JP4966698B2 - Electric double layer capacitor separator and electric double layer capacitor - Google Patents

Electric double layer capacitor separator and electric double layer capacitor Download PDF

Info

Publication number
JP4966698B2
JP4966698B2 JP2007065610A JP2007065610A JP4966698B2 JP 4966698 B2 JP4966698 B2 JP 4966698B2 JP 2007065610 A JP2007065610 A JP 2007065610A JP 2007065610 A JP2007065610 A JP 2007065610A JP 4966698 B2 JP4966698 B2 JP 4966698B2
Authority
JP
Japan
Prior art keywords
fiber
organic
inorganic
melting point
point component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007065610A
Other languages
Japanese (ja)
Other versions
JP2008227296A (en
Inventor
裕治 片桐
昌司 杉山
芳信 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2007065610A priority Critical patent/JP4966698B2/en
Publication of JP2008227296A publication Critical patent/JP2008227296A/en
Application granted granted Critical
Publication of JP4966698B2 publication Critical patent/JP4966698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、無機繊維を骨格材として使用する無機繊維主体の不織布シートからなり、十分な機械的強度と良好な電解液濡れ性を有する電気二重層キャパシタ用セパレータとそれを用いた電気二重層キャパシタに関する。   The present invention comprises an inorganic fiber-based non-woven sheet using inorganic fibers as a skeleton material, an electric double layer capacitor separator having sufficient mechanical strength and good electrolyte wettability, and an electric double layer capacitor using the same About.

ポータブル電子機器の急速な普及に伴い、コンデンサや蓄電池の適用範囲と需要が拡大している。近年では、長寿命、急速充放電が可能、メンテナンスが不要などの特長から、コンデンサが注目されており、特に、容量が大きい電気二重層キャパシタの需要が増加している。   With the rapid spread of portable electronic devices, the scope and demand for capacitors and storage batteries are expanding. In recent years, capacitors have attracted attention due to their features such as long life, rapid charge / discharge, and no maintenance required. In particular, demand for electric double layer capacitors having a large capacity is increasing.

電気二重層キャパシタは、主に各種電子機器のバックアップ電源等にも使用されており、ポータブル電子機器類の小型化、高性能化に伴い、電気二重層キャパシタも小型化、高性能化が要求されている。このため、電気二重層キャパシタのセパレータには、厚さが薄く、高空隙率であり、電解液保液性の高いことが要求されている。さらに、円筒形(または捲回型)キャパシタ用のセパレータには、巻き付けるための機械的な強度も必要とされる。   Electric double layer capacitors are mainly used as backup power supplies for various electronic devices. As portable electronic devices become smaller and higher in performance, electric double layer capacitors are also required to be smaller and higher in performance. ing. For this reason, the separator of the electric double layer capacitor is required to have a small thickness, a high porosity, and a high electrolyte solution retention property. Further, a separator for a cylindrical (or wound type) capacitor is required to have mechanical strength for winding.

従来、電気二重層キャパシタ用セパレータとしては、オレフィン系樹脂、ポリエステル、アラミド等の合成繊維を主体とした有機繊維不織布が使用されているが、近年では、電気二重層キャパシタを大容量化するために、電解液の溶媒として耐電圧の大きいプロピレンカーボネート等の有機溶媒が使用されており、親水性の強いプロピレンカーボネート等の有機溶媒を使用した有機系電解液に対して、疎水性の繊維からなる前記有機繊維不織布セパレータでは濡れ性が劣り、電解液吸液性や電解液保持性が悪くなるという問題があった。   Conventionally, organic fiber nonwoven fabrics mainly composed of synthetic fibers such as olefin resin, polyester, and aramid have been used as separators for electric double layer capacitors. In recent years, however, in order to increase the capacity of electric double layer capacitors. In addition, an organic solvent such as propylene carbonate having a high withstand voltage is used as a solvent for the electrolytic solution, and the organic electrolytic solution using an organic solvent such as propylene carbonate having a strong hydrophilic property is composed of hydrophobic fibers. The organic fiber nonwoven fabric separator has a problem that wettability is inferior, and the electrolyte solution absorbability and the electrolyte solution retainability are deteriorated.

一方、ガラス繊維、セラミック繊維等の無機繊維からなる無機繊維不織布であれば、無機繊維は親水性であるので、プロピレンカーボネート等の有機溶媒を使用した有機系電解液に対して高い濡れ性を得ることができる。しかし、無機繊維は自己接着性がないので、無機繊維の絡み合いだけでは十分な機械的強度を得ることができない。そのため、従来の無機繊維不織布セパレータでは、有機樹脂のバインダー液(エマルジョン、樹脂溶液等)を無機繊維不織布に含浸または塗布したり、あるいは、有機樹脂の粉末状物または繊維状物を予め添加して無機繊維不織布を作製しこれを熱処理するようにし、無機繊維同士を有機樹脂で結着して所定の機械的強度を得るようにしている(例えば、特許文献1、2)。   On the other hand, if the inorganic fiber nonwoven fabric is made of inorganic fibers such as glass fibers and ceramic fibers, the inorganic fibers are hydrophilic, so that they have high wettability with respect to an organic electrolyte using an organic solvent such as propylene carbonate. be able to. However, since inorganic fibers are not self-adhesive, sufficient mechanical strength cannot be obtained only by entanglement of inorganic fibers. Therefore, in the conventional inorganic fiber nonwoven fabric separator, an organic resin binder liquid (emulsion, resin solution, etc.) is impregnated or applied to the inorganic fiber nonwoven fabric, or an organic resin powder or fiber is added in advance. An inorganic fiber nonwoven fabric is produced and heat-treated, and the inorganic fibers are bonded together with an organic resin to obtain a predetermined mechanical strength (for example, Patent Documents 1 and 2).

しかしながら、有機樹脂のバインダー液を含浸または塗布して無機繊維同士を結着させたり、あるいは、有機樹脂の粉末状物または繊維状物を加熱溶融して無機繊維同士を結着させると、無機繊維の交点のみを結着するのではなく、無機繊維の交差部分及びそれ以外の繊維表面や、更には、無機繊維間の間隙部分にまで、有機樹脂による皮膜が形成され、無機繊維の良好な濡れ性が奪われ、無機繊維不織布セパレータの電解液浸透性や電解液保持性が低下するという問題があった。   However, if the inorganic fibers are impregnated or coated with an organic resin binder solution or the inorganic fibers are bonded by heating or melting the organic resin powder or fiber, Instead of binding only the intersections of the inorganic fibers, a film made of an organic resin is formed on the crossing portions of the inorganic fibers and other fiber surfaces, and even on the gaps between the inorganic fibers, so that the inorganic fibers are well wetted. Therefore, there has been a problem that the electrolyte penetration and the electrolyte retention of the inorganic fiber nonwoven fabric separator are reduced.

そこで、本出願人は、先に、無機繊維に繊維径を微細化したフィブリル化有機繊維を適量混合して湿式抄造することにより、無機繊維同士がフィブリル化有機繊維の絡み付きによって結合して十分な機械的強度が得られ、しかも無機繊維表面を疎水性の有機成分が皮膜化して覆うことがなく良好な濡れ性が維持される無機繊維不織布セパレータを提案した(特許文献3)。   Therefore, the present applicant previously mixed a suitable amount of fibrillated organic fibers with a finer fiber diameter into the inorganic fibers and wet-made, so that the inorganic fibers are sufficiently bonded by the entanglement of the fibrillated organic fibers. An inorganic fiber nonwoven fabric separator has been proposed in which mechanical strength is obtained and good wettability is maintained without covering the surface of the inorganic fiber with a hydrophobic organic component formed into a film (Patent Document 3).

しかしながら、電気二重層キャパシタの生産設備は、アルミ電解コンデンサの設備を転用して生産されることが多いため、電気二重層キャパシタの形態は円筒形が多い。この円筒形では、高速でセパレータは強く引っ張られて巻かれるため、より機械的強度が高く、さらにセパレータの粘り(伸び)が必要となる。つまり、従来の無機繊維不織布セパレータをこのような円筒形のキャパシタ内に巻いて組み込もうとすると、機械的強度や伸びが不足し切れて円筒形にすることが困難であった。   However, since the production facilities for electric double layer capacitors are often produced by diverting the facilities for aluminum electrolytic capacitors, the form of electric double layer capacitors is often cylindrical. In this cylindrical shape, since the separator is strongly pulled and wound at a high speed, the mechanical strength is higher, and further, the stickiness (elongation) of the separator is required. That is, when a conventional inorganic fiber nonwoven fabric separator is wound and incorporated in such a cylindrical capacitor, it is difficult to form a cylindrical shape due to insufficient mechanical strength and elongation.

特開平1−304719号公報JP-A-1-304719 特開平11−145002号公報Japanese Patent Laid-Open No. 11-14002 特開2005−327935号公報JP 2005-327935 A

本発明は、前記従来の問題点に鑑み、無機繊維を骨格材とする無機材料主体の不織布シートからなり、引張強度等の十分な機械的強度および引張伸びを有しながら、前記無機材料の良好な電解液濡れ性が阻害されず電解液浸透性や電解液保持性が良好で、円筒形のキャパシタ内に組み込まれる時に切れることのなく作業ができる電気二重層キャパシタ用セパレータとそれを用いた電気二重層キャパシタを提供することを目的とする。   In view of the above-mentioned conventional problems, the present invention comprises an inorganic material-based nonwoven fabric sheet having inorganic fibers as a skeleton material, and has good mechanical strength such as tensile strength and tensile elongation, while being excellent in the inorganic material. Electrolyte double layer capacitor separator with excellent electrolyte wettability, good electrolyte penetration and electrolyte retention, and operation without interruption when installed in a cylindrical capacitor, and electricity using the same An object is to provide a double layer capacitor.

