JP4966455B2 - Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer - Google Patents

Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer Download PDF

Info

Publication number
JP4966455B2
JP4966455B2 JP2001088339A JP2001088339A JP4966455B2 JP 4966455 B2 JP4966455 B2 JP 4966455B2 JP 2001088339 A JP2001088339 A JP 2001088339A JP 2001088339 A JP2001088339 A JP 2001088339A JP 4966455 B2 JP4966455 B2 JP 4966455B2
Authority
JP
Japan
Prior art keywords
reaction
urea
formaldehyde
nitrogen fertilizer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001088339A
Other languages
Japanese (ja)
Other versions
JP2002284591A (en
Inventor
昌明 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001088339A priority Critical patent/JP4966455B2/en
Publication of JP2002284591A publication Critical patent/JP2002284591A/en
Application granted granted Critical
Publication of JP4966455B2 publication Critical patent/JP4966455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土壌に施用後、長期間にわたって窒素を放出することにより植物を良好に生育させることができる、分解特性に優れた尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料の製造方法に関する 。
【0002】
【従来の技術】
従来より、尿素とホルムアルデヒドとの縮合物を窒素肥料として使用する方法が知られており、例えば特公昭46−1166号公報には、適宜の発泡装置中において気泡剤を用いて尿素−ホルムアルデヒド樹脂を発泡させ、得られた泡状硬化物を切断器により粒径0.1〜20mmに粉砕し、次いで水を加えて泥状化し、植物種子等を混合して土壌に施用する方法が提案されている。
【0003】
また、特公昭57−56517号公報には、尿素とホルマリンを尿素:ホルムアルデヒド(モル比)=1:2〜2.5の割合で反応させてメチロール化尿素ないし実質的に水に可溶な段階の尿素−ホルムアルデヒド初期縮合物を製造し、次いで得られた反応液をpH3〜7に調整した後、200〜400℃の温度下で噴霧乾燥して特定の部分水溶性を有する尿素樹脂微小中空球を製造し、このようにして得られた微小中空球を肥料として使用する方法が提案されている。
【0004】
しかしながら、上記例示のものを含め、従来の尿素−ホルムアルデヒド縮合物系超緩効性肥料は、その製造方法が煩雑なものが多く、かつ肥効の点でも無機化速度が早かったり、発芽抑制現象を起こしたりする等、超緩効性窒素肥料としては十分ではなかった。
【0005】
そのような中、特公平2−25880、特公平2−39476において、全メチロール量が0.1〜1.0質量%(含水物基準)であり、温度80℃の水中に30分間浸漬したときの溶出率(無水物基準)(以下、「熱水溶出率」という)が10質量%以下であることを特徴とする尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料の製造方法が提案されている。この製造方法で得られる化合物は、土壌に施用することにより、種子の発芽に悪影響を及ぼすことなく、長期間、例えば3年以上もの長期間にわたって窒素が放出されるため、従来の緩効性窒素肥料、コーティング肥料等に比べ肥効が持続し、かつ、このことから窒素源を追肥する必要がないとされている。
【0006】
また、特公平2−25880に記載の超緩効性窒素肥料に比べその分解速度が速い尿素−ホルムアルデヒド縮合系緩効性窒素肥料の分野では、例えば特表平8−505354、特公平4−74310で、アンモニアやアミン類の添加により、その肥効性を制御する方法が報告されている。更に、特開昭60−264384では、アルカリ触媒としてヘキサメチレンテトラミン、アンモニア等を用い、且つ、酸触媒としてカルボン酸を用いることを特徴とする緩効性窒素肥料の製造方法が提案されている。また、特公平6−2626では、ヘキサメチレンテトラミン及びほう酸ソーダを用い、酸として無機酸を用いることを特徴とする緩効性窒素肥料の製造方法が提案されている。
【0007】
確かに、熱水溶出率の少ない超緩効性肥料は長期間の肥効性を持ち優れた肥料効果を示すが、本発明者らが検討したところ、特公平2−25880及び特公平2−39476に記載の製造方法では、メチレン化反応のためにニーダー内の反応液にリン酸を添加した後の硬化が遅く、また、場合によっては粘着性の生成物が生じるため最終的にはニーダーへの過負荷によりメチレン化反応を中断せざるをえない状況に至ることがわかった。また、その際に生成した尿素−ホルムアルデヒド縮合物の熱水溶出率は30質量%程度と高いものであった。
このため、リン酸の代わりに硫酸を用いたところ、硬化速度は早く、粉状の尿素−ホルムアルデヒド縮合物が得られたが、その熱水溶出率は3質量%程度と低くなり、熱水溶出率の調節が困難であることがわかった。
【0008】
熱水溶出率は分解速度の指標であり、初期肥効性に影響するとともに長期間の分解特性にも影響する。超緩効性窒素肥料は、使用する場面での植物、土壌、気候等によりそれぞれ好適な分解速度に調節することでその肥効性をより有効に活用できることから、熱水溶出率が15質量%以下で分解速度を調節した超緩効性窒素肥料の製造方法が要望されている。
【0009】
また、尿素−ホルムアルデヒド縮合系の緩効性窒素肥料の分野では、その分解速度制御を目的とした製造方法が様々報告されているが、それらは冷水に溶出する画分、あるいは、熱水に溶出する画分等の低分子オリゴマーの比率が大部分を占め、そのような低分子オリゴマーの比率によって溶出量を制御する緩効性肥料の製造方法であり、熱水不溶物が大部分を占める超緩効性窒素肥料の製造に関する効果は未知である。例えば、熱水溶出物量を調節するために、アンモニアやアミン類を加える方法が知られているが、メチロール化反応時の反応温度は50℃〜60℃であり、本発明者らの検討によると熱水不溶物が大部分を占める超緩効性肥料では、メチロール化反応時の反応温度がこのような範囲では熱水溶出率に対するアンモニア類の効果は認められなかった。
【0010】
【発明が解決しようとする課題】
本発明は、上記問題を解決し、所望の熱水溶出率及び分解特性を有する尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、本課題を解決するために鋭意検討した結果、要望された熱水溶出率に調節することが可能な優れた超緩効性窒素肥料の製造方法を見出し本発明を完成させるに至った。
【0012】
即ち、本発明は以下の発明を包含する。
(1)尿素(U)とホルムアルデヒド(F)とを水性媒体中でアルカリ性触媒の存在下、70℃以上でメチロール化反応させ、次いでアンモニア若しくは水溶性アミン又はその塩の存在下、前記メチロール化反応で得られる反応溶液に強酸を添加してメチレン化反応させることを特徴とする熱水溶出率が15質量%以下(無水物基準)である尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料の製造方法。
