JP4965773B2 - Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4965773B2
JP4965773B2 JP2001195969A JP2001195969A JP4965773B2 JP 4965773 B2 JP4965773 B2 JP 4965773B2 JP 2001195969 A JP2001195969 A JP 2001195969A JP 2001195969 A JP2001195969 A JP 2001195969A JP 4965773 B2 JP4965773 B2 JP 4965773B2
Authority
JP
Japan
Prior art keywords
oxide
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001195969A
Other languages
Japanese (ja)
Other versions
JP2003017053A (en
Inventor
亮治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2001195969A priority Critical patent/JP4965773B2/en
Publication of JP2003017053A publication Critical patent/JP2003017053A/en
Application granted granted Critical
Publication of JP4965773B2 publication Critical patent/JP4965773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、二次電池用電極活物質及びこれを用いた非水電解液二次電池に関する。
【0002】
【従来の技術】
リチウムの酸化・還元反応を利用した高起電力の非水電解液電池が工業的に生産され、広く使用されている。特に、正極活物質にコバルト酸リチウム、ニッケル酸リチウム或いはスピネル型マンガン酸リチウム等を、負極活物質にグラファイト或いはハードカーボン等を用いたリチウムイオン二次電池においては、4V級の高い放電電圧を有する高エネルギー密度の電池が得られている。
【0003】
しかしながら、このようなリチウムイオン二次電池は充放電を繰り返すと、次第に放電容量を低下させてしまう欠点があった。原因の一つは、高活性な正極活物質がかかる高性能の電池特性を実現する一方で、非水電解液との間に好ましくない強い相互作用を持ち、電池に悪影響を及ぼしてしまうためと考えられている。すなわち、活物質との相互作用により分解された非水電解液は活物質表面に被膜を形成し、この被膜がリチウムの出入りを阻害するために電池特性を劣化させたと判断される。
【0004】
また、リチウムの出入りに伴う活物質の膨張・収縮や結晶構造の変化が充放電の繰り返しにつれて非可逆性を増し、活物質の結晶構造を崩壊させて、電子伝導性を低下させてしまうことも原因の一つと見られている。特に、低い導電性は活物質表面に顕著であるため、結晶構造の崩壊と非水電解液の分解が局所的に進行し、致命的なトラブルに発展する可能性も高い。
【0005】
かかる従来技術の課題解決についてはこれまでにも種々検討され、提案されてきたが、その多くは異種元素或いは異種元素の化合物を添加或いはコーティングして、結晶構造の補強と導電性の向上、或いは溶媒分解の抑制等の効果を狙ったものであった。
【0006】
例えば、特開平4−253162号公報は、コバルト酸リチウムのコバルトの一部をPb、Bi、B等で部分置換すると充放電に伴う結晶構造の非可逆な変化が抑えられ、サイクル特性を大幅に向上できると提案している。特開平4−319260号公報の提案では、コバルト酸リチウムに酸化ジルコニウムを添加すると、電解液の分解と結晶構造の崩壊を抑制でき、サイクル特性と高温保存特性を大幅に改善できたとしている。しかしながら、両者とも初期放電容量の低下ははなはだ大きく、後者においては好ましいとするジルコニウム5モル%添加でも、15%強の容量低下を起こしてしまう結果となっていた。さらにY.Satoら[Electrochem.Soc.Proc.,Vol.97−18,45(1997)]は、ニッケルの1モル%をNbで置換したニッケル酸リチウムが、リチウムの85%を離脱させた後も六方晶を保持しているとし、高いサイクル保持率と結び付けた。しかしながら、このニッケル酸リチウムも、わずか1モル%のNb置換で、初期容量を15%も低下させてしまうものであった。
【0007】
またH.Tukamotoら[J.Electrochem.Soc.144,3164(1997)]は、コバルト酸リチウムのコバルトの一部をMgで置換すると電子伝導性が高まることを見出し、これを不純物半導体の機構を適用して説明している。特開平11−250936号公報では、リチウム含有ニッケルコバルト複合酸化物にZnを添加すると、複合酸化物の導電性が高まることにより、高容量でサイクル特性、高負荷特性に優れた電池特性が実現できると提案した。しかしながら、コバルト酸リチウムに適用すると、Znを添加しても初期容量は大きく低下し、負荷特性も悪化してしまうものであった。同様に、スピネル型マンガン酸リチウムに適用した場合も、初期容量を大きく低下させてしまうことが報告[J.Power Sources 68,247(1998)]されている。特開2000−200607号公報には、Tiを含む2種以上の元素でコバルト或いはニッケルの一部を置換したコバルト酸リチウム或いはニッケル酸リチウムの提案があり、内部抵抗の小さい二次電池が実現できるとする記載がある。しかしながら、かかる提案も初期容量を低下させてしまうものであった。
【0008】
一方、特開2000−138075号公報では、コバルトの一部をNbで置換したコバルト酸リチウムを用いると、粒子表面に生成する電解液被膜をNb化合物が触媒となって分解するため粒子表面の抵抗が減少し、イオン伝導性が向上して低温域での放電容量低下が抑えられると提案している。しかしながら、前記Y.Satoらの報告にもある通り、異種元素の置換或いは添加では初期容量の低下は避けられないうえ、結晶内の異種元素はリチウムのスムースな拡散を阻害し、高負荷特性を損ねてしまう。電極表面の触媒作用が好ましい特性を発現するのであれば、異種元素の導入は表面層のみに限定するのが合理的である。
【0009】
特開2000−48820号公報には、リチウム複合遷移金属酸化物粒子表面の一部又は全部に特定の金属からなる導電性被膜を設けて、活物質粒子と非水電解液との反応を抑制し、サイクル特性を改善できるとする提案がある。しかしながら、これでは正極コンポジットの導電助剤を増やしたことでしかなく、エネルギ密度を低下させてしまう結果となった。
【0010】
特開2000−128539号公報には、スピネル型マンガン酸リチウム表面にLiFをコーティングする技術を提案している。これによれば、LiFの大部分は正極表層にあって非水電解液の分解を抑制し、一部マンガン酸リチウム結晶の極表層に固溶したFが結晶構造を安定化させてMnの溶出を抑制するため、高温下でもサイクル特性は劣化しないとしている。しかしながら、開示された合成方法からはハロゲンの分布を細かく抑制できているとは考えにくく、単なる混合体と見るべきである。またコバルト酸リチウムに応用しても好ましい効果は観察されず、むしろ大きく初期容量を低下させてしまった。
【0011】
特開2000−200605号公報には、コバルト酸リチウム粒子表面にTi粒子或いはTi化合物粒子を付着させる技術を提案している。このTi粒子等が活物質表面に形成される非水電解液由来の被膜を分解してイオン導電性の低下を防止するので、低温時においても高い放電特性を維持できるとするものである。しかしながら、開示された合成方法によればコバルト酸リチウム粒子とTi化合物粒子等は単純に混合されたものでしかなく、コバルト酸リチウム表面に形成されるとする被膜がこれにより効果的に除去できるものとは考えにくい。
【0012】
以上、これらの提案は、粒子表面への新たな機能付与を狙ってはいたものの、その機能を担うべき表面層の形成方法に的確さを欠いていた。
【0013】
これらに対して、特開平4−329267号公報の提案は、コバルト酸リチウム等の正極活物質表面をチタンカップリング剤で修飾後熱処理し、活物質表面層にのみTiを固溶させて、サイクル特性を改善したとするものである。これは、活物質の結晶内部に導入された異種元素による悪影響、すなわち初期放電容量及び高負荷特性の低下を回避しようと試みたものと推察されるが、この点に関する記載はない。また、かかる手法で調整したTi固溶のコバルト酸リチウムは、安全性を損ねるとの指摘がなされている。
【0014】
特開2000−149948号公報では、スピネル型マンガン酸リチウム粒子の表面を、Fe等の金属酸化物被膜或いは複合酸化物被膜で被覆することを提案している。これにより高温でのMn溶出が抑えられ、サイクル特性劣化が抑制されると記載している。ここで粒子表面への被膜形成は、被膜を構成させるための元素を含有する溶液にマンガン酸リチウム粒子を浸漬処理してなされたものと判断できる。しかしながら、10wt%もの被膜を設けても初期容量は低下しないとする結果を実施例には記載しているが、本発明者らの試験では、被覆重量比以上の初期容量低下を起こしてしまうといった結果であった。またコバルト酸リチウムに適用しても同様で、初期容量を大きく低下させてしまう結果となった。これは、被膜形成用溶液中の対イオン等が悪影響を及ぼしているものと推察された。
【0015】
このように、非水電解液二次電池のサイクル特性改善を狙い、活物質結晶内に異種元素を添加して結晶構造の補強や電子伝導性の向上を試みた従来技術は、活物質内でのLiのスムースな拡散を阻害してしまい、初期放電容量や、高負荷特性、低温特性等の大幅な低下をもたらしたため、実用には供されなかった。一方、異種成分から成る層を活物質表面に設けて活物質と非水溶媒間の強い相互作用を抑制し、溶媒分解膜の堆積を防止、或いは堆積した溶媒分解膜の剥離を加速しようと試みた従来技術も、効果的な表面被覆膜の形成が困難なため、初期放電容量及び高負荷特性を大きく低下させてしまい、実用に供されなかった。
【0016】
【発明が解決しようとする課題】
本発明は、前記従来技術の課題を克服し、温度特性やサイクル特性に優れた非水電解液二次電池用電極活物質及び非水電解液二次電池の提供を目的とする。
【0017】
【課題を解決するための手段】
