JP4968628B2 - Equipment for simultaneous production of ozone water and hydrogen peroxide water - Google Patents

Equipment for simultaneous production of ozone water and hydrogen peroxide water Download PDF

Info

Publication number
JP4968628B2
JP4968628B2 JP2008102573A JP2008102573A JP4968628B2 JP 4968628 B2 JP4968628 B2 JP 4968628B2 JP 2008102573 A JP2008102573 A JP 2008102573A JP 2008102573 A JP2008102573 A JP 2008102573A JP 4968628 B2 JP4968628 B2 JP 4968628B2
Authority
JP
Japan
Prior art keywords
water
hydrogen peroxide
ozone
oxygen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008102573A
Other languages
Japanese (ja)
Other versions
JP2009248059A (en
Inventor
恭史 小野
Original Assignee
国立大学法人 新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学 filed Critical 国立大学法人 新潟大学
Priority to JP2008102573A priority Critical patent/JP4968628B2/en
Publication of JP2009248059A publication Critical patent/JP2009248059A/en
Application granted granted Critical
Publication of JP4968628B2 publication Critical patent/JP4968628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、排水・汚水処理、製紙業、半導体産業などにおいて用いられる、電解法によるオゾン水と過酸化水素水の同時製造装置に関する。   The present invention relates to an apparatus for simultaneous production of ozone water and hydrogen peroxide water by electrolysis, which is used in wastewater / sewage treatment, paper industry, semiconductor industry and the like.

環境問題が大きく取り上げられている今日、産業界にとって排水処理をいかに効率的に行うかは、非常に重要な問題である。例えば、微生物の死骸やトイレットペーパーのパルプなど有機物を含む排水は、排水処理場において、微生物を用いた分解処理により浄化されているが、微生物の死骸やトイレットペーパーのパルプなどは分解されにくく、その結果、大量の汚泥が残留する。この汚泥を処理するためには、更に、重油を用いて燃焼させ、その灰を埋め立てなくてはならず、作業が煩雑な上に環境負荷が大きい。製紙業における産業排水についても、同様の問題があり、効率的な排水処理が求められている。   In today's environment, where environmental issues are a major issue, how efficient wastewater treatment is for the industry is a very important issue. For example, wastewater containing organic matter, such as microbial dead bodies and toilet paper pulp, is purified by a decomposition process using microorganisms in a wastewater treatment plant, but microbial dead bodies and toilet paper pulp are difficult to decompose, As a result, a large amount of sludge remains. In order to treat this sludge, it is necessary to burn it with heavy oil to fill the ash, and the work is complicated and the environmental load is large. There are similar problems with industrial wastewater in the paper industry, and efficient wastewater treatment is required.

より効率的な汚泥の処理方法として、強力な酸化作用を持つオゾン水と過酸化水素水を混合した、促進酸化処理水の利用が期待されている。オゾンの酸化分解能力はフッ素に次いで強く、しかも残留性がないという利点があり、さらに、過酸化水素を加えることで、より酸化力を強めることができるため、汚泥を効率的に分解することができる。また、排水処理だけでなく、半導体産業においても、洗浄に使用することのできる、高純度で酸化作用の強い促進酸化処理水が注目されている。   As a more efficient sludge treatment method, use of accelerated oxidation treated water, which is a mixture of ozone water and hydrogen peroxide water having a strong oxidizing action, is expected. Oxidative decomposition ability of ozone is strong next to fluorine, and has the advantage of no persistence. Furthermore, by adding hydrogen peroxide, the oxidizing power can be increased, so sludge can be decomposed efficiently. it can. Further, not only in wastewater treatment, but also in the semiconductor industry, high-purity accelerated oxidatively treated water that can be used for cleaning has attracted attention.

オゾン水と過酸化水素水を混合した促進酸化処理水を得るためには、予め製造したオゾン水と過酸化水素水を用事に混合する方法があるが、両化合物とも高活性であるがゆえに、不安定であり、オゾン水と過酸化水素水に安定剤を添加することが必須となる。この安定剤は活性を抑制する機能を有しているため、酸化作用の強い促進酸化処理水を得るという本発明の目的にそぐわない。また、安定剤が不純物となるため、精密洗浄や排水処理等には、適さないという問題があった。   In order to obtain accelerated oxidation treated water that is a mixture of ozone water and hydrogen peroxide water, there is a method of carefully mixing ozone water and hydrogen peroxide water produced in advance, but both compounds are highly active, It is unstable and it is essential to add a stabilizer to ozone water and hydrogen peroxide water. Since this stabilizer has a function of suppressing activity, it does not meet the purpose of the present invention to obtain accelerated oxidized water having a strong oxidizing action. Further, since the stabilizer becomes an impurity, there is a problem that it is not suitable for precision cleaning, waste water treatment, and the like.

このため、精密洗浄や排水処理等に適した促進酸化処理水を得るために、陽極と陰極での反応を利用して、高効率でオゾン水と過酸化水素水を同時に生成することが必要となる。しかし、水の酸化と酸素の還元を陽極と陰極において同時に行う技術は知られていない。   For this reason, in order to obtain accelerated oxidation treated water suitable for precision cleaning, wastewater treatment, etc., it is necessary to simultaneously generate ozone water and hydrogen peroxide water with high efficiency using the reaction at the anode and cathode. Become. However, there is no known technique for simultaneously oxidizing water and reducing oxygen at the anode and the cathode.