(2)メチレン化反応を加熱攪拌しながら行う前記(1)記載の製造方法。
(3)水溶性アミンがヘキサメチレンテトラミンである前記(1)又は(2)記載の製造方法。
(4)前記(1)〜(3)のいずれかに記載の製造方法により得られる熱水溶出率が5〜15質量%(無水物基準)である尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料。
【0013】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明でいう「超緩効性窒素肥料」とは、通常の緩効性窒素肥料よりもさらに無機化の進行が緩やかなものをいい、例えば、これに限定されないが、無機化試験施用360日後の無機化率が約50%程度の肥料等が挙げられる。
【0014】
本発明において、尿素−ホルムアルデヒド縮合物とは一般に尿素樹脂と呼ばれるものと同義であり、尿素とホルムアルデヒドとを縮合させて得られる熱硬化性樹脂である。また、本発明でいう「熱水溶出率」とは、温度80℃の水中に30分間浸漬したときの溶出率(無水物基準)のことをいい、実施例に記載の方法により算出される。
【0015】
本発明の尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料は熱水溶出率が15質量%以下であり、これにより窒素の分解速度が制御される。熱水溶出率が高すぎると植物に吸収されずに流出してしまう窒素が増え、これにより肥効の持続性の低下、窒素流出による地下水等の環境汚染の原因となるため好ましくない。
【0016】
このため、熱水溶出率の上限値は15質量%以下が好ましく、10質量%以下がより好ましい。本発明において、熱水溶出率は主成分ではなく分解速度の指標であるためその下限値は、熱水溶出率が低すぎると肥効性が低下し肥料の使用量が多くなるという観点から5質量%以上であることが好ましい。したがって、本発明の製造方法により得られる肥料の熱水溶出率は5〜15質量%が好ましい。
【0017】
尿素−ホルムアルデヒド樹脂の製造方法として、尿素(U)とホルムアルデヒド(F)の水溶液とを、アルカリ性触媒の存在下メチロール化反応を行わせた後、強酸を用いてメチレン化反応させて尿素−ホルムアルデヒド縮合系窒素肥料を製造する方法が知られている。
【0018】
本発明の製造方法においては、ホルムアルデヒドは通常ホルムアルデヒド水溶液として使用し、任意の濃度のものが使用可能である。一般には35質量%以上のホルムアルデヒド水溶液が使用される。また、ホルムアルデヒド水溶液には、メタノール、あるいは、蟻酸が含まれていても良い。
尿素は、固体として用いてもよく、又は水等を溶媒とする高濃度の尿素溶液として用いてもよい。
【0019】
尿素とホルムアルデヒドとのモル比は、1:0.9〜1.2が好ましく、この範囲よりも尿素が少ないと高縮合化合物が増加し、分解し難くなり過ぎるため好ましくなく、尿素が多過ぎると残存未反応尿素が多くなり望ましい超緩効性を示さなくなるため好ましくない。尿素とホルムアルデヒドとのモル比は、更には1:0.9〜1.1であることが好ましい。
【0020】
本発明の製造方法において、メチロール化反応の際の反応溶液のpHを調整するためのアルカリ性触媒としては、アンモニア及び水溶性アミンを除く一般的なアルカリであれば特に限定はなく、例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物、水酸化カルシウム等のアルカリ土類金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩等が使用可能である。特に、水酸化ナトリウム等のアルカリ金属水酸化物が好ましい。これらのアルカリ性触媒を添加してメチロール化反応を開始する際の反応溶液のpHを8〜11、好ましくは9〜10としてメチロール化反応を行う。
上記の原料を用いてメチロール化反応を行うが、このときにアンモニア若しくは水溶性アミン又はその塩を添加してメチロール化反応を行ってもよい。
【0021】
本発明では、メチロール化反応を70℃以上で行うことが必須である。70℃よりも低いとその分解速度調節効果がなくなることが問題であり、反応時間を短くする観点から更には80℃以上が好ましく、ホルムアルデヒドの蒸発量が多くなることから反応温度の上限は100℃以下とすることが好ましい。したがって、本発明の製造方法においてはメチロール化反応は70〜100℃で行うことが好ましく、80〜90℃で行うことが更に好ましい。
【0022】
メチロール化反応の反応時間は、0.5〜3時間であることが好ましい。短すぎると反応が充分進行しないため好ましくなく、長すぎるとメチレン化の進行によるものと考えられる白濁が生じ、場合によっては反応溶液の流動性が著しく低下し、その取り扱い性が悪くなるため好ましくない。また、メチロール化反応終了後の反応溶液のpHは5〜10、好ましくは6〜8である。
【0023】
上記のようにしてメチロール化反応を行った後、アンモニア若しくは水溶性アミン又はその塩の存在下、上記メチロール化反応で得られた反応溶液に強酸を添加してメチレン化反応を行う。
【0024】
アンモニア又は水溶性アミンの添加は、強酸の添加によりメチレン化反応が主に進行する前であれば添加する時期に制限はないが、メチロール化反応を行う前に反応溶液に添加することがpH調整のためのアルカリとしての効果も示すことから好ましい。
アンモニアは、液体、気体又は水溶液のいずれの状態で用いてもよく、また硫酸塩、塩酸塩、硝酸塩、炭酸塩等のアンモニウム塩として用いてもよい。
【0025】
水溶性アミンとしては、分子内に少なくとも一つのアミノ基を有し、かつ水に可溶性のものであれば特に限定されず、そのようなものとして、例えばメチルアミン、エチルアミン、プロピルアミン、ジメチルアミン、ジエチルアミン等のR123N(式中、R1、R2、R3はそれぞれ独立に水素原子又は炭素数1〜6の炭化水素基を表す。但し、R1、R2、R3が全て水素原子の場合を除く。)で表されるアルキルアミン、エチレンジアミン等のアルキレンジアミン、へキサメチレンテトラミン、エタノールアミン等のカルビノールアミン等の他、芳香族アミン、ポリアミン等が挙げられる。これらの水溶性アミンは、液体、気体又は水溶液のいずれの状態で用いてもよく、また硫酸塩、塩酸塩、硝酸塩等の塩の形で用いてもよい。
【0026】
これらのアンモニア及び水溶性アミンの中で、特にアンモニア、ヘキサメチレンテトラミンの添加が好ましい。
アンモニア若しくは水溶性アミン又はその塩の添加量は、アンモニア若しくは水溶性アミン又はその塩の添加量が、ホルムアルデヒド1モルに対し0.1当量を超えると最終生成物中の熱水に溶出する画分が増加し、0.005当量より少ないとアンモニア等の効果が低くなるので、ホルムアルデヒド1モルにつき、0.005〜0.1当量の範囲が好ましく、0.01〜0.05当量の範囲がより好ましい。例えば、ヘキサメチレンテトラミンのように、分解によってヘキサメチレンテトラミン1モルにつきアンモニアを4モル発生するものでは、その添加量は上記アンモニアの添加量の1/4の量が好ましい。
なお、上記アンモニア若しくは水溶性アミン又はその塩は、それらのうちの1種を単独で用いてもよいし、2種以上を組合わせて用いてもよい。
【0027】
本発明で用いられる強酸は、酸解離定数pKaが3以下のものであり、例えば硫酸、塩酸又は硝酸等が挙げられる。なかでも、硫酸がより好ましい。これらの酸は1種のみならず2種以上を混合して用いてもよい。強酸の添加量は、アンモニア若しくは水溶性アミン又はその塩の添加量1当量に対し、好ましくは0.1〜2当量、さらに好ましくは0.5〜1.5当量である。また、ヘキサメチレンテトラミンのように、分解によってヘキサメチレンテトラミン1モルにつきアンモニアを4モル発生するものでは、強酸の添加量はアンモニアの添加量の1/4の量が好ましい。