本発明者等は、前記課題を解決するべく鋭意検討した結果、無機繊維不織布セパレータの機械的強度を高く、引張伸びを高め、捲回型キャパシタ内での巻きつけ作業でも切れずに組み立てられるようにするには、剛直かつしなやかな繊維材料である高融点成分を有した骨格材として機能するモノフィラメント状有機繊維と、低融点成分を有し該低融点成分の熱溶融により優れた熱接着性をもたらす熱接着性有機繊維等からなる有機バインダーを適量含み、かつ無機バインダーを少量添加すればよいという知見を得た。また、これにより、電解液浸透性や電解液保持性を高く維持することができ、前記骨格材として機能する有機繊維の添加によりシートの収縮も抑制できる知見を得た。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention can increase the mechanical strength of the inorganic fiber nonwoven fabric separator, increase the tensile elongation, and can be assembled without being cut even when wound in a wound capacitor. To achieve this, a monofilamentous organic fiber that functions as a skeleton material having a high melting point component, which is a rigid and supple fiber material, and a low melting point component that has excellent thermal adhesiveness due to thermal melting of the low melting point component. It has been found that an appropriate amount of an organic binder composed of a heat-adhesive organic fiber or the like to be provided and a small amount of an inorganic binder may be added. Further, it was found that electrolyte permeability and electrolyte retention can be maintained high, and sheet shrinkage can be suppressed by adding organic fibers that function as the skeleton material.

すなわち、熱接着性有機繊維は太い繊維であるため、不織布シート中に介在させられる繊維本数が少なく、無機繊維等の繊維材料を結着させるための熱接着性有機繊維の接触交点数、すなわち、接着点数を多く稼ぐことができない。接着点数を増やすために熱接着性有機繊維を多く添加すると、セパレータの孔径が大きくなって耐短絡性を著しく損ね、また、無機材料の添加量が減ってセパレータの電解液濡れ性を著しく損ねてしまう。よって、できるだけ少量の熱接着性有機繊維添加量で接着点数を多く稼ぐためには、不織布シートをプレスして厚さを減じる、すなわち密度を高くする必要があったが、これではプレス時に無機繊維が折れる、および空隙率が低下するという不都合があった。更に、ライン製造時、流れ方向に張力をかけて搬送しながら湿紙シートを加熱乾燥するが、この際、シート幅方向に面収縮が起こる。これにより、シートの密度が低下して嵩高のフワフワの不織布シートとなり、シート強度が低くなるとともに、孔径が大きくなって、セパレータに不向きな不織布シートとなってしまうという不都合があった。   That is, since the heat-adhesive organic fiber is a thick fiber, the number of fibers interposed in the nonwoven fabric sheet is small, and the number of contact intersections of the heat-adhesive organic fiber for binding fiber materials such as inorganic fibers, that is, Cannot earn a lot of adhesion points. Adding more heat-adhesive organic fibers to increase the number of adhesion points significantly increases the pore size of the separator and significantly impairs short-circuit resistance, and decreases the amount of inorganic material added to significantly impair the electrolyte wettability of the separator. End up. Therefore, in order to increase the number of adhesion points by adding as little heat-adhesive organic fiber as possible, it was necessary to press the nonwoven sheet to reduce the thickness, that is, to increase the density. Have the inconvenience of breaking and the porosity decreasing. Further, during the production of the line, the wet paper sheet is heated and dried while being transported with tension applied in the flow direction. At this time, surface shrinkage occurs in the sheet width direction. As a result, the density of the sheet is lowered, resulting in a bulky, fluffy nonwoven fabric sheet, the sheet strength is lowered, the pore diameter is increased, and the nonwoven fabric sheet is unsuitable for the separator.

このため、前記無機繊維と前記有機繊維に、更に第3成分として、無機バインダーを含ませることで、前記不都合を解消できることを更に知見した。つまり、無機バインダーを少量含ませることで、有機繊維添加によるセパレータの電解液濡れ性の低下を防ぐことができるようになった。また、無機バインダーは微小な一次粒子が凝集して二次粒子を形成した比表面積が非常に大きい複雑な多孔質構造を乾燥後に形成するために、無機バインダーを含ませることで、前記無機繊維及び前記有機繊維の交絡構造からなる繊維間の隙間にこのような構造の無機バインダーを介在させ、セパレータの孔構造を微細化するととともに複雑迷路化することができるようになった。また、無機バインダーを含ませることで、熱接着性有機繊維の添加によるシートが柔らかくフワフワになることを防ぐことができ、さらに、加熱乾燥時のシート幅方向での面収縮を抑えることができるようになった。   For this reason, it was further found out that the inconvenience can be solved by adding an inorganic binder as a third component to the inorganic fiber and the organic fiber. That is, by including a small amount of an inorganic binder, it has become possible to prevent a decrease in the electrolyte wettability of the separator due to the addition of organic fibers. In addition, in order to form an inorganic binder after drying a complex porous structure having a very large specific surface area in which fine primary particles are aggregated to form secondary particles, the inorganic fibers and An inorganic binder having such a structure is interposed in the gap between the fibers having the entangled structure of the organic fibers, so that the pore structure of the separator can be refined and a complicated maze can be formed. In addition, by including an inorganic binder, it is possible to prevent the sheet due to the addition of the heat-adhesive organic fibers from being soft and fluffy, and to suppress surface shrinkage in the sheet width direction during heat drying. Became.

本発明は、かかる知見に基づきなされたものであり、本発明の電気二重層キャパシタ用セパレータは、請求項1に記載の通り、平均繊維径1.5μm以下の無機繊維と、繊維径30μm以下の高融点成分を少なくとも含むモノフィラメント状有機繊維を骨格材とし、これら骨格材である前記繊維材料同士が、無機バインダーと有機バインダーによって結合された湿式抄造シートよりなる電気二重層キャパシタ用セパレータであって、前記無機バインダーが、BET法による比表面積当たりの水酸基の量が20μmol/m以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダーであり、前記有機バインダーが、低融点成分を少なくとも含む熱接着性有機繊維(前記モノフィラメント状有機繊維が高融点成分と低融点成分を有する複合繊維である場合は、前記モノフィラメント状有機繊維が兼ねることも可)であり、前記湿式抄造シートは、前記低融点成分を少なくとも含む熱接着性有機繊維の低融点成分の熱溶融により前記繊維材料同士が結合されている一方、前記高融点成分を少なくとも含むモノフィラメント状有機繊維の高融点成分は熱溶融化されておらず、前記無機繊維及び前記無機バインダーの表面には実質的に前記有機繊維及び前記有機バインダーによる皮膜が形成されておらず、前記湿式抄造シート中、前記無機繊維が55〜95質量%、前記高融点成分を少なくとも含むモノフィラメント状有機繊維が2〜35質量%、前記無機バインダーが0.5〜10質量%含まれ、前記湿式抄造シートは、空隙率が80%以上であり、引張強度が5N/25mm幅以上でかつ引張伸びが3%以上であることを特徴とする。
た、本発明の電気二重層キャパシタは、前記目的を達成するべく、請求項2に記載の通り、請求項1記載のセパレータを用いたことを特徴とする。
This invention is made | formed based on this knowledge, The separator for electric double layer capacitors of this invention is an inorganic fiber with an average fiber diameter of 1.5 micrometers or less, and a fiber diameter of 30 micrometers or less as described in Claim 1. at least including monofilament organic fibers of high melting point component as a skeleton material, the fiber material to each other is their skeletal material is made of wet papermaking sheets thus bonded to the inorganic binder and organic binder over a electric double layer separators for capacitors The inorganic binder is mainly composed of a silica-type scaly inorganic substance having a hydroxyl group amount of 20 μmol / m 2 or more by a BET method, an average particle size of 2 μm or less by a laser scattering method, and an aspect ratio of 10 or more. an inorganic binder, the organic binder is heat-bondable organic fibers comprising at least a low-melting component (the motor When the filamentous organic fiber is a composite fiber having a high-melting component and a low-melting component, the monofilament-like organic fiber can also serve as the heat-bonding sheet. While the fiber materials are bonded to each other by thermal melting of the low melting point component of the organic organic fiber, the high melting point component of the monofilament organic fiber containing at least the high melting point component is not thermally melted, and the inorganic fiber and A monofilament in which the surface of the inorganic binder is not substantially formed with a film of the organic fiber and the organic binder , and the inorganic fiber is 55 to 95% by mass in the wet papermaking sheet and contains at least the high melting point component. Jo organic fiber 2 to 35 wt%, the inorganic binder contains 0.5 to 10 mass%, the wet papermaking sheet , Porosity is 80% or more, tensile strength, wherein the tensile elongation and the 5N / 25 mm width or more is 3% or more.
Also, the electric double layer capacitor of the present invention, in order to achieve the above object, as claimed in claim 2, characterized by using a separator of claim 1, wherein.

本発明の電気二重層キャパシタ用セパレータは、平均繊維径1.5μm以下の無機繊維と、繊維径30μm以下の高融点成分を少なくとも含むモノフィラメント状有機繊維を骨格材とし、これら骨格材である前記繊維材料同士が、無機バインダーと有機バインダーによって結合された湿式抄造シートよりなる電気二重層キャパシタ用セパレータであって、前記無機バインダーが、BET法による比表面積当たりの水酸基の量が20μmol/m以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダーであり、前記有機バインダーが、低融点成分を少なくとも含む熱接着性有機繊維(前記モノフィラメント状有機繊維が高融点成分と低融点成分を有する複合繊維である場合は、前記モノフィラメント状有機繊維が兼ねることも可)であり、前記湿式抄造シートは、前記低融点成分を少なくとも含む熱接着性有機繊維の低融点成分の熱溶融により前記繊維材料同士が結合されている一方、前記高融点成分を少なくとも含むモノフィラメント状有機繊維の高融点成分は熱溶融化されておらず、前記無機繊維及び前記無機バインダーの表面には実質的に前記有機繊維及び前記有機バインダーによる皮膜が形成されておらず、前記湿式抄造シート中、前記無機繊維が55〜95質量%、前記高融点成分を少なくとも含むモノフィラメント状有機繊維が2〜35質量%、前記無機バインダーが0.5〜10質量%含まれ、前記湿式抄造シートは、空隙率が80%以上であり、引張強度が5N/25mm幅以上でかつ引張伸びが3%以上である構成としたことにより、無機繊維主体の不織布シートでありながら引張強度等の十分な機械的強度を有することで、円筒形(捲回型)のキャパシタへの組み込みが容易になり、前記無機バインダーの添加により良好な電解液濡れ性が阻害されず電解液浸透性や電解液保持性を良好とし、キャパシタ性能を良好ならしめることができる。 The separator for an electric double layer capacitor according to the present invention uses, as a skeleton material, an inorganic fiber having an average fiber diameter of 1.5 μm or less and a monofilament organic fiber containing at least a high melting point component having a fiber diameter of 30 μm or less. materials with each other, an inorganic binder and an organic binder over Thus an electric double layer separators for capacitors made of bonded wet papermaking sheet, the inorganic binder, BET method of hydroxyl groups per specific surface area by the 20 [mu] mol / m 2 The above is an inorganic binder mainly composed of a silica-type scaly inorganic substance having an average particle diameter of 2 μm or less by an laser scattering method and an aspect ratio of 10 or more, and the organic binder includes a heat-adhesive organic fiber containing at least a low melting point component ( The monofilamentous organic fiber is a composite fiber having a high melting point component and a low melting point component The monofilament-like organic fiber may also serve as the wet-paper-sheet, and the wet-made sheet is bonded to the fiber material by thermal melting of the low-melting-point component of the thermo-adhesive organic fiber containing at least the low-melting-point component. On the other hand, the high melting point component of the monofilament-like organic fiber containing at least the high melting point component is not thermally melted, and the surface of the inorganic fiber and the inorganic binder is substantially made of the organic fiber and the organic binder. No film is formed, and in the wet papermaking sheet, the inorganic fiber is 55 to 95% by mass, the monofilament organic fiber containing at least the high melting point component is 2 to 35% by mass, and the inorganic binder is 0.5 to 0.5%. contains 10 mass%, the wet papermaking sheet is a void ratio of 80% or more, and a tensile strength of 5N / 25 mm width or higher tensile By beauty it is configured at least 3%, by having a sufficient mechanical strength such as strength tensile yet nonwoven sheet of inorganic fibers mainly easily incorporated into the capacitor of the cylindrical (wound) Thus, the addition of the inorganic binder does not hinder good electrolyte solution wettability, and the electrolyte solution permeability and the electrolyte solution retention property are improved, and the capacitor performance can be improved.

