be seen that 3 appears. It can be seen that the case shown in FIG. 17 (A) is left circumflex branch stenosis, and a pattern of the current amount ratio distribution map very similar to the case of left circumflex branch stenosis shown in FIG. 14 (a) is obtained. Figure 17 (B) shows 1 after PTCA
It is a magnetocardiogram waveform and the current amount ratio distribution map which were measured after a lapse of months. Magnetocardiographic waveform 17 shown in FIGS. 17 (B) (I) and (II)
4 is compared with the magnetocardiogram waveform 175, it can be seen that there is no change in the ST waveform as in the case of FIG. An abnormal Q wave always appeared in the magnetocardiogram waveform 174 and the magnetocardiogram waveform 175, and it was considered that myocardial infarction occurred in a part of myocardium after PTCA. Peak 17 in the current amount ratio distribution chart
Although 6 exists, the number of contour lines is small and is very similar to the pattern of the current amount ratio distribution map of the healthy person shown in FIG. 15, and the pattern of the current amount ratio distribution map has a small peak.

【0114】図18は,本発明の実施例2に於いて電流
量比分布図のピーク値を棒グラフに示した結果例を示す
図である。図18に示す左側の6例のプロット181は
労作性狭心症のピーク値を示し,プロット182の2例
は攣縮性狭心症をピーク値を示し,プロット183の4
例は健常者のピーク値を示している。図18に示す結果
から,健常者又は攣縮性狭心症の患者と,労作性狭心症
の患者の境は0.5付近にあると考えられる。また,図
16,図17に示したPTCA治療を施した2例のPT
CA後の電流量比分布図のピーク値のプロットをプロッ
ト184に示す。プロット181の#1とプロット18
4の#1とが同症例の同一患者で対応し,プロット18
1の#2とプロット184の#2とが同症例の同一患者
で対応している。PTCA前後のピーク値の変化は,2
例とも減少しているが,症例#2ではPTCA後も以前
高い値を示している。これはPTCA後1週間しか経過
していない時点で心磁波形の計測をしたことが原因かも
しれないと考えられた。
FIG. 18 is a diagram showing a result example in which the peak value of the current amount ratio distribution chart is shown in a bar graph in the second embodiment of the present invention. The six plots 181 on the left side shown in FIG. 18 show the peak value of exertional angina, the two plots 182 show the peak value of spastic angina, and the four plots of 183
The example shows the peak value of a healthy person. From the results shown in FIG. 18, it is considered that the boundary between a healthy person or a patient with spastic angina and a patient with exertional angina is around 0.5. In addition, two PTs treated with the PTCA treatment shown in FIGS.
A plot of the peak value of the current amount ratio distribution chart after CA is shown in a plot 184. # 1 of plot 181 and plot 18
# 1 in 4 corresponds to the same patient in the same case, and plot 18
# 2 of 1 and # 2 of plot 184 correspond to the same patient in the same case. The change in peak value before and after PTCA is 2
Although the number decreased in all cases, the value was high in case # 2 even after PTCA. It is considered that this may be due to the measurement of the magnetocardiographic waveform when only one week had passed after PTCA.

【0115】以上説明実施例2では,QRS波のみに注
目して処理を行なったが,QRS波に限ることなく,例
えば,P波やT波等でも同様の解析を行なうことができ
る。特に,P波に於いては心房の異常や心臓内の弁の異
常や左室の異常等を示すことが考えられる。
In the second embodiment described above, the processing is performed by focusing on the QRS wave, but the same analysis can be performed not only on the QRS wave but also on the P wave or the T wave. In particular, it is considered that P waves show abnormalities in the atrium, valves in the heart, and left ventricle.