【0028】
強酸の添加量が少なすぎると、メチレン化反応が遅くなり生産性が悪くなるため好ましくなく、多すぎると熱水溶出率が低くなり、また、酸加水分解率が低くなること、さらに、塩由来による水溶性部位が増加するため好ましくない。
メチレン化反応は、攪拌しながら加熱混合して進行させることが、均一に反応が進行するとともに、取り扱い性の良い粉末状の超緩効性窒素肥料が得られるという観点から好ましい。
【0029】
加熱混合に使用する機器は、これら被処理物を連続的に攪拌混合し、均質化し得るものであればどのような形状、構造のものでも良いが、その好適なものとして、例えば各種ニーダー、リボンミキサー類のような加熱混練機が挙げられる。メチレン化反応の際の反応液は、最初、水溶液の状態からスラリー状、ペースト状の段階を経て最終的に粉末状へと状態変化するので、これら加熱混錬器にメチロール化反応液と前記強酸を仕込んだ後、加熱しながら内容物を混合しつつメチレン化反応を行うとともに反応液中の水分を蒸発除去させる。
【0030】
メチレン化反応時の温度は70〜100℃であることが好ましく、80〜100℃が更に好ましい。反応時間は60〜360分であることが好ましく、120〜240分が更に好ましい。反応温度が低いと、メチレン化の進行が遅いとともに、乾燥効率も悪く、工業的な生産に不利であるとともに、加熱時に固まりとなってしまい、取り扱い性の良いものが得られない。また、水分除去の効率を上げて反応時間を短くした場合、できあがった生成物の水分量が同一であるにも関わらず、得られる超緩効性窒素肥料の2質量%水溶液のpHが低下してしまうため、保存安定性の点で好ましくない。
【0031】
得られた生成物の水分を蒸発除去して乾燥させる際、その水分含量は10〜60質量%の範囲とすることが好ましく、あまり水分が少なすぎると、風に飛ばされやすい粉末状になってしまい、あまり水分が多すぎると、べとべとの状態であり、いずれにしてもその取り扱い性が低下するため、好ましくない。更には20〜40質量%の範囲とすることが好ましい。
【0032】
本発明の製造方法により得られる超緩効性窒素肥料は、尿素−ホルムアルデヒド縮合物に含まれる全メチロール量が1.0質量%以下であることが好ましい。全メチロール量が1.0質量%を超えると、土壌に施用した場合に種子の発芽が抑制されるため好ましくない。また、本発明の製造方法により得られる超緩効性窒素肥料は、その2質量%水溶液としたときのpHが、4〜8であることが好ましく、更には5〜7であることが好ましい。この範囲外であると、保存安定性が低下するため好ましくない。
本発明の製造方法により得られる尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料は、常法により粉状又は粒状として用いることができる。
【0033】
【実施例】
以下、本発明を実施例および比較例により更に詳細に説明する。
以下に評価に用いた方法を記載する。
▲1▼ 水分
試料約2g(W1)を精秤し、これを温度105℃の熱風乾燥器で3時間乾燥し、冷却後の重量W2(g)を求める。
水分(%)=[(W1-W2)/W1]×100
▲2▼ 熱水溶出率
試料約4gを精秤し、これを水80ml中に投入し、温度を80℃に保持して、時々攪拌しながら30分間浸漬した後、濾過する。濾液中に溶解した試料重量(W2)を求め、これを試料中の熱水溶出分として、試験に用いた試料(無水物換算)重量W1に対する百分率を求める。濾液中に溶解した試料重量は、濾液20mlを分取し105℃で3時間乾燥することで求める。また、試験に用いた試料の無水物換算は以下の式で求める。
仕込み試料無水物換算質量(g)=仕込み試料質量(g)×(100-水分)/100
▲3▼pH
試料2gを水98g中に加え撹拌した後、水溶液のpHを測定する。
▲4▼ 全メチロール量
ヨード法による含水硬化物(含水物基準)中の全メチロール量。
【0034】
アルカリ存在下でホルムアルデヒドをヨードで酸化し、次に酸性にして未反応のヨードを遊離せしめ、それをチオ硫酸ナトリウムで逆滴定する。この方法は、尿素とホルムアルデヒドの反応系における未反応ホルムアルデヒド及びメチロール基とも完全に反応するので両者の和が求まる。
(計算式)
全メチロール量(%)={(A-B)×f×0.0015×100}/試料の重さ(g)
A:空試験におけるチオ硫酸ナトリウムの消費量(ml)
B:試料におけるチオ硫酸ナトリウムの消費量(ml)
F:チオ硫酸ナトリウムのファクター
0.0015:N/10 Na2S2O3 1ml = 0.0015gHCHO
▲5▼無機化試験(無機化率測定方法)
乾土100gに対して窒素(N)として100mgに相当する量の供試試料を表層腐植黒ボク土(乾土として50g相当量)を入れた各三角フラスコにそれぞれ取り,土壌と良く混合した後、土壌水分が最大容水量の約60%になるように脱塩水を加えて調節し、30±1℃の定温器中に静置する。2週間ごとに重量を測定し、水分蒸散による重量の減少量を算出し、必要な水分を補充する。
【0035】
所定の調査日ごとに、定温器中の調査対象の上記三角フラスコを取り出し、アンモニア態窒素及び硝酸態窒素を定量し、以下の式により無機化率を求める。
無機化率(%)=(所定調査日の窒素定量値/試験開始時の窒素定量値)×100
窒素定量値=アンモニア態窒素+硝酸態窒素
無機態窒素(アンモニア態窒素及び硝酸態窒素)の測定方法は、土壌養分分析法(土壌養分測定法委員会編、第8版)184頁〜200頁に記載の微量拡散分析法(Bremner法により抽出)を用いた。
【0036】
(実施例1)
1Lセパラブルフラスコに、37%ホルマリン353.5g(4.36mol)、尿素274.7g(4.58mol)、イオン交換水80g、28%アンモニア水6.0g(0.1mol)を添加し、30%NaOH水溶液0.9gを混合した。この際のpH(以下、仕込み時pHとする)は9.2であった。この混合液を80℃で60分加熱攪拌した。反応後のpH(以下、反応後pHとする)は6.7であった。得られた反応物を、95℃の温水をジャケットに通した1Lジャケット付きニーダーに移し、混合しながら10%硫酸47g(0.05mol)を添加混合した。硫酸添加後、反応液は白濁、硬化し、ペースト状態を経て粉末化した。160分後にニーダーから取り出し、白色粉末470gを得た。
得られた白色粉末の物性を表1に示した。無機化試験の結果を表2に示した。
【0037】
(実施例2)
28%アンモニア水の添加量を9.0g(0.15mol)とした以外は、実施例1と同様の方法で白色粉末475gを得た。仕込み時pHは9.1、反応後pHは6.8であった。
得られた白色粉末の物性を表1に示した。無機化試験の結果を表2に示した。
【0038】
(実施例3)
37%ホルマリン量を341.4g(4.21mol)、アンモニア水の代わりにヘキサメチレンテトラミンを3.5g(0.025mol)添加した以外は実施例1と同様の方法で、白色粉末480gを得た。仕込み時pHは9.3、反応後pHは6.9であった。
得られた白色粉末の物性を表1に示した。無機化試験の結果を表2に示した。
【0039】
(比較例1)
28%アンモニア水を添加しない以外は、実施例1と同様の方法で白色粉末470gを得た。
仕込み時のpHは9.1、反応後pHは6.8であった。
得られた白色粉末の物性を表1に示した。無機化試験の結果を表2に示した。
【0040】
(比較例2)
10%硫酸の量を38g(0.04mol)使用した以外は、比較例1と同様の方法で白色粉末470gを得た。仕込み時のpHは9.2、反応後pHは7.0であった。
得られた白色粉末の物性を表1に示した。無機化試験の結果を表2に示した。
【0041】
(比較例3)
メチロール化反応を50℃で行った以外は実施例1と同様の方法で白色粉末480gを得た。仕込み時のpHは9.0、反応後pHは8.8であった。
得られた白色粉末の物性を表1に示した。無機化試験の結果を表2に示した。
【0042】
【表1】