本発明の電気二重層キャパシタ用セパレータは、平均繊維径1.5μm以下の無機繊維と、繊維径30μm以下の高融点成分を少なくとも含むモノフィラメント状有機繊維を骨格材とし、これら骨格材である前記繊維材料同士が、無機バインダーと有機バインダーによって結合された湿式抄造シートよりなる電気二重層キャパシタ用セパレータであって、前記無機バインダーが、BET法による比表面積当たりの水酸基の量が20μmol/m以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダーであり、前記有機バインダーが、低融点成分を少なくとも含む熱接着性有機繊維(前記モノフィラメント状有機繊維が高融点成分と低融点成分を有する複合繊維である場合は、前記モノフィラメント状有機繊維が兼ねることも可)であり、前記湿式抄造シートは、前記低融点成分を少なくとも含む熱接着性有機繊維の低融点成分の熱溶融により前記繊維材料同士が結合されている一方、前記高融点成分を少なくとも含むモノフィラメント状有機繊維の高融点成分は熱溶融化されておらず、前記無機繊維及び前記無機バインダーの表面には実質的に前記有機繊維及び前記有機バインダーによる皮膜が形成されておらず、前記湿式抄造シート中、前記無機繊維が55〜95質量%、前記高融点成分を少なくとも含むモノフィラメント状有機繊維が2〜35質量%、前記無機バインダーが0.5〜10質量%含まれ、前記湿式抄造シートは、空隙率が80%以上であり、引張強度が5N/25mm幅以上でかつ引張伸びが3%以上であることを条件とする。 The separator for an electric double layer capacitor according to the present invention uses, as a skeleton material, an inorganic fiber having an average fiber diameter of 1.5 μm or less and a monofilament organic fiber containing at least a high melting point component having a fiber diameter of 30 μm or less. materials with each other, an inorganic binder and an organic binder over Thus an electric double layer separators for capacitors made of bonded wet papermaking sheet, the inorganic binder, BET method of hydroxyl groups per specific surface area by the 20 [mu] mol / m 2 The above is an inorganic binder mainly composed of a silica-type scaly inorganic substance having an average particle diameter of 2 μm or less by an laser scattering method and an aspect ratio of 10 or more, and the organic binder includes a heat-adhesive organic fiber containing at least a low melting point component ( The monofilamentous organic fiber is a composite fiber having a high melting point component and a low melting point component The monofilament-like organic fiber may also serve as the wet-paper-sheet, and the wet-made sheet is bonded to the fiber material by thermal melting of the low-melting-point component of the thermo-adhesive organic fiber containing at least the low-melting-point component. On the other hand, the high melting point component of the monofilament-like organic fiber containing at least the high melting point component is not thermally melted, and the surface of the inorganic fiber and the inorganic binder is substantially made of the organic fiber and the organic binder. No film is formed, and in the wet papermaking sheet, the inorganic fiber is 55 to 95% by mass, the monofilament organic fiber containing at least the high melting point component is 2 to 35% by mass, and the inorganic binder is 0.5 to 0.5%. contains 10 mass%, the wet papermaking sheet is a void ratio of 80% or more, and a tensile strength of 5N / 25 mm width or higher tensile Provided that beauty is 3% or more.

ここで、骨格材として機能するモノフィラメント状有機繊維が高融点成分と低融点成分を有する複合繊維であり有機バインダーとしての熱接着性有機繊維を兼ねることができる場合、前記モノフィラメント状有機繊維を2質量%以上含むことは、すなわち、前記モノフィラメント状有機繊維を2質量%以上含み前記熱接着性有機繊維を2質量%以上含むことと実質的に同じこととなる。
また、前記モノフィラメント状有機繊維は所定径の口金から押し出して紡糸されるため繊維径はほぼそろっているすなわち繊維径分布が非常に狭いため、繊維径として表すことができる。モノフィラメント状有機繊維の繊維径は、通常デシテックスで表され、1万mの繊維を紡糸した時のグラム数で表現され、材質すなわち密度が決まれば繊維径もおのずと決まる。一方、ガラス繊維は遠心法またはブロー法と呼ばれる製法で紡糸されており、その繊維径にはばらつきがあるすなわち分布が広いため、通常平均繊維径として表される。
Here, when the monofilament-like organic fiber that functions as a skeleton material is a composite fiber having a high-melting-point component and a low-melting-point component and can also serve as a heat-adhesive organic fiber as an organic binder, In other words, it is substantially the same as including 2% by mass or more of the monofilament-like organic fiber and 2% by mass or more of the thermoadhesive organic fiber.
The monofilament-like organic fibers are extruded from a die having a predetermined diameter and spun, so that the fiber diameters are almost uniform, that is, the fiber diameter distribution is very narrow, and therefore can be expressed as the fiber diameter. The fiber diameter of the monofilament-like organic fiber is usually expressed in decitex, expressed in grams when a 10,000 m fiber is spun, and the fiber diameter is naturally determined if the material, ie density, is determined. On the other hand, glass fibers are spun by a manufacturing method called a centrifugal method or a blow method, and the fiber diameter varies, that is, has a wide distribution, and therefore is usually expressed as an average fiber diameter.

また、無機繊維を55質量%以上とし無機材料主体の不織布シートに構成され、しかも、骨格材となる繊維材料が有機バインダーとして熱接着性有機繊維の低融点成分の熱溶融により結着され、骨格材として機能するモノフィラメント状有機繊維の高融点成分が熱溶融化されていないので、前記湿式抄造シートからなるセパレータは、無機材料の表面に溶融した有機材料による皮膜が形成されず、セパレータ全体の55質量%以上を占める無機材料の良好な電解液濡れ性が阻害されず、電解液浸透性や電解液保持性が良好となる。尚、無機繊維の含有量が55質量%未満の場合は、親水性の無機材料の含有量が少なくなり疎水性の有機材料の含有量が多くなり、前記湿式抄造シートからなるセパレータの電解液濡れ性が悪化するため不適である。このため、無機繊維の含有量が65質量%以上、更には75質量%以上であればより好ましい。また、前記骨格材として機能するモノフィラメント状有機繊維の含有量が2質量%未満の場合は、該有機繊維の機能(機械的強度、引張伸び等)が十分に発揮できなくなるため不適である。このため、前記骨格材として機能するモノフィラメント状有機繊維の含有量が5質量%以上、更には10質量%以上であればより好ましい。   In addition, the inorganic fiber is 55% by mass or more and is composed of a non-woven sheet mainly composed of an inorganic material, and the fiber material serving as a skeleton material is bound as an organic binder by thermal melting of a low-melting-point component of the heat-adhesive organic fiber. Since the high melting point component of the monofilament-like organic fiber functioning as a material is not thermally melted, the separator made of the wet papermaking sheet does not form a film made of the molten organic material on the surface of the inorganic material, and the entire separator 55 The good electrolyte solution wettability of the inorganic material occupying the mass% or more is not hindered, and the electrolyte solution permeability and the electrolyte solution retainability are improved. When the content of the inorganic fiber is less than 55% by mass, the content of the hydrophilic inorganic material is decreased and the content of the hydrophobic organic material is increased. Unsuitable because of worsening of sex. For this reason, it is more preferable if the content of the inorganic fiber is 65% by mass or more, and further 75% by mass or more. Moreover, when the content of the monofilament organic fiber functioning as the skeleton material is less than 2% by mass, the function (mechanical strength, tensile elongation, etc.) of the organic fiber cannot be sufficiently exhibited, which is not suitable. For this reason, it is more preferable if the content of the monofilament organic fiber functioning as the skeleton material is 5% by mass or more, and further 10% by mass or more.

また、無機繊維と有機繊維の2成分に、更に無機バインダーを少量含ませるようにしたことで、前記湿式抄造シートからなるセパレータは、加熱乾燥時のシート幅方向での面収縮が少なく嵩高化による強度低下や孔径拡大を生じることがなく、また、熱接着性有機繊維の接着点数を多く稼ぐために抄造シートをプレスしても無機繊維が折れにくく、また、電解液濡れ性が向上して電解液吸液性や電解液保持性がさらに良好となり、また、孔構造が微細化、複雑迷路化して耐短絡性が良好となる。   In addition, since the inorganic fiber and the organic fiber are further added with a small amount of an inorganic binder, the separator made of the wet papermaking sheet has less surface shrinkage in the sheet width direction at the time of heating and drying, and is bulky. No decrease in strength or enlargement of pore diameter, and even if the paper sheet is pressed to increase the number of adhesion points of the heat-adhesive organic fibers, the inorganic fibers are not easily broken. The liquid-absorbing property and the electrolytic solution holding property are further improved, and the pore structure is miniaturized and a complicated labyrinth is formed, so that the short circuit resistance is improved.