【0116】以上説明した実施例1,実施例2では,1
次微分型検出コイルを有するSQUID磁束計により心
磁場の法線方向(z方向)の磁場成分を検出する例によ
って説明したが,実施例1,実施例2に於いて,心磁場
の接線方向(x方向,y方向)の磁場成分を検出しても
よい。
In the first and second embodiments described above, 1
The example has been described in which the magnetic field component in the normal direction (z direction) of the cardiac magnetic field is detected by the SQUID magnetometer having the second-order differential type detection coil. In the first and second embodiments, the tangential direction of the cardiac magnetic field ( Magnetic field components in the x direction and the y direction) may be detected.

【0117】チャネルiについて接線方向(x方向,y
方向)の磁場成分(Bxi,Byi)を検出する場合に
は,先に説明した実施例1に於いて合成電流ベクトルの
成分を表わす(数3)〜(数6)を以下に示す(数5
5)〜(数58)に置き換え,先に説明した実施例2に
於いて合成電流ベクトルの成分を表わす(数20)〜
(数21)を以下に示す(数59)〜(数60)に置き
換えればよい。この結果,接線方向(x方向,y方向)
の磁場成分を検出する場合も,先に説明した実施例1,
実施例2と同じ結果を得ることができる。
For the channel i, the tangential direction (x direction, y
When detecting the magnetic field components (Bxi, Byi) of the (direction), (Equation 3) to (Equation 6) representing the components of the combined current vector in the first embodiment described above are shown below (Equation 5).
5) to (Equation 58) to represent the components of the combined current vector in the second embodiment described above (Equation 20) to
(Equation 21) may be replaced with (Equation 59) to (Equation 60) shown below. As a result, tangential direction (x direction, y direction)
Also when detecting the magnetic field component of
The same result as in Example 2 can be obtained.

【0118】[0118]

【数55】 Ixi(T1)=Byi(T1) …(数55)[Equation 55] Ixi (T1) = Byi (T1) (Equation 55)

【0119】[0119]

【数56】 Iyi(T1)=−Bxi(T1) …(数56)[Equation 56] Iyi (T1) =-Bxi (T1) (Equation 56)

【0120】[0120]

【数57】 Ixi(T2)=Byi(T2) …(数57)[Equation 57] Ixi (T2) = Byi (T2) (Equation 57)

【0121】[0121]

【数58】 Iyi(T2)=−Bxi(T2) …(数58)[Equation 58] Iyi (T2) =-Bxi (T2) (Equation 58)

【0122】[0122]

【数59】 Ixi(tj)=Byi(tj) …(数59)[Equation 59] Ixi (tj) = Byi (tj) (Equation 59)

【0123】[0123]

【数60】 Iyi(tj)=−Bxi(tj) …(数60) また,1次微分型検出コイルを有するSQUID磁束計
の他に,2次微分型検出コイルを有するSQUID磁束
計を使用できることは言うまでもない。
Iyi (tj) = − Bxi (tj) (Equation 60) Further, in addition to the SQUID magnetometer having the first-order differential type detection coil, it is possible to use the SQUID magnetometer having the second-order differential type detection coil. Needless to say.

【0124】更に,本発明の解析方法は,成人,小児,
母体内の胎児等の心臓から発生する微弱な心磁場の解析
に有効に適用可能であることは言うまでもない。
Furthermore, the analysis method of the present invention can be applied to adults, children,
It goes without saying that it can be effectively applied to the analysis of a weak magnetic field generated from the heart such as the fetus in the mother's body.

【0125】[0125]