Figure 0004966455
*1)添加物のモル数/仕込みホルムアルデヒドモル数
比較例2は、10%硫酸添加量が、0.04mol(他は0.05mol)
【0043】
【表2】
Figure 0004966455
【0044】
【発明の効果】
本発明により、所望の熱水溶出率に調節することが可能であり、分解特性に優れた尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料の工業的に有利な製造方法を提供することができる。本発明の製造方法により得られる超緩効性窒素肥料は、適度な熱水溶出率を有し、様々な植物、土壌、気候等に対応した好適な分解特性を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a urea-formaldehyde condensate super slow-release nitrogenous fertilizer having excellent decomposition characteristics, which allows plants to grow well by releasing nitrogen over a long period of time after application to soil.
[0002]
[Prior art]
Conventionally, a method of using a condensate of urea and formaldehyde as a nitrogenous fertilizer is known. For example, Japanese Patent Publication No. 46-1166 discloses a urea-formaldehyde resin using a foaming agent in an appropriate foaming apparatus. There has been proposed a method of foaming and crushing the obtained foam-like cured product to a particle size of 0.1 to 20 mm with a cutter, then adding water to make it muddy, mixing plant seeds etc. and applying to soil Yes.
[0003]
Japanese Patent Publication No. 57-56517 discloses a step in which urea and formalin are reacted at a ratio of urea: formaldehyde (molar ratio) = 1: 2-2.5 to be methylolated urea or substantially soluble in water. The urea-formaldehyde initial condensate was prepared, and then the resulting reaction solution was adjusted to pH 3-7, and then spray-dried at a temperature of 200-400 ° C. to give a specific partially water-soluble urea resin micro hollow sphere And a method for using the hollow microspheres thus obtained as a fertilizer has been proposed.
[0004]
However, conventional urea-formaldehyde condensate super slow release fertilizers, including those exemplified above, are often complicated in their production methods, and the mineralization rate is fast also in terms of fertilization, and germination suppression phenomenon It was not enough as a super slow-release nitrogen fertilizer.
[0005]
Under such circumstances, when the total methylol amount is 0.1 to 1.0% by mass (based on water content) in JP-B-2-25880 and JP-B-2-39476, it is immersed in water at a temperature of 80 ° C. for 30 minutes. A method for producing a urea-formaldehyde condensate super slow-release nitrogen fertilizer characterized in that its dissolution rate (anhydrous basis) (hereinafter referred to as “hot water dissolution rate”) is 10% by mass or less. Yes. The compound obtained by this production method, when applied to soil, releases nitrogen over a long period of time, for example, a long period of 3 years or longer, without adversely affecting seed germination. Compared to fertilizers, coated fertilizers, etc., the fertilization effect is sustained, and it is not necessary to supplement the nitrogen source from this.
[0006]
In addition, in the field of urea-formaldehyde condensation system slow release nitrogen fertilizer whose decomposition rate is faster than that of the super slow release nitrogen fertilizer described in JP-B-2-25880, for example, JP-T 8-505354, JP-B 4-74310 On the other hand, a method for controlling the fertilization effect by adding ammonia or amines has been reported. Further, JP-A-60-264384 proposes a method for producing a slow-acting nitrogen fertilizer characterized by using hexamethylenetetramine, ammonia or the like as an alkali catalyst and using carboxylic acid as an acid catalyst. Japanese Patent Publication No. 6-2626 proposes a method for producing a slow-acting nitrogen fertilizer characterized by using hexamethylenetetramine and sodium borate and using an inorganic acid as the acid.
[0007]
Certainly, a super slow-release fertilizer with a low hot water elution rate has a long-term fertilization effect and exhibits an excellent fertilizer effect. However, when the present inventors studied, In the production method described in 39476, the curing after adding phosphoric acid to the reaction solution in the kneader due to the methyleneation reaction is slow, and in some cases, a sticky product is formed, so that the product finally becomes a kneader. It was found that the overloading of the solution led to a situation where the methyleneation reaction had to be interrupted. Moreover, the hot water elution rate of the urea-formaldehyde condensate produced at that time was as high as about 30% by mass.
For this reason, when sulfuric acid was used instead of phosphoric acid, the curing rate was fast and a powdery urea-formaldehyde condensate was obtained, but its hot water elution rate was as low as about 3% by mass, and hot water elution was achieved. The rate was found to be difficult to adjust.
[0008]
The hot water elution rate is an indicator of the degradation rate, and affects the initial fertilization efficiency and the long-term degradation characteristics. Super slow-release nitrogen fertilizer can be used more effectively by adjusting to a suitable decomposition rate according to the plant, soil, climate, etc. in the scene where it is used. There is a demand for a method for producing a super slow-release nitrogen fertilizer with a controlled degradation rate.
[0009]
Also, in the field of urea-formaldehyde condensation system slow-release nitrogen fertilizer, various production methods for the purpose of controlling the decomposition rate have been reported, but they are eluted in cold water or in hot water. This is a method for producing a slow-acting fertilizer in which the proportion of low-molecular oligomers such as fractions is controlled, and the amount of elution is controlled by the proportion of such low-molecular oligomers. The effects on the production of slow-release nitrogen fertilizer are unknown. For example, in order to adjust the amount of hot water eluate, a method of adding ammonia or amines is known, but the reaction temperature during the methylolation reaction is 50 ° C. to 60 ° C., and according to studies by the present inventors. In the ultra-slow-release fertilizer in which the hot water insoluble matter is the majority, the effect of ammonia on the hot water elution rate was not recognized when the reaction temperature during the methylolation reaction was in this range.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a method for producing a urea-formaldehyde condensate super slow release nitrogen fertilizer having a desired hot water elution rate and decomposition characteristics.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve this problem, the present inventors have found an excellent method for producing a super slow-release nitrogen fertilizer that can be adjusted to a desired hot water elution rate and complete the present invention. It came to.
[0012]
That is, the present invention includes the following inventions.
(1) Methylolation reaction of urea (U) and formaldehyde (F) in an aqueous medium in the presence of an alkaline catalyst at 70 ° C. or higher, and then in the presence of ammonia or a water-soluble amine or a salt thereof Of urea-formaldehyde condensate super slow release nitrogen fertilizer having a hot water elution rate of 15% by mass or less (anhydrous basis), characterized in that a strong acid is added to the reaction solution obtained in step 1 to cause methyleneation reaction Method.
(2) The production method according to the above (1), wherein the methyleneation reaction is performed with heating and stirring.
(3) The production method according to (1) or (2), wherein the water-soluble amine is hexamethylenetetramine.
(4) Urea-formaldehyde condensate super slow release nitrogen having a hot water elution rate of 5 to 15% by mass (anhydrous basis) obtained by the production method according to any one of (1) to (3) fertilizer.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The “super slow-release nitrogen fertilizer” as used in the present invention refers to a material in which the progress of mineralization is slower than that of a normal slow-release nitrogen fertilizer. For example, although not limited to this, 360 days after applying the mineralization test And fertilizers with a mineralization rate of about 50%.
[0014]
In the present invention, the urea-formaldehyde condensate is synonymous with what is generally called a urea resin, and is a thermosetting resin obtained by condensing urea and formaldehyde. The “hot water elution rate” in the present invention refers to an elution rate (anhydrous basis) when immersed in water at a temperature of 80 ° C. for 30 minutes, and is calculated by the method described in the examples.
[0015]