前記無機繊維としては、例えば、ガラス繊維、シリカ繊維、アルミナ繊維、シリカ−アルミナ繊維、ロックウール、スラグウール等の人造非晶質系繊維、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー等の針状結晶質繊維、セピオライト、アタパルジャイト等の鉱物微細繊維等、工業的に入手が容易な無機繊維の中から、平均繊維径が1.5μm以下になるように、1種または2種以上を選択して使用することができる。   Examples of the inorganic fibers include glass fibers, silica fibers, alumina fibers, silica-alumina fibers, artificial amorphous fibers such as rock wool and slag wool, acicular crystalline materials such as potassium titanate whiskers and calcium carbonate whiskers. From inorganic fibers that are easily available industrially, such as mineral fine fibers such as fibers, sepiolite, and attapulgite, one or more types are selected and used so that the average fiber diameter is 1.5 μm or less. be able to.

また、前記無機繊維は、平均繊維径が1.5μm以下の微細径繊維であるので、前記湿式抄造シート中に多くの繊維本数を有し、前記湿式抄造シートの微孔構造を形成する骨格材の役割を有する。また、前記無機繊維は、平均繊維径が1.5μm以下であるので、前記湿式抄造シート中に多くの繊維本数を有し、前記湿式抄造シートを緻密な微孔構造にし、大きな空隙率を有することができ、さらに前記無機バインダーを無機繊維の表面上あるいは繊維間の間隙に添着あるいは充填して保持することができ、無機バインダーの抄造歩留まりを向上することができる。セパレータの空隙率が高いと、内部抵抗を低減でき、電解液保持量を高められ、角形(積層型)キャパシタに比べ電解液を浸み込ませるのに長時間を要する円筒形(捲回型)キャパシタの場合の電解液吸液速度を高められる(本発明のセパレータの空隙率は80%以上、更には85%以上であることが好ましい)。よって、前記無機繊維の含有量が55質量%未満であると、前記湿式抄造シートの空隙率が低下したり、前記湿式抄造シートの孔径が大きくなって耐短絡性が低下するため不適である。このため、無機繊維の含有量が65質量%以上、更には75質量%以上であればより好ましい。また、無機繊維の含有量が95質量%を超える場合は、前記無機バインダーや骨格材として機能する前記有機繊維や熱接着性有機繊維等の有機バインダーの含有量が少なくなり、無機バインダーの機能(加熱乾燥時のシート幅方向での面収縮の防止等)や骨格材として機能する前記有機繊維の機能(機械的強度や引張伸びの向上等)が十分に発揮できなくなるため不適である。このため、無機繊維の含有量が85質量%以下であればより好ましい。   Further, since the inorganic fiber is a fine fiber having an average fiber diameter of 1.5 μm or less, the skeleton material has a large number of fibers in the wet papermaking sheet and forms a microporous structure of the wet papermaking sheet. Have a role. In addition, since the inorganic fiber has an average fiber diameter of 1.5 μm or less, the wet papermaking sheet has a large number of fibers, the wet papermaking sheet has a fine microporous structure, and has a large porosity. Further, the inorganic binder can be attached or filled in the surface of the inorganic fiber or in the gap between the fibers, and the paper making yield of the inorganic binder can be improved. When the porosity of the separator is high, the internal resistance can be reduced, the amount of electrolyte retained can be increased, and a cylindrical shape (winding type) that requires a longer time to permeate the electrolyte than a square (multilayer) capacitor The electrolytic solution absorption speed in the case of a capacitor can be increased (the porosity of the separator of the present invention is preferably 80% or more, more preferably 85% or more). Therefore, if the content of the inorganic fiber is less than 55% by mass, the porosity of the wet papermaking sheet is lowered, or the pore diameter of the wet papermaking sheet is increased to reduce short-circuit resistance. For this reason, it is more preferable if the content of the inorganic fiber is 65% by mass or more, and further 75% by mass or more. In addition, when the content of the inorganic fiber exceeds 95% by mass, the content of the organic binder such as the organic fiber or the thermoadhesive organic fiber that functions as the inorganic binder or the skeleton material decreases, and the function of the inorganic binder ( This is unsuitable because the organic fibers functioning as a skeletal material (such as prevention of surface shrinkage in the sheet width direction during heat drying) and the function of the organic fibers (such as improvement in mechanical strength and tensile elongation) cannot be sufficiently exhibited. For this reason, it is more preferable if content of an inorganic fiber is 85 mass% or less.

前記無機バインダーとしては、シリカゾル、アルミナゾル、チタニアゾル、ジルコニアゾルのような無機ゾルから形成されるゲル状物も無機バインダーとして使用できるが、実際の抄造の際には原料と共に添加されて添着させたり、湿紙の時に含浸処理して付着させ乾燥させるが、前者ではほとんど添着させることができずバインダー効果としても低い、後者ではほぼ100%付着させることができるがシートが硬くなりロール状に巻き取ることが困難となる問題があり、無機繊維および有機繊維の表面改質材としての少量使用に限る。そこで、本発明者らが鋭意検討した結果、鱗片状物、すなわちBET法による比表面積当たりの水酸基の量が20μmol/m以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物が無機バインダーとして良好に使用できる知見を得た。この知見に基づき、本発明で用いる無機バインダーとしては、前述の通り、該シリカ系鱗片状無機物を主体とする無機バインダーとすることを条件としている。 As the inorganic binder, a gel-like material formed from an inorganic sol such as silica sol, alumina sol, titania sol, or zirconia sol can also be used as an inorganic binder. When wet paper is impregnated, it is attached and dried, but the former can hardly be attached and the binder effect is low, and the latter can be attached almost 100%, but the sheet is hardened and wound into a roll. However, it is limited to the use of a small amount as a surface modifier for inorganic fibers and organic fibers. Therefore, as a result of intensive studies by the present inventors, scaly matter, that is, the amount of hydroxyl group per specific surface area by the BET method is 20 μmol / m 2 or more, the average particle size by the laser scattering method is 2 μm or less, and the aspect ratio is 10 or more. It was found that the silica-based scale-like inorganic substance can be used favorably as an inorganic binder. Based on this finding, the inorganic binder used in the present invention is, as described above, provided that it is an inorganic binder mainly composed of the silica-based scale-like inorganic substance.

前記シリカ系鱗片状無機物を無機バインダーとして0.5質量%以上の含有量で使用すると、無機繊維と有機繊維の組み合わせでは防ぐことができなかった熱接着性有機繊維の添加によるシートが柔らかくフワフワになることを防ぐことができ、さらに、加熱乾燥時のシート幅方向での面収縮を抑えることができるようになった。また、前記シリカ系鱗片状無機物を無機バインダーとして1質量%以上の含有量で使用すると、無機繊維および有機繊維の表面に該無機バインダーが満遍なく付着することでセパレータの電解液濡れ性および電解液保持性をさらに高めることができ、湿式抄造シートの硬さ(腰)も出て、取り扱い作業性もよくなる。
一方、前記シリカ系鱗片状無機物を無機バインダーとして10質量%を超える含有量で使用すると、湿式抄造シートが緻密になり過ぎて空隙率を低下させる(すなわち密度が高くなりすぎる)および引張伸びが低くなるため不適である。また、前記シリカ系鱗片状無機物を多量に使用しても、無機バインダーの効果の割には材料コスト(製品コスト)が高くなり過ぎてしまうため、必要最小限での効果が出る量に留めるのがよい。このため、前記無機バインダーの含有量が6質量%以下であればより好ましい。
When the silica-based scaly inorganic substance is used as an inorganic binder at a content of 0.5% by mass or more, the sheet due to the addition of the heat-adhesive organic fibers that could not be prevented by the combination of inorganic fibers and organic fibers is soft and fluffy. In addition, it is possible to suppress surface shrinkage in the sheet width direction during drying by heating. In addition, when the silica-based scaly inorganic substance is used as an inorganic binder at a content of 1% by mass or more, the inorganic binder uniformly adheres to the surface of the inorganic fiber and the organic fiber, so that the electrolyte wettability of the separator and the electrolyte retention The wettability of the wet papermaking sheet can be improved, and the handling workability can be improved.
On the other hand, when the silica-based scaly inorganic substance is used as an inorganic binder at a content exceeding 10% by mass, the wet papermaking sheet becomes too dense to lower the porosity (that is, the density becomes too high) and the tensile elongation is low. Therefore, it is unsuitable. In addition, even if a large amount of the silica-based scale-like inorganic substance is used, the material cost (product cost) becomes too high for the effect of the inorganic binder, so the amount of the necessary minimum effect is limited. Is good. For this reason, it is more preferable if content of the said inorganic binder is 6 mass% or less.

前記有機繊維としては、高融点成分を少なくとも含む湿式抄造シートの骨格材として機能するモノフィラメント状有機繊維と、有機バインダーとしての低融点成分を少なくとも含む熱接着性有機繊維があるが、前記有機繊維としては、例えば、セルロース繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、ナイロン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維等の単一繊維または複合繊維、モノフィラメント状繊維またはフィブリル化繊維(パルプ状繊維、叩解性繊維を含む)の中から1種または2種以上を選択して使用できる。前記高融点成分を少なくとも含む湿式抄造シートの骨格材として機能するモノフィラメント状有機繊維が高融点成分と低融点成分を含む複合繊維である場合は、該モノフィラメント状有機繊維の低融点成分が有機バインダーとして機能するため、湿式抄造シートの骨格材としての機能と有機バインダーとしての機能の両方を兼ねることになる。   Examples of the organic fiber include a monofilament-like organic fiber that functions as a skeleton material of a wet papermaking sheet that includes at least a high melting point component, and a thermoadhesive organic fiber that includes at least a low melting point component as an organic binder. For example, cellulose fibers, polyethylene fibers, polypropylene fibers, acrylic fibers, nylon fibers, polyester fibers, polyamide fibers, polyvinyl alcohol fibers and the like single fibers or composite fibers, monofilament fibers or fibrillated fibers (pulp fibers, beating fibers 1 type or 2 types or more can be selected and used. When the monofilament organic fiber functioning as a skeleton material of the wet papermaking sheet containing at least the high melting point component is a composite fiber containing a high melting point component and a low melting point component, the low melting point component of the monofilament organic fiber is used as an organic binder. In order to function, it serves as both the function as a skeleton material of a wet papermaking sheet and the function as an organic binder.