【発明の効果】本発明によれば,計測された心磁波形を
簡単な方法で解析して,虚血性心疾患(心筋梗塞,狭心
症等),心筋症を容易に識別することが可能な画面表示
ができ,心臓の診断に有用な情報を提供することができ
る。また,虚血性心疾患や心筋症の患者の心筋の電気生
理学的活動に伴ない流れる電流の状態が健常者と異なる
様相を変化を心磁波形の時間変化を単純な方法により解
析して,表示画面で簡易にモニタできるので,診断に有
用な情報を提供することができる。更に,運動負荷等に
よって誘発される虚血状態に於いても,虚血の度合いや
虚血が存在する部位を推定できるので,診断に有用な指
標を提供することができる。
According to the present invention, the measured magnetocardiographic waveform can be analyzed by a simple method to easily identify ischemic heart disease (myocardial infarction, angina, etc.) and cardiomyopathy. It can display various screens and can provide useful information for heart diagnosis. In addition, the changes in the state of the current flowing along with the electrophysiological activity of the myocardium of patients with ischemic heart disease or cardiomyopathy are compared with those of normal subjects. Since it can be easily monitored on the screen, it can provide useful information for diagnosis. Furthermore, even in an ischemic state induced by exercise load or the like, the degree of ischemia and the site where ischemia exists can be estimated, so that a useful index for diagnosis can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の生体磁場計測装置の構成例
を示す図。
FIG. 1 is a diagram showing a configuration example of a biomagnetic field measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例1に於いてクライオスタットの
内部の底部近傍に配置される複数のSQUID磁束計の
配置例を示す図。
FIG. 2 is a diagram showing an arrangement example of a plurality of SQUID magnetometers arranged near the bottom inside the cryostat according to the first embodiment of the present invention.

【図3】本発明の実施例1に於いて求められた,健常人
の,R波及びT波のピーク,ST波が生じる時間帯での
時点T1での等磁場線図,合成電流ベクトルの分布図,
計測された1チャネルから64チャネルの心磁波形を重
ね書きした波形が表示される画面表示の例を示す図。
FIG. 3 is a diagram showing the isomagnetic field diagram at the time point T1 in the time zone in which the R wave and T wave peaks and the ST wave of the healthy person are obtained, which are obtained in the first embodiment of the present invention; Distribution map,
The figure which shows the example of the screen display in which the waveform which overwrites the measured magnetocardiogram waveform of 1 channel to 64 channels is displayed.

【図4】本発明の実施例1に於いて単一ダイポールモデ
ルで作成された等磁場線図,合成電流ベクトルの分布図
を説明する図。
FIG. 4 is a diagram for explaining an isomagnetic field line diagram created by a single dipole model and a distribution diagram of a composite current vector in Example 1 of the present invention.

【図5】本発明の実施例1に於いて成人健常者29例に
関して心磁波形を計測し,心磁波形を解析して得た合成
電流ベクトルの分布図の表示画面の例を示す図。
FIG. 5 is a diagram showing an example of a display screen of a distribution diagram of a composite current vector obtained by measuring magnetocardiographic waveforms and analyzing the magnetocardiographic waveforms in 29 healthy adults in Example 1 of the present invention.

【図6】本発明の実施例1に於いて被検体の心臓と計測
面との距離を順次遠ざけた6カ所の位置で成人の健常者
について心磁波形を計測し,心磁波形を解析して得た合
成電流ベクトルの分布図の表示画面の例を示す図。
[Fig. 6] Fig. 6 is a graph showing a magnetocardiogram waveform of an adult healthy person measured at six positions where the distance between the heart of the subject and the measurement surface is sequentially increased in Example 1 of the present invention, and the magnetocardiogram waveform is analyzed. The figure which shows the example of the display screen of the distribution map of the synthetic | combination electric current vector obtained by it.

【図7】本発明の実施例1に於いて心筋虚血である心筋
梗塞(MI)の患者,狭心症(AP)の患者に関して心
磁波形を計測し,心磁波形を解析して得た合成電流ベク
トルの分布図の表示画面の例を示す図。
FIG. 7: Obtained by measuring magnetocardiographic waveforms and analyzing magnetocardiographic waveforms in patients with myocardial infarction (MI) and angina (AP), which are myocardial ischemia, in Example 1 of the present invention. The figure which shows the example of the display screen of the distribution map of the synthetic | combination electric current vector.