The urea-formaldehyde condensate-based super slow-release nitrogen fertilizer of the present invention has a hot water elution rate of 15% by mass or less, whereby the nitrogen decomposition rate is controlled. If the hot water elution rate is too high, the amount of nitrogen that flows out without being absorbed by the plant increases, which causes a decrease in the sustainability of the fertilization effect and causes environmental pollution such as groundwater due to nitrogen outflow, which is not preferable.
[0016]
For this reason, 15 mass% or less is preferable and, as for the upper limit of a hot water elution rate, 10 mass% or less is more preferable. In the present invention, since the hot water elution rate is not a main component but an indicator of the decomposition rate, the lower limit is 5 from the viewpoint that if the hot water elution rate is too low, the fertilizer efficiency decreases and the amount of fertilizer used increases. It is preferable that it is mass% or more. Therefore, the hot water elution rate of the fertilizer obtained by the production method of the present invention is preferably 5 to 15% by mass.
[0017]
As a method for producing urea-formaldehyde resin, an aqueous solution of urea (U) and formaldehyde (F) is subjected to a methylolation reaction in the presence of an alkaline catalyst, and then subjected to a methyleneation reaction using a strong acid to form urea-formaldehyde condensation. A method of producing a nitrogenous fertilizer is known.
[0018]
In the production method of the present invention, formaldehyde is usually used as an aqueous formaldehyde solution, and any concentration can be used. In general, an aqueous formaldehyde solution of 35% by mass or more is used. The aqueous formaldehyde solution may contain methanol or formic acid.
Urea may be used as a solid or as a high-concentration urea solution using water or the like as a solvent.
[0019]
The molar ratio of urea to formaldehyde is preferably 1: 0.9 to 1.2, and if the amount of urea is less than this range, highly condensed compounds increase and it becomes difficult to decompose. This is not preferable because the amount of residual unreacted urea increases and the desired super slow release is not exhibited. The molar ratio of urea to formaldehyde is further preferably 1: 0.9 to 1.1.
[0020]
In the production method of the present invention, the alkaline catalyst for adjusting the pH of the reaction solution during the methylolation reaction is not particularly limited as long as it is a general alkali excluding ammonia and a water-soluble amine. Alkali metal hydroxides such as potassium and sodium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and alkali metal carbonates such as sodium carbonate and potassium carbonate can be used. In particular, alkali metal hydroxides such as sodium hydroxide are preferred. The methylolation reaction is carried out at a pH of 8 to 11, preferably 9 to 10, when these alkaline catalysts are added to start the methylolation reaction.
The methylolation reaction is carried out using the above raw materials. At this time, ammonia or a water-soluble amine or a salt thereof may be added to carry out the methylolation reaction.
[0021]
In the present invention, it is essential to carry out the methylolation reaction at 70 ° C. or higher. If the temperature is lower than 70 ° C., there is a problem in that the effect of adjusting the decomposition rate is lost. From the viewpoint of shortening the reaction time, 80 ° C. or higher is preferable, and the upper limit of the reaction temperature is 100 ° C. The following is preferable. Therefore, in the production method of the present invention, the methylolation reaction is preferably performed at 70 to 100 ° C, more preferably 80 to 90 ° C.
[0022]
The reaction time of the methylolation reaction is preferably 0.5 to 3 hours. If it is too short, the reaction does not proceed sufficiently, which is not preferable, and if it is too long, clouding, which is considered to be due to the progress of methyleneation, is caused. . The pH of the reaction solution after completion of the methylolation reaction is 5 to 10, preferably 6 to 8.
[0023]
After the methylolation reaction is performed as described above, a strong acid is added to the reaction solution obtained by the methylolation reaction in the presence of ammonia or a water-soluble amine or a salt thereof to perform a methyleneation reaction.
[0024]
Ammonia or water-soluble amine can be added to the reaction solution before the methylolation reaction, although there is no limitation on the timing of addition unless the methyleneation reaction mainly proceeds by addition of a strong acid. It is preferable because it also shows an effect as an alkali.
Ammonia may be used in any state of liquid, gas, or aqueous solution, and may be used as an ammonium salt such as sulfate, hydrochloride, nitrate, carbonate.
[0025]
The water-soluble amine is not particularly limited as long as it has at least one amino group in the molecule and is soluble in water. Examples thereof include methylamine, ethylamine, propylamine, dimethylamine, R 1 R 2 R 3 N such as diethylamine (wherein R 1 , R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, provided that R 1 , R 2 , R 3 In addition to alkylamines represented by ( 3 ), alkylenediamines such as ethylenediamine, carbinolamines such as hexamethylenetetramine and ethanolamine, aromatic amines, polyamines and the like. These water-soluble amines may be used in any state of liquid, gas or aqueous solution, and may be used in the form of salts such as sulfate, hydrochloride, nitrate and the like.
[0026]
Of these ammonia and water-soluble amines, addition of ammonia and hexamethylenetetramine is particularly preferable.
The amount of ammonia or water-soluble amine or salt thereof is a fraction that elutes in hot water in the final product when the amount of ammonia or water-soluble amine or salt thereof exceeds 0.1 equivalent per mole of formaldehyde. When the amount is less than 0.005 equivalent, the effect of ammonia or the like is reduced. Therefore, the range of 0.005 to 0.1 equivalent is preferable per mole of formaldehyde, and the range of 0.01 to 0.05 equivalent is more preferable. For example, in the case where 4 moles of ammonia are generated per mole of hexamethylenetetramine by decomposition, such as hexamethylenetetramine, the amount added is preferably 1/4 of the amount of ammonia added.
In addition, the said ammonia or water-soluble amine, or its salt may be used individually by 1 type, and may be used in combination of 2 or more type.
[0027]
The strong acid used in the present invention has an acid dissociation constant pKa of 3 or less, and examples thereof include sulfuric acid, hydrochloric acid, and nitric acid. Of these, sulfuric acid is more preferable. These acids may be used alone or in combination of two or more. The addition amount of the strong acid is preferably 0.1 to 2 equivalents, more preferably 0.5 to 1.5 equivalents, with respect to 1 addition amount of ammonia or water-soluble amine or salt thereof. In addition, in the case where 4 mol of ammonia is generated per mol of hexamethylenetetramine by decomposition, such as hexamethylenetetramine, the amount of strong acid added is preferably 1/4 of the amount of ammonia added.
[0028]
If the amount of the strong acid added is too small, it is not preferable because the methyleneation reaction is slowed and productivity is deteriorated, and if it is too much, the hot water elution rate is low, and the acid hydrolysis rate is low, and further, the salt origin This is not preferable because the number of water-soluble sites increases.
The methyleneation reaction is preferably carried out by heating and mixing with stirring, from the viewpoint that the reaction proceeds uniformly and a powdery super slow-release nitrogen fertilizer with good handleability is obtained.
[0029]
The equipment used for heating and mixing may be of any shape and structure as long as it can continuously agitate and homogenize these objects to be processed, and examples thereof include various kneaders and ribbons. Heat kneaders such as mixers can be mentioned. The reaction solution in the methyleneation reaction first changes from an aqueous solution state to a slurry state and a paste state, and finally to a powder state. Therefore, the methylolation reaction solution and the strong acid are added to these heating kneaders. Then, a methyleneation reaction is performed while mixing the contents while heating, and water in the reaction solution is removed by evaporation.
[0030]