前記高融点成分を少なくとも含む湿式抄造シートの骨格材として機能するモノフィラメント状有機繊維としては、高融点成分からなる単一繊維、もしくは、高融点成分と低融点成分を有する複合繊維から選択される。高融点成分の単一繊維からなるモノフィラメント状有機繊維としては、例えば、高融点のポリエチレンテレフタレート繊維等が使用できる。また、高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維としては、例えば、高融点のポリエチレンテレフタレートを芯成分とし低融点の共重合ポリエステルを鞘成分とする芯鞘型ポリエステル繊維(芯鞘型PET−PET繊維)、あるいは高融点のポリエチレンテレフタレートを芯成分とし低融点のポリエチレンを鞘成分とする芯鞘型複合繊維(芯鞘型PET−PE繊維)等が使用できる。前記複合繊維としては、芯鞘型の他に、海島型、サイドバイサイド型、割繊型等の複合繊維が使用できる。   The monofilament-like organic fiber functioning as a skeleton material of the wet papermaking sheet containing at least the high melting point component is selected from a single fiber consisting of a high melting point component or a composite fiber having a high melting point component and a low melting point component. As a monofilament-like organic fiber composed of a single fiber having a high melting point component, for example, a high melting point polyethylene terephthalate fiber can be used. Examples of monofilament-like organic fibers comprising composite fibers having a high melting point component and a low melting point component include, for example, a core-sheath type polyester fiber having a high melting point polyethylene terephthalate as a core component and a low melting point copolymer polyester as a sheath component ( A core-sheath type PET-PET fiber) or a core-sheath type composite fiber (core-sheath type PET-PE fiber) having a high melting point polyethylene terephthalate as a core component and a low melting point polyethylene as a sheath component can be used. As the composite fiber, in addition to the core-sheath type, a composite fiber such as a sea-island type, a side-by-side type, or a split fiber type can be used.

前記有機バインダーとしての低融点成分を少なくとも含む熱接着性有機繊維としては、低融点成分からなる単一繊維、もしくは、高融点成分と低融点成分を有する複合繊維の何れでもよい。低融点成分の単一繊維からなる熱接着性有機繊維としては、例えば、低融点のポリエチレン繊維等が使用できる。高融点成分と低融点成分を有する複合繊維からなる熱接着性有機繊維としては、例えば、高融点のポリエチレンテレフタレートを芯成分とし低融点の共重合ポリエステルを鞘成分とする芯鞘型複合繊維(芯鞘型PET−PET繊維)等が使用できる。   The heat-adhesive organic fiber containing at least a low melting point component as the organic binder may be either a single fiber made of a low melting point component or a composite fiber having a high melting point component and a low melting point component. As the heat-adhesive organic fiber composed of a single fiber having a low melting point component, for example, a low melting point polyethylene fiber or the like can be used. Examples of the heat-adhesive organic fiber composed of a composite fiber having a high melting point component and a low melting point component include, for example, a core-sheath type composite fiber (core) having a high melting point polyethylene terephthalate as a core component and a low melting point copolymer polyester as a sheath component. (Sheath type PET-PET fiber) or the like can be used.

前記熱接着性有機繊維は、前記高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維、例えば、高融点のポリエチレンテレフタレートを芯成分とし低融点の共重合ポリエステルまたはポリエチレンを鞘成分とする芯鞘型繊維(芯鞘型PET−PET繊維、芯鞘型PET−PE)であることが好ましい。また、電解液に対する耐溶剤性から見ると、ポリエステルよりポリエチレンの方が分子構造的に優れると考えられ、鞘成分をポリエチレンとすることがさらに好ましい。こうすることで、前記高融点成分を少なくとも含むモノフィラメント状有機繊維の機能(骨格材)と、前記熱接着性有機繊維の機能(優れた熱接着力により、キャパシタ内でも結合力が損なわれないよう不織布シート中の繊維材料を強固に結着する有機バインダー材)とを、1種類の有機繊維で機能させることができるようになり、有機材料の含有量を最低限の量に留めることができ、電解液濡れ性の低下を極力抑え、孔径の拡大を極力抑え、また、有機繊維を含ませたことによる前記弊害(加熱乾燥時のシート幅方向での面収縮の発生等)をカバーするために含ませる無機バインダーの含有量を減らすことができその分無機繊維の含有量を多くすることができる。   The heat-adhesive organic fiber is a monofilament organic fiber composed of a composite fiber having the high melting point component and the low melting point component, for example, a high melting point polyethylene terephthalate as a core component and a low melting point copolyester or polyethylene as a sheath component. The core-sheath type fiber (core-sheath type PET-PET fiber, core-sheath type PET-PE) is preferable. From the viewpoint of solvent resistance to the electrolytic solution, polyethylene is considered to be superior in molecular structure to polyester, and it is more preferable that the sheath component is polyethylene. By doing so, the function (skeleton material) of the monofilament-like organic fiber containing at least the high melting point component and the function of the thermoadhesive organic fiber (excellent thermal adhesive force does not impair the bonding force even in the capacitor. The organic binder material that firmly binds the fiber material in the non-woven sheet) can be made to function with one type of organic fiber, and the content of the organic material can be kept to a minimum amount, In order to suppress the deterioration of the electrolyte wettability as much as possible, to suppress the enlargement of the hole diameter as much as possible, and to cover the above-mentioned adverse effects (occurrence of surface shrinkage in the sheet width direction during heating and drying) due to the inclusion of organic fibers The content of the inorganic binder to be included can be reduced, and the content of the inorganic fiber can be increased accordingly.

前記有機繊維としては、上記した、高融点成分の単一繊維からなるモノフィラメント状有機繊維(骨格材)、高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維(骨格材、有機バインダー材)、低融点成分の単一繊維からなる有機繊維(有機バインダー材)以外に、フィブリル化セルロース繊維、フィブリル化アクリル繊維、フィブリル化アラミド繊維等のバインダー機能(繊維材料の交点に絡み付き繊維材料同士を結合する機能)を有するフィブリル化有機繊維を有機バインダーとして使用してもよく、この場合には、少量の前記フィブリル化有機繊維で前記骨格繊維材料の結着効果を高度に補うことができるので、前記フィブリル化有機繊維を少量含ませるようにすれば、前記熱接着性有機繊維などの他の有機バインダーの含有量を該フィブリル化有機繊維の増量分以上に減らすことができ、結果として有機バインダーの全体量(含有量)を減らすことができる。   Examples of the organic fiber include the above-described monofilament organic fiber (skeleton material) composed of a single fiber having a high melting point component, and monofilament organic fiber (skeleton material, organic binder) composed of a composite fiber having a high melting point component and a low melting point component. Materials), organic fibers (organic binder materials) consisting of single fibers of low melting point components, and binder functions such as fibrillated cellulose fibers, fibrillated acrylic fibers, and fibrillated aramid fibers (fiber materials entangled at the intersection of fiber materials) May be used as an organic binder, and in this case, a small amount of the fibrillated organic fiber can highly supplement the binding effect of the skeletal fiber material. If a small amount of the fibrillated organic fiber is included, other organic fibers such as the heat-adhesive organic fiber can be used. The content of the binder can be reduced to more increment of the fibrillated organic fibers, it is possible to reduce the overall amount of the organic binder (content) as a result.

前記セパレータは、引張伸びが3%以上とする。引張伸びが3%未満であると、円筒形(捲回型)キャパシタを作製する際にセパレータを引っ張って巻き付けるときに突然に切れる可能性があり好ましくない。ただし、引張伸びが良好であっても引張強度が低すぎる場合には、セパレータを引っ張って巻き付けるときにセパレータの強度が低いためにセパレータが伸ばされて巻き付けられる可能性があり好ましくなく、引張強度も5N/25mm幅以上とする。 The separator has a tensile elongation of 3% or more . When the tensile elongation is less than 3%, there is a possibility that the separator may be suddenly cut when it is wound by winding when manufacturing a cylindrical (winding type) capacitor. However, if the tensile strength is too low even if the tensile elongation is good, the separator may be stretched and wound because the strength of the separator is low when the separator is pulled and wound. 5N / 25mm width or more .

前記セパレータは、前述の通り、前記無機繊維と、前記高融点成分を少なくとも含むモノフィラメント状有機繊維を骨格材とし、これら骨格材である前記繊維材料同士が、前記無機バインダーと前記有機バインダーによって結合された湿式抄造シートとして構成されることが必要であり、前記無機バインダーや前記有機バインダー等がどの時点で添加されて前記湿式抄造シートが得られるようにするかについては特に限定するものではなく、結果として上記構成の湿式抄造シートが得られる方法であれば内添(湿式抄造時に混抄)であっても外添(シート化後に含浸)であっても構わない。ただし、前記無機バインダーを前記湿式抄造シート中に略均一に充填し易くできるという観点からは、前記無機繊維、前記有機繊維、前記無機バインダーを含めて湿式混抄するようにすることが好ましい。尚、前記湿式抄造シートにおいて、前記無機バインダーを、前記無機繊維や前記骨格材として機能する有機繊維の表面およびこれら繊維材料同士の間隙などに効率よく添着あるいは充填させるためには、湿式抄造時に、吸着剤(高分子凝集剤等)を使用するようにするのが好ましい。   As described above, the separator uses the inorganic fiber and the monofilament-like organic fiber containing at least the high melting point component as a skeleton material, and the fiber materials that are the skeleton material are bonded by the inorganic binder and the organic binder. It is necessary to be configured as a wet papermaking sheet, and there is no particular limitation on the point at which the inorganic binder or the organic binder is added to obtain the wet papermaking sheet. As long as it is a method for obtaining a wet papermaking sheet having the above structure, it may be internally added (mixed paper at the time of wet papermaking) or externally added (impregnated after forming into a sheet). However, it is preferable to wet-mix the inorganic binder, the organic fiber, and the inorganic binder from the viewpoint that the inorganic binder can be easily and uniformly filled in the wet paper-making sheet. In the wet papermaking sheet, in order to efficiently attach or fill the inorganic binder to the surface of the organic fiber functioning as the inorganic fiber or the skeleton material and the gap between these fiber materials, during wet papermaking, It is preferable to use an adsorbent (polymer flocculant or the like).

次に、本発明の実施例について比較例とともに詳細に説明する。
(実施例1)
無機繊維として平均繊維径0.45μmのCガラス短繊維(ジョーンズマンビル社製#104)80質量%と、無機バインダーとして平均粒径0.5μm(レーザー散乱法)の鱗片状シリカ(旭硝子エスアイテック社製サンラブリーLFS HN−050,BET法による比表面積当たりの水酸基の量が20〜70μmol/m,アスペクト比10〜200)5質量%と、高融点成分の単一繊維からなるモノフィラメント状有機繊維(骨格材)として繊度0.06dtex、繊維長3mmのポリエステル繊維(帝人社製テピルス,融点200℃,変性ポリエチレンテレフタレート)5質量%と、高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維(骨格材、有機バインダー材)として繊度1.2dtex、繊維長5mmの芯成分がポリエチレンテレフタレートで鞘成分がポリエチレンの芯鞘型PET−PE繊維(帝人社製テピルス,芯成分融点250℃,鞘成分融点120℃)10質量%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.6MPaの圧力を掛けた後、110℃にて乾燥し、150℃にて3分間加熱処理して、坪量11.4g/m、厚さ50μmの無機繊維シートを得た。得られた無機繊維シートを顕微鏡観察したところ、無機繊維シート中の無機材料(すなわち、ガラス繊維およびシリカ)の表面を覆う有機材料の皮膜は殆ど確認できなかった。これを実施例1の電気二重層キャパシタ用セパレータとした。
Next, examples of the present invention will be described in detail together with comparative examples.
Example 1
80% by mass of C glass short fiber (# 104 manufactured by Jones Manville) having an average fiber diameter of 0.45 μm as an inorganic fiber, and scaly silica having an average particle diameter of 0.5 μm (laser scattering method) as an inorganic binder (Asahi Glass Stech) A monofilament-like organic material consisting of a single fiber having a high melting point component, Sunlabry LFS HN-050, manufactured by Suntory LFS HN-050, the amount of hydroxyl group per specific surface area by BET method is 20 to 70 μmol / m 2 , and the aspect ratio is 10 to 200) Monofilament made of a composite fiber having a high melting point component and a low melting point component, 5% by mass of a polyester fiber (Teijin Tepyrus, melting point 200 ° C., modified polyethylene terephthalate) having a fineness of 0.06 dtex and a fiber length of 3 mm as a fiber (skeleton material) As organic fiber (skeleton material, organic binder material) fineness 1.2dtex, fiber length Disperse and mix 10% by mass in water with a core-sheath PET-PE fiber having a core component of mm of polyethylene terephthalate and a sheath component of polyethylene (Tepyrus manufactured by Teijin Ltd., core component melting point 250 ° C., sheath component melting point 120 ° C.), Further, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 0.6 MPa is applied with a press machine, and then dried at 110 ° C., at 150 ° C. Heat treatment was performed for 3 minutes to obtain an inorganic fiber sheet having a basis weight of 11.4 g / m 2 and a thickness of 50 μm. When the obtained inorganic fiber sheet was observed with a microscope, a film of an organic material covering the surface of the inorganic material (that is, glass fiber and silica) in the inorganic fiber sheet was hardly confirmed. This was used as the separator for the electric double layer capacitor of Example 1.

(実施例2)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)69質量%と、無機バインダーとして平均粒径0.2μm(レーザー散乱法)の鱗片状シリカ(旭硝子エスアイテック社製サンラブリーLFS HN−050,BET法による比表面積当たりの水酸基の量が20〜70μmol/m,アスペクト比10〜200)1質量%と、高融点成分の単一繊維からなるモノフィラメント状有機繊維(骨格材)として繊度0.06dtex、繊維長3mmのポリエステル繊維(帝人社製テピルス,融点200℃,変性ポリエチレンテレフタレート)10質量%と、高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維(骨格材、有機バインダー材)として繊度1.5dtex、繊維長5mmの芯成分がポリエチレンテレフタレートで鞘成分が共重合ポリエステルの芯鞘型PET−PET繊維(ユニチカ社製メルティ,芯成分融点250℃,鞘成分融点130℃)20質量%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.6MPaの圧力を掛けた後、110℃にて乾燥し、160℃にて3分間加熱処理して、坪量11.8g/m、厚さ50μmの無機繊維シートを得た。得られた無機繊維シートを顕微鏡観察したところ、無機繊維シート中の無機材料(すなわち、ガラス繊維およびシリカ)の表面を覆う有機材料の皮膜は殆ど確認できなかった。これを実施例2の電気二重層キャパシタ用セパレータとした。
(Example 2)
69% by mass of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and flaky silica (Laser Scattering Method) having an average particle diameter of 0.2 μm (laser scattering method) as inorganic binders Sunlably LFS HN-050, monofilament-like organic fiber composed of 1% by mass of hydroxyl group per specific surface area by BET method of 20 to 70 μmol / m 2 and aspect ratio of 10 to 200) and a single fiber having a high melting point component ( Monofilamentous organic material composed of 10% by mass of a polyester fiber (Tepile manufactured by Teijin Ltd., melting point 200 ° C., modified polyethylene terephthalate) having a fineness of 0.06 dtex and a fiber length of 3 mm as a skeletal material, and a composite fiber having a high melting point component and a low melting point component Fineness 1.5dtex, fiber length 5 as fiber (framework material, organic binder material) Disperse and mix in water with 20% by mass of core-sheath PET-PET fiber (Melty manufactured by Unitika, core component melting point 250 ° C., sheath component melting point 130 ° C.) whose core component is polyethylene terephthalate and sheath component is copolymerized polyester. Further, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 0.6 MPa is applied with a press machine, and then dried at 110 ° C., 160 ° C. For 3 minutes to obtain an inorganic fiber sheet having a basis weight of 11.8 g / m 2 and a thickness of 50 μm. When the obtained inorganic fiber sheet was observed with a microscope, a film of an organic material covering the surface of the inorganic material (that is, glass fiber and silica) in the inorganic fiber sheet was hardly confirmed. This was used as the separator for the electric double layer capacitor of Example 2.

(実施例3)
無機繊維として平均繊維径0.45μmのCガラス短繊維(ジョーンズマンビル社製#104)60質量%と、無機バインダーとして平均粒径0.5μm(レーザー散乱法)の鱗片状シリカ(旭硝子エスアイテック社製サンラブリーLFS HN−050,BET法による比表面積当たりの水酸基の量が20〜70μmol/m,アスペクト比10〜200)5質量%と、高融点成分の単一繊維からなるモノフィラメント状有機繊維(骨格材)として繊度0.06dtex、繊維長3mmのポリエステル繊維(帝人社製テピルス,融点200℃,変性ポリエチレンテレフタレート)10質量%と、高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維(骨格材、有機バインダー材)として繊度1.2dtex、繊維長5mmの芯成分がポリエチレンテレフタレートで鞘成分がポリエチレンの芯鞘型PET−PE繊維(帝人社製テピルス,芯成分融点250℃,鞘成分融点120℃)25質量%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.6MPaの圧力を掛けた後、110℃にて乾燥し、150℃にて3分間加熱処理して、坪量10.4g/m、厚さ50μmの無機繊維シートを得た。得られた無機繊維シートを顕微鏡観察したところ、無機繊維シート中の無機材料(すなわち、ガラス繊維およびシリカ)の表面を覆う有機材料の皮膜は殆ど確認できなかった。これを実施例3の電気二重層キャパシタ用セパレータとした。
(Example 3)
60% by mass of C short glass fibers (# 104, manufactured by Jones Manville) having an average fiber diameter of 0.45 μm as inorganic fibers, and scaly silica having an average particle diameter of 0.5 μm (laser scattering method) as an inorganic binder (Asahi Glass Stech) A monofilament-like organic material consisting of a single fiber having a high melting point component, Sunlabry LFS HN-050, manufactured by Suntory LFS HN-050, the amount of hydroxyl group per specific surface area by BET method is 20 to 70 μmol / m 2 , and the aspect ratio is 10 to 200) Monofilament made of a composite fiber having 10% by mass of a polyester fiber (Tepyrus manufactured by Teijin Ltd., melting point 200 ° C., modified polyethylene terephthalate) having a fineness of 0.06 dtex and a fiber length of 3 mm as a fiber (skeleton material), and a high melting point component and a low melting point component Fine organic fiber (skeleton material, organic binder material) fineness 1.2dtex, fiber Disperse and mix in water with 25% by mass of PET-PE fiber having a core component of polyethylene terephthalate of 5 mm and a sheath component of polyethylene (Tepyrus manufactured by Teijin Ltd., core component melting point 250 ° C., sheath component melting point 120 ° C.), Further, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 0.6 MPa is applied with a press machine, and then dried at 110 ° C., at 150 ° C. Heat treatment was performed for 3 minutes to obtain an inorganic fiber sheet having a basis weight of 10.4 g / m 2 and a thickness of 50 μm. When the obtained inorganic fiber sheet was observed with a microscope, a film of an organic material covering the surface of the inorganic material (that is, glass fiber and silica) in the inorganic fiber sheet was hardly confirmed. This was used as the separator for the electric double layer capacitor of Example 3.

(実施例4)
無機繊維として平均繊維径0.45μmのCガラス短繊維(ジョーンズマンビル社製#104)30質量%及び平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)55質量%と、無機バインダーとして平均粒径0.5μm(レーザー散乱法)の鱗片状シリカ(旭硝子エスアイテック社製サンラブリーLFS HN−050,BET法による比表面積当たりの水酸基の量が20〜70μmol/m,アスペクト比10〜200)10質量%と、高融点成分と低融点成分を有する複合繊維からなるモノフィラメント状有機繊維(骨格材、有機バインダー材)として繊度1.2dtex、繊維長5mmの芯成分がポリエチレンテレフタレートで鞘成分がポリエチレンの芯鞘型PET−PE繊維(帝人社製テピルス,芯成分融点250℃,鞘成分融点120℃)2質量%と、カナディアン濾水度が0mlのマイクロフィブリル化セルロース繊維(ダイセル化学工業社製)3質量%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.6MPaの圧力を掛けた後、110℃にて乾燥し、150℃にて3分間加熱処理して、坪量12.2g/m、厚さ50μmの無機繊維シートを得た。得られた無機繊維シートを顕微鏡観察したところ、無機繊維シート中の無機材料(すなわち、ガラス繊維およびシリカ)の表面を覆う有機材料の皮膜は殆ど確認できなかった。これを実施例4の電気二重層キャパシタ用セパレータとした。
Example 4
30% by mass of C glass short fibers (# 104 manufactured by Jones Manville) having an average fiber diameter of 0.45 μm as inorganic fibers and 55% by mass of C glass short fibers (CMLF 306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm; As an inorganic binder, scaly silica having an average particle size of 0.5 μm (laser scattering method) (Sun Lovely LFS HN-050, manufactured by Asahi Glass Stech Co., Ltd.), the amount of hydroxyl group per specific surface area by BET method is 20 to 70 μmol / m 2 , aspect ratio Ratio 10 to 200) 10% by mass, monofilamentous organic fiber (skeleton material, organic binder material) composed of a composite fiber having a high melting point component and a low melting point component, a core component having a fineness of 1.2 dtex and a fiber length of 5 mm is polyethylene terephthalate The sheath component is polyethylene sheath-type PET-PE fiber (Tepyrus manufactured by Teijin Ltd. 2% by mass (250 ° C., melting point of sheath component 120 ° C.) and 3% by mass of microfibrillated cellulose fiber (manufactured by Daicel Chemical Industries) with 0 ml Canadian freeness are dispersed and mixed in water, and polymer flocculant Is added in an appropriate amount, wet-made with a square sheet machine for hand-making, subjected to a pressure of 0.6 MPa with a press machine, dried at 110 ° C., and heat-treated at 150 ° C. for 3 minutes. Thus, an inorganic fiber sheet having a basis weight of 12.2 g / m 2 and a thickness of 50 μm was obtained. When the obtained inorganic fiber sheet was observed with a microscope, a film of an organic material covering the surface of the inorganic material (that is, glass fiber and silica) in the inorganic fiber sheet was hardly confirmed. This was designated as the separator for the electric double layer capacitor of Example 4.

(比較例1)
実施例1において、平均繊維径0.45μmのCガラス短繊維(ジョーンズマンビル社製#104)の配合量を85質量%に、また、無機バインダーの配合量を0質量%にそれぞれ変更した以外は、実施例1と同様にして、坪量8.8g/m、厚さ50μmの無機繊維シートを得た。これを比較例1の電気二重層キャパシタ用セパレータとした。
(Comparative Example 1)
In Example 1, except that the blending amount of C glass short fibers (# 104 manufactured by Jones Manville) having an average fiber diameter of 0.45 μm was changed to 85% by mass, and the blending amount of the inorganic binder was changed to 0% by mass, respectively. Obtained an inorganic fiber sheet having a basis weight of 8.8 g / m 2 and a thickness of 50 μm in the same manner as in Example 1. This was used as the electric double layer capacitor separator of Comparative Example 1.

(比較例2)
実施例2において、平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)の配合量を70質量%に、また、無機バインダーの配合量を0質量%にそれぞれ変更した以外は、実施例2と同様にして、坪量9.1g/m、厚さ50μmの無機繊維シートを得た。これを比較例2の電気二重層キャパシタ用セパレータとした。
(Comparative Example 2)
In Example 2, except that the blending amount of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm was changed to 70% by mass, and the blending amount of the inorganic binder was changed to 0% by mass, respectively. In the same manner as in Example 2, an inorganic fiber sheet having a basis weight of 9.1 g / m 2 and a thickness of 50 μm was obtained. This was used as the separator for the electric double layer capacitor of Comparative Example 2.

(比較例3)
実施例3において、平均繊維径0.45μmのCガラス短繊維(ジョーンズマンビル社製#104)の配合量を65質量%に、また、無機バインダーの配合量を0質量%にそれぞれ変更した以外は、実施例3と同様にして、坪量8.9g/m、厚さ50μmの無機繊維シートを得た。これを比較例3の電気二重層キャパシタ用セパレータとした。
(Comparative Example 3)
In Example 3, the blending amount of C glass short fibers (# 104 manufactured by Jones Manville) having an average fiber diameter of 0.45 μm was changed to 65% by mass, and the blending amount of the inorganic binder was changed to 0% by mass. Obtained an inorganic fiber sheet having a basis weight of 8.9 g / m 2 and a thickness of 50 μm in the same manner as in Example 3. This was used as the separator for electric double layer capacitor of Comparative Example 3.

(比較例4)
実施例4において、平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)の配合量を65質量%に、また、無機バインダーの配合量を0質量%にそれぞれ変更した以外は、実施例4と同様にして、坪量8.3g/m、厚さ50μmの無機繊維シートを得た。これを比較例4の電気二重層キャパシタ用セパレータとした。
(Comparative Example 4)
In Example 4, except that the blending amount of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm was changed to 65% by mass, and the blending amount of the inorganic binder was changed to 0% by mass, respectively. In the same manner as in Example 4, an inorganic fiber sheet having a basis weight of 8.3 g / m 2 and a thickness of 50 μm was obtained. This was used as the electric double layer capacitor separator of Comparative Example 4.

次に、上記にて得られた実施例1〜4及び比較例1〜4の各セパレータについて、以下の方法によりセパレータ諸特性を評価した。また、前記実施例1〜4及び比較例1〜4の各セパレータを使用して以下の方法により電気二重層キャパシタの試験用セルを作製し、以下の方法によりキャパシタ諸特性を評価した。結果を表1に示す。
[厚さ]
ダイヤルシックネスゲージを用いて、加重19.6kPaにて測定した。
[坪量]
0.1mの質量(g)を測定し、これを10倍して坪量(g/m)とした。
[密度]
坪量(g/m)÷厚さ(μm)の計算値。
[引張強度]
等速度引張試験機により常温での引張強度(N/25mm幅)を測定した。測定条件は、引張速度25mm/分、チャック間距離100mmとした。
[引張伸び]
等速度引張試験機により常温での引張強度(N/25mm幅)を測定し、破断した時のチャック間距離(C)を測定し、次式より算出した。測定条件は、引張速度25mm/分、初期のチャック間距離(C)100mmとした。
引張伸び(%)=(C−C)÷C×100
[電解液吸液時間]
セパレータを幅25mm×長さ100mmの長方形状に切り取って試料とし、長さ方向の一端(下端)を10mmの長さ分だけ電解液に浸すように電解液の液面に対して垂直に立てた状態で吊るし、電解液面から50mmの高さまで電解液が吸い上げられるまでの時間(分)を測定し、電解液吸液時間とした。尚、非水系電解液(有機系電解液)として、プロピレンカーボネート(PC)溶媒にEtNBFの四級塩を1mol・dm−3溶解させた非水溶液を使用した。
[空隙率]
セパレータの見掛け密度と構成材料の固形分の真密度から、次式により算出した。
空隙率(%)={(材料固形分の真密度)−(セパレータの見掛け密度)}÷(材料固形分の真密度)×100
Next, the separator characteristics of Examples 1 to 4 and Comparative Examples 1 to 4 obtained above were evaluated by the following methods. Moreover, the test cell of an electric double layer capacitor was produced with the following method using each separator of the said Examples 1-4 and Comparative Examples 1-4, and the capacitor characteristics were evaluated with the following method. The results are shown in Table 1.
[thickness]
Measurement was performed using a dial thickness gauge at a load of 19.6 kPa.
[Basis weight]
A mass (g) of 0.1 m 2 was measured, and this was multiplied by 10 to obtain a basis weight (g / m 2 ).
[density]
Calculated value of basis weight (g / m 2 ) ÷ thickness (μm).
[Tensile strength]
Tensile strength at normal temperature (N / 25 mm width) was measured with a constant velocity tensile tester. The measurement conditions were a tensile speed of 25 mm / min and a distance between chucks of 100 mm.
[Tensile elongation]
The tensile strength at normal temperature (N / 25 mm width) was measured with a constant-speed tensile testing machine, the distance between chucks (C 1 ) when fractured was measured, and calculated from the following formula. The measurement conditions were a tensile speed of 25 mm / min and an initial chuck distance (C 0 ) of 100 mm.
Tensile elongation (%) = (C 1 −C 0 ) ÷ C 0 × 100
[Electrolyte absorption time]
The separator was cut into a rectangular shape with a width of 25 mm and a length of 100 mm to make a sample, and one end (lower end) in the length direction was set perpendicular to the electrolyte surface so as to be immersed in the electrolyte by a length of 10 mm. It was suspended in a state, and the time (minutes) until the electrolyte was sucked up to a height of 50 mm from the electrolyte surface was measured, and was defined as the electrolyte solution absorption time. In addition, as the non-aqueous electrolyte (organic electrolyte), a non-aqueous solution in which 1 mol · dm −3 of a quaternary salt of Et 4 NBF 4 was dissolved in a propylene carbonate (PC) solvent was used.
[Porosity]
It calculated from the following formula from the apparent density of the separator and the true density of the solid content of the constituent material.
Porosity (%) = {(true density of material solids) − (apparent density of separator)} ÷ (true density of material solids) × 100

[電気二重層キャパシタの作製]
比表面積1500m/gの活性炭、カーボンブラック、ポリテトラフルオロエチレン樹脂を混練して厚さ0.2mmのシート状物とし、これを10cm角に切断してアルミニウム箔を導電性接着剤で接着させて電極とし、正極及び負極の双方に使用した。前記電極間にセパレータを挟み込み、電解液としてプロピレンカーボネート(PC)溶媒にEtNBFの四級塩を1mol・dm−3溶解させた非水溶液(有機系電解液)を含浸させ、電気二重層キャパシタの試験用セルを作製した。
[漏れ電流比率]
前記試験用セルに2.5Vの直流電圧を2時間印加して2.5Vまで充電させた直後の漏れ電流を測定し、実施例1の漏れ電流の値を100とした時の比率とした。
[電圧保持率]
前記試験用セルの初期電圧(V)と、25℃、電圧2.5Vの直流電圧を2時間かけて充電後に500時間放置後の電圧(V)を測定し、次式により電圧保持率を算出した。
電圧保持率(%)=(V/V)×100
[Production of electric double layer capacitor]
Kneaded activated carbon having a specific surface area of 1500 m 2 / g, carbon black, and polytetrafluoroethylene resin to form a sheet-like material having a thickness of 0.2 mm, which is cut into 10 cm square, and the aluminum foil is adhered with a conductive adhesive. And used as both a positive electrode and a negative electrode. A separator is sandwiched between the electrodes, and an electric double layer is impregnated with a non-aqueous solution (organic electrolyte) in which 1 mol · dm −3 of Et 4 NBF 4 quaternary salt is dissolved in a propylene carbonate (PC) solvent as an electrolyte. A capacitor test cell was fabricated.
[Leakage current ratio]
The leakage current immediately after the DC voltage of 2.5 V was applied to the test cell for 2 hours and charged to 2.5 V was measured, and the ratio when the value of the leakage current in Example 1 was 100 was used.
[Voltage holding ratio]
The initial voltage (V 0 ) of the test cell and a voltage (V 1 ) after charging for 500 hours after charging a DC voltage of 25 ° C. and a voltage of 2.5 V over 2 hours were measured, and the voltage holding ratio was Was calculated.
Voltage holding ratio (%) = (V 1 / V 0 ) × 100

Figure 0004966698
Figure 0004966698

表1の結果から以下のことが分かった。
(1)本発明の実施例1〜4のセパレータは、無機繊維を55質量%以上含有しながら引張強度が高く、引張伸びも3%以上を有している。また、実施例1〜4のセパレータは、無機バインダーの添加効果により密度が高くなっているにもかかわらず、空隙率は比較的高く維持され、電解液濡れ性が良好であり、電解液吸液時間は比較例1〜4のセパレータに比較して短くなった。また、実施例1〜4のセパレータは、無機バインダー添加により、充填効果が得られより複雑な微孔構造を有するので、キャパシタの漏れ電流比率を小さくでき、電圧保持率を向上できた。よって、実施例1〜4のセパレータは、電気二重層キャパシタの寿命の長寿命化に寄与できることが確認できた。
(2)比較例1〜4のセパレータは、実施例1〜4のセパレータの構成に対し、無機バインダーを0質量%に減らし、その減量分を無機繊維で補填した配合からなり、無機バインダーの含有量がゼロのため有機繊維の効果的な結着力が得られず引張強度が低くなった。また、密度も全体的に低く、孔構造が微細化かつ複雑化していないので、キャパシタの漏れ電流比率および電圧維持率は悪化した。
From the results in Table 1, the following was found.
(1) The separators of Examples 1 to 4 of the present invention contain 55% by mass or more of inorganic fibers, have high tensile strength, and have a tensile elongation of 3% or more. In addition, the separators of Examples 1 to 4 have a relatively high porosity and good electrolyte wettability despite the fact that the density is high due to the addition effect of the inorganic binder. The time was shorter than the separators of Comparative Examples 1 to 4. Moreover, since the separator of Examples 1-4 has a more complicated micropore structure by the filling effect being obtained by adding an inorganic binder, the leakage current ratio of the capacitor can be reduced, and the voltage holding ratio can be improved. Therefore, it was confirmed that the separators of Examples 1 to 4 can contribute to the long life of the electric double layer capacitor.
(2) The separators of Comparative Examples 1 to 4 have a composition in which the inorganic binder is reduced to 0% by mass with respect to the configuration of the separators of Examples 1 to 4, and the weight loss is supplemented with inorganic fibers. Since the amount was zero, the effective binding force of the organic fibers could not be obtained and the tensile strength was lowered. Moreover, since the density was low overall and the hole structure was not miniaturized and complicated, the leakage current ratio and voltage maintenance ratio of the capacitor deteriorated.

Claims (2)

平均繊維径1.5μm以下の無機繊維と、繊維径30μm以下の高融点成分を少なくとも含むモノフィラメント状有機繊維を骨格材とし、これら骨格材である前記繊維材料同士が、無機バインダーと有機バインダーによって結合された湿式抄造シートよりなる電気二重層キャパシタ用セパレータであって、
前記無機バインダーが、BET法による比表面積当たりの水酸基の量が20μmol/m以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダーであり、
前記有機バインダーが、低融点成分を少なくとも含む熱接着性有機繊維(前記モノフィラメント状有機繊維が高融点成分と低融点成分を有する複合繊維である場合は、前記モノフィラメント状有機繊維が兼ねることも可)であり、
前記湿式抄造シートは、前記低融点成分を少なくとも含む熱接着性有機繊維の低融点成分の熱溶融により前記繊維材料同士が結合されている一方、前記高融点成分を少なくとも含むモノフィラメント状有機繊維の高融点成分は熱溶融化されておらず、前記無機繊維及び前記無機バインダーの表面には実質的に前記有機繊維及び前記有機バインダーによる皮膜が形成されておらず、
前記湿式抄造シート中、前記無機繊維が55〜95質量%、前記高融点成分を少なくとも含むモノフィラメント状有機繊維が2〜35質量%、前記無機バインダーが0.5〜10質量%含まれ、
前記湿式抄造シートは、空隙率が80%以上であり、引張強度が5N/25mm幅以上でかつ引張伸びが3%以上であることを特徴とする電気二重層キャパシタ用セパレータ。
The average fiber diameter of 1.5μm or less of the inorganic fibers, including at least monofilament organic fibers of high melting point component of the following fiber diameter 30μm as a skeleton material, the fiber material to each other is their skeleton material, inorganic binder and organic binder over Thus, a separator for an electric double layer capacitor composed of a wet papermaking sheet,
The inorganic binder is mainly composed of a silica-type scaly inorganic substance having an amount of hydroxyl groups per specific surface area by the BET method of 20 μmol / m 2 or more, an average particle diameter of 2 μm or less by the laser scattering method, and an aspect ratio of 10 or more. And
The organic binder is a heat-adhesive organic fiber containing at least a low-melting-point component (if the monofilament-shaped organic fiber is a composite fiber having a high-melting-point component and a low-melting-point component, the monofilament-shaped organic fiber may also serve as) And
The wet papermaking sheet is formed by bonding the fiber materials to each other by thermal melting of the low melting point component of the thermoadhesive organic fiber containing at least the low melting point component, while the monofilamentous organic fiber containing at least the high melting point component is high. The melting point component is not heat-melted, and the film of the organic fiber and the organic binder is not substantially formed on the surface of the inorganic fiber and the inorganic binder,
In the wet papermaking sheet, the inorganic fiber is 55 to 95% by mass, the monofilament organic fiber containing at least the high melting point component is 2 to 35% by mass, the inorganic binder is 0.5 to 10% by mass ,
A separator for an electric double layer capacitor , wherein the wet papermaking sheet has a porosity of 80% or more, a tensile strength of 5 N / 25 mm width or more, and a tensile elongation of 3% or more .
請求項1記載のセパレータを用いたことを特徴とする電気二重層キャパシタ。 An electric double layer capacitor comprising the separator according to claim 1 .
JP2007065610A 2007-03-14 2007-03-14 Electric double layer capacitor separator and electric double layer capacitor Active JP4966698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065610A JP4966698B2 (en) 2007-03-14 2007-03-14 Electric double layer capacitor separator and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065610A JP4966698B2 (en) 2007-03-14 2007-03-14 Electric double layer capacitor separator and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2008227296A JP2008227296A (en) 2008-09-25
JP4966698B2 true JP4966698B2 (en) 2012-07-04

Family

ID=39845533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065610A Active JP4966698B2 (en) 2007-03-14 2007-03-14 Electric double layer capacitor separator and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4966698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062174A (en) * 2013-08-22 2015-04-02 ユニチカ株式会社 Porous film
JP6649117B2 (en) * 2016-02-24 2020-02-19 京セラ株式会社 Cellulosic member and laminate
JP6349021B1 (en) * 2016-10-17 2018-06-27 三菱製紙株式会社 Electrochemical element separator and electrochemical element including the same
CN113725557B (en) * 2021-09-02 2024-04-09 深圳市星源材质科技股份有限公司 Lithium ion battery diaphragm supporting layer and lithium ion battery diaphragm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108538A (en) * 2003-09-29 2005-04-21 Nippon Sheet Glass Co Ltd Separator for sealed lead-acid battery, and sealed lead-acid battery
JP4490732B2 (en) * 2004-05-14 2010-06-30 日本板硝子株式会社 Electric double layer capacitor separator and electric double layer capacitor
CN101098998B (en) * 2004-11-24 2010-05-12 日本板硝子株式会社 Inorganic fiber paper

Also Published As

Publication number Publication date
JP2008227296A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4611426B2 (en) Alkaline battery separator, method for producing the same, and battery
JP4922664B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5265636B2 (en) Lithium ion secondary battery separator base material and lithium ion secondary battery separator
WO2013151134A1 (en) Separator
JP4928137B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
WO2016010085A1 (en) Separator for power storage device, and power storage device using same
JP4966698B2 (en) Electric double layer capacitor separator and electric double layer capacitor
JP5128988B2 (en) Separator base material for lithium ion secondary battery
JP4926800B2 (en) Battery separator, method for producing the same, and battery comprising the same
JP2016024970A (en) Separator for electrochemical element
JP7125938B2 (en) Separator for electrochemical device
JP4851082B2 (en) Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery using nonwoven fabric
WO2019188292A1 (en) Separator for electrochemical element
JP2007103474A (en) Electric double layer capacitor and separator therefor
JP4616132B2 (en) Electric double layer capacitor separator and electric double layer capacitor
JP2006176932A (en) Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery and electric double layer capacitor or lithium ion secondary battery using nonwoven fabric
JP4490732B2 (en) Electric double layer capacitor separator and electric double layer capacitor
JP4468790B2 (en) Nonwoven fabric, separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor and lithium ion secondary battery
JP6047906B2 (en) Electrochemical element separator and electrochemical element using the same
JP4777169B2 (en) Fiber sheet
JP6581533B2 (en) Lithium ion battery separator
JP2006089872A (en) Method for producing nonwoven fabric
JP2024030996A (en) Separator for electrochemical devices
JP6088166B2 (en) Base material for lithium ion secondary battery separator and lithium ion secondary battery separator
JP2013178937A (en) Unwoven fabric for electrochemical element separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4966698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250