【図8】本発明の実施例1に於いて心筋症である肥大型
心筋症(HCM)の患者,拡張型心筋症(DCM)の患
者,拘束型心筋症(RCM)の患者に関して心磁波形を
計測し,心磁波形を解析して得た合成電流ベクトルの分
布図の表示画面の例を示す図。
FIG. 8 is a magnetocardiogram waveform of a hypertrophic cardiomyopathy (HCM) patient, a dilated cardiomyopathy (DCM) patient, and a restricted cardiomyopathy (RCM) patient in Example 1 of the present invention. The figure which shows the example of the display screen of the distribution map of the synthetic | combination electric current vector which measured and measured the magnetocardiogram waveform.

【図9】本発明の実施例1に於いて図5,図7,図8に
示した結果から陽性(心筋異常)と考えられた陽性の数
を示す図。
FIG. 9 is a diagram showing the number of positives considered to be positive (myocardial abnormality) from the results shown in FIGS. 5, 7 and 8 in Example 1 of the present invention.

【図10】本発明の実施例2に於ける解析方法を説明す
る図。
FIG. 10 is a diagram illustrating an analysis method according to the second embodiment of the present invention.

【図11】本発明の実施例2に於ける心磁波形の計測の
手順の例を示す図。
FIG. 11 is a diagram showing an example of a procedure of measuring a magnetocardiographic waveform in Example 2 of the present invention.

【図12】本発明の実施例2に於いて健常者の運動負荷
前後での64チャネルSQUID磁束計で計測した心磁
波形の表示画面の例を示す図。
FIG. 12 is a diagram showing an example of a display screen of magnetocardiographic waveforms measured by a 64-channel SQUID magnetometer before and after exercise of a healthy person in Example 2 of the present invention.

【図13】本発明の実施例2に於いて狭心症患者の運動
負荷前後での64チャネルSQUID磁束計で計測した
心磁波形の表示画面の例を示す図。
FIG. 13 is a diagram showing an example of a display screen of magnetocardiographic waveforms measured by a 64-channel SQUID magnetometer before and after an exercise load of an angina patient in Example 2 of the present invention.

【図14】本発明の実施例2に於いて労作性狭心症の4
例に関する解析結果である電流量比分布図の表示画面の
例を示す図。
FIG. 14 is a graph of exertional angina 4 according to Example 2 of the present invention.
The figure which shows the example of the display screen of the electric current amount ratio distribution chart which is the analysis result regarding an example.

【図15】本発明の実施例2に於いて健常者の4例に関
する解析結果である電流量比分布図の表示画面の例を示
す図。
FIG. 15 is a diagram showing an example of a display screen of a current amount ratio distribution diagram, which is an analysis result of four healthy subjects in Example 2 of the present invention.

【図16】本発明の実施例2に於いて左冠動脈前下行枝
に狭窄がある労作性狭心症疾患の解析例を示し,バルー
ン治療(PTCA)前と治療後1週間後に於ける心磁波
形の表示画面の例,電流量比分布図の表示画面の例を示
す図。
FIG. 16 shows an example of analysis of exertional angina disease with stenosis in the left anterior descending coronary artery in Example 2 of the present invention, showing magnetocardiography before balloon treatment (PTCA) and one week after the treatment. The figure which shows the example of a display screen of a waveform, the example of a display screen of a current amount ratio distribution diagram.

【図17】本発明の実施例2に於いて左冠動脈前下行枝
に狭窄がある労作性狭心症疾患の解析例を示し,バルー
ン治療(PTCA)前と治療後1ヶ月後に於ける心磁波
形の表示画面の例,電流量比分布図の表示画面の例を示
す図。
FIG. 17 shows an analysis example of exertional angina disease having a stenosis in the left anterior descending coronary artery in Example 2 of the present invention, showing magnetocardiography before balloon treatment (PTCA) and one month after the treatment. The figure which shows the example of a display screen of a waveform, the example of a display screen of a current amount ratio distribution diagram.

【図18】本発明の実施例2に於いて電流量比分布図の
ピーク値を棒グラフに示した結果例を示す図。
FIG. 18 is a diagram showing a result example in which a peak value of a current amount ratio distribution chart is shown in a bar graph in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1…磁気シールドルーム,2…クライオスタット,3…
ガントリー,4…計測回路,5…アンプフィルタユニッ
ト,6…演算処理装置,7…ベッド,201…剣状突
起,202…SQUID磁束計,301…R波のピーク
が生じる時点での合成電流ベクトルの分布図,302…
ST波が生じる時間帯に於けるT1の時点での合成電流
ベクトルの分布図,303…T波のピークが生じる時点
での合成電流ベクトルの分布図,304…1チャネルか
ら64チャネルの磁場波形を重ね書きした波形,305
…Q波の始まる時点を示す線,401…電流ダイポー
ル,402…計測面,403…ダイポール401の方
向,404…計算点,121,131…運動負荷前後の
心磁波形のR波の時間軸合わせ時に基準とするチャネル
の心磁波形,122,132…典型的な変化を示すチャ
ネルの心磁波形,123,133…心磁波形の積分区間
(40ms),124,134…運動負荷後の心磁波
形,125,135…運動負荷前の心磁波形,141,
142,143,144,151,152,153,1
54,163,166,173,176…電流量比分布
図のピーク,161,164,171,174…運動負
荷1分後の心磁波形,162,165,172,175
…運動負荷5分後の心磁波形。
1 ... Magnetically shielded room, 2 ... Cryostat, 3 ...
Gantry, 4 ... Measuring circuit, 5 ... Amplifier filter unit, 6 ... Arithmetic processing device, 7 ... Bed, 201 ... Sword-like projection, 202 ... SQUID magnetometer, 301 ... Synthetic current vector at the time when peak of R wave occurs Distribution map, 302 ...
The distribution diagram of the combined current vector at the time of T1 in the time zone where the ST wave is generated, 303 ... The distribution map of the combined current vector at the time when the peak of the T wave is generated, 304 ... Magnetic field waveforms of 1 to 64 channels Overwritten waveform, 305
... line showing the time point when the Q wave starts, 401 ... current dipole, 402 ... measurement plane, 403 ... direction of dipole 401, 404 ... calculation point, 121, 131 ... time alignment of R wave of magnetocardiogram waveform before and after exercise load Occasionally reference channel magnetocardiographic waveforms, 122, 132 ... Channel magnetocardiographic waveforms showing typical changes, 123, 133 ... Magnetocardiographic waveform integration interval (40 ms), 124, 134 ... Magnetocardiogram after exercise load Waveform, 125, 135 ... Magnetocardiographic waveform before exercise load, 141,
142, 143, 144, 151, 152, 153, 1
54, 163, 166, 173, 176 ... Peak of current amount ratio distribution map, 161, 164, 171, 174 ... Magnetocardiographic waveform after 1 minute of exercise load, 162, 165, 172, 175
… Magnetocardiographic waveform after 5 minutes of exercise load.

フロントページの続き (56)参考文献 特開 平10−305019(JP,A) 特開 平11−104095(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 5/05 G01R 33/035 Continuation of the front page (56) Reference JP 10-305019 (JP, A) JP 11-104095 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A61B 5 / 05 G01R 33/035

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外来磁場が遮蔽された空間で異なる状態A
と状態Bにある被検体の心臓から発生する磁場を検出す
る複数のSQUID磁束計により検出された磁場波形の
データを収集して前記データの演算処理を行なう演算処
理装置と,前記演算処理装置により得られた演算処理の
結果を表示する表示装置とを有し,前記演算処理装置
は,前記磁場波形の時間軸を第1の所定の時点で合わせ
る処理と,前記磁場波形のベースラインを前記磁場波形
の時間軸の第2の所定の時点で合わせる処理と,所定の
時点Tsと,所定の時点Tsと異なる所定の時点Teと
の時間区間で,前記磁場波形が検出された各点について
前記磁場波形から電流ベクトルの大きさを求める処理
と,前記各点について前記電流ベクトルの大きさを前記
所定の時点Tsと前記所定の時点Teとの時間区間で積
分して積分値を求める処理とを,前記状態A,前記状態
Bのそれぞれの状態で検出された前記磁場波形について
行ない,前記状態Aに対応する前記積分値SAと前記状
態Bに対応する前記積分値SBとからSA/SB又はS
B/SAで定義される第1の比を前記各点について求め
前記第1の比の等しい点を結ぶ等高線図を表わすデータ
を求める処理とを行ない,前記等高線図が前記表示装置
に表示されることを特徴とする生体磁場計測装置。
1. A different state A in a space in which an external magnetic field is shielded
And the magnetic field generated from the heart of the subject in state B is detected.
Of the magnetic field waveforms detected by multiple SQUID magnetometers
An arithmetic processing unit that collects data and performs arithmetic processing on the data
Of the arithmetic processing obtained by the arithmetic device and the arithmetic processing device.
And a display device for displaying a result, the arithmetic processing device
Adjusts the time axis of the magnetic field waveform at the first predetermined time point.
Processing and the baseline of the magnetic field waveform to the magnetic field waveform
The process of adjusting at the second predetermined time point of the
A time point Ts and a predetermined time point Te different from the predetermined time point Ts
For each point where the magnetic field waveform was detected in the time interval of
Process for obtaining magnitude of current vector from the magnetic field waveform
And the magnitude of the current vector for each point
The product in the time section between the predetermined time Ts and the predetermined time Te
The above-mentioned state A, the above-mentioned state
Regarding the magnetic field waveform detected in each state of B
The integrated value SA corresponding to the state A and the state
SA / SB or S from the integrated value SB corresponding to the state B
Obtain the first ratio defined by B / SA for each of the points
Data representing a contour map connecting points having the same first ratio
And the contour map is displayed on the display device.
A biomagnetic field measuring device characterized by being displayed on.
【請求項2】請求項1に記載の生体磁場計測装置に於い
て,前記演算処理装置は,前記積分値をそれぞれ前記各
点について加算して前記積分値の加算値を求める処理
と,前記状態Aに対応する前記加算値RAと前記状態B
に対応する前記加算値RBとからRA/RB又はRB/
RAで定義される第2の比を求める処理と,前記各点に
ついての前記第1の比と前記第2の比との積を求める処
理と,前記第1の比と前記第2の比との積の等しい点を
結ぶ等高線図を表わすデータを求める処理とを行ない,
前記等高線図が前記表示装置に表示されることを特徴と
する生体磁場計測装置。
2. The biomagnetic field measuring apparatus according to claim 1.
Then, the arithmetic processing unit determines the integrated value from
A process of adding points to obtain the added value of the integrated value
And the addition value RA corresponding to the state A and the state B
RA / RB or RB / from the added value RB corresponding to
The process of obtaining the second ratio defined by RA, and
A process for obtaining a product of the first ratio and the second ratio for
And the point where the product of the first ratio and the second ratio is equal
And the process of obtaining the data representing the connecting contour map,
The contour map is displayed on the display device.
Biomagnetic field measuring device.
【請求項3】外来磁場が遮蔽された空間で異なる状態A
と状態Bにある被検体の心臓から発 生する磁場を検出す
る複数のSQUID磁束計により検出された磁場波形の
データを収集して前記データの演算処理を行なう演算処
理装置と,前記演算処理装置により得られた演算処理の
結果を表示する表示装置とを有し,前記演算処理装置
は,前記磁場波形の時間軸を第1の所定の時点で合わせ
る処理と,前記磁場波形のベースラインを前記磁場波形
の時間軸の第2の所定の時点で合わせる処理と,前記磁
場波形が検出された各点について前記磁場波形を所定の
時点Tsと,所定の時点Tsと異なる所定の時点Teと
の時間区間で積分して積分値を求める処理とを,前記状
態A,前記状態Bのそれぞれの状態で検出された前記磁
場波形について行ない,前記状態Aに対応する前記積分
値SAと前記状態Bに対応する前記積分値SBとからS
A/SB又はSB/SAで定義される第1の比を前記各
点について求める処理と,前記積分値をそれぞれ前記各
点について加算して前記積分値の加算値を求める処理
と,前記状態Aに対応する前記加算値RAと前記状態B
に対応する前記加算値RBからRA/RB又はRB/R
Aで定義される第2の比を求める処理と,前記各点につ
いての前記第1の比と前記第2の比との積を求める処理
と,前記第1の比と前記第2の比との積の等しい点を結
ぶ等高線図を表わすデータを求める処理とを行ない,前
記等高線図が前記表示装置に表示されることを特徴とす
る生体磁場計測装置。
3. A different state A in a space in which an external magnetic field is shielded
Detecting the magnetic field that occurs from a subject's heart in the state B
Of the magnetic field waveforms detected by multiple SQUID magnetometers
An arithmetic processing unit that collects data and performs arithmetic processing on the data
Of the arithmetic processing obtained by the arithmetic device and the arithmetic processing device.
And a display device for displaying a result, the arithmetic processing device
Adjusts the time axis of the magnetic field waveform at the first predetermined time point.
Processing and the baseline of the magnetic field waveform to the magnetic field waveform
The process of adjusting at the second predetermined time point on the time axis of
For each point where the field waveform was detected,
A time point Ts and a predetermined time point Te different from the predetermined time point Ts
The process of calculating the integrated value by integrating in the time interval of
The magnetic field detected in each of state A and state B
The integration corresponding to the state A is performed on the field waveform.
From the value SA and the integrated value SB corresponding to the state B, S
The first ratio defined by A / SB or SB / SA
The process of obtaining the point and the integrated value
A process of adding points to obtain the added value of the integrated value
And the addition value RA corresponding to the state A and the state B
RA / RB or RB / R from the added value RB corresponding to
The process of obtaining the second ratio defined by A
Processing for obtaining the product of the first ratio and the second ratio
And a point where the product of the first ratio and the second ratio is equal.
The process of obtaining the data representing the contour map is performed, and
A contour map is displayed on the display device.
Biomagnetic field measurement device.
【請求項4】請求項3に記載の生体磁場計測装置に於い
て,前記所定の時点Ts,Teが,前記磁場波形のQR
S波が生じる時間区画に設定されることを特徴とする生
体磁場計測装置。
4. The biomagnetic field measuring apparatus according to claim 3.
Then, the predetermined time points Ts and Te are the QR of the magnetic field waveform.
Raw characterized by being set to a time section in which S waves occur
Body magnetic field measuring device.
【請求項5】請求項3に記載の生体磁場計測装置に於い
て,前記所定の時点Ts,Teが,前記磁場波形のP波
又はT波が生じる時間区画に設定されることを特徴とす
る生体磁場計測装置。
5. The biomagnetic field measuring apparatus according to claim 3.
Then, the predetermined time points Ts and Te are P waves of the magnetic field waveform.
Alternatively, it is set to a time section in which a T wave occurs.
Biomagnetic field measurement device.
JP2000073921A 2000-03-13 2000-03-13 Biomagnetic field measurement device Expired - Lifetime JP3427811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000073921A JP3427811B2 (en) 2000-03-13 2000-03-13 Biomagnetic field measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073921A JP3427811B2 (en) 2000-03-13 2000-03-13 Biomagnetic field measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000247903A Division JP3427822B2 (en) 2000-08-09 2000-08-09 Biomagnetic field measurement device