The temperature during the methyleneation reaction is preferably 70 to 100 ° C, more preferably 80 to 100 ° C. The reaction time is preferably 60 to 360 minutes, more preferably 120 to 240 minutes. When the reaction temperature is low, the progress of methyleneation is slow, the drying efficiency is poor, it is disadvantageous for industrial production, and it becomes hard during heating, so that a product with good handleability cannot be obtained. In addition, when the reaction time is shortened by increasing the efficiency of water removal, the pH of the 2% by weight aqueous solution of the super slow-release nitrogen fertilizer obtained is lowered even though the water content of the finished product is the same. Therefore, it is not preferable in terms of storage stability.
[0031]
When the obtained product is evaporated and dried to dry, the water content is preferably in the range of 10 to 60% by mass. If the water content is too low, it becomes a powder that is easily blown away by the wind. In other words, too much water is not preferable because it is in a sticky state, and in any case, its handleability is lowered. Furthermore, it is preferable to set it as the range of 20-40 mass%.
[0032]
The super slow release nitrogen fertilizer obtained by the production method of the present invention preferably has a total methylol content of 1.0 mass% or less contained in the urea-formaldehyde condensate. When the total amount of methylol exceeds 1.0% by mass, germination of seeds is suppressed when applied to soil, which is not preferable. Moreover, it is preferable that the pH when the super slow release nitrogen fertilizer obtained by the manufacturing method of this invention is made into the 2 mass% aqueous solution is 4-8, Furthermore, it is preferable that it is 5-7. Outside this range, storage stability is lowered, which is not preferable.
The urea-formaldehyde condensate-based ultra-slow-release nitrogen fertilizer obtained by the production method of the present invention can be used in the form of powder or granules by a conventional method.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
The method used for evaluation is described below.
(1) Approximately 2 g (W1) of a moisture sample is precisely weighed and dried for 3 hours in a hot air drier at a temperature of 105 ° C. to determine the weight W2 (g) after cooling.
Moisture (%) = [(W1-W2) / W1] x 100
(2) Approximately 4 g of hot water elution rate sample is precisely weighed, put in 80 ml of water, kept at a temperature of 80 ° C., soaked for 30 minutes with occasional stirring, and then filtered. The weight of the sample dissolved in the filtrate (W2) is obtained, and the percentage of the sample (anhydride equivalent) weight W1 used in the test is obtained using this as the amount of hot water elution in the sample. The weight of the sample dissolved in the filtrate is determined by separating 20 ml of the filtrate and drying at 105 ° C. for 3 hours. Moreover, the anhydride conversion of the sample used for the test is calculated | required with the following formula | equation.
Charged sample anhydrous mass (g) = Charged sample mass (g) x (100-water) / 100
(3) pH
2 g of a sample is added to 98 g of water and stirred, and then the pH of the aqueous solution is measured.
(4) Total amount of methylol The total amount of methylol in the water-containing cured product (based on water content) by the iodine method.
[0034]
The formaldehyde is oxidized with iodine in the presence of alkali and then acidified to liberate unreacted iodine, which is back titrated with sodium thiosulfate. This method completely reacts with unreacted formaldehyde and methylol groups in the reaction system of urea and formaldehyde, so that the sum of both can be obtained.
(a formula)
Total methylol content (%) = {(AB) x f x 0.0015 x 100} / sample weight (g)
A: Consumption of sodium thiosulfate in the blank test (ml)
B: Consumption of sodium thiosulfate in the sample (ml)
F: Factor of sodium thiosulfate
0.0015: N / 10 Na 2 S 2 O 3 1ml = 0.0015g HCHO
(5) Mineralization test (mineralization rate measurement method)
Take 100 gram of dry soil equivalent to 100 mg of nitrogen (N) in each Erlenmeyer flask containing surface humus black soil (equivalent to 50 g of dry soil) and mix well with the soil. Adjust the soil water by adding demineralized water so that the soil moisture is about 60% of the maximum volume, and leave it in a 30 ± 1 ℃ incubator. Measure the weight every two weeks, calculate the amount of weight loss due to moisture transpiration, and replenish the necessary moisture.
[0035]
For each predetermined survey day, the above Erlenmeyer flask to be investigated in the incubator is taken out, ammonia nitrogen and nitrate nitrogen are quantified, and the mineralization rate is obtained by the following formula.
Mineralization rate (%) = (quantitative nitrogen value on the specified survey day / nitrogen quantitative value at the start of the test) x 100
Quantitative value of nitrogen = ammonia nitrogen + nitrate nitrogen Inorganic nitrogen (ammonia nitrogen and nitrate nitrogen) is measured by soil nutrient analysis (Soil Nutrient Measurement Committee, 8th edition) pages 184-200 The micro-diffusion analysis method described in (extracted by Bremner method) was used.
[0036]
Example 1
To a 1 L separable flask, add 353.5 g (4.36 mol) of 37% formalin, 274.7 g (4.58 mol) of urea, 80 g of ion exchange water, 6.0 g (0.1 mol) of 28% ammonia water, and add 0.9 g of 30% NaOH aqueous solution. Mixed. The pH at this time (hereinafter referred to as pH at the time of charging) was 9.2. This mixed solution was heated and stirred at 80 ° C. for 60 minutes. The pH after reaction (hereinafter referred to as pH after reaction) was 6.7. The obtained reaction product was transferred to a 1 L jacketed kneader in which warm water of 95 ° C. was passed through the jacket, and 47 g (0.05 mol) of 10% sulfuric acid was added and mixed while mixing. After the addition of sulfuric acid, the reaction solution became cloudy and hardened, and was powdered through a paste state. After 160 minutes, it was removed from the kneader to obtain 470 g of white powder.
The physical properties of the obtained white powder are shown in Table 1. The results of the mineralization test are shown in Table 2.
[0037]
(Example 2)
475 g of white powder was obtained in the same manner as in Example 1 except that the amount of 28% ammonia water added was 9.0 g (0.15 mol). The pH at the time of charging was 9.1, and the pH after the reaction was 6.8.
The physical properties of the obtained white powder are shown in Table 1. The results of the mineralization test are shown in Table 2.
[0038]
(Example 3)
480 g of white powder was obtained in the same manner as in Example 1 except that 341.4 g (4.21 mol) of 37% formalin was added and 3.5 g (0.025 mol) of hexamethylenetetramine was added instead of aqueous ammonia. The pH at the time of charging was 9.3, and the pH after reaction was 6.9.
The physical properties of the obtained white powder are shown in Table 1. The results of the mineralization test are shown in Table 2.
[0039]
(Comparative Example 1)
470 g of white powder was obtained in the same manner as in Example 1 except that 28% aqueous ammonia was not added.
The pH at the time of charging was 9.1, and the pH after the reaction was 6.8.
The physical properties of the obtained white powder are shown in Table 1. The results of the mineralization test are shown in Table 2.
[0040]
(Comparative Example 2)
470 g of white powder was obtained in the same manner as in Comparative Example 1 except that 38 g (0.04 mol) of 10% sulfuric acid was used. The pH at the time of charging was 9.2, and the pH after the reaction was 7.0.
The physical properties of the obtained white powder are shown in Table 1. The results of the mineralization test are shown in Table 2.
[0041]
(Comparative Example 3)
480 g of white powder was obtained in the same manner as in Example 1 except that the methylolation reaction was carried out at 50 ° C. The pH at the time of charging was 9.0, and the pH after reaction was 8.8.
The physical properties of the obtained white powder are shown in Table 1. The results of the mineralization test are shown in Table 2.
[0042]
[Table 1]
Figure 0004966455
* 1) Number of moles of additive / number of moles of charged formaldehyde In Comparative Example 2, the added amount of 10% sulfuric acid is 0.04 mol (others are 0.05 mol)
[0043]
[Table 2]
Figure 0004966455
[0044]
【Effect of the invention】
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an industrially advantageous production method of a urea-formaldehyde condensate-based super slow-release nitrogen fertilizer that can be adjusted to a desired hot water elution rate and has excellent decomposition characteristics. . The super slow-release nitrogen fertilizer obtained by the production method of the present invention has a moderate hot water elution rate, and has suitable decomposition characteristics corresponding to various plants, soils, climates and the like.