本発明は、電気化学的にリチウムを挿入・離脱できるリチウム含有複合金属酸化物である電極活物質であって、かかる電極活物質がリチウムの挿入・離脱に機能する電位領域においては電気化学的にリチウムを挿入・離脱できない物質である酸化ビスマス、酸化バリウム、酸化カドミウム、酸化セリウム、酸化コバルト、酸化クロム、酸化ゲルマニウム、酸化インジウム、酸化リチウム、酸化マグネシウム、酸化マンガン、酸化ニオブ、酸化ニッケル、酸化鉛、酸化スズ、酸化タンタル、酸化トリウム、酸化イットリウム、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウムからなる群より選択される少なくとも1種の金属酸化物で形成された不連続被膜をその表面に担持していることを特徴とする非水電解液二次電池用電極活物質提供するものである。
【0018】
本発明における電極活物質としては、リチウム含有の金属複合酸化物からなる正極活物質が使用可能である。例えば、コバルト、ニッケル、マンガン、鉄、バナジウム、タングステンの1種あるいは2種以上の組み合せとリチウムとの複合酸化物等が挙げられる。
【0019】
このような金属とリチウムの複合酸化物からなる正極活物質は、容易に入手可能であり、また合成方法も公知であって製造することも容易である。合成方法としては種々の方法が提案されているが、複合酸化物を構成する原料成分粒子を混合した後、加熱処理して合成するのが一般的である。本発明者らも金属とリチウムの複合酸化物からなる正極活物質の新規な合成方法を提案している。例えば、米国特許第6,054,110号等にはコバルト酸リチウムの合成方法を、また特開平11−292550号公報等にはリチウムとニッケル、コバルト複合酸化物の合成方法をそれぞれ提案している。本発明においては、これらいずれの方法で製造された前記金属とリチウムの複合酸化物からなる電極活物質であっても、またその他の方法で製造された電極活物質であっても、好適に用いられる。
【0020】
なかでも、本発明者らが新規に提案したコバルト酸リチウムの合成方法(米国特許第6,054,110号等)及びリチウムとニッケル、コバルト複合酸化物の合成方法(特開平11−292550号公報等)に基づいて製造された正極活物質は、特に好ましく用いられる。これは、上記合成方法で製造された正極活物質が高い結晶性を有し、表面構造の乱れが少ないためと推察される。
【0021】
本発明の電極活物質表面に担持される不連続被膜を形成する物質としては、かかる電極活物質がリチウムの挿入・脱離に機能する電位領域において、電気化学的にリチウムを挿入・脱離できない物質であり、又、電気化学的反応を担う活物質表面にあることから、
半導体領域の導電性を有し、しかも、被膜の形成が容易でしかも耐久性を有し、長期にわたって安定した機能を発現できることから、酸化ビスマス、酸化バリウム、酸化カドミウム、酸化セリウム、酸化コバルト、酸化クロム、酸化ゲルマニウム、酸化インジウム、酸化リチウム、酸化マグネシウム、酸化マンガン、酸化ニオブ、酸化ニッケル、酸化鉛、酸化スズ、酸化タンタル、酸化トリウム、酸化イットリウム、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウムそれぞれ単独で、あるいはそれぞれ2種以上の組み合せで使用する。
【0022】
本発明の電極活物質表面に金属酸化物から成る不連続被膜を形成するには、上記各金属酸化物の微粒子を用いることも好適である。微粒子の持つ広い表面が活物質表面と強く相互作用し、大きな効果を発現できるものと期待される。電極活物質表面に金属酸化物の微粒子からなる被膜を形成する方法としては、種々の方法が提案できるが、メカノケミカル的手法を用いて行う方法も好ましく適用できる。
【0023】
また、金属酸化物の溶液及び/又は分散液を用い、電極活物質表面を処理して、活物質表面に金属酸化物被膜を形成する方法も好ましい。かかる方法は均質で膜厚の薄い被膜を形成することが可能であることから、微量の被膜を設けただけで優れた効果を発現できるものと期待される。より好ましくは、金属酸化物の溶液の溶媒並びに分散液の分散媒は水であるのが、簡便に取り扱えることから望ましい。
【0024】
金属酸化物に容易に変換できる前駆体化合物を用いる方法も、本発明において好適に用いられる。すなわち、前駆体化合物で電極活物質表面を処理し、前駆体化合物からなる被膜を活物質表面に設けた後、酸化物に変換して本発明の電極活物質を製造する方法である。かかる方法を用いることにより、金属酸化物の形では被膜を形成しにくい材料であっても、効率良く金属酸化物から成る不連続被膜を電極活物質表面に担持させることが可能となる。
【0025】
前駆体化合物を電極活物質表面に設ける方法としては、前駆体化合物の溶液及び/又は分散液で電極活物質を処理し、そののち溶媒或いは分散媒を除去して前駆体化合物からなる被膜を設けるのが一般的である。続いて、かかる前駆体化合物を酸化物に変換することにより、本発明の電極活物質を製造することができる。
【0026】
金属酸化物を容易に形成できる前駆体化合物としては、金属の塩化物、硝酸塩、過酸化物、アルコキシド、アシレート、アセチルアセトネート、キレート類、その他が例示でき、本発明に好適に利用できる。
【0027】
かかる前駆体化合物を酸化物に変換するには、酸素存在雰囲気下で加熱する等の処理を施すことにより、容易に変換可能である。
【0028】
電極活物質表面に金属酸化物被膜或いは金属酸化物の前駆体化合物被膜を形成する処理方法としては、金属酸化物或いはその前駆体化合物の溶液及び/又は分散液に電極活物質を加え、調整したスラリーから溶媒或いは分散媒を除去する方法で処理することができる。溶媒或いは分散媒の除去は、かかるスラリーに攪拌する等の操作を加えながら、乾燥空気を吹き付けたり、加熱したり、減圧したりすることで行われる。また、スプレードライの手法を用いることも可能である。さらには、流動層或いは乾燥気流中にスラリーを供給して乾燥させる方法も可能である。
【0029】
こうして形成された被膜を有する活物質は、続いて熱処理される。熱処理により、残存していた溶媒等もさらに取り除けるうえ、被膜と活物質表面とを強固に結合できることから、長期にわたって安定した効果が得られて好ましい。さらに、前駆体化合物を用いた場合には、かかる熱処理により前駆体化合物から酸化物への変換が完成される。
【0030】
被膜の形成と熱処理を連続してほぼ同時に行うこともできる噴霧熱分解の手法を用いることも可能である。これにより、前駆体化合物を用いた場合であっても、被膜の形成から金属酸化物への変換までを一つの工程で完了できることになり、好ましい。
【0031】
本発明の電極活物質を構成する電極活物質に対する不連続被膜の担持量は、求める効果を発現できる最少量であるのが好ましい。と言うのは、被膜を構成する物質自体は放電容量に寄与するものではなく、量を増やすことは放電容量を損なうことになるからである。具体的には0.002モル%〜2.0モル%であることが望ましい。0.002モル%より少ないと、サイクル特性や負荷特性といった電池性能の向上効果が顕著には得られなくなり、好ましくない。一方、2.0モル%より多くしても、より高い効果は望めなくなるうえ放電容量の低下が大きくなってしまうことから好ましくない。
【0032】
本発明の方法で製造された正極活物質は、電池電極、二次電池用電極に有効に使用される。特にリチウム一次電池を含めた、リチウムイオン電池、リチウムイオンポリマー電池、リチウムポリマー電池等の非水電解液二次電池用電極活物質としてきわめて有効である。本発明の電極活物質を用いた非水電解液二次電池は、大きな充放電容量と高いエネルギ密度を持ち、優れたサイクル特性、高負荷特性、低温特性、高温特性、安全性を発現する。
【0033】
本発明の非水電解液二次電池用電極活物質は、電気化学的にリチウムを挿入・脱離する機能を担う活物質の表面に、かかる活物質の持てる特性を最大限に引き出して維持するように機能する不連続被膜が担持されて形成されている。本発明における製造方法によれば、極めて少量の材料で極めて薄い薄膜を形成できることから、本発明の活物質表面に形成された不連続被膜は、活物質の有する特性を実質的に低下させることがない。しかも本発明の不連続被膜は、電気化学的反応を担う電極活物質と相互作用し、長期にわたって高い放電容量と高負荷特性が維持されるように機能し、また、低温環境下や高温環境下に置かれた場合であっても優れた電池性能が損なわれないように機能する。
【0034】
本発明の活物質と活物質表面に設けた不連続被膜の組み合せが、どのようなメカニズムで優れた電池性能を発現し、維持しているのかは、定かでない点が多い。しかしながら、本発明の不連続被膜を担持した電極活物質においては、高負荷時にも実質的にはほとんど分極をしていない。このことから、本発明者は以下のような機構によるものであろうと推察している。しかしながら、かかる推察は考えられる一つの可能性を提案しただけであって、何ら本発明の特徴を限定するものではない。
【0035】
すなわち、表面に不連続被膜を担持した本発明の電極活物質は、2つのバンドギャップを接合した形のエネルギダイアグラムで表現できるものと考えられる。ここに電位が加わると、例えば充電時、電子は被膜の作用で速やかに伝導するパスが形成され、ホールは速やかにリチウムイオンとなって電解液中に開放される。一方、放電時、電極表面に移動してきたリチウムイオンは、不連続被膜の作用で表面に導かれた電子により速やかに還元され、活物質内に挿入される。
【0036】
これに対して、従来の活物質の場合は、負荷を高めると分極を起こしてしまう。すなわち、充電時、酸化されたリチウムイオンが放出される前に、電子やホールの一部は活物質表面で電解液と相互作用し、好ましくない反応を起こしてしまう。放電時においても、リチウムイオンが電子で還元される前に同様の好ましくない反応を起こしてしまう。このような好ましくない反応が電池性能に悪影響を及ぼし、性能を劣化させてしまっていたと推察される。
【0037】
[実施例]
市販の酸化コバルト(2価、3価)を粉砕、分級して平均粒径を1.3μmに調整した。この酸化コバルト1.65kg、水酸化リチウム一水和物1.03kg及び純粋1.2kgを混合し、撹拌しながら乾燥させて、890℃にて20時間焼成した。これを水洗後、200℃にて乾燥させたところ、塊状をした平均粒径17.2μmのコバルト酸リチウム(A)が2.00kg得られた。酸化ジルコニウム換算濃度15.0重量%の市販酢酸ジルコニル水溶液(d)を入手した。30gの純水に(d)を0.4gを加えて混合した中にコバルト酸リチウム(A)100gを加えて撹拌した。90℃にて乾燥後、600℃にて1分間加熱して、(A)の表面に酸化ジルコニウム不連続膜0.02モル%がコートされた平均粒径18.5μmの正極活物質(6)を得た。
【0038】
この(6)の90部、カーボン5部、及びフッ化ビニリデン5部にN−メチルビロリドンを加えて混練りしてペーストとした。このペーストをアルミ箔に塗布して乾燥後、圧延して所定の大きさに打ち抜き、正極板とした。次に、95部のカーボンと5部のポリフッ化ビニリデンに20部のN−メチルピロリドンを加えて混練りしてペーストとした。このペーストを銅箔に塗布して乾燥後、圧延して所定の大きさに打ち抜き、負極板とした。
【0039】
こうして得られた正極板、負極板にそれぞれリード線を取り付け、ポリオレフィン系セパレータを介してステンレス製セルケースに収納した。続いて、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入し、モデルセルとした。電池特性は、充放電測定装置を用い、25℃において充電電流1mA/cm で電池電圧4.3Vになるまで充電した後、放電電流2mA/m で3.0Vになるまで放電する充放電の繰り返しを行い、初期放電容量と50サイクル後の放電容量を求めて評価した。その結果を表1に示した。なお、容量維持率は式1で求めた。
【0040】
【式1】

Figure 0004965773
【0041】
[実施例]
酸化タンタル換算濃度が3.0重量%であるペンタエトキシタンタルの2−プロパノール溶液(f)30gを調製した。この中に、実施例1のコバルト酸リチウム(A)100gを加えて撹拌し、90℃にて乾燥後、450℃にて1分間加熱して、(A)の表面に酸化タンタル不連続膜0.15モル%がコートされた平均粒径17.9μmの正極活物質(8)を得た。()の代わりにこの(8)を用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0042】
[比較例]
酸化ケイ素換算濃度が3.0重量%であるテトラエトキシシランの2−プロパノール溶液(j)30gを調製して用いたことを除き、実施例と同様にして、(A)の表面に酸化ケイ素不連続膜0.8モル%がコートされた平均粒径18.0μmの正極活物質(11)を得た。()の代わりにこの(11)を用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0043】
[比較例]
粒径15nmの酸化ケイ素20重量%を水に分散させた市販の酸化ケイ素分散液(k)を入手した。(k)の1.5gを28.5gの純水で希釈し、実施例1のコバルト酸リチウム(A)100gを加えて撹拌した。これを90℃にて乾燥させた後、500℃にて1分間加熱して、(A)の表面に酸化ケイ素不連続膜0.3モル%がコートされた平均粒径17.7μmの正極活物質(12)を得た。()の代わりにこの(12)を用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0044】
[比較例]
)の代わりに、(A)をそのまま用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0045】
[実施例]
pHを10.4としたアンモニア水にヘキサコバルト(3価)酸ナトリウムを加えて攪拌、溶解させ、不溶物を除去した後、97℃に加熱したら黒褐色の析出物を生じた。この析出物を取り出し、水洗、乾燥後、元素分析した結果、コバルト含有量が64.3重量%で、3価コバルトを62.6重量%、水素を1.0重量%、酸素を34.1重量%含有していることがわかった。また、CuKαを線源とするX線回折における2θ=36〜37.5度近辺の回折ピークの半値幅を求めたところ、2.43度であった。よって、この黒褐色の析出物はH 0.93 CoO 1.95 の組成式で示される無定形の3価コバルト化合物を主成分とし、コバルト含有量と半値幅の関係が米国特許第6,054,110号のリチウムコバルト複合酸化物用コバルト源として好適であることがわかった。
【0046】
このコバルト化合物3.03kgと炭酸リチウム1.29kgをボールミル混合した後、775℃にて4時間焼成したら、板状粒片が一個一個分散した平均粒径3.9μmの板状タイプコバルト酸リチウム(B)を3.22kg得た。
【0047】
酸化スズ換算濃度が0.6重量%であるスズアセチルアセトネートのトルエン溶液(m)を30g調製した。この中に、コバルト酸リチウム(B)100gを加えて攪拌し、90℃にて乾燥後、450℃にて1分間加熱して、(B)の表面に酸化スズ不連続膜0.03モル%がコートされた平均粒径3.7μmの正極活物質(15)を得た。()の代わりにこの(15)を用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0048】
[比較例]
)の代わりに(B)をそのまま用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0049】
[実施例]
コバルト濃度60g/リットルの硫酸コバルト水溶液に、10容量%のジ−2−エチルヘキシルフォスフェートと5容量%のイソトリデカノールを含有するケロシン溶液を加え、混合攪拌した後、静置して分離させた。このケロシン溶液を抜き出して湯で2回洗浄後、強アンモニア性炭酸アンモニウム水溶液を加えて混合攪拌し、静置した。次に、この分離した水相を抜き取り、酸素ガスを通して1時間バブリングした後、過酸化水素水を加えて攪拌し、2価コバルトを3価コバルトに酸化させた。
【0050】
かかる3価コバルトのアンモニア性水溶液に、30容量%の2−ヒドロキシ−5−t−ノニルアセトフェノンオキシムと15容量%のイソトリデカノールを含有するケロシン溶液を加え、混合攪拌した後、静置し、分離させた。続いて、この水相を抜き取り、水蒸気を通してバブリングしながら100℃にて1時間加熱したところ、黒色の沈殿物が得られた。
【0051】
かかる沈殿物を60℃の減圧下で15時間乾燥した後、元素分析した結果は、コバルト含有量が64.7重量%で、3価コバルトを61.6重量%、水素を1.1重量%、酸素を33.6重量%含有していることが分かった。また、CuKαを線源とするX線回折における2θ=36〜37.5度近辺の回折ピークの半値幅を求めたところ、1.91度であった。よって、この黒色の沈殿物は、H 0.99 CoO 1.91 の組成式で示される無定形の3価コバルト化合物を主成分とし、コバルト含有量と半値幅の関係が米国特許第6,054,110号のリチウムコバルト複合酸化物用コバルト源として好適であることがわかった。
【0052】
このコバルト化合物の911gと炭酸リチウムの371gをボールミル混合した後、850℃にて6時間焼成したら、粒径1μm程度のSEM観察上の一次粒子が複数個集合しておにぎり状を呈した平均粒径6.4μmの凝集タイプコバルト酸リチウム(C)を976g得た。
【0053】
酸化ニオブ換算濃度が3.0重量%であるペンタエトキシニオブの2−プロパノール溶液(k)30gを調製した。この中に、(C)の100gを加えて攪拌し、90℃にて乾燥後、550℃にて1分間過熱して、(C)の表面に酸化ニオブ不連続膜0.25モル%がコートされた平均粒径6.5μmの正極活物質(18)を得た。()の代わりにこの(18)を用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0054】
[比較例]
)の代わりに(C)をそのまま用いたことを除き、実施例1と同様にしてモデルセルを作製して、充放電特性を調べた結果を表1に示した。
【0055】
表1には記載しなかったが、−20℃における放電容量を測定したところ、実施例のモデルセルは33%の容量を発現した。一方、比較例のモデルセルでは5%の容量しか発現できなかった。さらに、これらのセルにつき高温保存特性、熱安定性を調べたところ、実施例のモデルセルでは比較例のモデルセルよりも極めて良好であることがわかった。
【0056】
【表1】
Figure 0004965773
【0057】
【発明の効果】
本発明における非水電解液二次電池用電極活物質の製造方法によれば、均質でしかも極めて薄い特定の不連続被膜を活物質表面に強固に形成させることができることから、本発明の活物質を用いて製造されたリチウム二次電池は、活物質の持つ本来の放電容量を損なうことがない。
【0058】
本発明の電極活物質表面に担持された不連続被膜は、電極活物質表面で起こる電気化学的反応を速やかに完結させ、電子のスムースな伝導パスを確保するように機能し、電極表面での分極を抑える効果がある。したがって、本発明の非水電解液二次電池用電極活物質を用いて製造されたリチウム二次電池は、充放電を繰り返した後も、電極と電解質液との好ましくない反応を防止できることから、長期にわたって初期特性に近いパフォーマンスを維持できる。また、高温時や高温に長期間放置された後も、優れた特性を維持し高い安全性を発現する。さらに低温時も、高い放電電圧及び放電容量を維持することができる。かかる効果はポリマー電解質を用いた場合にも有効に機能する。[0001]
[Industrial application fields]
  The present invention relates to an electrode active material for a secondary battery and a non-aqueous electrolyte secondary battery using the same.
[0002]
[Prior art]
  High electromotive force non-aqueous electrolyte batteries utilizing lithium oxidation / reduction reactions are industrially produced and widely used. In particular, a lithium ion secondary battery using lithium cobaltate, lithium nickelate, spinel type lithium manganate or the like as the positive electrode active material and graphite or hard carbon as the negative electrode active material has a high discharge voltage of 4V. High energy density batteries have been obtained.
[0003]
  However, such a lithium ion secondary battery has a drawback that the discharge capacity is gradually reduced when charging and discharging are repeated. One reason is that while a highly active positive electrode active material achieves high performance battery characteristics, it has an unfavorable strong interaction with the non-aqueous electrolyte, which adversely affects the battery. It is considered. That is, it is judged that the nonaqueous electrolytic solution decomposed by the interaction with the active material forms a film on the surface of the active material, and this film deteriorates the battery characteristics in order to inhibit the entry and exit of lithium.
[0004]
  In addition, the expansion / contraction of the active material and the change in crystal structure associated with the entry / exit of lithium may increase irreversibility with repeated charge / discharge, collapse the crystal structure of the active material, and decrease the electron conductivity. It is seen as one of the causes. In particular, since low electrical conductivity is conspicuous on the surface of the active material, the collapse of the crystal structure and the decomposition of the non-aqueous electrolyte proceed locally, and there is a high possibility of developing a fatal trouble.
[0005]
  There have been various studies and proposals for solving the problems of the prior art, and many of them have been added or coated with different elements or compounds of different elements to reinforce the crystal structure and improve conductivity, or It aimed at effects such as suppression of solvent decomposition.
[0006]
  For example, Japanese Patent Laid-Open No. 4-253162 discloses that if a part of cobalt of lithium cobaltate is partially substituted with Pb, Bi, B, etc., irreversible change in crystal structure accompanying charge / discharge is suppressed, and cycle characteristics are greatly improved. It is proposed that it can be improved. According to the proposal of Japanese Patent Laid-Open No. 4-319260, when zirconium oxide is added to lithium cobaltate, decomposition of the electrolytic solution and collapse of the crystal structure can be suppressed, and cycle characteristics and high-temperature storage characteristics can be greatly improved. However, in both cases, the initial discharge capacity is greatly reduced. Even when 5 mol% of zirconium, which is preferable in the latter, is added, the capacity is reduced by more than 15%. Y. Sato et al. [Electrochem. Soc. Proc. , Vol. 97-18,45 (1997)], it is assumed that lithium nickelate in which 1 mol% of nickel is substituted with Nb holds hexagonal crystals even after 85% of lithium is released. Tied. However, this lithium nickelate also decreased the initial capacity by 15% with only 1 mol% Nb substitution.
[0007]
  H. Tukamoto et al. [J. Electrochem. Soc. 144, 3164 (1997)] found that replacing a part of cobalt of lithium cobaltate with Mg increases electron conductivity, and explains this by applying the mechanism of an impurity semiconductor. In JP-A-11-250936, when Zn is added to a lithium-containing nickel-cobalt composite oxide, the conductivity of the composite oxide is increased, thereby realizing battery characteristics with high capacity and excellent cycle characteristics and high load characteristics. Proposed. However, when applied to lithium cobalt oxide, even if Zn is added, the initial capacity is greatly reduced and the load characteristics are also deteriorated. Similarly, when applied to spinel type lithium manganate, it is reported that the initial capacity is greatly reduced [J. Power Sources 68, 247 (1998)]. Japanese Patent Laid-Open No. 2000-200607 proposes lithium cobaltate or lithium nickelate in which cobalt or nickel is partially substituted with two or more elements including Ti, and a secondary battery with low internal resistance can be realized. There is a description. However, this proposal also reduces the initial capacity.
[0008]
  On the other hand, in Japanese Patent Application Laid-Open No. 2000-138075, when lithium cobaltate in which a part of cobalt is substituted with Nb is used, the electrolytic solution film formed on the particle surface is decomposed by the Nb compound as a catalyst, so that the resistance of the particle surface is reduced. It has been proposed that the ionic conductivity is improved and the decrease in discharge capacity at low temperatures can be suppressed. However, said Y.M. As reported by Sato et al., The initial capacity is inevitably lowered by the substitution or addition of different elements, and the different elements in the crystal impede the smooth diffusion of lithium and impair the high load characteristics. If the catalytic action on the electrode surface exhibits favorable characteristics, it is reasonable to limit the introduction of different elements only to the surface layer.
[0009]
  In JP 2000-48820 A, a conductive film made of a specific metal is provided on a part or all of the surface of the lithium composite transition metal oxide particles to suppress the reaction between the active material particles and the non-aqueous electrolyte. There is a proposal that cycle characteristics can be improved. However, this is not only an increase in the conductive additive of the positive electrode composite, but also results in a decrease in energy density.
[0010]
  Japanese Patent Application Laid-Open No. 2000-128539 proposes a technique for coating LiF on the surface of a spinel type lithium manganate. According to this, most of LiF is in the positive electrode surface layer and suppresses decomposition of the non-aqueous electrolyte, and partly dissolved in the extreme surface layer of the lithium manganate crystal stabilizes the crystal structure and elutes Mn. Therefore, the cycle characteristics are not deteriorated even at high temperatures. However, from the disclosed synthesis method, it is unlikely that the halogen distribution can be finely suppressed and should be regarded as a simple mixture. Moreover, even when applied to lithium cobaltate, a favorable effect was not observed, but rather the initial capacity was greatly reduced.
[0011]
  Japanese Patent Application Laid-Open No. 2000-200060 proposes a technique for attaching Ti particles or Ti compound particles to the surface of lithium cobalt oxide particles. This Ti particle or the like decomposes the coating film derived from the non-aqueous electrolyte formed on the surface of the active material to prevent a decrease in ionic conductivity, so that high discharge characteristics can be maintained even at low temperatures. However, according to the disclosed synthesis method, the lithium cobalt oxide particles and the Ti compound particles are simply mixed, and the coating formed on the lithium cobalt oxide surface can be effectively removed thereby. It is hard to think.
[0012]
  As mentioned above, although these proposals aimed at providing a new function to the particle surface, they lacked accuracy in the method of forming the surface layer that should perform the function.
[0013]
  On the other hand, the proposal of Japanese Patent Laid-Open No. 4-329267 proposes a cycle in which the surface of the positive electrode active material such as lithium cobaltate is modified with a titanium coupling agent and heat-treated, and Ti is dissolved only in the active material surface layer. It is assumed that the characteristics are improved. This is presumed to be an attempt to avoid the adverse effects of different elements introduced into the crystal of the active material, that is, the deterioration of the initial discharge capacity and high load characteristics, but there is no description about this point. Further, it has been pointed out that Ti solid solution lithium cobalt oxide prepared by such a technique impairs safety.
[0014]
  Japanese Patent Application Laid-Open No. 2000-149948 proposes to coat the surface of spinel type lithium manganate particles with a metal oxide film such as Fe or a composite oxide film. This describes that Mn elution at a high temperature is suppressed, and deterioration of cycle characteristics is suppressed. Here, it can be judged that the film formation on the particle surface was performed by immersing the lithium manganate particles in a solution containing an element for constituting the film. However, although the results that the initial capacity does not decrease even when a coating of 10 wt% is provided are described in the Examples, in the tests of the present inventors, the initial capacity is decreased more than the coating weight ratio. It was a result. Moreover, even if it applied to lithium cobaltate, it was the same, and it resulted in reducing the initial capacity greatly. This was presumed that the counter ions in the film forming solution had an adverse effect.
[0015]
  In this way, with the aim of improving the cycle characteristics of non-aqueous electrolyte secondary batteries, conventional techniques that try to reinforce the crystal structure and improve electronic conductivity by adding different elements into the active material crystal This hindered the smooth diffusion of Li and caused a significant decrease in initial discharge capacity, high load characteristics, low temperature characteristics, etc., and was not put to practical use. On the other hand, a layer composed of different components is provided on the surface of the active material to suppress the strong interaction between the active material and the non-aqueous solvent to prevent the deposition of the solvent-decomposed film or to accelerate the peeling of the deposited solvent-decomposed film. However, the conventional technology is difficult to form an effective surface coating film, so that the initial discharge capacity and the high load characteristics are greatly reduced, and it has not been put to practical use.
[0016]
[Problems to be solved by the invention]
  An object of the present invention is to overcome the problems of the prior art and provide an electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery excellent in temperature characteristics and cycle characteristics.
[0017]
[Means for Solving the Problems]
  The present invention can insert and remove lithium electrochemically.Lithium-containing composite metal oxideA material that is an electrode active material and cannot electrochemically insert or remove lithium in a potential region where the electrode active material functions for lithium insertion and removalBismuth oxide, barium oxide, cadmium oxide, cerium oxide, cobalt oxide, chromium oxide, germanium oxide, indium oxide, lithium oxide, magnesium oxide, manganese oxide, niobium oxide, nickel oxide, lead oxide, tin oxide, tantalum oxide, At least one metal oxide selected from the group consisting of thorium oxide, yttrium oxide, zirconium oxide, barium titanate, strontium titanateThe formed discontinuous filmThatThe present invention provides an electrode active material for a non-aqueous electrolyte secondary battery, which is supported on the surface.
[0018]
As the electrode active material in the present invention, a positive electrode active material comprising a lithium-containing metal composite oxideCan be used.For example, a composite oxide of lithium, lithium, or a combination of one or more of cobalt, nickel, manganese, iron, vanadium, and tungsten can be given.
[0019]
  A positive electrode active material composed of such a composite oxide of metal and lithium is readily available, and a synthesis method is known and can be easily produced. Various methods have been proposed as a synthesis method. Generally, the raw material component particles constituting the composite oxide are mixed and then heat-treated for synthesis. The present inventors have also proposed a novel method for synthesizing a positive electrode active material composed of a complex oxide of metal and lithium. For example, US Pat. No. 6,054,110 proposes a method for synthesizing lithium cobaltate, and JP-A-11-292550 proposes a method for synthesizing lithium, nickel, and cobalt composite oxide. . In the present invention, the electrode active material made of a composite oxide of the metal and lithium produced by any of these methods, or the electrode active material produced by other methods can be suitably used. It is done.
[0020]
  Among them, a method for synthesizing lithium cobaltate newly proposed by the present inventors (US Pat. No. 6,054,110, etc.) and a method for synthesizing lithium, nickel, and cobalt composite oxide (Japanese Patent Laid-Open No. 11-292550) Etc.) is particularly preferably used. This is presumably because the positive electrode active material produced by the above synthesis method has high crystallinity and there is little disorder of the surface structure.
[0021]
  As a substance that forms a discontinuous film supported on the surface of the electrode active material of the present invention, lithium cannot be electrochemically inserted / extracted in a potential region where the electrode active material functions for lithium insertion / extraction. materialAnd alsoBecause it is on the surface of the active material responsible for the electrochemical reaction,
Has conductivity in the semiconductor regionAndSince it is easy to form a film and has durability and can exhibit a stable function over a long period of time, bismuth oxide, barium oxide, cadmium oxide, cerium oxide, cobalt oxide, chromium oxide, germanium oxide, indium oxide, lithium oxide, Magnesium oxide, manganese oxide, niobium oxide, nickel oxide, lead oxide, tin oxide, tantalum oxide, thorium oxide, yttrium oxide, zirconium oxide, barium titanate, strontium titanateTheEach is used alone or in combination of two or more.
[0022]
  In order to form a discontinuous film made of a metal oxide on the surface of the electrode active material of the present invention,Each of the aboveIt is also preferable to use metal oxide fine particles. It is expected that the wide surface of the fine particles will interact strongly with the active material surface and express a great effect. Various methods can be proposed as a method for forming a film composed of metal oxide fine particles on the surface of the electrode active material, but a method using a mechanochemical method can also be preferably applied.
[0023]
  A method of forming a metal oxide film on the surface of the active material by treating the surface of the electrode active material using a metal oxide solution and / or dispersion is also preferred. Since such a method can form a uniform and thin film, it is expected that an excellent effect can be exhibited only by providing a small amount of film. More preferably, the solvent of the metal oxide solution and the dispersion medium of the dispersion liquid are water because they can be handled easily.
[0024]
  A method using a precursor compound that can be easily converted into a metal oxide is also preferably used in the present invention. That is, this is a method for producing the electrode active material of the present invention by treating the surface of the electrode active material with a precursor compound, providing a film made of the precursor compound on the surface of the active material, and then converting to an oxide. By using such a method, it is possible to efficiently carry a discontinuous film made of a metal oxide on the surface of an electrode active material even if the material is difficult to form a film in the form of a metal oxide.
[0025]
  As a method of providing the precursor compound on the surface of the electrode active material, the electrode active material is treated with a solution and / or dispersion of the precursor compound, and then the solvent or the dispersion medium is removed to provide a coating film made of the precursor compound. It is common. Subsequently, the electrode active material of the present invention can be produced by converting the precursor compound into an oxide.
[0026]
  Examples of precursor compounds that can easily form metal oxides include metal chlorides, nitrates, peroxides, alkoxides, acylates, acetylacetonates, chelates, and the like, which can be suitably used in the present invention.
[0027]
  In order to convert such a precursor compound into an oxide, it can be easily converted by performing a treatment such as heating in an oxygen-existing atmosphere.
[0028]
  As a processing method for forming a metal oxide film or a metal oxide precursor compound film on the surface of the electrode active material, an electrode active material was added to the solution and / or dispersion of the metal oxide or a precursor compound thereof, and adjusted. It can process by the method of removing a solvent or a dispersion medium from a slurry. The removal of the solvent or the dispersion medium is performed by blowing dry air, heating, or reducing the pressure while performing an operation such as stirring the slurry. It is also possible to use a spray drying method. Furthermore, a method of supplying a slurry in a fluidized bed or a dry air flow and drying it is also possible.
[0029]
  The active material having the film thus formed is subsequently heat treated. The remaining solvent and the like can be further removed by the heat treatment, and since the film and the active material surface can be firmly bonded, a stable effect can be obtained over a long period of time. Further, when the precursor compound is used, the conversion from the precursor compound to the oxide is completed by the heat treatment.
[0030]
  It is also possible to use a spray pyrolysis technique in which the formation of the coating and the heat treatment can be carried out substantially simultaneously. Thereby, even if it is a case where a precursor compound is used, it will be able to complete from formation of a film to conversion to a metal oxide in one process, and is preferred.
[0031]
  The amount of the discontinuous film supported on the electrode active material that constitutes the electrode active material of the present invention is preferably the minimum amount that can achieve the desired effect. This is because the substance itself constituting the coating does not contribute to the discharge capacity, and increasing the amount impairs the discharge capacity. Specifically, the content is desirably 0.002 mol% to 2.0 mol%. If it is less than 0.002 mol%, the effect of improving battery performance such as cycle characteristics and load characteristics cannot be remarkably obtained, which is not preferable. On the other hand, if the amount is more than 2.0 mol%, a higher effect cannot be expected, and the discharge capacity is greatly reduced, which is not preferable.
[0032]
  The positive electrode active material produced by the method of the present invention is effectively used for battery electrodes and secondary battery electrodes. In particular, it is extremely effective as an electrode active material for non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries, including lithium primary batteries. The non-aqueous electrolyte secondary battery using the electrode active material of the present invention has a large charge / discharge capacity and high energy density, and exhibits excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety.
[0033]
  The electrode active material for a non-aqueous electrolyte secondary battery of the present invention maximizes and maintains the characteristics of the active material on the surface of the active material that has the function of electrochemically inserting and extracting lithium. A discontinuous film functioning as described above is supported and formed. According to the production method of the present invention, since an extremely thin thin film can be formed with a very small amount of material, the discontinuous film formed on the active material surface of the present invention can substantially reduce the properties of the active material. Absent. In addition, the discontinuous film of the present invention interacts with the electrode active material responsible for the electrochemical reaction and functions so as to maintain a high discharge capacity and high load characteristics over a long period of time. Even if it is placed in the battery, it functions so that the excellent battery performance is not impaired.
[0034]
  In many cases, the combination of the active material of the present invention and the discontinuous coating provided on the surface of the active material expresses and maintains excellent battery performance. However, the electrode active material carrying the discontinuous film of the present invention is substantially not polarized even at high loads. From this, the present inventor speculates that it may be due to the following mechanism. However, such inference only suggests one possible possibility and does not limit the features of the present invention.
[0035]
  That is, the electrode active material of the present invention having a discontinuous film on the surface can be expressed by an energy diagram in which two band gaps are joined. When a potential is applied here, for example, during charging, a path is formed in which electrons are quickly conducted by the action of the coating, and the holes are quickly turned into lithium ions and released into the electrolyte. On the other hand, during discharge, the lithium ions that have moved to the electrode surface are rapidly reduced by the electrons guided to the surface by the action of the discontinuous film and inserted into the active material.
[0036]
  On the other hand, in the case of a conventional active material, if the load is increased, polarization occurs. That is, part of electrons and holes interacts with the electrolyte solution on the surface of the active material before the oxidized lithium ions are released during charging, causing an undesirable reaction. Even during discharge, the same undesirable reaction occurs before lithium ions are reduced by electrons. It is surmised that such an unfavorable reaction adversely affects the battery performance and deteriorates the performance.
[0037]
    [Example1]
  Commercial cobalt oxide (divalent and trivalent) was pulverized and classified to adjust the average particle size to 1.3 μm. 1.65 kg of this cobalt oxide, 1.03 kg of lithium hydroxide monohydrate and 1.2 kg of pure were mixed, dried with stirring, and calcined at 890 ° C. for 20 hours. When this was washed with water and dried at 200 ° C., 2.00 kg of aggregated lithium cobalt oxide (A) having an average particle diameter of 17.2 μm was obtained.A commercially available zirconyl acetate aqueous solution (d) having a zirconium oxide equivalent concentration of 15.0% by weight was obtained.While adding 0.4 g of (d) to 30 g of pure water and mixing, 100 g of lithium cobaltate (A) was added and stirred. After drying at 90 ° C, heat at 600 ° C for 1 minute,A positive electrode active material (6) having an average particle diameter of 18.5 μm, in which the surface of (A) was coated with 0.02 mol% of a zirconium oxide discontinuous film, was obtained.
[0038]
N-methylpyrrolidone was added to 90 parts of (6), 5 parts of carbon, and 5 parts of vinylidene fluoride and kneaded to obtain a paste. This paste was applied to an aluminum foil, dried, rolled and punched to a predetermined size to obtain a positive electrode plate. Next, 95 parts of carbon and 5 parts of polyvinylidene fluoride were mixed with 20 parts of N-methylpyrrolidone to obtain a paste. This paste was applied to a copper foil, dried, rolled and punched to a predetermined size to obtain a negative electrode plate.
[0039]
Lead wires were attached to the positive electrode plate and the negative electrode plate obtained in this way, respectively, and stored in a stainless steel cell case via a polyolefin-based separator. Subsequently, an electrolyte solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in a mixed solution of ethylene carbonate and diethylene carbonate was injected to form a model cell. The battery characteristics were measured using a charge / discharge measuring device at a charge current of 1 mA / cm at 25 ° C. 2 After charging to a battery voltage of 4.3V, a discharge current of 2 mA / m 2 The charge / discharge was repeated until 3.0 V was reached, and the initial discharge capacity and the discharge capacity after 50 cycles were determined and evaluated. The results are shown in Table 1. The capacity retention rate was determined by Equation 1.
[0040]
[Formula 1]
Figure 0004965773
[0041]
     [Example2]
  30 g of 2-propanol solution (f) of pentaethoxytantalum having a tantalum oxide equivalent concentration of 3.0% by weight is prepared.did. In this, 100 g of lithium cobaltate (A) of Example 1 was added and stirred, dried at 90 ° C., then heated at 450 ° C. for 1 minute,A positive electrode active material (8) having an average particle diameter of 17.9 μm was obtained, in which the surface of (A) was coated with 0.15 mol% of a tantalum oxide discontinuous film. (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (8) was used instead of (8).
[0042]
    [Comparative example1]
  Example, except that 30 g of a 2-propanol solution (j) of tetraethoxysilane having a silicon oxide equivalent concentration of 3.0% by weight was prepared and used2In the same manner as above, a positive electrode active material (11) having an average particle diameter of 18.0 μm was obtained, in which 0.8 mol% of the silicon oxide discontinuous film was coated on the surface of (A). (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (11) was used instead of (11).
[0043]
    [Comparative example2]
  A commercially available silicon oxide dispersion (k) in which 20% by weight of silicon oxide having a particle size of 15 nm is dispersed in water.obtained. 1.5 g of (k) was diluted with 28.5 g of pure water, 100 g of lithium cobaltate (A) of Example 1 was added and stirred. After drying this at 90 ° C., heating at 500 ° C. for 1 minute,A positive electrode active material (12) having an average particle diameter of 17.7 μm, in which the surface of (A) was coated with 0.3 mol% of a silicon oxide discontinuous film, was obtained. (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (12) was used instead of (12).
[0044]
    [Comparative example3]
  (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (A) was used as it was instead of (A).
[0045]
    [Example3]
  Sodium hexacobalt (trivalent) acid was added to ammonia water with a pH of 10.4 and stirred and dissolved to remove insoluble matters. After heating to 97 ° C., a black-brown precipitate was produced. The precipitate was taken out, washed with water, dried, and subjected to elemental analysis. As a result, the cobalt content was 64.3% by weight, trivalent cobalt was 62.6% by weight, hydrogen was 1.0% by weight, and oxygen was 34.1%. It was found that it contained by weight. Further, the half width of the diffraction peak around 2θ = 36 to 37.5 degrees in X-ray diffraction using CuKα as a radiation source was found to be 2.43 degrees. Therefore, this blackish brown precipitate is H 0.93 CoO 1.95 The main component is an amorphous trivalent cobalt compound represented by the composition formula, and the relation between the cobalt content and the half-value width is suitable as a cobalt source for lithium cobalt composite oxide of US Pat. No. 6,054,110. I understood.
[0046]
  This cobalt compound (3.03 kg) and lithium carbonate (1.29 kg) were mixed in a ball mill and then fired at 775 ° C. for 4 hours. 3.22 kg of B) was obtained.
[0047]
  30 g of a toluene solution (m) of tin acetylacetonate having a tin oxide equivalent concentration of 0.6% by weight was prepared. In this, 100 g of lithium cobaltate (B) was added and stirred, dried at 90 ° C., and then heated at 450 ° C. for 1 minute to discontinue 0.03 mol% of tin oxide discontinuous film on the surface of (B). To obtain a positive electrode active material (15) having an average particle size of 3.7 μm. (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (15) is used instead of (15).
[0048]
    [Comparative example4]
  (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (B) was used as it was instead of (B).
[0049]
    [Example4]
A kerosene solution containing 10% by volume di-2-ethylhexyl phosphate and 5% by volume isotridecanol is added to a cobalt sulfate aqueous solution having a cobalt concentration of 60 g / liter, mixed and stirred, and then allowed to stand to separate. It was. The kerosene solution was extracted and washed twice with hot water, and then a strong ammoniacal ammonium carbonate aqueous solution was added, mixed and stirred, and allowed to stand. Next, the separated aqueous phase was extracted and bubbled through oxygen gas for 1 hour, and then hydrogen peroxide water was added and stirred to oxidize divalent cobalt to trivalent cobalt.
[0050]
  A kerosene solution containing 30% by volume of 2-hydroxy-5-t-nonylacetophenone oxime and 15% by volume of isotridecanol is added to the ammoniacal aqueous solution of trivalent cobalt, mixed and stirred, and then allowed to stand. , Separated. Subsequently, the aqueous phase was extracted and heated at 100 ° C. for 1 hour while bubbling through water vapor, whereby a black precipitate was obtained.
[0051]
The precipitate was dried for 15 hours under reduced pressure at 60 ° C., and the results of elemental analysis were as follows. The cobalt content was 64.7% by weight, trivalent cobalt was 61.6% by weight, and hydrogen was 1.1% by weight. It was found to contain 33.6% by weight of oxygen. Further, the half-value width of a diffraction peak around 2θ = 36 to 37.5 degrees in X-ray diffraction using CuKα as a radiation source was found to be 1.91 degrees. Therefore, this black precipitate is H 0.99 CoO 1.91 The main component is an amorphous trivalent cobalt compound represented by the composition formula, and the relation between the cobalt content and the half-value width is suitable as a cobalt source for lithium cobalt composite oxide of US Pat. No. 6,054,110. I understood.
[0052]
  After 911 g of this cobalt compound and 371 g of lithium carbonate were mixed in a ball mill and fired at 850 ° C. for 6 hours, an average particle diameter in which a plurality of primary particles having a particle diameter of about 1 μm were aggregated to form a rice ball shape. 976 g of 6.4 μm aggregated type lithium cobalt oxide (C) was obtained.
[0053]
  30 g of 2-propanol solution (k) of pentaethoxyniobium having a niobium oxide equivalent concentration of 3.0% by weight was prepared. 100 g of (C) was added to this, stirred, dried at 90 ° C., heated at 550 ° C. for 1 minute, and coated with 0.25 mol% of the niobium oxide discontinuous film on the surface of (C). Thus, a positive electrode active material (18) having an average particle diameter of 6.5 μm was obtained. (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (18) was used instead of (18).
[0054]
    [Comparative example5]
  (6Table 1 shows the results of producing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics, except that (C) was used as it was instead of (C).
[0055]
  Although not described in Table 1, the discharge capacity at -20 ° C was measured.1The model cell developed a capacity of 33%. On the other hand, comparative example1In the model cell, only 5% capacity could be expressed. Further, the high temperature storage characteristics and thermal stability of these cells were examined.1Comparison model in model cell1It was found to be much better than the model cell.
[0056]
[Table 1]
Figure 0004965773
[0057]
【The invention's effect】
  According to the method for producing an electrode active material for a non-aqueous electrolyte secondary battery in the present invention, a specific discontinuous coating that is homogeneous and extremely thin can be firmly formed on the surface of the active material. The lithium secondary battery manufactured using the above does not impair the original discharge capacity of the active material.
[0058]
  The discontinuous film supported on the surface of the electrode active material of the present invention functions to quickly complete the electrochemical reaction that occurs on the surface of the electrode active material, and to ensure a smooth conduction path of electrons. Effective in suppressing polarization. Therefore, the lithium secondary battery manufactured using the electrode active material for a non-aqueous electrolyte secondary battery of the present invention can prevent an undesirable reaction between the electrode and the electrolyte solution even after repeated charge and discharge. Performance close to the initial characteristics can be maintained for a long time In addition, excellent characteristics are maintained and high safety is exhibited even at high temperatures or after being left at high temperatures for a long time. Furthermore, a high discharge voltage and discharge capacity can be maintained even at low temperatures. Such an effect functions effectively even when a polymer electrolyte is used.

Claims (7)

電気化学的にリチウムを挿入・離脱できるリチウム含有複合金属酸化物である電極活物質であって、かかる電極活物質がリチウムの挿入・離脱に機能する電位領域においては電気化学的にリチウムを挿入・離脱できない物質である酸化ビスマス、酸化バリウム、酸化カドミウム、酸化セリウム、酸化コバルト、酸化クロム、酸化ゲルマニウム、酸化インジウム、酸化リチウム、酸化マグネシウム、酸化マンガン、酸化ニオブ、酸化ニッケル、酸化鉛、酸化スズ、酸化タンタル、酸化トリウム、酸化イットリウム、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウムからなる群より選択される少なくとも1種の金属酸化物で形成された不連続被膜をその表面に担持していることを特徴とする非水電解液二次電池用電極活物質。An electrode active material that is a lithium-containing composite metal oxide capable of electrochemically inserting and extracting lithium, and electrochemically inserting and extracting lithium in a potential region where the electrode active material functions for lithium insertion and removal. Bismuth oxide, barium oxide, cadmium oxide, cerium oxide, cobalt oxide, chromium oxide, germanium oxide, indium oxide, lithium oxide, magnesium oxide, manganese oxide, niobium oxide, nickel oxide, lead oxide, tin oxide, which cannot be separated tantalum oxide, thorium oxide, yttrium oxide, zirconium oxide, barium titanate, that at least one discontinuous coating formed by metal oxide selected from the group consisting of strontium titanate carries on its surface An electrode active material for a non-aqueous electrolyte secondary battery. 不連続被膜が、電極活物質の表面を酸化ビスマス、酸化バリウム、酸化カドミウム、酸化セリウム、酸化コバルト、酸化クロム、酸化ゲルマニウム、酸化インジウム、酸化リチウム、酸化マグネシウム、酸化マンガン、酸化ニオブ、酸化ニッケル、酸化鉛、酸化スズ、酸化タンタル、酸化トリウム、酸化イットリウム、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウムからなる群より選択される少なくとも1種の金属酸化物の溶液及び/又は分散液で処理することにより形成されたものであることを特徴とする請求項1の非水電解液二次電池用電極活物質。The discontinuous film coats the surface of the electrode active material with bismuth oxide, barium oxide, cadmium oxide, cerium oxide, cobalt oxide, chromium oxide, germanium oxide, indium oxide, lithium oxide, magnesium oxide, manganese oxide, niobium oxide, nickel oxide, Treatment with a solution and / or dispersion of at least one metal oxide selected from the group consisting of lead oxide, tin oxide, tantalum oxide, thorium oxide, yttrium oxide, zirconium oxide, barium titanate, strontium titanate The electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode active material is formed by: 溶液の溶媒並びに分散液の分散媒が水であることを特徴とする請求項の非水電解液二次電池用電極活物質。The electrode active material for a non-aqueous electrolyte secondary battery according to claim 2 , wherein the solvent of the solution and the dispersion medium of the dispersion are water. 不連続被膜が、電極活物質の表面を、酸化ビスマス、酸化バリウム、酸化カドミウム、酸化セリウム、酸化コバルト、酸化クロム、酸化ゲルマニウム、酸化インジウム、酸化リチウム、酸化マグネシウム、酸化マンガン、酸化ニオブ、酸化ニッケル、酸化鉛、酸化スズ、酸化タンタル、酸化トリウム、酸化イットリウム、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウムからなる群より選択される少なくとも1種の金属の酸化物を形成できる金属又は金属化合物を含有する溶液及び/又は分散液で処理することにより形成されたものであることを特徴とする請求項1の非水電解液二次電池用電極活物質。The discontinuous coating makes the surface of the electrode active material bismuth oxide, barium oxide, cadmium oxide, cerium oxide, cobalt oxide, chromium oxide, germanium oxide, indium oxide, lithium oxide, magnesium oxide, manganese oxide, niobium oxide, nickel oxide. Contains a metal or metal compound capable of forming an oxide of at least one metal selected from the group consisting of lead oxide, tin oxide, tantalum oxide, thorium oxide, yttrium oxide, zirconium oxide, barium titanate, strontium titanate The electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode active material is formed by treatment with a solution and / or dispersion liquid. 溶液の溶媒並びに分散液の分散媒が水であることを特徴とする請求項の非水電解液二次電池用電極活物質。The electrode active material for a non-aqueous electrolyte secondary battery according to claim 4 , wherein the solvent of the solution and the dispersion medium of the dispersion are water. 不連続被膜に含有される物質は、前記リチウム含有複合金属酸化物に対して、0.002モル%〜2.0モル%であることを特徴とする請求項の非水電解液二次電池用電極活物質。Substances contained in the discontinuous coating relative to the lithium-containing composite metal oxide, a non-aqueous electrolyte secondary battery according to claim 1, characterized in that 0.002 mol% to 2.0 mol% Electrode active material. 請求項1〜いずれか1項の非水電解液二次電池用電極活物質を使用することを特徴とする非水電解液二次電池。Claim 1-6 nonaqueous electrolyte secondary battery, characterized by using an electrode active material for a nonaqueous electrolyte secondary battery of any one.
JP2001195969A 2001-06-28 2001-06-28 Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery Expired - Lifetime JP4965773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195969A JP4965773B2 (en) 2001-06-28 2001-06-28 Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195969A JP4965773B2 (en) 2001-06-28 2001-06-28 Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003017053A JP2003017053A (en) 2003-01-17
JP4965773B2 true JP4965773B2 (en) 2012-07-04

Family

ID=19033856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195969A Expired - Lifetime JP4965773B2 (en) 2001-06-28 2001-06-28 Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4965773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587000B2 (en) 2017-03-27 2020-03-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028886B2 (en) * 2006-07-04 2012-09-19 ソニー株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2008016233A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008041502A (en) * 2006-08-08 2008-02-21 Sony Corp Positive electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
KR100814880B1 (en) * 2006-11-22 2008-03-18 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery comprising the same
JP2008153017A (en) * 2006-12-15 2008-07-03 Ise Chemicals Corp Positive active material for nonaqueous electrolyte secondary battery
JP2008166118A (en) * 2006-12-28 2008-07-17 Samsung Sdi Co Ltd Lithium secondary battery and negative electrode active material for same
KR100805123B1 (en) 2007-02-15 2008-02-21 삼성에스디아이 주식회사 Lithium secondary battery
JP5023912B2 (en) * 2007-09-19 2012-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material
JP5211698B2 (en) 2008-01-08 2013-06-12 トヨタ自動車株式会社 Semiconductor-covered positive electrode active material and lithium secondary battery using the same
JP5515476B2 (en) * 2009-07-16 2014-06-11 ソニー株式会社 Secondary battery, negative electrode, positive electrode and electrolyte
WO2011016553A1 (en) * 2009-08-07 2011-02-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
JP5897356B2 (en) 2012-03-01 2016-03-30 日本化学工業株式会社 Method for producing positive electrode active material for lithium secondary battery
JP6216154B2 (en) * 2012-06-01 2017-10-18 株式会社半導体エネルギー研究所 Negative electrode for power storage device and power storage device
KR20140038884A (en) * 2012-09-21 2014-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electrode material for power storage device, electrode for power storage device, and power storage device
CN104812485A (en) * 2012-11-19 2015-07-29 弗劳恩霍弗应用技术研究院 Particulate electrode material having coating made of crystalline inorganic material and/or inorganic-organic hybrid polymer and method for production thereof
JP6205248B2 (en) * 2013-11-21 2017-09-27 Dowaホールディングス株式会社 Solution containing lithium and niobium complex, method for producing the same, and lithium ion battery
CN106410175B (en) * 2016-10-26 2018-12-21 河南师范大学 A kind of modified Nano grade ThO2Anode material of lithium battery
JP6654582B2 (en) * 2017-02-09 2020-02-26 トヨタ自動車株式会社 Positive electrode mixture for lithium ion secondary battery and its use
KR102141485B1 (en) * 2017-12-28 2020-08-05 삼성에스디아이 주식회사 Method of preparing positve active material, postive active material prepared by same, positive electrode for non-aqueous rechargeable battery, and non-aqueous rechargeable battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355691B2 (en) * 1992-12-14 2002-12-09 株式会社デンソー Cathode of non-aqueous electrolyte battery
JP2787153B2 (en) * 1994-09-30 1998-08-13 株式会社日立製作所 Secondary battery and method of manufacturing the same
JPH11283612A (en) * 1998-03-27 1999-10-15 Ngk Insulators Ltd Lithium secondary battery
JP2000149948A (en) * 1998-11-12 2000-05-30 Toshiba Corp Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP2001143703A (en) * 1999-11-11 2001-05-25 Nichia Chem Ind Ltd Positive electrode active substance for use in lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587000B2 (en) 2017-03-27 2020-03-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2003017053A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4965773B2 (en) Non-aqueous electrolyte secondary battery electrode active material and non-aqueous electrolyte secondary battery
JP4211865B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US9764962B2 (en) Li—Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP5382343B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4361060B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
CN103904311B (en) Lithium-rich manganese-based anode material that a kind of surface is coated compound and preparation method thereof
CN108134064B (en) Positive electrode material precursor, preparation method thereof and positive electrode material
JP2001028265A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
KR20130111834A (en) Lithium ion secondary battery and method for preparing thereof
CN112292350B (en) Fluorinated oxides based on Li and Mn
JP2004014381A (en) Electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JP2013114809A (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery
CN112490440B (en) Liquid phase reaction prepared oxyselenide/sulfoselenide, method and application thereof
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN117613205A (en) Positive electrode material, preparation method thereof, positive electrode plate, lithium ion battery and electric equipment
CN117317165A (en) MnO-LiF/C compound and preparation method and application thereof
JP2005302619A (en) Nonaqueous electrolyte electrochemical cell
JP2002184401A (en) Manufacturing method for cobalt-containing nickel oxyhydroxide and battery using the same
JP2013211110A (en) Electrode active material and lithium ion battery, and method for producing electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4965773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350