Publications (2)

Publication Number Publication Date
JP2001252253A JP2001252253A (en) 2001-09-18
JP3427811B2 true JP3427811B2 (en) 2003-07-22

Family

ID=18592062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073921A Expired - Lifetime JP3427811B2 (en) 2000-03-13 2000-03-13 Biomagnetic field measurement device

Country Status (1)

Country Link
JP (1) JP3427811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178558A (en) * 2007-01-24 2008-08-07 Hitachi High-Technologies Corp Biomagnetic field measuring device
JP2008245882A (en) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp Biomagnetic field measuring instrument

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890344B2 (en) 2004-09-29 2007-03-07 株式会社日立ハイテクノロジーズ Biomagnetic field measurement device
UA104073C2 (en) * 2012-07-13 2013-12-25 Илья Анатольевич Чайковский Method for diagnosing degree of ischemic lesions of myocardium based on analysis of temporal changes in current density
JP6438814B2 (en) * 2015-03-23 2018-12-19 株式会社日立ハイテクノロジーズ Cardiac magnetic field analyzer, cardiac magnetic field analysis system, and cardiac magnetic field analysis method
EP3761855A1 (en) 2018-03-07 2021-01-13 Sleep Number Corporation Home based stress test
CN115397311A (en) 2020-04-01 2022-11-25 Udp实验公司 Voice-controlled health monitoring system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178558A (en) * 2007-01-24 2008-08-07 Hitachi High-Technologies Corp Biomagnetic field measuring device
JP2008245882A (en) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp Biomagnetic field measuring instrument

Also Published As

Publication number Publication date
JP2001252253A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
JP3757815B2 (en) Biomagnetic field measurement device
Fenici et al. Clinical application of magnetocardiography
Romero et al. Depolarization changes during acute myocardial ischemia by evaluation of QRS slopes: standard lead and vectorial approach
US20090318820A1 (en) Apparatus and method for identifying myocardial ischemia using analysis of high frequency qrs potentials
JP4027746B2 (en) Biomagnetic field measurement device
JP3427811B2 (en) Biomagnetic field measurement device
US20040077964A1 (en) Cardiac magnetic field diagnozer for atrial flutter and atrial fibrillation and method for identifying electric turning path of atrial flutter and atrial fibrillation
Langley et al. Quantification of T wave shape changes following exercise
Kania et al. High-resolution body surface potential mapping in exercise assessment of ischemic heart disease
Chen et al. Age and sex dependent variations in the normal magnetocardiogram compared with changes associated with ischemia
Bhargava et al. Progress in computer analysis of the exercise electrocardiogram
Correa et al. Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set
Moshage et al. Progress in biomagnetic imaging of heart arrhythmias
JP3427822B2 (en) Biomagnetic field measurement device
Brockway et al. Comparison of one-and three-lead ECG to measure cardiac intervals and differentiate drug-induced multi-channel block
JPH0998956A (en) Method and device to collect and process electrocardiogram signals
JP5450269B2 (en) Magnetic field analysis method, program, and magnetic field analysis apparatus
Escalona et al. Electrocardiographic waveforms fitness check device technique for sudden cardiac death risk screening
Shiono et al. Evaluation of myocardial ischemia in Kawasaki disease using an isointegral map on magnetocardiogram
Shinar et al. Detection of different recumbent body positions from the electrocardiogram
WO2002005715A1 (en) Cardiac magnetic field diagnosing apparatus by late ventricular potential and method of locating intramyocardial excitement uneven propagation portion
Fenici et al. Clinical validation of machine learning for automatic analysis of multichannel magnetocardiography
JP2021126156A (en) Biomagnetism measuring apparatus, biomagnetism measuring program, and signal processing method
US7957787B2 (en) Method of examining dynamic cardiac electromagnetic activity and detection of cardiac functions using results thereof
JP3518493B2 (en) Calculation method of isometric diagram of biomagnetic field

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3427811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

EXPY Cancellation because of completion of term