なお、特許文献1には、ダイヤモンド電極を陽極として用いた過酸化水素とオゾンの同時製造方法が開示されている。しかし、この方法では、陽極でのオゾン生成の副生成物として、過酸化水素が生成するものであり、陰極での反応は積極的に過酸化水素を製造することを目的としていない。   Patent Document 1 discloses a method for simultaneously producing hydrogen peroxide and ozone using a diamond electrode as an anode. However, in this method, hydrogen peroxide is generated as a byproduct of ozone generation at the anode, and the reaction at the cathode is not intended to actively produce hydrogen peroxide.

また、特許文献2には、パラジウム合金等の水素吸蔵合金を陰極として利用してオゾンと過酸化水素を含有する酸化性水を製造する技術が開示されている。この方法は、別途製造したオゾン水に酸素を添加した混合溶液を予め調製し、これに電解で生成する陰極中の原子状水素を接触させて、酸素を過酸化水素に還元してオゾンと共存させる技術である。この方法では、オゾンは別工程で発生させる必要があるために、別に装置を準備しなくてはならず、装置が複雑になるという問題点があった。また、電極に高価なパラジウムが必要となるため、実用的ではないという問題もあった。
特開平11−269686号公報 特開平10−324988号公報
Patent Document 2 discloses a technique for producing oxidizing water containing ozone and hydrogen peroxide using a hydrogen storage alloy such as a palladium alloy as a cathode. In this method, a mixed solution in which oxygen is added to separately produced ozone water is prepared in advance, and atomic hydrogen in the cathode generated by electrolysis is brought into contact therewith to reduce oxygen to hydrogen peroxide and coexist with ozone. Technology. In this method, since ozone needs to be generated in a separate process, a separate apparatus must be prepared, and the apparatus becomes complicated. Moreover, since expensive palladium was required for the electrode, there was also a problem that it was not practical.
JP-A-11-269686 Japanese Patent Laid-Open No. 10-324988

そこで、本発明は、上記問題点に鑑み、陰極で酸素の電解還元を行い、陽極で水の電解酸化を行うことにより、不純物を含まない高濃度過酸化水素水及び高濃度オゾン水を同時に製造する装置を提供することを目的とする。   Therefore, in view of the above problems, the present invention simultaneously produces high-concentration hydrogen peroxide water and high-concentration ozone water not containing impurities by electrolytic reduction of oxygen at the cathode and electrolytic oxidation of water at the anode. It is an object of the present invention to provide a device that performs the above-described process.

酸素は水に難溶であるために、高い電流密度で電解を行うと、水にまで還元され、過酸化水素水が得られない。そのため、高電流密度が要求されるオゾン発生反応と、酸素還元反応を同時に進行させるためには、高効率酸素還元電極が必要となる。本発明者は、気体濃縮機能と気体保持機能とともに気体拡散機能を有する、陰極に最適な、疎水性微粒子を表面に分散固定した粒子群からなる酸素還元用電極を開発した。この酸素還元用電極を陰極で使用することにより、オゾン発生に要する高電流密度においても、適切な電流密度で酸素の電解還元が進行し、過酸化水素が得られることを見出し、本発明に想到した。   Since oxygen is hardly soluble in water, when electrolysis is performed at a high current density, it is reduced to water and hydrogen peroxide water cannot be obtained. Therefore, a highly efficient oxygen reduction electrode is required in order to simultaneously proceed with the ozone generation reaction and the oxygen reduction reaction that require a high current density. The present inventor has developed an oxygen reduction electrode comprising a group of particles having hydrophobic fine particles dispersed and fixed on the surface, which is optimal for a cathode and has a gas diffusion function as well as a gas concentration function and a gas holding function. By using this oxygen reduction electrode at the cathode, it has been found that even at a high current density required for ozone generation, the oxygen electrolytic reduction proceeds at an appropriate current density, and hydrogen peroxide can be obtained. did.

すなわち、本発明の過酸化水素水及びオゾン水の同時製造装置は、酸素還元用電極を備えた陰極室と、この陰極室とイオン交換膜により区画されるとともにオゾン発生用電極を備えた陽極室とを備え、前記酸素還元用電極は、銀めっき液に、ポリテトラフルオロエチレン微粒子を分散させ、複合めっきを行うことにより得られたポリテトラフルオロエチレン電極粒子表面に分散固定した粒子群からなり、前記オゾン発生用電極は二酸化鉛メッシュであり、陰極において酸素の還元により過酸化水素を発生させ、同時に、陽極において水の酸化によりオゾンを発生させるように構成したことを特徴とする That is, the simultaneous hydrogen peroxide water and ozone water production apparatus of the present invention includes a cathode chamber provided with an oxygen reducing electrode, and an anode chamber that is partitioned by the cathode chamber and an ion exchange membrane and provided with an ozone generating electrode. The oxygen reduction electrode comprises a group of particles in which polytetrafluoroethylene particles obtained by dispersing polytetrafluoroethylene fine particles in a silver plating solution and performing composite plating are dispersed and fixed on the electrode particle surfaces. The ozone generating electrode is a lead dioxide mesh, and is characterized in that hydrogen peroxide is generated by reduction of oxygen at the cathode and ozone is generated by oxidation of water at the anode .

た、前記陰極室に酸素供給口と純水供給口と過酸化水素水取出口とを設け、前記陽極室に純水供給口とオゾン水取出口とを設けたことを特徴とする。 Also, the oxygen supply port and the pure water supply port and the hydrogen peroxide water taking port disposed in the cathode chamber, characterized in that a pure water supply port and the ozone water taking port to the anode chamber.

さらに、本発明の過酸化水素水及びオゾン水の同時製造方法は、請求項1又は2に記載の過酸化水素水及びオゾン水の同時製造装置を用いて、陰極室に酸素と純水、陽極室に純水を供給しながら、前記両極間に通電し、陰極において酸素の還元により過酸化水素を発生させ、同時に、陽極において水の酸化によりオゾンを発生させることを特徴とする。 Furthermore, the simultaneous manufacturing method of the hydrogen peroxide solution and the ozone water of the present invention uses the hydrogen peroxide solution and the ozone water simultaneous manufacturing apparatus according to claim 1 or 2, and oxygen and pure water in the cathode chamber, the anode While supplying pure water to the chamber, current is passed between the electrodes, hydrogen peroxide is generated by reduction of oxygen at the cathode, and ozone is generated by oxidation of water at the anode.

本発明の過酸化水素水及びオゾン水の同時製造装置によれば、酸素と純水のみを出発物質として、不純物を含まない高濃度過酸化水素水及び高濃度オゾン水を同時に製造し、強力な酸化作用を有する促進酸化処理水を製造することができる。また、酸素還元用電極が疎水性微粒子を表面に分散固定した粒子群であることで、疎水性相互作用により、表面近傍での酸素濃度を増加させ、効率よく酸素を還元できる。これにより、オゾン発生に要する高電流密度においても、適切な電流密度で酸素の還元が進行し、過酸化水素が得られる。   According to the apparatus for simultaneously producing hydrogen peroxide and ozone water of the present invention, high-concentration hydrogen peroxide and high-concentration ozone water containing no impurities are simultaneously produced using only oxygen and pure water as starting materials. An accelerated oxidation-treated water having an oxidizing action can be produced. In addition, since the oxygen reduction electrode is a group of particles in which hydrophobic fine particles are dispersed and fixed on the surface, the oxygen concentration in the vicinity of the surface can be increased and the oxygen can be efficiently reduced by the hydrophobic interaction. Thereby, even at a high current density required for ozone generation, reduction of oxygen proceeds at an appropriate current density, and hydrogen peroxide is obtained.

また、前記酸素還元用電極は、複合めっき法により疎水性微粒子を表面に分散固定したことで、疎水性微粒子を電極の表面に均一に分散固定できるので、これら疎水性微粒子の疎水性機能が最大限に発揮され、効率よく酸素を還元できる。   In addition, since the hydrophobic fine particles can be uniformly dispersed and fixed on the surface of the electrode by dispersing and fixing the hydrophobic fine particles on the surface by the composite plating method, the oxygen reducing electrode has the maximum hydrophobic function. The oxygen can be reduced efficiently.

また、前記疎水性微粒子がポリテトラフルオロエチレンであり、電極表面を確実に疎水化して、効率よく酸素を還元できる。   Further, the hydrophobic fine particles are polytetrafluoroethylene, and the surface of the electrode can be reliably hydrophobized to efficiently reduce oxygen.

本発明の過酸化水素水及びオゾン水の同時製造方法によれば、酸素と純水のみを出発物質として、不純物を含まない高濃度過酸化水素水及び高濃度オゾン水を同時に製造し、強力な酸化作用を有する促進酸化処理水を製造することができる。   According to the simultaneous production method of hydrogen peroxide solution and ozone water of the present invention, a high concentration hydrogen peroxide solution and high concentration ozone water not containing impurities are produced simultaneously using only oxygen and pure water as starting materials, An accelerated oxidation-treated water having an oxidizing action can be produced.

以下、本発明の過酸化水素水及びオゾン水の同時製造装置の実施例について、添付した図面を参照しながら説明する。   Hereinafter, an embodiment of a simultaneous hydrogen peroxide solution and ozone water production apparatus of the present invention will be described with reference to the accompanying drawings.

図1において、1はイオン交換膜で、このイオン交換膜1により陰極室2と陽極室3とに区画されている。   In FIG. 1, reference numeral 1 denotes an ion exchange membrane, which is partitioned into a cathode chamber 2 and an anode chamber 3 by the ion exchange membrane 1.

陰極室2には、粒子状の酸素還元用電極4が充填されており、この酸素還元用電極4は陰極室2下部に内設された酸素還元用電極保持板5上に載置されている。酸素還元用電極保持板5は、酸素還元用電極4を保持でき、水と酸素を通し、過酸化水素と反応しないものであればよい。酸素還元用電極保持板5の下部には、酸素供給管6が設けられており、この酸素供給管6に連結して、陰極室2外部に向けて酸素供給口7が設置されている。酸素供給管6は、酸素供給口7から導入された酸素を、さらに酸素還元用電極4下部から陰極室内に均一に供給できるよう、長手方向に等間隔をおいて複数の孔を有した構造となっている。陰極室2の上面には外部に向けて純水供給口8が、底面には外部に向けて過酸化水素水取出口9が設置されており、過酸化水素水取出口9には配管10が接続されている。   The cathode chamber 2 is filled with a particulate oxygen reduction electrode 4, and this oxygen reduction electrode 4 is placed on an oxygen reduction electrode holding plate 5 provided in the lower portion of the cathode chamber 2. . The oxygen reduction electrode holding plate 5 may be any one that can hold the oxygen reduction electrode 4 and allows water and oxygen to pass therethrough and does not react with hydrogen peroxide. An oxygen supply pipe 6 is provided at the lower part of the oxygen reduction electrode holding plate 5, and an oxygen supply port 7 is provided to the outside of the cathode chamber 2 so as to be connected to the oxygen supply pipe 6. The oxygen supply pipe 6 has a structure having a plurality of holes at equal intervals in the longitudinal direction so that oxygen introduced from the oxygen supply port 7 can be further uniformly supplied from the lower part of the oxygen reduction electrode 4 into the cathode chamber. It has become. A pure water supply port 8 is provided on the upper surface of the cathode chamber 2 toward the outside, and a hydrogen peroxide water outlet 9 is provided on the bottom surface, and a pipe 10 is provided at the hydrogen peroxide water outlet 9. It is connected.

イオン交換膜1により区画される陽極室3の側壁近傍にはオゾン発生用電極11が設置されている。このオゾン発生用電極11としては、オゾン生成反応に有効な電極であれば、特定のものに限定されないが、例えば、二酸化鉛メッシュを用いることができる。メッシュ状であることで、効率よく水を酸化できる。陽極室3の上面には外部に向けて純水供給口12が、底面には外部に向けてオゾン水取出口13が設置されており、オゾン水取出口13には配管14が接続されている。過酸化水素水を取り出すための配管10と、オゾン水を取り出すための配管14は連結され、過酸化水素/オゾン混合水溶液取出口15に接続している。   An ozone generating electrode 11 is provided in the vicinity of the side wall of the anode chamber 3 partitioned by the ion exchange membrane 1. The ozone generation electrode 11 is not limited to a specific one as long as it is an electrode effective for the ozone generation reaction. For example, a lead dioxide mesh can be used. By being mesh-shaped, water can be oxidized efficiently. A pure water supply port 12 is provided on the upper surface of the anode chamber 3 and the ozone water outlet 13 is provided on the bottom surface of the anode chamber 3. A pipe 14 is connected to the ozone water outlet 13. . A pipe 10 for taking out hydrogen peroxide water and a pipe 14 for taking out ozone water are connected to each other and connected to a hydrogen peroxide / ozone mixed aqueous solution outlet 15.

つぎに、図2を参照しながら、酸素還元用電極4の作製法について説明する。   Next, a method for producing the oxygen reduction electrode 4 will be described with reference to FIG.

図2に示すように、めっき槽16に正極として銀対極17を接合させた集電棒18を吊設するとともに、負極として集電棒19の一端に絶縁性籠20を接合させたカップ型集電体21を吊設した装置で製造する。銀対極17は遥動可能であり、カップ型集電体21は回動自在な構造となっている。この絶縁性籠20に電極粒子22を投じ、めっき槽16に疎水性微粒子を含む複合めっき液23を満たす。めっき槽16の下部に配した回動自在なマグネチックスターラー24により、複合めっき液23を攪拌する。   As shown in FIG. 2, a current collector rod 18 having a silver counter electrode 17 bonded as a positive electrode is suspended in a plating tank 16 and a cup-type current collector having an insulating rod 20 bonded to one end of the current collector rod 19 as a negative electrode. Manufactured with a device with 21 suspended. The silver counter electrode 17 can be swung, and the cup-type current collector 21 has a rotatable structure. Electrode particles 22 are cast on the insulating basket 20, and the plating tank 16 is filled with the composite plating solution 23 containing hydrophobic fine particles. The composite plating solution 23 is agitated by a rotatable magnetic stirrer 24 disposed at the bottom of the plating tank 16.

めっき液23には、電極粒子表面を被覆する金属化合物を溶解させておく。この金属としては、耐食性が高く電解時に安定なものであれば、特定のものに限定されないが、例えば、銀、ニッケル、鉄、クロム、コバルトを用いることができる。銀は、めっきが容易で、取り扱いが容易であるため、特に好適に用いられる。   In the plating solution 23, a metal compound that coats the surface of the electrode particles is dissolved. The metal is not particularly limited as long as it has high corrosion resistance and is stable during electrolysis. For example, silver, nickel, iron, chromium, and cobalt can be used. Silver is particularly preferably used because it is easy to plate and easy to handle.

疎水性微粒子としては、疎水性を有する微粒子であれば、特定のものに限定されないが、例えば、ポリテトラフルオロエチレンなどのフッ素樹脂のほか、フッ化グラファイトなどのフッ化炭素は、電解雰囲気下においても長時間安定して疎水性が保持されるので、好的に用いられる。ポリテトラフルオロエチレンは、比較的安価で入手しやすいので、特に好適に用いられる。   Hydrophobic fine particles are not limited to specific ones as long as they are hydrophobic fine particles. For example, in addition to fluororesins such as polytetrafluoroethylene, fluorocarbons such as fluorinated graphite are used in an electrolytic atmosphere. Is also preferably used because it is stable for a long time and maintains its hydrophobicity. Polytetrafluoroethylene is particularly preferably used because it is relatively inexpensive and easily available.

疎水性微粒子の粒径は、電極粒子に均一に固定されるように、めっき液中に均一に分散できる大きさであればよい。ポリテトラフルオロエチレンの場合は、10μm以下のものが好適に用いられる。   The particle size of the hydrophobic fine particles may be a size that can be uniformly dispersed in the plating solution so as to be uniformly fixed to the electrode particles. In the case of polytetrafluoroethylene, those having a size of 10 μm or less are preferably used.

疎水性微粒子をめっき液中に均一に分散させるために、カチオン系界面活性剤を加えてもよい。このカチオン系界面活性剤は、特定のものに限定されるものではない。めっき液中の界面活性剤の濃度は、0.1〜10g/lが好ましい。   In order to uniformly disperse the hydrophobic fine particles in the plating solution, a cationic surfactant may be added. This cationic surfactant is not limited to a specific one. The concentration of the surfactant in the plating solution is preferably 0.1 to 10 g / l.

電極粒子22としては、電解時に安定で安価な金属であれば、特定のものに限定されないが、銅、ニッケル、鉄、ステンレスなどが好適に用いられる。   The electrode particles 22 are not particularly limited as long as they are stable and inexpensive during electrolysis, but copper, nickel, iron, stainless steel and the like are preferably used.

このような装置により、銀対極17とマグネチックスターラー24とを用いて攪拌した複合めっき液23中で、カップ型集電体21を回転させながら、集電棒18、19に通電し、電極粒子22上に複合めっきを行う。これにより、疎水性微粒子を電極粒子表面に均一に分散固定することができる。   With such an apparatus, in the composite plating solution 23 stirred using the silver counter electrode 17 and the magnetic stirrer 24, the current collector rods 18 and 19 were energized while rotating the cup-type current collector 21, and the electrode particles 22 Composite plating is performed on the top. Thereby, hydrophobic fine particles can be uniformly dispersed and fixed on the electrode particle surfaces.

つぎに、過酸化水素水及びオゾン水の同時製造装置の動作について説明する。   Next, the operation of the simultaneous production apparatus for hydrogen peroxide water and ozone water will be described.

陰極室2に酸素供給口7から酸素を、純水供給口8から純水を供給し、陽極室3に純水供給口12から純水をそれぞれ供給しながら、酸素還元用電極4及びオゾン発生用電極11間に通電して電解を行う。これにより、陰極室2では酸素が還元され過酸化水素が発生し、陽極室3では水が酸化されオゾンが発生する。発生した過酸化水素及びオゾンは純水に溶解した後、それぞれ過酸化水素水取出口9及びオゾン水取出口13からそれぞれ取り出される。続いて、配管10、14の連結部分で、過酸化水素水とオゾン水が混合され、過酸化水素/オゾン混合水溶液取出口15から促進酸化処理水である過酸化水素/オゾン混合水溶液が取り出される。   Oxygen is supplied from the oxygen supply port 7 to the cathode chamber 2, pure water is supplied from the pure water supply port 8, and pure water is supplied from the pure water supply port 12 to the anode chamber 3. Electrolysis is performed by energizing between the electrodes 11 for use. As a result, oxygen is reduced in the cathode chamber 2 to generate hydrogen peroxide, and water is oxidized in the anode chamber 3 to generate ozone. The generated hydrogen peroxide and ozone are dissolved in pure water and then taken out from the hydrogen peroxide water outlet 9 and the ozone water outlet 13, respectively. Subsequently, hydrogen peroxide water and ozone water are mixed at the connecting portions of the pipes 10 and 14, and the hydrogen peroxide / ozone mixed aqueous solution, which is the accelerated oxidation treatment water, is taken out from the hydrogen peroxide / ozone mixed aqueous solution outlet 15. .

以上のように、本実施例の過酸化水素水及びオゾン水の同時製造装置は、酸素還元用電極4を備えた陰極室2と、この陰極室2とイオン交換膜1により区画されるとともにオゾン発生用電極11を備えた陽極室3とを備え、前記酸素還元用電極4は疎水性微粒子を表面に分散固定した粒子群からなり、陰極において酸素の還元により過酸化水素を発生させ、同時に、陽極において水の酸化によりオゾンを発生させるように構成したことで、酸素と純水のみを出発物質として、不純物を含まない高濃度過酸化水素水及び高濃度オゾン水を同時に製造し、強力な酸化作用を有する促進酸化処理水を製造することができる。また、酸素還元用電極が疎水性であることで、疎水性相互作用により、電極表面近傍での酸素濃度を増加させ、効率よく酸素を還元できる。さらに、酸素還元用電極が疎水性粒子群であることで、オゾン発生に要する高電流密度においても、適切な電流密度で酸素の還元が進行し、過酸化水素が得られる。   As described above, the simultaneous hydrogen peroxide water and ozone water production apparatus of the present embodiment is partitioned by the cathode chamber 2 provided with the oxygen reduction electrode 4, the cathode chamber 2 and the ion exchange membrane 1, and ozone. And an anode chamber 3 having a generation electrode 11, wherein the oxygen reduction electrode 4 is composed of a group of particles in which hydrophobic fine particles are dispersed and fixed on the surface, and generates hydrogen peroxide by reducing oxygen at the cathode, By constructing the anode to generate ozone by oxidation of water, high-concentration hydrogen peroxide water and high-concentration ozone water containing no impurities are produced simultaneously using only oxygen and pure water as starting materials, and strong oxidation It is possible to produce accelerated oxidized water having an action. Further, since the oxygen reducing electrode is hydrophobic, the oxygen concentration in the vicinity of the electrode surface can be increased by the hydrophobic interaction, and oxygen can be efficiently reduced. Furthermore, since the oxygen reduction electrode is a group of hydrophobic particles, even at a high current density required for ozone generation, oxygen reduction proceeds at an appropriate current density, and hydrogen peroxide is obtained.

また、本実施例の過酸化水素水及びオゾン水の同時製造装置によれば、前記酸素還元用電極4が、複合めっき法により疎水性微粒子を表面に分散固定したものであることで、疎水性微粒子を電極表面に均一に分散固定できるので、これら疎水性微粒子の疎水性機能が最大限に発揮され、効率よく酸素を還元できる。   Further, according to the simultaneous production apparatus for hydrogen peroxide and ozone water of the present example, the oxygen reduction electrode 4 is obtained by dispersing and fixing hydrophobic fine particles on the surface by a composite plating method. Since the fine particles can be uniformly dispersed and fixed on the electrode surface, the hydrophobic function of these hydrophobic fine particles is maximized, and oxygen can be reduced efficiently.

また、本実施例の過酸化水素水及びオゾン水の同時製造装置によれば、前記疎水性微粒子がポリテトラフルオロエチレンであることで、電極表面を確実に疎水化して、効率よく酸素を還元できる。   Further, according to the simultaneous production apparatus for hydrogen peroxide solution and ozone water of this example, the hydrophobic fine particles are polytetrafluoroethylene, so that the electrode surface can be reliably hydrophobized and oxygen can be efficiently reduced. .

また、本実施例の過酸化水素水及びオゾン水の同時製造装置によれば、前記陰極室に酸素供給口7と純水供給口8と過酸化水素水取出口9とを設け、前記陽極室3に純水供給口12とオゾン水取出口13とを設けたことで、酸素と純水のみを出発物質として、不純物を含まない高濃度過酸化水素水及び高濃度オゾン水を同時に製造し、強力な酸化作用を有する促進酸化処理水を製造することができる。   Further, according to the apparatus for simultaneously producing hydrogen peroxide water and ozone water of the present embodiment, the cathode chamber is provided with the oxygen supply port 7, the pure water supply port 8, and the hydrogen peroxide solution outlet 9, and the anode chamber 3 is provided with a pure water supply port 12 and an ozone water outlet 13 to simultaneously produce high-concentration hydrogen peroxide water and high-concentration ozone water not containing impurities, using only oxygen and pure water as starting materials, It is possible to produce accelerated oxidation-treated water having a strong oxidizing action.

さらに、本実施例の過酸化水素水及びオゾン水の同時製造方法によれば、請求項1〜4のいずれか1項記載の過酸化水素水及びオゾン水の同時製造装置を用いて、陰極室2に酸素と純水、陽極室3に純水を供給しながら、前記両極間に通電し、陰極において酸素の還元により過酸化水素を発生させ、同時に、陽極において水の酸化によりオゾンを発生させることで、酸素と純水のみを出発物質として、不純物を含まない高濃度過酸化水素水及び高濃度オゾン水を同時に製造し、強力な酸化作用を有する促進酸化処理水を製造することができる。   Furthermore, according to the simultaneous manufacturing method of the hydrogen peroxide solution and the ozone water of the present embodiment, using the simultaneous manufacturing apparatus for the hydrogen peroxide solution and the ozone water according to any one of claims 1 to 4, While supplying oxygen and pure water to the anode 2 and pure water to the anode chamber 3, electricity is passed between the two electrodes to generate hydrogen peroxide by reducing oxygen at the cathode, and simultaneously generate ozone by oxidizing water at the anode. As a result, it is possible to simultaneously produce high-concentration hydrogen peroxide water and high-concentration ozone water not containing impurities using only oxygen and pure water as starting materials, thereby producing accelerated oxidation-treated water having a strong oxidizing action.

以下の実施例において、本発明の過酸化水素水及びオゾン水の同時製造方法について、より具体的に説明する。本発明は、下記の実施例に限定されるものではなく、種々の変形実施が可能である。   In the following examples, the simultaneous production method of hydrogen peroxide solution and ozone water of the present invention will be described more specifically. The present invention is not limited to the following examples, and various modifications can be made.

図2に示す装置を用いて、疎水性微粒子を表面に分散固定した粒子群である酸素還元用電極4を作製した。チオシアン系銀めっき液にカチオン系界面活性剤を用いて、粒径0.2μmのポリテトラフルオロエチレン微粒子を分散させ、複合めっき液23とした。粒径2mmの銅粒子22をカップ型集電体21に投じ、この液中にて銀対極17を用いて攪拌しながら銅粒子22上に複合めっきを行い、疎水性銀粒子群酸素還元用電極4を得た。   Using the apparatus shown in FIG. 2, an oxygen reduction electrode 4 as a particle group in which hydrophobic fine particles were dispersed and fixed on the surface was produced. A polytetrafluoroethylene fine particle having a particle diameter of 0.2 μm was dispersed in a thiocyanate silver plating solution using a cationic surfactant to obtain a composite plating solution 23. A copper particle 22 having a particle diameter of 2 mm is cast on a cup-shaped current collector 21, and composite plating is performed on the copper particle 22 while stirring with a silver counter electrode 17 in this liquid, and an electrode for hydrophobic silver particle group oxygen reduction 4 was obtained.

また、10メッシュのチタンメッシュに、α−二酸化鉛、ついでβ−二酸化鉛を電析し、オゾン発生用電極11を得た。   Further, α-lead dioxide and then β-lead dioxide were electrodeposited on a 10 mesh titanium mesh to obtain an electrode 11 for generating ozone.

得られた酸素還元用電極4とオゾン発生用電極11をイオン交換膜1とともに図1のように配置し、純水供給口8、12から純水を、酸素供給口7から酸素を供給しながら電解を行い、陰極室2にて酸素の還元を行い、陽極室3にて水の酸化を行った。   The obtained oxygen reduction electrode 4 and ozone generation electrode 11 are arranged together with the ion exchange membrane 1 as shown in FIG. 1, while supplying pure water from the pure water supply ports 8 and 12 and supplying oxygen from the oxygen supply port 7. Electrolysis was performed, oxygen was reduced in the cathode chamber 2, and water was oxidized in the anode chamber 3.

陰極として総面積105cmの疎水性銀粒子群である酸素還元用電極4と、陽極として実行面積1.26cmの二酸化鉛メッシュ板オゾン発生用電極11を、25cmのイオン交換膜1の両側に配置した。酸素流量4ml/min、純水流量4ml/min、電流密度100mA/cmで60分間通電を行ったところ、陰極室2にて濃度6.3ppmの過酸化水素が、陽極室3にて濃度7.2ppmのオゾンが生成していることが確認された。 Oxygen reduction electrode 4 which is a group of hydrophobic silver particles having a total area of 105 cm 2 as a cathode, and a lead dioxide mesh plate ozone generation electrode 11 having an effective area of 1.26 cm 2 as an anode, both sides of 25 cm 2 of ion exchange membrane 1 Arranged. When energization was performed for 60 minutes at an oxygen flow rate of 4 ml / min, a pure water flow rate of 4 ml / min, and a current density of 100 mA / cm 2 , hydrogen peroxide having a concentration of 6.3 ppm in the cathode chamber 2 had a concentration of 7 in the anode chamber 3. It was confirmed that 2 ppm of ozone was generated.

本発明の過酸化水素水及びオゾン水の同時製造装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the simultaneous manufacturing apparatus of the hydrogen peroxide solution of this invention, and ozone water. 酸素還元用電極の形成装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the formation apparatus of the electrode for oxygen reduction.

1 イオン交換膜
2 陰極室
3 陽極室
4 酸素還元用電極(陰極)
7 酸素供給口
8 純水供給口
9 過酸化水素水取出口
11 オゾン発生用電極(陽極)
12 純水供給口
13 オゾン水取出口
1 Ion Exchange Membrane 2 Cathode Chamber 3 Anode Chamber 4 Oxygen Reduction Electrode (Cathode)
7 Oxygen supply port 8 Pure water supply port 9 Hydrogen peroxide water outlet
11 Ozone generating electrode (anode)
12 Pure water supply port
13 Ozone water outlet

Claims (3)

酸素還元用電極を備えた陰極室と、この陰極室とイオン交換膜により区画されるとともにオゾン発生用電極を備えた陽極室とを備え、前記酸素還元用電極は、銀めっき液に、ポリテトラフルオロエチレン微粒子を分散させ、複合めっきを行うことにより得られたポリテトラフルオロエチレン電極粒子表面に分散固定した粒子群からなり、前記オゾン発生用電極は二酸化鉛メッシュであり、陰極において酸素の還元により過酸化水素を発生させ、同時に、陽極において水の酸化によりオゾンを発生させるように構成したことを特徴とする過酸化水素水及びオゾン水の同時製造装置。 And a cathode chamber with an oxygen reduction electrode comprises an anode chamber having an ozone generating electrode with partitioned by the cathode chamber and an ion exchange membrane, the oxygen reduction electrode, a silver plating solution, polytetra It consists of a group of particles in which polytetrafluoroethylene obtained by dispersing fluoroethylene fine particles and performing composite plating is dispersed and fixed on the surface of the electrode particles. The ozone generating electrode is a lead dioxide mesh, and oxygen is reduced at the cathode. The apparatus for simultaneously producing hydrogen peroxide and ozone water is characterized in that hydrogen peroxide is generated by means of, and simultaneously ozone is generated by oxidation of water at the anode. 前記陰極室に酸素供給口と純水供給口と過酸化水素水取出口とを設け、前記陽極室に純水供給口とオゾン水取出口とを設けたことを特徴とする請求項1記載の過酸化水素水及びオゾン水の同時製造装置。 According to claim 1, characterized in that the cathode chamber oxygen supply port and the pure water supply port and the hydrogen peroxide water taking port disposed on, provided the pure water supply port and the ozone water taking port to the anode chamber Equipment for simultaneous production of hydrogen peroxide water and ozone water. 前記請求項1又は2に記載の過酸化水素水及びオゾン水の同時製造装置を用いて、陰極室に酸素と純水、陽極室に純水を供給しながら、前記両極間に通電し、陰極において酸素の還元により過酸化水素を発生させ、同時に、陽極において水の酸化によりオゾンを発生させることを特徴とする過酸化水素水及びオゾン水の同時製造方法。   Using the hydrogen peroxide water and ozone water simultaneous production apparatus according to claim 1 or 2, while supplying oxygen and pure water to the cathode chamber and pure water to the anode chamber, a current is passed between the electrodes, A method for simultaneously producing hydrogen peroxide water and ozone water, wherein hydrogen peroxide is generated by reduction of oxygen in the atmosphere and ozone is simultaneously generated by oxidation of water at the anode.
JP2008102573A 2008-04-10 2008-04-10 Equipment for simultaneous production of ozone water and hydrogen peroxide water Active JP4968628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102573A JP4968628B2 (en) 2008-04-10 2008-04-10 Equipment for simultaneous production of ozone water and hydrogen peroxide water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102573A JP4968628B2 (en) 2008-04-10 2008-04-10 Equipment for simultaneous production of ozone water and hydrogen peroxide water

Publications (2)

Publication Number Publication Date
JP2009248059A JP2009248059A (en) 2009-10-29
JP4968628B2 true JP4968628B2 (en) 2012-07-04

Family

ID=41309239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102573A Active JP4968628B2 (en) 2008-04-10 2008-04-10 Equipment for simultaneous production of ozone water and hydrogen peroxide water

Country Status (1)

Country Link
JP (1) JP4968628B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512760B (en) * 2017-08-14 2021-03-02 深圳大学 Electrolytic cell device for synchronously generating ozone and hydrogen peroxide through electricity, and preparation method and application thereof
CN111718105B (en) * 2020-07-16 2023-12-12 兰州理工大学 Treatment device and method for degrading oily sludge based on ozone oxidation and hydrogen peroxide
EP4341219A2 (en) * 2021-05-20 2024-03-27 Evoqua Water Technologies LLC Regulation of onsite peroxide generation for improved peroxone advanced oxidative process control
CN117417035B (en) * 2023-12-18 2024-03-12 中国科学院生态环境研究中心 Water treatment device and method for producing hydrogen peroxide by synchronous cathode of gaseous ozone produced by anode

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915990Y2 (en) * 1981-08-14 1984-05-11 一男 和田 Grave incense holder
JP3304481B2 (en) * 1993-02-26 2002-07-22 ペルメレック電極株式会社 Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide
JP3677078B2 (en) * 1995-04-21 2005-07-27 ペルメレック電極株式会社 Method and apparatus for producing hydrogen peroxide water
JPH1091987A (en) * 1996-09-18 1998-04-10 Sony Corp Optical pickup and optical disk device
JP3596997B2 (en) * 1996-11-12 2004-12-02 ペルメレック電極株式会社 Electrode feeder, method for producing the same, and electrolytic cell for producing hydrogen peroxide
JPH10277551A (en) * 1997-04-08 1998-10-20 Matsushita Refrig Co Ltd Electrolyte water generating device
JPH10324988A (en) * 1997-05-26 1998-12-08 Permelec Electrode Ltd Apparatus for production of ozone-and hydrogen peroxide-containing water and production therefor
JPH11269686A (en) * 1998-03-18 1999-10-05 Permelec Electrode Ltd Production of hydrogen peroxide and electrolytic cell for production of hydrogen peroxide
JP2000254651A (en) * 1999-03-11 2000-09-19 Kurita Water Ind Ltd Electrolytic treatment and device for water containing hydrophobic organic mater
JP3913923B2 (en) * 1999-03-15 2007-05-09 ペルメレック電極株式会社 Water treatment method and water treatment apparatus
JP4115686B2 (en) * 2000-11-02 2008-07-09 ペルメレック電極株式会社 Electrode structure and electrolysis method using the structure
JP4654384B2 (en) * 2004-05-24 2011-03-16 岡山県 Electrolyzed water production equipment
JP2008063648A (en) * 2006-09-11 2008-03-21 Sumitomo Heavy Ind Ltd Apparatus for producing rinse water containing hydrogen peroxide, and method for producing rinse water containing hydrogen peroxide

Also Published As

Publication number Publication date
JP2009248059A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4116726B2 (en) Electrochemical treatment method and apparatus
CN107117690B (en) Device and method for treating refractory pollutants through electrocatalytic oxidation
Qu et al. Novel electrochemical advanced oxidation processes with H2O2 generation cathode for water treatment: A review
JP2002317287A (en) Electrolytic cell for preparation of hydrogen peroxide and method for producing hydrogen peroxide
JP4811844B2 (en) Method for producing percarbonate
CN102092820A (en) Method and device for removing organic matters from water by using double-pool double-effect visible light in response to photo-electro-Fenton reaction
CN102976451A (en) Wastewater treatment device and method for in-situ electric generation of H2O2 cooperating with O3 oxidation
Xie et al. Hydrogen peroxide generation from gas diffusion electrode for electrochemical degradation of organic pollutants in water: A review
US20230129237A1 (en) Water-processing electrochemical reactor
JP4968628B2 (en) Equipment for simultaneous production of ozone water and hydrogen peroxide water
CN204848373U (en) Novel fragrant water treatment of three -dimensional electricity device
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
WO2022132662A1 (en) "super bubble" electro-photo hybrid catalytic system for advanced treatment of organic wastewater
JP2008043891A (en) Closed cylindrical electrolyzer
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2003145161A (en) Water treatment apparatus and water treatment method
JP2007061681A (en) Nitrate nitrogen-containing wastewater treatment method and apparatus, and electrolytic cell for wastewater treatment
JP2002346566A (en) Apparatus and method for water treatment
JPH08155463A (en) Method and apparatus for decomposing ammoniacal nitrogen nitric-nitrogen and/or nitrous-nitrogen
Emeji et al. Electrochemical preparation of iron-supported carbon-cloth electrode and its application in the in-situ production of hydrogen peroxide
JP4146394B2 (en) Water treatment apparatus and water treatment method
JP2005021744A (en) Method and apparatus for electrolyzing emulsion
KR100564062B1 (en) The apparatus for hybrid mediated oxidation of destroying organic wastes
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20080414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120325

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250