Claims (4)

尿素(U)とホルムアルデヒド(F)とを水性媒体中でアルカリ性触媒の存在下、70℃以上でメチロール化反応させ、次いでアンモニア若しくは水溶性アミン又はその塩の存在下、前記メチロール化反応で得られる反応溶液に強酸を添加してメチレン化反応させること、および前記メチロール化反応における尿素とホルムアルデヒドとのモル比が1:0.9〜1.2であることを特徴とする熱水溶出率が15質量%以下(無水物基準)である尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料の製造方法。Urea (U) and formaldehyde (F) are methylolated in an aqueous medium in the presence of an alkaline catalyst at 70 ° C. or higher, and then obtained in the methylolation reaction in the presence of ammonia, a water-soluble amine or a salt thereof. A hot water elution rate characterized by adding a strong acid to the reaction solution to cause a methyleneation reaction , and a molar ratio of urea to formaldehyde in the methylolation reaction is 1: 0.9 to 1.2. A method for producing a urea-formaldehyde condensate super slow release nitrogen fertilizer that is less than or equal to mass% (anhydrous basis). メチレン化反応を70〜100℃の温度で加熱攪拌しながら行う請求項1記載の製造方法。The production method according to claim 1, wherein the methyleneation reaction is carried out at 70 to 100 ° C. with heating and stirring. 水溶性アミンがヘキサメチレンテトラミンである請求項1又は2記載の製造方法。  The production method according to claim 1 or 2, wherein the water-soluble amine is hexamethylenetetramine. 請求項1〜3のいずれか1項に記載の製造方法により得られる熱水溶出率が5〜15質量%(無水物基準)である尿素−ホルムアルデヒド縮合物系超緩効性窒素肥料。  The urea-formaldehyde condensate super slow release nitrogen fertilizer whose hot water elution rate obtained by the manufacturing method of any one of Claims 1-3 is 5-15 mass% (anhydride basis).
JP2001088339A 2001-03-26 2001-03-26 Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer Expired - Fee Related JP4966455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088339A JP4966455B2 (en) 2001-03-26 2001-03-26 Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088339A JP4966455B2 (en) 2001-03-26 2001-03-26 Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer

Publications (2)

Publication Number Publication Date
JP2002284591A JP2002284591A (en) 2002-10-03
JP4966455B2 true JP4966455B2 (en) 2012-07-04

Family

ID=18943450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088339A Expired - Fee Related JP4966455B2 (en) 2001-03-26 2001-03-26 Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer

Country Status (1)

Country Link
JP (1) JP4966455B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067072A1 (en) * 2010-11-15 2012-05-24 日産化学工業株式会社 Softened thermosetting resin particles
CN104140345A (en) * 2013-05-07 2014-11-12 湖北茂盛生物有限公司 Preparing method of urea formaldehyde controlled-release compound fertilizer by urea fusion production
CN104744082A (en) * 2015-03-17 2015-07-01 安徽中农化工国际贸易有限公司 Preparation method of urea formaldehyde powder
CN113912447A (en) * 2021-10-27 2022-01-11 哈撒韦(青岛)生物科技有限公司 Liquid urea formaldehyde slow release fertilizer and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217691A (en) * 1983-05-25 1984-12-07 日東化学工業株式会社 Manufacture of super slow release nitrogen fertilizer of urea-formaldehyde condensate
JPH062626B2 (en) * 1986-03-24 1994-01-12 住友化学工業株式会社 Method for producing slow-release nitrogen fertilizer
JPH01286985A (en) * 1988-05-11 1989-11-17 Mitsui Toatsu Chem Inc Production of slow-release nitrogen fertilizer
US6048378A (en) * 1998-08-13 2000-04-11 Lesco, Inc. Highly available particulate controlled release nitrogen fertilizer
DE19923525A1 (en) * 1999-05-21 2000-11-23 Saar En Gmbh Urea-formaldehyde fertilizer preparation, including addition of hexamethylene tetramine and/or tetramethylene diamine to precondensate before final condensation to release ammonia for neutralization in situ

Also Published As

Publication number Publication date
JP2002284591A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4425476B2 (en) Method for compounding ingredients of granular composite fertilizer
EP3674278B1 (en) Preparation of a sustained-release and controlled-release fertilizer having core-shell structure
US6048378A (en) Highly available particulate controlled release nitrogen fertilizer
JP3993513B2 (en) Sustained release urea formaldehyde liquid fertilizer resin
US5266097A (en) Aminoureaformaldehyde fertilizer method and composition
CN112174729A (en) High-concentration liquid slow-release nitrogen fertilizer and preparation method thereof
US5039328A (en) Process for producing a granular slow-acting nitrogenous fertilizer
JP2010513188A (en) Sustained-release urea-based granular fertilizer
JPH0254315B2 (en)
US11905223B2 (en) Fertilizer compositions having slow-release nitrogen compounds and methods of forming thereof
JP4966455B2 (en) Method for producing urea-formaldehyde condensate super slow release nitrogen fertilizer
US4530713A (en) Urea-formaldehyde fertilizer suspensions
AU2016336032B2 (en) Aqueous dispersions of potassium calcium polyphosphate
CN110546121B (en) Method for preparing fertilizer granules comprising alternative boron sources
CN110183274A (en) A kind of coated fertilizer and preparation method thereof with slow control-release function
CN110357718A (en) Liquid fertilizer and preparation method thereof
JP2009545507A (en) Composition and method for inhibiting solidification in urea-containing fertilizer
CN110642656A (en) Urea formaldehyde slow-release compound fertilizer and preparation method thereof
JP2002234925A (en) Method for preparation of urea-formaldehyde resin
JPS60264384A (en) Manufacture of slow release nitrogen fertilizer
US4202683A (en) Fertilizer
JP2001031488A (en) Production of fertilizer and solid fertilizer
JPH062626B2 (en) Method for producing slow-release nitrogen fertilizer
JPH0114197B2 (en)
JPS59217691A (en) Manufacture of super slow release nitrogen fertilizer of urea-formaldehyde condensate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R151 Written notification of patent or utility model registration

Ref document number: 4966455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees