JP4971764B2 - Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus - Google Patents
Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Download PDFInfo
- Publication number
- JP4971764B2 JP4971764B2 JP2006321761A JP2006321761A JP4971764B2 JP 4971764 B2 JP4971764 B2 JP 4971764B2 JP 2006321761 A JP2006321761 A JP 2006321761A JP 2006321761 A JP2006321761 A JP 2006321761A JP 4971764 B2 JP4971764 B2 JP 4971764B2
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive member
- group
- electrophotographic photosensitive
- intermediate layer
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ及び電子写真装置に関し、詳しくは、特定の電荷輸送物質を含有する電子写真感光体、該電子写真感光体の製造方法、該電子写真感光体を具備するプロセスカートリッジ及び電子写真装置に関する。 The present invention relates to an electrophotographic photosensitive member, a method for producing an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus, and more specifically, an electrophotographic photosensitive member containing a specific charge transport material, a method for producing the electrophotographic photosensitive member, The present invention relates to a process cartridge and an electrophotographic apparatus including the electrophotographic photosensitive member.
電子写真感光体は、適用される電子写真プロセスに応じた感度、電気特性、光学特性及び画像欠陥が無い高品位な画質が要求され、また、低温低湿から高温高湿のいずれの環境においてもその特性が十分に発揮されるような環境安定性を有していることが要求される。 Electrophotographic photoreceptors are required to have high image quality without sensitivity, electrical characteristics, optical characteristics and image defects according to the applied electrophotographic process, and in any environment from low temperature and low humidity to high temperature and high humidity. It is required to have environmental stability so that the characteristics are sufficiently exhibited.
画像欠陥の代表的なものとしては、画像スジ、白地部分の黒点、黒字部分の白点、白地部分の地カブリ等が挙げられる。更にはデジタル複写機やレーザービームプリンター等のレーザーダイオードを光源として露光を行う場合には、支持体の表面形状や電子写真感光体の膜厚ムラ等の要因によって発生する干渉縞等が挙げられる。 Typical image defects include image streaks, black spots on white portions, white spots on black portions, ground fog on white portions, and the like. Furthermore, when exposure is performed using a laser diode such as a digital copying machine or a laser beam printer as a light source, there are interference fringes generated due to factors such as the surface shape of the support and the film thickness unevenness of the electrophotographic photosensitive member.
前記の画像欠陥を防止する方法として必要に応じて中間層が用いられる。中間層は、電子写真感光体に電圧を印加したとき支持体から電荷注入が起こらないように電気的ブロッキング機能が要求される。これは支持体から電荷注入があると、帯電能の低下、画像コントラストの低下や反転現像方式の場合は白地に黒点や地カブリの原因になり画質を著しく低下させる。 An intermediate layer is used as necessary as a method for preventing the image defects. The intermediate layer is required to have an electrical blocking function so that charge injection does not occur from the support when a voltage is applied to the electrophotographic photosensitive member. If there is charge injection from the support, the chargeability, image contrast, and reversal development method cause black spots and fogging on a white background, resulting in a significant decrease in image quality.
一方、中間層の電気的抵抗が高過ぎると感光層で発生した電荷が感光層内部に滞留し、結果として残留電位の上昇や繰り返し使用による電位変動の原因になる。従って、電気的ブロッキング機能以外にも中間層の電気的抵抗値をある程度小さくする必要があり、前記ブロッキング機能や電気的抵抗特性が低温低湿から高温高湿のいずれの環境下においても大きく変化してはならない。 On the other hand, if the electrical resistance of the intermediate layer is too high, the charge generated in the photosensitive layer stays inside the photosensitive layer, resulting in an increase in residual potential and potential fluctuation due to repeated use. Therefore, in addition to the electrical blocking function, it is necessary to reduce the electrical resistance value of the intermediate layer to some extent, and the blocking function and electrical resistance characteristics change greatly in any environment from low temperature to low humidity to high temperature and high humidity. Must not.
ブロッキング機能及び適度な範囲の電気的抵抗特性を有する中間層として、例えば、有機高分子からなる中間層としては特許文献1や特許文献2、また、金属酸化物や金属窒化物を有機高分子中に分散した中間層としては特許文献3や特許文献4等が提案されている。 As an intermediate layer having a blocking function and an appropriate range of electric resistance characteristics, for example, as an intermediate layer made of an organic polymer, Patent Document 1 and Patent Document 2, and metal oxides and metal nitrides in an organic polymer are used. Patent Documents 3 and 4 have been proposed as intermediate layers dispersed in the above.
上述の材料を中間層として用いた電子写真感光体は、温湿度の変化に応じて中間層の電気抵抗が変化し易く、低温低湿下から高温高湿下の全環境において安定して優れた電位特性を有し、優れた画像を形成し得る電子写真感光体を作製することが困難であった。 An electrophotographic photosensitive member using the above-described material as an intermediate layer has an electric potential that is stable in all environments from low temperature and low humidity to high temperature and high humidity because the electric resistance of the intermediate layer easily changes according to changes in temperature and humidity. It has been difficult to produce an electrophotographic photosensitive member having characteristics and capable of forming an excellent image.
また、感光層から導電性支持体へのキャリア注入性向上させる中間層として、例えば、特許文献5乃至9等には、下引き層に電子輸送物質を含有させることが記載されている。 Further, as an intermediate layer for improving the carrier injecting property from the photosensitive layer to the conductive support, for example, Patent Documents 5 to 9 describe that the undercoat layer contains an electron transport material.
しかしながら、今日の電子写真技術の発展は著しく、電子写真感光体に求められる特性に対しても非常に高度な技術が要求されている。例えば、プロセススピードは年々速くなり、帯電特性、感度や耐久安定性等が求められるようになってきている。特に、近年ではカラー化に代表されるように高画質化が叫ばれ、白黒画像が文字中心の画像だったものが、カラー化により、写真に代表されるハーフトーン画像やベタ画像が多くなっている。特に連続して使用した場合のハーフトーンの濃度変化、ベタ画像の濃度変化に対する画像品質は年々高まる一方であり、低温低湿下でのこれらの画像変化を抑制することが、望まれていた。 However, the development of today's electrophotographic technology is remarkable, and very advanced technology is required for the characteristics required for electrophotographic photoreceptors. For example, process speeds are increasing year by year, and charging characteristics, sensitivity, durability stability, and the like have been demanded. In particular, in recent years, high-quality images have been screamed as typified by colorization, and black-and-white images that have been character-centered have become more and more halftone images and solid images typified by photographs. Yes. In particular, image quality with respect to changes in halftone density and solid image density when used continuously is increasing year by year, and it has been desired to suppress these image changes under low temperature and low humidity.
近年の高画質化、高耐久化に伴い、より優れた電位写真感光体を提供するためには、電気的ブロッキング機能を維持し、かつ低温低湿下における電位変動の問題をぜひ解決する必要があった。
本発明の目的は、低温低湿下における電位変動を抑制し、優れた画像を継続して形成し得る電子写真感光体及び該電子写真感光体の製造方法を提供することにある。 An object of the present invention is to provide an electrophotographic photosensitive member capable of suppressing potential fluctuation under low temperature and low humidity and continuously forming excellent images, and a method for producing the electrophotographic photosensitive member .
本発明の別の目的は、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。 Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
本発明に従って、導電性支持体、該導電性支持体上に形成された中間層、及び、該中間層上に形成された感光層を有する電子写真感光体において、該中間層が、下記構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質の重合物を含有することを特徴とする電子写真感光体が提供される。 According to the present invention, in an electrophotographic photoreceptor having a conductive support, an intermediate layer formed on the conductive support, and a photosensitive layer formed on the intermediate layer, the intermediate layer has the following structural formula: An electrophotographic photoreceptor comprising a polymer of an electron transport material having a structure represented by any one of (1) to (3) is provided.
上記構造式(1)乃至(3)中、Z11、Z12、Z21、Z22、Z31、Z32は、それぞれ独立に、酸素原子、C(CN)2、N−R、C(CN)COR、C(CN)COOR、C(CN)R、又は、C(COOR)2(Rは、置換基を有してもよいアリール基若しくはアルキル基を示す。)を示す。X11乃至X16の少なくとも1つ、X21乃至X28の少なくとも1つ、及び、X31乃至X36の少なくとも1つは、それぞれ重合性官能基を示し、重合性官能基以外は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基、又は、置換基を有してもよいアルキル基を示す。 In the structural formulas (1) to (3), Z 11 , Z 12 , Z 21 , Z 22 , Z 31 and Z 32 are each independently an oxygen atom , C (CN) 2 , N—R, C ( CN) COR, C (CN) COOR, C (CN) R, or, C (COOR) 2 (R represents a.) which represents an aryl group or an alkyl group optionally having a substituent. At least one of X 11 to X 16, at least one of X 21 to X 28, and at least one of X 31 to X 36 each represent a polymerizable functional group, other than the polymerizable functional group are each independently Represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an alkoxy group which may have a substituent , or an alkyl group which may have a substituent.
上記のアリール基としてはフェニル基、ナフチル基及びアンスリル基等が挙げられる。アルキル基としてはメチル基、エチル基及びプロピル基等が挙げられる。ハロゲン原子としてはフッ素原子、塩素原子及び臭素原子等が挙げられる。アルコキシ基としてはメトキシ基、エトキシ基及びプロポキシ基等が挙げられる。 Examples of the aryl group include a phenyl group, a naphthyl group, and an anthryl group. Examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
また、本発明に従って、上記電子写真感光体を具備するプロセスカートリッジ及び電子写真装置が提供される。 Further, according to the present invention, a process cartridge and an electrophotographic apparatus provided with the electrophotographic photosensitive member are provided.
本発明の電子写真感光体は、低温低湿下における電位変動を抑制し、優れた画像を継続して形成し得ることが可能となった。 The electrophotographic photoreceptor of the present invention can suppress potential fluctuations under low temperature and low humidity, and can continuously form excellent images.
また、該電子写真感光体の効果は、該電子写真感光体を具備するプロセスカートリッジ及び電子写真装置においても当然に発揮される。 In addition, the effect of the electrophotographic photosensitive member is naturally exhibited in a process cartridge and an electrophotographic apparatus including the electrophotographic photosensitive member.
本発明の前記構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質について説明する。 The electron transport material having the structure represented by any one of the structural formulas (1) to (3) of the present invention will be described.
本発明における重合性官能基とは、例えば、アルコキシシリル基、水酸基、アミノ基、カルボキシル基、アルデヒド基等、縮合反応し得る官能基、また、炭素−炭素二重結合を有する基、炭素−炭素三重結合を有する基、エポキシ基等、連鎖反応し得る官能基等が挙げられる。 The polymerizable functional group in the present invention is, for example, an alkoxysilyl group, a hydroxyl group, an amino group, a carboxyl group, an aldehyde group or the like, a functional group capable of condensation reaction, a group having a carbon-carbon double bond, or carbon-carbon. Examples include a group having a triple bond, an epoxy group, and a functional group capable of chain reaction.
これらの中でも、水酸基、カルボキシル基及びアルデヒド基からなる群より選択される基、及び炭素−炭素二重結合を有する基が好ましい。特には、炭素−炭素二重結合を有する基の中でもアクリロイル基、メタクリロイル基及びスチリル基からなる群より選択される基がより好ましい。 Among these, a group selected from the group consisting of a hydroxyl group, a carboxyl group, and an aldehyde group, and a group having a carbon-carbon double bond are preferable. In particular, among groups having a carbon-carbon double bond, a group selected from the group consisting of an acryloyl group, a methacryloyl group, and a styryl group is more preferable.
前記構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質の代表例を表1乃至3に挙げるがこれらに限られるものではない。 Representative examples of the electron transport material having the structure represented by any one of the structural formulas (1) to (3) are listed in Tables 1 to 3, but are not limited thereto.
本発明は、構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質を重合させることにより効果が発揮される。特に中間層において、より発揮される。 The present invention is effective by polymerizing an electron transport material having a structure represented by any one of structural formulas (1) to (3). Particularly in the intermediate layer.
本発明は、上記電子輸送物質の少なくとも1つの重合性官能基を含有する溶液を塗布し、常温乾燥や加温乾燥の熱、もしくは放射線、電磁波等により反応させることによる。この場合、構造式(1)乃至(3)のいずれかで示される構造中の重合性官能基の少なくとも1つ反応していればよい。 According to the present invention, a solution containing at least one polymerizable functional group of the electron transport material is applied and reacted with heat of room temperature drying or heat drying, radiation, electromagnetic waves, or the like. In this case, it is sufficient that at least one polymerizable functional group in the structure represented by any one of structural formulas (1) to (3) has reacted.
本発明の電子写真感光体においては、上記電子輸送物質を2種以上有してもよい。また、上記電子輸送物質と反応可能な官能基を有する化合物を必要に応じて混合させてもよい。縮合反応し得る重合性官能基が1つの電子輸送物質の場合は、これと反応可能な重合性官能基を有する化合物を混合させることが好ましい。 The electrophotographic photoreceptor of the present invention may have two or more of the above electron transport materials. Moreover, you may mix the compound which has a functional group which can react with the said electron transport substance as needed. When the polymerizable functional group capable of undergoing the condensation reaction is one electron transport material, it is preferable to mix a compound having a polymerizable functional group capable of reacting with it.
反応可能な重合性官能基を有する化合物の例としては、多官能イソシアネート化合物や多官能エポキシ化合物、多官能炭素−炭素二重結合化合物及びアルコキシシラン化合物等が挙げられる。 Examples of the compound having a polymerizable functional group capable of reacting include a polyfunctional isocyanate compound, a polyfunctional epoxy compound, a polyfunctional carbon-carbon double bond compound, and an alkoxysilane compound.
例えば、アルコキシシリル基を有する電子輸送物質に対しては、アルコキシシラン化合物が、水酸基、カルボキシル基又はアルデヒド基を有する電子輸送物質に対しては、多官能イソシアナート、多官能ケテン、多官能カルボジアミド等が、炭素−炭素二重結合を有する電子輸送物質に対しては、多官能炭素−炭素二重結合化合物等が組み合わせとして挙げられる。 For example, for an electron transport material having an alkoxysilyl group, an alkoxysilane compound is used for an electron transport material having a hydroxyl group, a carboxyl group or an aldehyde group, and a polyfunctional isocyanate, polyfunctional ketene, or polyfunctional carbodiamide is used. And the like, for an electron transport material having a carbon-carbon double bond, a polyfunctional carbon-carbon double bond compound and the like can be mentioned as a combination.
炭素−炭素二重結合を有する電子輸送物質を重合する際、開始剤を用いてもよい。例えば、過酸化ベンゾイル、過酸化アセチル、過酸化ラウロイル、過酸化ジクミル及びアゾビスイソブチロニトリル等が挙げられる。 An initiator may be used when polymerizing an electron transport material having a carbon-carbon double bond. Examples thereof include benzoyl peroxide, acetyl peroxide, lauroyl peroxide, dicumyl peroxide and azobisisobutyronitrile.
また、その他にも公知の材料と混合して用いてもよい。その例としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、ポリカーボネート及びポリビニルアセタール等の樹脂が挙げられる。 Further, other known materials may be mixed and used. Examples thereof include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, polycarbonate, and polyvinyl acetal. Resin.
本発明にかかる電子輸送物質を反応させる場合、電子輸送物質が必ずしも主鎖である必要はなく、例えば水酸基のような反応性の置換基をもったポリマーと反応させることも(ペンダント型)できる。 When the electron transport material according to the present invention is reacted, the electron transport material is not necessarily a main chain, and can be reacted with a polymer having a reactive substituent such as a hydroxyl group (pendant type).
中間層用塗布液中の前記構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質の含有量は、中間層用塗布液中の全固形分に対して30質量%以上100質量%以下が好ましく、更には50質量%以上100質量%以下がより好ましい。電子輸送物質の含有量が、30質量%以上100質量%以下であることにより、低温低湿下においてもキャリアの移動度を高めることができ、電位変動の抑制に効果的である。また、中間層の膜厚としては、好ましくは0.1μm以上15μm以下、より好ましくは0.4μm以上10μm以下の範囲が適当である。
The content of the electron-transporting material having a structure represented by any one of the previous SL structure of the intermediate layer coating liquid (1) to (3), 30 mass relative to the total solid content of the intermediate layer coating solution % To 100% by mass, more preferably 50% to 100% by mass. When the content of the electron transport material is 30% by mass or more and 100% by mass or less, the mobility of carriers can be increased even under low temperature and low humidity, which is effective in suppressing potential fluctuation. The thickness of the intermediate layer is preferably in the range of 0.1 μm to 15 μm, more preferably 0.4 μm to 10 μm.
本発明の電子写真感光体の感光層は、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とを積層した構成、また、電荷発生物質と電荷輸送物質とを同一層中に分散した単層からなる構成のいずれの構成をとることも可能である。これらの構成の中でも、電荷発生層、電荷輸送層をこの順に積層した構成の積層型感光層が電子写真特性的に好ましい。 The photosensitive layer of the electrophotographic photosensitive member of the present invention has a structure in which a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material are laminated, and the charge generation material and the charge transport material are the same layer. It is possible to take any configuration consisting of a single layer dispersed therein. Among these structures, a laminated photosensitive layer having a structure in which a charge generation layer and a charge transport layer are laminated in this order is preferable in terms of electrophotographic characteristics.
本発明において、特定の電子輸送物質の重合物を含有させた中間層を用いることで、低温低湿下の画像の抑制がなされる理由はまだ解明されていないが、本発明者らは次にように考えている。一般的に電子輸送物質は正孔搬送物質と比べて、溶剤や結着樹脂に対する溶解性が低く、更には移動度も低い。本発明にかかる電子輸送物質は、比較的溶解性も高く、高い電子輸送物質濃度を達成でき、プロセススピードが速い場合においても低温低湿下において十分な移動度を有しているのではないかと思われる。 In the present invention, the reason why the image under low temperature and low humidity is suppressed by using an intermediate layer containing a polymer of a specific electron transport material has not yet been elucidated. I am thinking. In general, an electron transport material has a lower solubility in a solvent or a binder resin and a lower mobility than a hole transport material. The electron transport material according to the present invention has relatively high solubility, can achieve a high electron transport material concentration, and has sufficient mobility at low temperature and low humidity even when the process speed is high. It is.
次に、本発明の電子写真感光体について詳細に説明する。 Next, the electrophotographic photoreceptor of the present invention will be described in detail.
本発明に用いられる導電性支持体としては、アルミニウム、ニッケル、銅、金及び鉄等の金属又は合金からなるもの。また、ポリエステル、ポリカーボネート、ポリイミド及びガラス等の絶縁性支持体上に、アルミニウム、銀及び金等の金属あるいは酸化インジウムや酸化スズ等の導電材料の薄膜を形成したもの、カーボンや導電性フィラーを樹脂中に分散し導電性を付与したもの等が例示できる。これらの支持体表面は、電気的特性改善あるいは密着性改善のために陽極酸化等の電気化学的な処理を行った支持体や、導電性支持体表面をアルカリリン酸塩あるいはリン酸やタンニン酸を主成分とする酸性水溶液に金属塩の化合物又はフッ素化合物の金属塩を溶解してなる溶液で化学処理を施したものを用いることもできる。 As an electroconductive support body used for this invention, what consists of metals or alloys, such as aluminum, nickel, copper, gold | metal | money, and iron. In addition, a thin film of conductive material such as metal such as aluminum, silver and gold or indium oxide or tin oxide on an insulating support such as polyester, polycarbonate, polyimide and glass, carbon or conductive filler Examples thereof include those dispersed therein and imparted with conductivity. The surface of these supports is a support that has been subjected to electrochemical treatment such as anodization to improve electrical characteristics or adhesion, and the surface of the conductive support is alkali phosphate, phosphoric acid or tannic acid. It is also possible to use a solution obtained by chemical treatment with a solution obtained by dissolving a metal salt compound or a fluorine compound metal salt in an acidic aqueous solution containing as a main component.
また、単一波長のレーザー光等を用いたプリンターに本電子写真感光体を用いる場合には、干渉縞を抑制するために導電性支持体はその表面を適度に粗しておくことが必要である。具体的には、上記支持体表面をホーニング、ブラスト、切削、電界研磨等の処理をした支持体もしくはアルミニウム及びアルミニウム合金上に導電性金属酸化物及び結着樹脂からなる導電性皮膜を有する支持体を用いることが必要である。 In addition, when the electrophotographic photosensitive member is used in a printer using a single wavelength laser beam or the like, the surface of the conductive support needs to be appropriately roughened in order to suppress interference fringes. is there. Specifically, a support having a surface treated with honing, blasting, cutting, electropolishing, or the like, or a support having a conductive film made of a conductive metal oxide and a binder resin on aluminum and an aluminum alloy. Must be used.
ホーニング処理としては、乾式及び湿式での処理方法があるがいずれを用いてもよい。湿式ホーニング処理は、水等の液体に粉末状の研磨剤を懸濁させ、高速度で支持体表面に吹き付けて粗面化する方法であり、表面粗さは吹き付け圧力、速度、研磨剤の量、種類、形状、大きさ、硬度、比重及び懸濁温度等により制御することができる。同様に、乾式ホーニング処理は、研磨剤をエアーにより、高速度で導電性支持体表面に吹き付けて粗面化する方法であり、湿式ホーニング処理と同じように表面粗さを制御することができる。これら湿式又は乾式ホーニング処理に用いる研磨剤としては、炭化ケイ素、アルミナ、鉄及びガラスビーズ等の粒子が挙げられる。 As the honing treatment, there are dry and wet treatment methods, and any of them may be used. The wet honing process is a method in which a powdered abrasive is suspended in a liquid such as water and sprayed onto the surface of the support at a high speed to roughen the surface. The surface roughness is the spray pressure, speed, and amount of abrasive. It can be controlled by the type, shape, size, hardness, specific gravity, suspension temperature and the like. Similarly, the dry honing process is a method in which an abrasive is sprayed onto the surface of the conductive support with air at a high speed to roughen the surface, and the surface roughness can be controlled in the same manner as the wet honing process. Examples of the abrasive used for the wet or dry honing treatment include particles such as silicon carbide, alumina, iron, and glass beads.
支持体と感光層又は中間層との間には、レーザー光等の散乱による干渉縞の防止や、支持体の傷の被覆を目的とした導電層を設けてもよい。導電層は、カーボンブラック、金属粒子や金属酸化物粒子等の導電性粒子を結着樹脂に分散させて形成することができる。好適な金属酸化物粒子としては、酸化亜鉛や酸化チタンの粒子が挙げられる。また、導電性粒子として、硫酸バリウムの粒子を用いることもできる。導電性粒子には被覆層を設けてもよい。 A conductive layer may be provided between the support and the photosensitive layer or intermediate layer for the purpose of preventing interference fringes due to scattering of laser light or the like, and covering the scratches on the support. The conductive layer can be formed by dispersing conductive particles such as carbon black, metal particles, and metal oxide particles in a binder resin. Suitable metal oxide particles include zinc oxide and titanium oxide particles. Also, barium sulfate particles can be used as the conductive particles. A conductive layer may be provided on the conductive particles.
導電層に用いられる結着樹脂としては、例えば、フェノール樹脂、ポリウレタン樹脂及びポリアミド樹脂が挙げられる。これらは、支持体に対する接着性が良好であると共に、導電性粒子の分散性を向上させ、かつ、成膜後の耐溶剤性が良好である。これらの中でも、フェノール樹脂、ポリウレタン樹脂及びポリアミド樹脂が好ましい。 Examples of the binder resin used for the conductive layer include a phenol resin, a polyurethane resin, and a polyamide resin. These have good adhesion to the support, improve the dispersibility of the conductive particles, and have good solvent resistance after film formation. Among these, a phenol resin, a polyurethane resin, and a polyamide resin are preferable.
また、導電層には、必要に応じてフッ素あるいはアンチモンを含有させてもよいし、導電層の表面性を高めるために、レベリング剤を添加してもよい。 In addition, the conductive layer may contain fluorine or antimony as necessary, and a leveling agent may be added to improve the surface properties of the conductive layer.
本発明に用いられる電荷発生物質としては、
(1)モノアゾ、ジスアゾ及びトリスアゾ等のアゾ系顔料
(2)金属フタロシアニンや非金属フタロシアニン等のフタロシアニン系顔料
(3)インジゴやチオインジゴ等のインジゴ系顔料
(4)ペリレン酸無水物やペリレン酸イミド等のペリレン系顔料
(5)アンスラキノンやピレンキノン等の多環キノン系顔料
(6)スクワリリウム色素
(7)ピリリウム塩、チアピリリウム塩類
(8)トリフェニルメタン系色素
(9)セレン、セレン−テルル及びアモルファスシリコン等の無機物質
(10)キナクリドン顔料
(11)アズレニウム塩顔料
(12)シアニン染料
(13)キサンテン色素
(14)キノンイミン色素
(15)スチリル色素
(16)硫化カドミウム
(17)酸化亜鉛
等が挙げられる。
As the charge generation material used in the present invention,
(1) Azo pigments such as monoazo, disazo and trisazo (2) Phthalocyanine pigments such as metal phthalocyanine and non-metal phthalocyanine (3) Indigo pigments such as indigo and thioindigo (4) Perylene acid anhydride and perylene imide Perylene pigments (5) polycyclic quinone pigments such as anthraquinone and pyrenequinone (6) squarylium dyes (7) pyrylium salts, thiapyrylium salts (8) triphenylmethane dyes (9) selenium, selenium-tellurium and amorphous silicon Inorganic substances such as (10) quinacridone pigment (11) azurenium salt pigment (12) cyanine dye (13) xanthene dye (14) quinoneimine dye (15) styryl dye (16) cadmium sulfide (17) zinc oxide and the like.
特に、金属フタロシアニン顔料が好ましく、その中でも、オキシチタニウムフタロシアニン結晶、クロロガリウムフタロシアニン結晶、ジクロロスズフタロシアニン結晶及びヒドロキシガリウムフタロシアニン顔料が好ましい。特には、ヒドロキシガリウムフタロシアニン顔料がより好ましい。 In particular, metal phthalocyanine pigments are preferable, and among them, oxytitanium phthalocyanine crystal, chlorogallium phthalocyanine crystal, dichlorotin phthalocyanine crystal and hydroxygallium phthalocyanine pigment are preferable. In particular, a hydroxygallium phthalocyanine pigment is more preferable.
オキシチタニウムフタロシアニン結晶としては、CuKαを線源とする特性X線回折において、ブラッグ角度(2θ±0.2°)の9.0°、14.2°、23.9°及び27.1°に強いピークを有するオキシチタニウムフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の9.5°、9.7°、11.7°、15.0°、23.5°、24.1°及び27.3°に強いピークを有するオキシチタニウムフタロシアニン結晶が好ましい。 The oxytitanium phthalocyanine crystal has a Bragg angle (2θ ± 0.2 °) of 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in the characteristic X-ray diffraction using CuKα as a radiation source. Oxytitanium phthalocyanine crystals with strong peaks, Bragg angles (2θ ± 0.2 °) of 9.5 °, 9.7 °, 11.7 °, 15.0 °, 23.5 °, 24.1 ° and Oxytitanium phthalocyanine crystals having a strong peak at 27.3 ° are preferred.
クロロガリウムフタロシアニン結晶としては、CuKαを線源とする特性X線回折において、ブラッグ角度(2θ±0.2°)の7.4°、16.6°、25.5及び28.2°に強いピークを有するクロロガリウムフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の6.8°、17.3°、23.6°及び26.9°に強い回折ピークを有するクロロガリウムフタロシアニン結晶、及びブラッグ角度(2θ±0.2°)の8.7°乃至9.2°、17.6°、24.0°、27.4°及び28.8°に強いピークを有するクロロガリウムフタロシアニン結晶が好ましい。 As a chlorogallium phthalocyanine crystal, in characteristic X-ray diffraction using CuKα as a radiation source, it is strong at 7.4 °, 16.6 °, 25.5, and 28.2 ° of the Bragg angle (2θ ± 0.2 °). Chlorogallium phthalocyanine crystals having peaks, chlorogallium phthalocyanine crystals having strong diffraction peaks at Bragg angles (2θ ± 0.2 °) of 6.8 °, 17.3 °, 23.6 ° and 26.9 °, and Chlorogallium phthalocyanine crystals having strong peaks at Bragg angles (2θ ± 0.2 °) of 8.7 ° to 9.2 °, 17.6 °, 24.0 °, 27.4 ° and 28.8 ° preferable.
ジクロロスズフタロシアニン結晶としては、CuKαを線源とする特性X線回折において、ブラッグ角度(2θ±0.2°)の8.3°、12.2°、13.7°、15.9°、18.9°及び28.2°に強いピークを有するジクロロスズフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の8.5°、11.2°、14.5°及び27.2°に強いピークを有するジクロロスズフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の8.7°、9.9°、10.9°、13.1°、15.2°、16.3°、17.4°、21.9°及び25.5°に強い回折ピークを有するジクロロスズフタロシアニン結晶、及びブラッグ角度(2θ±0.2°)の9.2°、12.2°、13.4°、14.6°、17.0°及び25.3°に強い回折ピークを有するジクロロスズフタロシアニン結晶が好ましい。 As a dichlorotin phthalocyanine crystal, in characteristic X-ray diffraction using CuKα as a radiation source, Bragg angles (2θ ± 0.2 °) of 8.3 °, 12.2 °, 13.7 °, 15.9 °, Dichlorotin phthalocyanine crystals with strong peaks at 18.9 ° and 28.2 °, Bragg angles (2θ ± 0.2 °) of 8.5 °, 11.2 °, 14.5 ° and 27.2 ° A dichlorotin phthalocyanine crystal having a strong peak, Bragg angle (2θ ± 0.2 °) of 8.7 °, 9.9 °, 10.9 °, 13.1 °, 15.2 °, 16.3 °, Dichlorotin phthalocyanine crystals with strong diffraction peaks at 17.4 °, 21.9 ° and 25.5 °, and 9.2 °, 12.2 °, 13.4 with Bragg angles (2θ ± 0.2 °) Dicks with strong diffraction peaks at °, 14.6 °, 17.0 ° and 25.3 ° Loroszphthalocyanine crystals are preferred.
ヒドロキシガリウムフタロシアニン結晶としては、CuKαを線源とする特性X線回折において、ブラッグ角度(2θ±0.2°)の7.3°、24.9°及び28.1°に強いピークを有するヒドロキシガリウムフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の7.5°、9.9°、12.5°、16.3°、18.6°、25.1°及び28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶が好ましい。 As the hydroxygallium phthalocyanine crystal, in characteristic X-ray diffraction using CuKα as a radiation source, hydroxy having strong peaks at Bragg angles (2θ ± 0.2 °) of 7.3 °, 24.9 °, and 28.1 °. Gallium phthalocyanine crystals, Bragg angles (2θ ± 0.2 °) of 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 °, 25.1 ° and 28.3 ° A hydroxygallium phthalocyanine crystal having a strong peak is preferred.
結着樹脂としては、ブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂及びメラミン樹脂等が挙げられるが、これらに限定されるものではない。特に、ブチラール樹脂が好ましい。 As binder resins, butyral resin, polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyvinyl acetate resin, polyvinyl chloride resin, polyamide resin, polyurethane resin, silicone resin, alkyd Resins, epoxy resins, cellulose resins, melamine resins and the like can be mentioned, but are not limited thereto. In particular, a butyral resin is preferred.
電荷発生層中の電荷発生物質の分散粒径は、0.5μm以下が好ましく、更に0.3μm以下が好ましく、0.01μm以上0.2μm以下の範囲がより好ましい。電荷発生層の膜厚は、0.01μm以上2μm以下が好ましく、更に0.05μm以上0.3μm以下が好ましい。 The dispersed particle diameter of the charge generation material in the charge generation layer is preferably 0.5 μm or less, more preferably 0.3 μm or less, and more preferably 0.01 μm or more and 0.2 μm or less. The film thickness of the charge generation layer is preferably from 0.01 μm to 2 μm, more preferably from 0.05 μm to 0.3 μm.
電荷輸送層は適当な電荷輸送物質、例えばポリ−N−ビニルカルバゾール及びポリスチリルアントラセン等の複素環や縮合多環芳香族を有する高分子化合物、ピラゾリン、イミダゾール、オキサゾール、トリアゾール及びカルバゾール等の複素環化合物、トリフェニルメタン等のトリアリールアルカン誘導体、トリフェニルアミン等のトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体等の低分子化合物等を適当な結着樹脂(前述の電荷発生層用樹脂の中から選択できる)と共に溶剤に分散/溶解した溶液を前述の公知の方法によって塗布し、乾燥して形成することができる。この場合の電荷輸送物質と結着樹脂の比率は、両者の全質量を100とした場合に電荷輸送物質の質量は20以上100以下が好ましく、より好ましくは30以上100以下の範囲である。電荷輸送物質の量がそれより少ないと、電荷輸送能が低下し、感度低下及び残留電位の上昇等の問題点が生じ易い。この場合の電荷輸送層の膜厚は好ましくは1μm以上50μm以下、より好ましくは3μm以上30μm以下の範囲で調整される。 The charge transport layer is formed of a suitable charge transport material, for example, a heterocyclic ring such as poly-N-vinylcarbazole and polystyrylanthracene, a polymer compound having a condensed polycyclic aromatic ring, a heterocyclic ring such as pyrazoline, imidazole, oxazole, triazole and carbazole. Compounds, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, low molecular weight compounds such as phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, hydrazone derivatives, etc. A solution dispersed / dissolved in a solvent together with the resin for charge generation layer) can be applied by the above-mentioned known method and dried. In this case, the ratio of the charge transporting material to the binder resin is preferably 20 or more and 100 or less, more preferably 30 or more and 100 or less, when the total mass of both is 100. If the amount of the charge transport material is smaller than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential are likely to occur. In this case, the thickness of the charge transport layer is preferably adjusted in the range of 1 μm to 50 μm, more preferably 3 μm to 30 μm.
更に、電荷輸送層上に表面保護層を形成してもよい。表面保護層は樹脂単体でもよいし、残留電位を低下する目的で前述したような電荷輸送物質や、導電性粉体等の導電性物質を添加してもよい。導電性粉体としては、アルミニウム、銅、ニッケル及び銀等の金属粉体、燐片状金属粉体、金属短繊維、酸化アンチモン、酸化インジウム及び酸化スズ等の導電性金属酸化物、ポリピロール、ポリアニリン及び高分子電解質等の高分子導電剤、カーボンブラック、カーボンファイバー、グラファイト粉体、有機又は無機の電解質、及びこれらの導電性物質で表面を被覆した導電性粉体等が挙げられる。 Furthermore, a surface protective layer may be formed on the charge transport layer. The surface protective layer may be a resin alone, or may be added with a charge transport material as described above or a conductive material such as conductive powder for the purpose of reducing the residual potential. Conductive powders include metal powders such as aluminum, copper, nickel and silver, flaky metal powders, short metal fibers, conductive metal oxides such as antimony oxide, indium oxide and tin oxide, polypyrrole, and polyaniline. And a polymer conductive agent such as a polymer electrolyte, carbon black, carbon fiber, graphite powder, an organic or inorganic electrolyte, and a conductive powder whose surface is coated with these conductive substances.
図1に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。 FIG. 1 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
図1において、ドラム状の本発明の電子写真感光体1は、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いで、原稿からの反射光であるスリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。 In FIG. 1, a drum-shaped electrophotographic photosensitive member 1 of the present invention is rotationally driven with a predetermined peripheral speed (process speed) in the direction of an arrow about a shaft 2. In the rotation process, the electrophotographic photosensitive member 1 is subjected to uniform charging at a predetermined positive or negative potential on its peripheral surface by the primary charging unit 3, and then, for example, slit exposure or laser beam scanning exposure that is reflected light from the original. The exposure light 4 intensity-modulated in response to the time-series electric digital image signal of the target image information output from the exposure means (not shown) is received. In this way, electrostatic latent images corresponding to the target image information are sequentially formed on the peripheral surface of the electrophotographic photoreceptor 1.
形成された静電潜像は、次いで現像手段5内の荷電粒子(トナー)で正規現像又は反転現像により可転写粒子像(トナー像)として顕画化され、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給送された転写材7に、電子写真感光体1の表面に形成担持されているトナー像が転写手段6により順次転写されていく。この時、転写手段にはバイアス電源(不図示)からトナーの保有電荷とは逆極性のバイアス電圧が印加される。 The formed electrostatic latent image is visualized as a transferable particle image (toner image) by regular development or reversal development with charged particles (toner) in the developing means 5 and is electrophotographic from a paper supply unit (not shown). A toner image formed and carried on the surface of the electrophotographic photosensitive member 1 is transferred to the transfer material 7 which is taken out and fed between the photosensitive member 1 and the transfer unit 6 in synchronization with the rotation of the electrophotographic photosensitive member 1. The images are sequentially transferred by the transfer means 6. At this time, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).
トナー画像の転写を受けた転写材7(最終転写材(紙やフィルム等)の場合)は、電子写真感光体面から分離されて像定着手段8へ搬送されてトナー像の定着処理を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。転写材7が一次転写材(中間転写材等)の場合は、複数次の転写工程の後に定着処理を受けてプリントアウトされる。 The transfer material 7 (in the case of a final transfer material (such as paper or film)) that has received the transfer of the toner image is separated from the electrophotographic photosensitive member surface, conveyed to the image fixing means 8, and subjected to a toner image fixing process. Printed out of the apparatus as an image formed product (print, copy). When the transfer material 7 is a primary transfer material (intermediate transfer material or the like), it is printed out after a fixing process after a plurality of transfer processes.
トナー像転写後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナー等の付着物の除去を受けて清浄面化される。近年、クリーナレスシステムも研究され、転写残りトナーを直接、現像器等で回収することもできる。更に、前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。 The surface of the electrophotographic photosensitive member 1 after the transfer of the toner image is cleaned by removing the deposits such as residual toner by the cleaning means 9. In recent years, a cleanerless system has been studied, and the transfer residual toner can be directly collected by a developing device or the like. Further, after being subjected to charge removal processing by pre-exposure light 10 from pre-exposure means (not shown), it is repeatedly used for image formation. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary.
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも1つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段12を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。 In the present invention, a plurality of components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5 and the cleaning unit 9 described above are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported together with the electrophotographic photosensitive member 1 to form a cartridge, and is attached to and detached from the apparatus main body using the guide unit 12 such as a rail of the apparatus main body. A flexible process cartridge 11 can be obtained.
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。 Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. The light emitted by driving the LED array or the liquid crystal shutter array.
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、LEDプリンター、FAX、液晶シャッター式プリンター等の電子写真装置一般に適応し得るが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用し得るものである。 The electrophotographic photosensitive member of the present invention can be applied not only to electrophotographic copying machines but also to general electrophotographic apparatuses such as laser beam printers, LED printers, FAX, liquid crystal shutter printers, etc. It can be widely applied to apparatuses such as applied displays, recording, light printing, plate making and facsimile.
<合成例>
本発明の前記構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質は、例えば、水酸基、アルデヒド基及びカルボキシル基等の重合性官能基を有するボロン酸誘導体とハロゲン化物とのカップリング反応や、一般的な官能基変換反応により合成可能である。
<Synthesis example>
Examples of the electron transport material having the structure represented by any one of the structural formulas (1) to (3) of the present invention include boronic acid derivatives and halides having a polymerizable functional group such as a hydroxyl group, an aldehyde group, and a carboxyl group. And a general functional group conversion reaction.
本発明の前記構造式(1)乃至(3)のいずれかで示される構造を有する電子輸送物質の代表的な合成例を以下に示す。 A typical synthesis example of an electron transport material having the structure represented by any one of the structural formulas (1) to (3) of the present invention is shown below.
(例示化合物No.1−7)
テトラヒドロフラン(THF)500重量部中、B−(6−ヒドロキシヘキシル)−9−ボラビシクロ[3,3,1]ノナン3.63質量部、B−(2−(4−ヒドロキシフェニル)メチル)−9−ボラビシクロ[3,3,1]ノナン3.33質量部に、窒素雰囲気下で3.40質量部の4,7−ジブロモ−アセナフチレン−1,2−ジオンを加え、20%炭酸ナトリウム水溶液300質量部滴下した。その後、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)を5.00質量部添加した後、2時間還流させた。反応後、有機相をクロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、褐色粘体を9.02質量部得た。
(Exemplary Compound No. 1-7)
In 500 parts by weight of tetrahydrofuran (THF), 3.63 parts by mass of B- (6-hydroxyhexyl) -9-borabicyclo [3,3,1] nonane, B- (2- (4-hydroxyphenyl) methyl) -9 -To 3.33 parts by mass of borabicyclo [3,3,1] nonane, 3.40 parts by mass of 4,7-dibromo-acenaphthylene-1,2-dione was added in a nitrogen atmosphere, and 300% by mass of 20% aqueous sodium carbonate solution A portion was dropped. Thereafter, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3) 4) a was added 5.00 parts by weight, the mixture was refluxed for 2 hours. After the reaction, the organic phase was extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, 9.02 parts by mass of a brown viscous body was obtained.
この粘体と、アクリル酸5.00質量部及び2−メトキシフェノール0.04部をトルエン26質量部に加え溶解後、p−トルエンスルホン酸一水和物0.10質量部を加え110℃に加熱し、脱水反応を6時間行った。冷却後、10%水酸化ナトリウム水溶液にあけ、酢酸エチルで抽出を行った。有機層を更に水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、例示化合物No.1−7を1.05質量部得た。 After this viscous body and 5.00 parts by mass of acrylic acid and 0.04 part of 2-methoxyphenol were dissolved in 26 parts by mass of toluene, 0.10 parts by mass of p-toluenesulfonic acid monohydrate was added and heated to 110 ° C. The dehydration reaction was performed for 6 hours. After cooling, it was poured into a 10% aqueous sodium hydroxide solution and extracted with ethyl acetate. The organic layer was further washed with water and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography. As a result, 1.05 parts by mass of 1-7 was obtained.
質量分析を行った所、(MALDI−TOF MS:ブルカー・ダルトニクス(株)製 ultraflex)(加速電圧:20kV、モード:Reflector、分子量標準品:フラーレンC60)で、分子量を測定した所、ピークトップ値として456が得られ、例示化合物No.1−7と同一であることを確認した。 When the molecular weight was measured (MALDI-TOF MS: ultraflex manufactured by Bruker Daltonics Co., Ltd.) (acceleration voltage: 20 kV, mode: Reflector, molecular weight standard product: fullerene C 60 ), peak top As a result, 456 was obtained. It was confirmed that it was the same as 1-7.
(例示化合物No.2−2)
トルエン100質量部、エタノール50質量部中、3−(ヒドロキシメチル)フェニルボロン酸0.97質量部に、窒素雰囲気下で3,6−ジブロモ−9,10−フェナントレンジオン1.17質量部を加え、20%炭酸ナトリウム水溶液100質量部滴下した。その後、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)を0.55質量部添加した後、2時間還流させた。反応後、有機相をクロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、例示化合物No.2−2を1.33質量部得た。
(Exemplary Compound No. 2-2)
To 100 parts by mass of toluene and 50 parts by mass of ethanol, 1.17 parts by mass of 3,6-dibromo-9,10-phenanthrene rangeone was added to 0.97 parts by mass of 3- (hydroxymethyl) phenylboronic acid under a nitrogen atmosphere. 100 parts by mass of 20% aqueous sodium carbonate solution was added dropwise. Thereafter, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3) 4) was added 0.55 parts by weight, and the mixture was refluxed for 2 hours. After the reaction, the organic phase was extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography. 1.33 mass parts of 2-2 were obtained.
質量分析を行った所、(MALDI−TOF MS:ブルカー・ダルトニクス(株)製 ultraflex)(加速電圧:20kV、モード:Reflector、分子量標準品:フラーレンC60)で、分子量を測定した所、ピークトップ値として421が得られ、例示化合物No.2−2と同一であることを確認した。 When the molecular weight was measured (MALDI-TOF MS: ultraflex manufactured by Bruker Daltonics Co., Ltd.) (acceleration voltage: 20 kV, mode: Reflector, molecular weight standard product: fullerene C 60 ), peak top As a result, 421 was obtained. It was confirmed that it was the same as 2-2.
(例示化合物No.2−7)
トルエン100質量部、エタノール50質量部中、4−ヒドロキシフェニルボロン酸0.91質量部に、窒素雰囲気下で2−ブロモ−9,10−フェナントレンジオン0.55質量部を加え、20%炭酸ナトリウム水溶液100質量部滴下した。その後、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)を0.28質量部添加した後、2時間還流させた。反応後、有機相をクロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、淡黄色結晶を0.45質量部得た。
(Exemplary Compound No. 2-7)
To 100 parts by mass of toluene and 50 parts by mass of ethanol, 0.55 parts by mass of 2-bromo-9,10-phenanthrene dione was added to 0.91 part by mass of 4-hydroxyphenylboronic acid under a nitrogen atmosphere, and 20% sodium carbonate. 100 parts by mass of an aqueous solution was added dropwise. Thereafter, 0.28 parts by mass of tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) was added, followed by refluxing for 2 hours. After the reaction, the organic phase was extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography to obtain 0.45 parts by mass of pale yellow crystals.
メタノール50質量部、THF50質量部中、この結晶とマロノニトリル0.2質量部、ピペリジンを3滴(10μl)加え12時間還流した。 In 50 parts by mass of methanol and 50 parts by mass of THF, 3 drops (10 μl) of this crystal, 0.2 parts by mass of malononitrile and piperidine were added and refluxed for 12 hours.
反応後溶媒を除き、水で洗浄後クロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、例示化合物2−7を0.20質量部得た。 After the reaction, the solvent was removed, washed with water, extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography to obtain 0.20 parts by mass of Exemplary Compound 2-7.
質量分析を行った所、(MALDI−TOF MS:ブルカー・ダルトニクス(株)製 ultraflex)(加速電圧:20kV、モード:Reflector、分子量標準品:フラーレンC60)で、分子量を測定した所、ピークトップ値として348が得られ、例示化合物2−7と同一であることを確認した。 When the molecular weight was measured (MALDI-TOF MS: ultraflex manufactured by Bruker Daltonics Co., Ltd.) (acceleration voltage: 20 kV, mode: Reflector, molecular weight standard product: fullerene C 60 ), peak top As a result, 348 was obtained, which was confirmed to be the same as that of Exemplified Compound 2-7.
(例示化合物No.2−16)
トルエン100質量部、エタノール50質量部中、4−カルボキシフェニルボロン酸2.12質量部に、窒素雰囲気下で3,6−ジブロモ−9,10−フェナントレンジオン1.16質量部を加え、20%炭酸ナトリウム水溶液100質量部滴下した。その後、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)を0.55質量部添加した後2時間還流させた。反応後、有機相をクロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、例示化合物No.2−16を0.57質量部得た。
(Exemplary Compound No. 2-16)
To 100 parts by mass of toluene and 50 parts by mass of ethanol, 1.16 parts by mass of 3,6-dibromo-9,10-phenanthrene dione was added to 2.12 parts by mass of 4-carboxyphenylboronic acid under a nitrogen atmosphere, and 20% 100 mass parts of sodium carbonate aqueous solution was dripped. Thereafter, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) was added in an amount of 0.55 parts by mass, and the mixture was refluxed for 2 hours. After the reaction, the organic phase was extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography. As a result, 0.57 parts by mass of 2-16 was obtained.
質量分析を行った所、(MALDI−TOF MS:ブルカー・ダルトニクス(株)製 ultraflex)(加速電圧:20kV、モード:Reflector、分子量標準品:フラーレンC60)で、分子量を測定した所、ピークトップ値として448が得られ、例示化合物No.2−16と同一であることを確認した。 When the molecular weight was measured (MALDI-TOF MS: ultraflex manufactured by Bruker Daltonics Co., Ltd.) (acceleration voltage: 20 kV, mode: Reflector, molecular weight standard product: fullerene C 60 ), peak top 448 was obtained as the value, and Exemplified Compound No. It was confirmed that it was the same as 2-16.
(例示化合物No.3−10)
トルエン100質量部、エタノール50質量部中、3−ホルミルフェニルボロン酸2.64質量部に、窒素雰囲気下で3,6−ジブロモ−9,10−フェナントレンジオン1.16質量部を加え、20%炭酸ナトリウム水溶液100質量部滴下した。その後、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)を0.55質量部添加した後、2時間還流させた。反応後、有機相をクロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、例示化合物No.3−10を0.48質量部得た。
(Exemplary Compound No. 3-10)
To 100 parts by mass of toluene and 50 parts by mass of ethanol, to 1.64 parts by mass of 3-formylphenylboronic acid, 1.16 parts by mass of 3,6-dibromo-9,10-phenanthrene rangeone was added in a nitrogen atmosphere, and 20% 100 mass parts of sodium carbonate aqueous solution was dripped. Thereafter, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3) 4) was added 0.55 parts by weight, and the mixture was refluxed for 2 hours. After the reaction, the organic phase was extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography. 0.48 mass parts of 3-10 was obtained.
質量分析を行った所、(MALDI−TOF MS:ブルカー・ダルトニクス(株)製 ultraflex)(加速電圧:20kV、モード:Reflector、分子量標準品:フラーレンC60)で、分子量を測定した所、ピークトップ値として418が得られ、例示化合物No.3−10と同一であることを確認した。 When the molecular weight was measured (MALDI-TOF MS: ultraflex manufactured by Bruker Daltonics Co., Ltd.) (acceleration voltage: 20 kV, mode: Reflector, molecular weight standard product: fullerene C 60 ), peak top As a result, 418 was obtained. It was confirmed that it was the same as 3-10.
(例示化合物No.3−13)
トルエン100質量部、エタノール50質量部中、4−ヒドロキシフェニルボロン酸0.88質量部に、窒素雰囲気下で3,6−ジブロモ−9,10−フェナントレンジオン1.17質量部を加え、20%炭酸ナトリウム水溶液100質量部滴下した。その後、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)を0.55質量部添加した後、2時間還流させた。反応後、有機相をクロロホルムで抽出し、水洗後、無水硫酸ナトリウムで乾燥を行った。溶媒を減圧下で除去後、残留物をシリカゲルクロマトグラフィーで精製を行い、例示化合物No.3−13を1.04質量部得た。
(Exemplary Compound No. 3-13)
In 100 parts by mass of toluene and 50 parts by mass of ethanol, 1.17 parts by mass of 3,6-dibromo-9,10-phenanthrene dione is added to 0.88 parts by mass of 4-hydroxyphenylboronic acid under a nitrogen atmosphere, and 20% 100 mass parts of sodium carbonate aqueous solution was dripped. Thereafter, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3) 4) was added 0.55 parts by weight, and the mixture was refluxed for 2 hours. After the reaction, the organic phase was extracted with chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography. As a result, 1.04 parts by mass of 3-13 was obtained.
質量分析を行った所、(MALDI−TOF MS:ブルカー・ダルトニクス(株)製 ultraflex)(加速電圧:20kV、モード:Reflector、分子量標準品:フラーレンC60)で、分子量を測定した所、ピークトップ値として394が得られ、例示化合物No.3−13と同一であることを確認した。 When the molecular weight was measured (MALDI-TOF MS: ultraflex manufactured by Bruker Daltonics Co., Ltd.) (acceleration voltage: 20 kV, mode: Reflector, molecular weight standard product: fullerene C 60 ), peak top As a result, 394 was obtained. It was confirmed to be the same as 3-13.
以下に、具体的な実施例を挙げて本発明を更に詳細に説明する。ただし、本発明の実施の形態は、これらに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, embodiments of the present invention are not limited to these. In the examples, “part” means “part by mass”.
(実施例1)
直径30mmのアルミニウムシリンダーをホーニング処理し、超音波水洗浄したものを導電性支持体とした。
Example 1
An aluminum cylinder having a diameter of 30 mm was subjected to a honing treatment and subjected to ultrasonic water cleaning to obtain a conductive support.
次に、表1の例示化合物No.1−7を6部、下記構造式(4)で示される化合物4部、2,2−アゾビスイソブチロニトリル(AIBN)0.1部をテトラヒドロフラン(THF)190部中に溶解し、中間層用塗布液を調製した。この塗布液を前記導電性支持体上に浸漬コーティング法によって塗布し、160℃で30分間加熱乾燥して反応させ、膜厚が0.8μmの中間層を形成した。 Next, Exemplified Compound Nos. 6 parts of 1-7, 4 parts of a compound represented by the following structural formula (4), 0.1 part of 2,2-azobisisobutyronitrile (AIBN) are dissolved in 190 parts of tetrahydrofuran (THF), A layer coating solution was prepared. This coating solution was applied onto the conductive support by a dip coating method, heated and dried at 160 ° C. for 30 minutes, and reacted to form an intermediate layer having a thickness of 0.8 μm.
次に、電荷発生層用塗布液として、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.5°、9.9°、16.3°、18.6°、25.1°及び28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン10部、及びポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)5部をシクロヘキサノン250部に添加し、直径1mmのガラスビーズを用いたサンドミルで4時間分散し、これに250部の酢酸エチルを加えて希釈した。これを前記中間層上に塗布した後、100℃で10分間乾燥して、膜厚が0.18μmの電荷発生層を形成した。 Next, as the coating solution for the charge generation layer, the Bragg angle (2θ ± 0.2 °) of CuKα characteristic X-ray diffraction is 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25. 10 parts of crystalline hydroxygallium phthalocyanine having strong peaks at 1 ° and 28.3 °, and 5 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) are added to 250 parts of cyclohexanone. The mixture was dispersed in a sand mill using glass beads having a diameter of 1 mm for 4 hours, and 250 parts of ethyl acetate was added thereto for dilution. This was coated on the intermediate layer and then dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.18 μm.
次いで、下記構造式(5)で示されるスチリル化合物を10部 Next, 10 parts of a styryl compound represented by the following structural formula (5)
及び下記構造式(6)で示される繰り返し単位を有するポリアリレート樹脂10部 And 10 parts of a polyarylate resin having a repeating unit represented by the following structural formula (6)
をモノクロロベンゼン50部及びジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗布液を調製した。この塗布液を前記電荷発生層上に浸漬コーティング法によって塗布し、120℃で1時間乾燥することによって、膜厚が17μmの電荷輸送層を形成した。 Was dissolved in a mixed solvent of 50 parts of monochlorobenzene and 30 parts of dichloromethane to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 120 ° C. for 1 hour to form a charge transport layer having a thickness of 17 μm.
このようにして作製した電子写真感光体を低温低湿(15℃/10%RH)の環境下において電位評価を、高温高湿(30℃/80%RH)の環境下において電位変動及び画像評価を行った。 The electrophotographic photoreceptor thus prepared was subjected to potential evaluation under a low temperature and low humidity (15 ° C./10% RH) environment, and subjected to potential fluctuation and image evaluation under a high temperature and high humidity (30 ° C./80% RH) environment. went.
電位評価及び画像評価は、ヒューレットパッカード製LBP「カラーレーザージェット4600」(プロセススピード94.2mm/sec、DC接触帯電)をプロセススピード190.0mm/sec、及び露光光量可変に改造した装置に装着して行った。 For potential evaluation and image evaluation, LBP “Color Laser Jet 4600” (process speed 94.2 mm / sec, DC contact charging) manufactured by Hewlett-Packard was installed in a device modified to process speed 190.0 mm / sec and variable exposure light quantity. I went.
電位変動は15℃/10%RHの環境下に装置、及びドラムカートリッジを48時間放置した状態で行う。電子写真感光体の表面電位は、評価機から、現像用カートリッジを抜き取り、そこに電位測定装置を挿入し測定を行った。電位測定装置は、現像用カートリッジの現像位置に電位測定プローブを配置することで構成されており、電子写真感光体に対する電位測定プローブの位置は、ドラム軸方向の中央とした。 The potential fluctuation is performed in a state where the apparatus and the drum cartridge are left for 48 hours in an environment of 15 ° C./10% RH. The surface potential of the electrophotographic photosensitive member was measured by removing the developing cartridge from the evaluator and inserting a potential measuring device there. The potential measuring apparatus is configured by arranging a potential measuring probe at the developing position of the developing cartridge, and the position of the potential measuring probe with respect to the electrophotographic photosensitive member is set at the center in the drum axis direction.
暗部電位(Vd)が−700Vになるように帯電し、明部電位(Vl)が−150Vになるように光量を設定した。その状態(現像機の部分に電位プローブがある状態)で設定した露光量において連続1000枚耐久試験を行った。耐久後のVd、Vlを表4に示した。 The amount of light was set so that the dark portion potential (Vd) was −700V and the light portion potential (Vl) was −150V. A continuous 1000-sheet durability test was performed at the exposure amount set in that state (state where the potential probe is in the developing unit). Table 4 shows Vd and Vl after endurance.
高温高湿下における評価は、30℃/80%RHの環境下に装置、及びドラムカートリッジを48時間放置した状態で行う。 Evaluation under high temperature and high humidity is performed in a state where the apparatus and the drum cartridge are left for 48 hours in an environment of 30 ° C./80% RH.
高温高湿下における画像評価は、暗部電位(Vd)が−700Vになるように帯電させ、ベタ白画像を評価した。ベタ白画像の評価は、東京電色社製のREFLECTMETER MODELTC−6DSを使用して測定した。カブリの評価はベタ白画像10枚の平均で下記の式より算出した;
カブリ(反射率)(%)=非画像部上の反射率(%)−ベタ白画像部の反射率(%)
紙上カブリは、1.0%以下であれば良好な画像である。
The image evaluation under high temperature and high humidity was performed by charging the dark part potential (Vd) to −700 V and evaluating a solid white image. The solid white image was evaluated using a REFECTMETER MODELTC-6DS manufactured by Tokyo Denshoku. The fog evaluation was calculated from the following formula with an average of 10 solid white images;
Fog (reflectance) (%) = reflectance on non-image area (%) − reflectance of solid white image area (%)
If the fog on paper is 1.0% or less, a good image is obtained.
高温高湿下における電位評価は、上記低温低湿下における電位評価と同様に評価した。結果を表4に示す。 The potential evaluation under high temperature and high humidity was evaluated in the same manner as the potential evaluation under low temperature and low humidity. The results are shown in Table 4.
(実施例2乃至7)
実施例1において、例示化合物No.1−7をNo.1−10、No.2−4、No.2−8、No.2−9、No.3−6、No.3−12に代えた以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Examples 2 to 7)
In Example 1, Exemplified Compound No. No. 1-7 1-10, No. 1 2-4, No. 2 2-8, no. 2-9, no. 3-6, no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that 3-12 was used. The results are shown in Table 4.
(実施例8乃至10)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Examples 8 to 10)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
それぞれの実施例において例示化合物No.1−9、No.2−16、No.3−10の順に5部づつとし、メラミン樹脂(商品名:ユーバン20HS、三井化学製)を5部、THFを190部からなる中間層用塗布液を調製した。この塗布液を導電性支持体上に乾燥後の膜厚が0.8μmになるように浸漬コーティング法で塗布し、150℃で60分間加熱乾燥して反応させ、中間層を形成した。
"Production of intermediate layer"
In each Example, Exemplified Compound No. 1-9, No. 1 2-16, no. The coating solution for intermediate layer which consists of 5 parts in order of 3-10, 5 parts of melamine resin (trade name: Yuban 20HS, manufactured by Mitsui Chemicals) and 190 parts of THF was prepared. This coating solution was applied on a conductive support by a dip coating method so that the film thickness after drying was 0.8 μm, and was heated and dried at 150 ° C. for 60 minutes to form an intermediate layer.
(実施例11、12)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Examples 11 and 12)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
それぞれの実施例において例示化合物No.1−8、No.3−13の順に6部づつとし、フェノール樹脂(商品名:プライオーフエンJ325、大日本インキ化学製)を4部、THFを190部からなる中間層用塗布液を調製した。この塗布液を導電性支持体上に乾燥後の膜厚が1.2μmになるように浸漬コーティング法で塗布し、150℃で60分間加熱乾燥して反応させ、中間層を形成した。
"Production of intermediate layer"
In each Example, Exemplified Compound No. 1-8, No. 1 The coating solution for intermediate layer was prepared by adding 6 parts of phenol resin (trade name: Plyofen J325, manufactured by Dainippon Ink & Chemicals) and 190 parts of THF in order of 3 parts in the order of 3-13. This coating solution was applied on a conductive support by a dip coating method so that the film thickness after drying was 1.2 μm, and was heated and dried at 150 ° C. for 60 minutes to form an intermediate layer.
(実施例13乃至16)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Examples 13 to 16)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
それぞれの実施例において例示化合物No.1−15、No.2−2、No.3−1、No.2−13の順に6部づつとし、ヘキサメチレンジイソシアネート4部、THFを190部からなる中間層用塗布液を調製した。この塗布液を導電性支持体上に乾燥後の膜厚が1.0μmになるように浸漬コーティング法で塗布し、160℃で30分間加熱乾燥して反応させ、中間層を形成した。
"Production of intermediate layer"
In each Example, Exemplified Compound No. 1-15, No. 1 2-2, No. 3-1. The coating solution for intermediate layer was prepared in the order of 2-13, 6 parts each, and 4 parts of hexamethylene diisocyanate and 190 parts of THF. This coating solution was applied on the conductive support by a dip coating method so that the film thickness after drying was 1.0 μm, and was heated and dried at 160 ° C. for 30 minutes to form an intermediate layer.
(実施例17)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Example 17)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
表1の例示化合物No.1−14 10部をTHF190部中に溶解し、中間層用塗布液を調製した。この塗布液を導電性支持体上に浸漬コーティング法によって塗布し、加速電圧150kV、照射線量20Mradの条件で電子線を照射し反応させ、膜厚が1.0μmの中間層を形成した。
"Production of intermediate layer"
Exemplified compound No. 1 in Table 1 1-14 10 parts was melt | dissolved in THF 190 parts, and the coating liquid for intermediate | middle layers was prepared. This coating solution was applied on a conductive support by a dip coating method, and reacted by irradiating with an electron beam under the conditions of an acceleration voltage of 150 kV and an irradiation dose of 20 Mrad to form an intermediate layer having a thickness of 1.0 μm.
(実施例18乃至20)
実施例17において、例示化合物No.1−14をNo.2−14、No.3−2、No.1−4に代えた以外は、実施例17と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Examples 18 to 20)
In Example 17, Exemplified Compound No. 1-14 to No.1. 2-14, no. 3-2, no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 17 except that it was replaced with 1-4. The results are shown in Table 4.
(実施例21乃至25)
実施例2の中間層中の電子輸送物質No.1−10の添加量を10部、8部、5部、3部、2.5部に、上記構造式(4)の添加量を0部、2部、5部、7部、7.5部に変えた以外は、実施例2と同様にして電子写真感光体を作製し、評価した。結果を表4に示す。
(Examples 21 to 25)
In the intermediate layer of Example 2, the electron transport material No. The addition amount of 1-10 is 10 parts, 8 parts, 5 parts, 3 parts, 2.5 parts, and the addition amount of structural formula (4) is 0 parts, 2 parts, 5 parts, 7 parts, 7.5 An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 2 except that the parts were changed. The results are shown in Table 4.
(実施例26乃至29)
実施例9の中間層中の電子輸送物質No.2−16の添加量を8部、6部、3部、2.5部に、メラミン樹脂(商品名:ユーバン20HS、三井化学製)の添加量を2部、4部、7部、7.5部に変えた以外は、実施例9と同様にして電子写真感光体を作製し、評価した。結果を表4に示す。
(Examples 26 to 29)
In the intermediate layer of Example 9, the electron transport material No. The addition amount of 2-16 is 8 parts, 6 parts, 3 parts, 2.5 parts, and the addition amount of melamine resin (trade name: Uban 20HS, manufactured by Mitsui Chemicals) is 2, 4 parts, 7 parts, 7. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 9 except that the amount was changed to 5 parts. The results are shown in Table 4.
(実施例30)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Example 30)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
ポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)4部をシクロヘキサノン250部に添加し、これに例示化合物No.2−7を4部、ヘキサメチレンジイソシアネート3部、THF190部からなる中間層用塗布液を調製した。この塗布液を導電性支持体上に乾燥後の膜厚が1.0μmになるように浸漬コーティング法で塗布し、160℃で30分間加熱乾燥して反応させ、中間層を形成した。
"Production of intermediate layer"
4 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) was added to 250 parts of cyclohexanone, and the exemplified compound No. An intermediate layer coating solution comprising 4 parts of 2-7, 3 parts of hexamethylene diisocyanate and 190 parts of THF was prepared. This coating solution was applied on the conductive support by a dip coating method so that the film thickness after drying was 1.0 μm, and was heated and dried at 160 ° C. for 30 minutes to form an intermediate layer.
(実施例31及び32)
実施例30において、例示化合物No.2−7をNo.1−16、No.3−9に代えた以外は、実施例30と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Examples 31 and 32)
In Example 30, Exemplified Compound No. 2-7. 1-16, No. 1 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 30 except that 3-9 was used. The results are shown in Table 4.
(実施例33)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Example 33)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
例示化合物No.3−8を4部、No.3−12を4部、上記構造式(4)2部、AIBN0.1部をTHF190部中に溶解し、中間層用塗布液を調製した。この塗布液を導電性支持体上に浸漬コーティング法によって塗布し、160℃で30分間加熱乾燥して反応させ、膜厚が0.9μmの中間層を形成した。
"Production of intermediate layer"
Exemplified Compound No. 4-8, No. 3-8. 4 parts of 3-12, 2 parts of the above structural formula (4) and 0.1 part of AIBN were dissolved in 190 parts of THF to prepare a coating solution for an intermediate layer. This coating solution was applied onto a conductive support by a dip coating method, heated and dried at 160 ° C. for 30 minutes, and reacted to form an intermediate layer having a thickness of 0.9 μm.
(実施例34)
実施例1の中間層を以下のように作製した以外は、実施例1と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Example 34)
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer of Example 1 was produced as follows. The results are shown in Table 4.
「中間層の作製」
例示化合物No.2−15を4部、No.2−16を3部、ヘキサメチレンジイソシアネート3部をTHF190部中に溶解し、中間層用塗布液を調製した。この塗布液を導電性支持体上に浸漬コーティング法によって塗布し、160℃で30分間加熱乾燥して反応させ、膜厚が0.9μmの中間層を形成した。
"Production of intermediate layer"
Exemplified Compound No. 4-15, No. 2-15. 3 parts of 2-16 and 3 parts of hexamethylene diisocyanate were dissolved in 190 parts of THF to prepare a coating solution for an intermediate layer. This coating solution was applied onto a conductive support by a dip coating method, heated and dried at 160 ° C. for 30 minutes, and reacted to form an intermediate layer having a thickness of 0.9 μm.
(実施例35)
実施例6において、電荷発生物質のヒドロキシガリウムフタロシアニン結晶をCuKαの特性X線回折におけるブラッグ角(2θ±0.2°)が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンに代えた以外は、実施例6と同様にして電子写真感光体を作製し、同様な評価を行った。結果を表4に示す。
(Example 35)
In Example 6, the charge generating substance hydroxygallium phthalocyanine crystal was subjected to Bragg angles (2θ ± 0.2 °) of 9.0 °, 14.2 °, 23.9 °, and 27.1 in the characteristic X-ray diffraction of CuKα. An electrophotographic photosensitive member was prepared in the same manner as in Example 6 except that the crystalline oxytitanium phthalocyanine having a strong peak at 0 ° was used, and the same evaluation was performed. The results are shown in Table 4.
(実施例36)
実施例6において、電荷発生物質のヒドロキシガリウムフタロシアニン結晶を下記構造式(7)で示されるアゾ顔料に代えた以外は、実施例6と同様にして電子写真感光体を作製し、同様な評価を行った。結果を表4に示す。
(Example 36)
In Example 6, an electrophotographic photosensitive member was prepared in the same manner as in Example 6 except that the charge generating substance hydroxygallium phthalocyanine crystal was replaced with an azo pigment represented by the following structural formula (7). went. The results are shown in Table 4.
(実施例37)
実施例14の電荷発生層を以下のように作製した以外は、実施例14と同様にして電子写真感光体を作製し、評価を行った。結果を表4に示す。
(Example 37)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 14 except that the charge generation layer of Example 14 was prepared as follows. The results are shown in Table 4.
「電荷発生層の作製」
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.5°、9.9°、16.3°、18.6°、25.1°及び28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン10部、及びポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)5部をシクロヘキサノン250部に添加し、直径1mmのガラスビーズを用いたサンドミルで4時間分散し、これに例示化合物No.2−2を0.5部、ヘキサメチレンジイソシアネート0.5部、酢酸エチル250部を加え電荷発生層用塗布液とした。これを中間層上に塗布した後、140℃で30分間加熱乾燥して反応させ、膜厚が0.18μmの電荷発生層を形成した。
"Production of charge generation layer"
Strong peaks at 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25.1 ° and 28.3 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction 10 parts of crystalline hydroxygallium phthalocyanine and 5 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) are added to 250 parts of cyclohexanone, and 4 by a sand mill using glass beads having a diameter of 1 mm. This was dispersed over time, and this was followed by the exemplified compound No. 0.5 parts of 2-2, 0.5 parts of hexamethylene diisocyanate and 250 parts of ethyl acetate were added to prepare a coating solution for a charge generation layer. After coating this on the intermediate layer, it was reacted by heating and drying at 140 ° C. for 30 minutes to form a charge generation layer having a thickness of 0.18 μm.
(実施例38乃至42)
10質量%酸化アンチモンを含有する酸化スズで被覆した酸化チタン粉体50部、レゾール型フェノール樹脂25部、メトキシプロパノール30部、メタノール30部及びシリコーンオイル(ポリジメチルシロキサンポリオキシアルキレン共重合体、重量平均分子量3000)0.002部を、1mmφガラスビーズを用いてサンドミル装置で2時間分散して導電層用塗布液を調製した。この塗布液を直径30mmアルミニウムシリンダー上に浸漬コーティング法によって塗布し、140℃で30分間加熱させ、膜厚が20μmの導電層を形成した。
(Examples 38 to 42)
50 parts of titanium oxide powder coated with tin oxide containing 10% by mass of antimony oxide, 25 parts of resol type phenol resin, 30 parts of methoxypropanol, 30 parts of methanol and silicone oil (polydimethylsiloxane polyoxyalkylene copolymer, weight) 0.002 part of average molecular weight 3000) was dispersed in a sand mill device for 2 hours using 1 mmφ glass beads to prepare a coating solution for a conductive layer. This coating solution was applied onto an aluminum cylinder having a diameter of 30 mm by a dip coating method and heated at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 20 μm.
この導電層上にそれぞれ実施例3、6、8、11、14の中間層、電荷発生層、電荷輸送層を形成した以外は、同様にして電子写真感光体を作製し、評価した。結果を表4に示す。 An electrophotographic photosensitive member was prepared and evaluated in the same manner except that the intermediate layer, charge generation layer, and charge transport layer of Examples 3, 6, 8, 11, and 14 were formed on this conductive layer. The results are shown in Table 4.
(比較例1)
直径30mmのアルミニウムシリンダーをホーニング処理し、超音波水洗浄したものを導電性支持体とした。
(Comparative Example 1)
An aluminum cylinder having a diameter of 30 mm was subjected to a honing treatment and subjected to ultrasonic water cleaning to obtain a conductive support.
次に、N−メトキシメチル化6ナイロン5部をメタノール95部中に溶解し、中間層用塗布液を調製した。この塗布液を前記導電性支持体上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.6μmの中間層を形成した。 Next, 5 parts of N-methoxymethylated 6 nylon was dissolved in 95 parts of methanol to prepare an intermediate layer coating solution. This coating solution was applied onto the conductive support by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.6 μm.
この上に実施例1の電荷発生層、電荷輸送層を形成した以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表5に示す。 An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the charge generation layer and charge transport layer of Example 1 were formed thereon. The results are shown in Table 5.
(比較例2)
実施例1において、中間層を設けなかった以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表5に示す。
(Comparative Example 2)
In Example 1, an electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the intermediate layer was not provided. The results are shown in Table 5.
(比較例3)
実施例1の中間層中の電子輸送物質No.1−7を添加せずに、前記構造式(4)の添加量を10部に代えた以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表5に示す。
(Comparative Example 3)
In the intermediate layer of Example 1, the electron transport material No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that 1-7 was not added and the addition amount of the structural formula (4) was changed to 10 parts. The results are shown in Table 5.
(比較例4)
実施例8の中間層中の電子輸送物質No.1−9を添加せずに、メラミン樹脂(商品名:ユーバン20HS、三井化学製)の添加量を10部に変えた以外は、実施例8と同様にして電子写真感光体を作製し、評価した。結果を表5に示す。
(Comparative Example 4)
In the intermediate layer of Example 8, the electron transport material No. An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 8 except that the addition amount of melamine resin (trade name: Yuban 20HS, manufactured by Mitsui Chemicals) was changed to 10 parts without adding 1-9. did. The results are shown in Table 5.
(比較例5)
実施例11の中間層中の電子輸送物質No.1−8を添加せずに、フェノール樹脂(商品名:プライオーフエンJ325、大日本インキ化学製)の添加量を10部に代えた以外は、実施例11と同様にして電子写真感光体を作製し、評価した。結果を表5に示す。
(Comparative Example 5)
In the intermediate layer of Example 11, the electron transport material No. An electrophotographic photosensitive member was prepared in the same manner as in Example 11 except that 1-8 was not added and the addition amount of the phenol resin (trade name: Plyofen J325, manufactured by Dainippon Ink & Chemicals) was changed to 10 parts. Prepared and evaluated. The results are shown in Table 5.
(比較例6)
直径30mmのアルミニウムシリンダーをホーニング処理し、超音波水洗浄したものを導電性支持体とした。
(Comparative Example 6)
An aluminum cylinder having a diameter of 30 mm was subjected to a honing treatment and subjected to ultrasonic water cleaning to obtain a conductive support.
次に、アルコール可溶性ポリアミド樹脂(商品名:アミランCM8000:東レ製)5部、下記構造式(8)で示される化合物2部、をメタノール50部、ベンジルアルコール50部中に溶解し、中間層用塗布液を調製した。この塗布液を前記導電性支持体上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.6μmの中間層を形成した。 Next, 5 parts of an alcohol-soluble polyamide resin (trade name: Amilan CM8000: manufactured by Toray Industries, Inc.) and 2 parts of a compound represented by the following structural formula (8) are dissolved in 50 parts of methanol and 50 parts of benzyl alcohol. A coating solution was prepared. This coating solution was applied onto the conductive support by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.6 μm.
この上に実施例1の電荷発生層、電荷輸送層を形成した以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表5に示す。 An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the charge generation layer and charge transport layer of Example 1 were formed thereon. The results are shown in Table 5.
(比較例7)
比較例6において、中間層中の構造式(8)で示される化合物を下記構造式(9)で示される化合物に代えた以外は、比較例6と同様にして電子写真感光体を作製し、評価を行った。結果を表5に示す。
(Comparative Example 7)
In Comparative Example 6, an electrophotographic photosensitive member was produced in the same manner as in Comparative Example 6, except that the compound represented by Structural Formula (8) in the intermediate layer was replaced with the compound represented by Structural Formula (9) below. Evaluation was performed. The results are shown in Table 5.
(比較例8)
実施例13において、中間層中の例示化合物No.1−8を下記構造式(10)で示される化合物に代えた以外は、実施例13と同様にして電子写真感光体を作製し、評価を行った。結果を表5に示す。
(Comparative Example 8)
In Example 13, Exemplified Compound No. 2 in the intermediate layer was used. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 13 except that 1-8 was replaced with the compound represented by the following structural formula (10). The results are shown in Table 5.
表5に示されているように、比較例2は中間層がないため、低温低湿下の電位変動は小さいが、高温高湿下における電位変動が大きく、ベタ白画像にカブリ画生じた。比較例1、3、4、5、6、7及び8は中間層中に本発明の電子輸送物質が含有されてないため、低温低湿下の電位変動が大きいのに対し、本発明の実施例は高温高湿下においても良好なベタ白画像が得られ、更に低温低湿下の電位変動を抑えられた。 As shown in Table 5, since Comparative Example 2 had no intermediate layer, the potential fluctuation under low temperature and low humidity was small, but the potential fluctuation under high temperature and high humidity was large, and a fogged image was generated in the solid white image. In Comparative Examples 1, 3, 4, 5, 6, 7, and 8, since the electron transport material of the present invention is not contained in the intermediate layer, the potential fluctuation under low temperature and low humidity is large. Produced a solid white image even under high temperature and high humidity, and further suppressed potential fluctuation under low temperature and low humidity.
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段
DESCRIPTION OF SYMBOLS 1 Electrophotographic photosensitive member 2 Axis 3 Charging means 4 Exposure light 5 Developing means 6 Transfer means 7 Transfer material 8 Fixing means 9 Cleaning means 10 Pre-exposure light 11 Process cartridge 12 Guide means
Claims (9)
前記電子輸送物質を含有する中間層用塗布液を前記導電性支持体上に塗布した後、塗布された該中間層用塗布液中の前記電子輸送物質が有する重合性官能基を熱又は放射線により反応させ、前記電子輸送物質を重合させることによって前記中間層を形成する工程を有する電子写真感光体の製造方法。 A method for producing the electrophotographic photosensitive member according to claim 1 ,
After coating the intermediate layer coating solution containing the electron transport material on the conductive support, the polymerizable functional group of the electron transport material in the coated intermediate layer coating solution is applied by heat or radiation. A method for producing an electrophotographic photosensitive member comprising a step of reacting and polymerizing the electron transport material to form the intermediate layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006321761A JP4971764B2 (en) | 2005-11-30 | 2006-11-29 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005346210 | 2005-11-30 | ||
JP2005346210 | 2005-11-30 | ||
JP2006321761A JP4971764B2 (en) | 2005-11-30 | 2006-11-29 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007179031A JP2007179031A (en) | 2007-07-12 |
JP2007179031A5 JP2007179031A5 (en) | 2010-01-21 |
JP4971764B2 true JP4971764B2 (en) | 2012-07-11 |
Family
ID=38304214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006321761A Expired - Fee Related JP4971764B2 (en) | 2005-11-30 | 2006-11-29 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4971764B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4838749B2 (en) * | 2007-03-30 | 2011-12-14 | キヤノン株式会社 | Method for producing electrophotographic photosensitive member |
JP5553198B2 (en) * | 2008-11-26 | 2014-07-16 | 株式会社リコー | Electrophotographic photoreceptor, image forming apparatus using the same, and process cartridge for image forming apparatus |
JP4940370B2 (en) | 2010-06-29 | 2012-05-30 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP5784074B2 (en) * | 2012-06-29 | 2015-09-24 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP5975942B2 (en) * | 2012-06-29 | 2016-08-23 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
JP5826212B2 (en) * | 2012-06-29 | 2015-12-02 | キヤノン株式会社 | Method for producing electrophotographic photosensitive member |
JP6271966B2 (en) * | 2013-02-19 | 2018-01-31 | キヤノン株式会社 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2015143822A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP6423697B2 (en) | 2013-12-26 | 2018-11-14 | キヤノン株式会社 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP6456126B2 (en) * | 2013-12-26 | 2019-01-23 | キヤノン株式会社 | Method for producing electrophotographic photosensitive member |
JP6555877B2 (en) * | 2013-12-26 | 2019-08-07 | キヤノン株式会社 | Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member |
JP6463104B2 (en) * | 2013-12-26 | 2019-01-30 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63246749A (en) * | 1987-03-31 | 1988-10-13 | Mita Ind Co Ltd | Electrophotographic sensitive body |
JPH02146049A (en) * | 1988-11-28 | 1990-06-05 | Ricoh Co Ltd | Electrophotographic sensitive body |
JP4393371B2 (en) * | 2003-12-26 | 2010-01-06 | キヤノン株式会社 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP4429157B2 (en) * | 2003-12-26 | 2010-03-10 | キヤノン株式会社 | Process cartridge and electrophotographic apparatus |
-
2006
- 2006-11-29 JP JP2006321761A patent/JP4971764B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007179031A (en) | 2007-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4971764B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4649321B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
US8003287B2 (en) | Electrophotographic photoconductor and image-forming apparatus | |
JP4859239B2 (en) | Method for producing electrophotographic photosensitive member | |
JP2007148293A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP4134200B2 (en) | Electrophotographic photoreceptor and image forming apparatus | |
JP4574490B2 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having the same | |
JP2012128355A (en) | Electrophotographic photoreceptor and image forming apparatus using the same | |
JP4779037B2 (en) | Electrophotographic photoreceptor and image forming apparatus having the same | |
JP2010002697A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic device | |
JP5608410B2 (en) | Electrophotographic photoreceptor, image forming apparatus, and image forming method | |
JP2007193210A (en) | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP3585197B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP2011150247A (en) | Method for evaluating electrophotographic photoreceptor, electrophotographic photoreceptor satisfying the same and image forming apparatus including the same | |
JP4709014B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4411231B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2007256791A (en) | Electrophotographic photoreceptor | |
JP2009014857A (en) | Electrophotographic photoreceptor containing triamine compound and image forming apparatus with the same | |
JP2920323B2 (en) | Electrophotographic photoreceptor | |
JP4630804B2 (en) | Substituted hydroxyphenyl compounds | |
JP5258856B2 (en) | Substituted hydroxyphenyl compound, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2841242B2 (en) | Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile | |
JP2008281782A (en) | Electrophotographic photoreceptor and image forming apparatus | |
JP2007148387A (en) | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus | |
JP2007256792A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device having electrophotographic photoreceptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080207 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090323 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091127 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100617 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20100730 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120402 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4971764 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |