JP4963573B2 - Activated carbon production apparatus and activated carbon production method - Google Patents

Activated carbon production apparatus and activated carbon production method Download PDF

Info

Publication number
JP4963573B2
JP4963573B2 JP2006185942A JP2006185942A JP4963573B2 JP 4963573 B2 JP4963573 B2 JP 4963573B2 JP 2006185942 A JP2006185942 A JP 2006185942A JP 2006185942 A JP2006185942 A JP 2006185942A JP 4963573 B2 JP4963573 B2 JP 4963573B2
Authority
JP
Japan
Prior art keywords
activation
furnace
carbide
hot air
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006185942A
Other languages
Japanese (ja)
Other versions
JP2008013398A (en
Inventor
外山富孝
Original Assignee
有限会社エム・イ−・ティ−
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エム・イ−・ティ− filed Critical 有限会社エム・イ−・ティ−
Priority to JP2006185942A priority Critical patent/JP4963573B2/en
Publication of JP2008013398A publication Critical patent/JP2008013398A/en
Application granted granted Critical
Publication of JP4963573B2 publication Critical patent/JP4963573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、活性炭の製造装置に関し、広く薄く分布する多種のバイオマスを原料として、異なる性能を持つ多種の活性炭を製造できるエネルギー効率のよい活性炭製造装置及び活性炭製造方法に係る。   The present invention relates to an activated carbon production apparatus, and relates to an energy efficient activated carbon production apparatus and an activated carbon production method capable of producing various activated carbons having different performances from various thinly distributed biomass as raw materials.

活性炭の吸着性能は、活性炭の持つ比表面積や細孔容積によって大きく左右される。そして、比表面積、細孔容積は賦活反応の進行と共に変化する。高比表面積または高細孔容積の活性炭を製造する為には賦活温度を高くする、賦活ガス濃度を高くする、または、賦活時間を長くする、などの方法が採られる。温度や濃度での対応は装置的もしくは物理的に限界が有るため、時間での対応が一般的である。吸着性能の高い活性炭の工業的製造は、大規模な連続式賦活装置にて長時間賦活を行う方法が採られる。この為、少品種多量生産にならざるを得ない。   The adsorption performance of activated carbon greatly depends on the specific surface area and pore volume of activated carbon. The specific surface area and pore volume change with the progress of the activation reaction. In order to produce activated carbon having a high specific surface area or a high pore volume, methods such as increasing the activation temperature, increasing the activation gas concentration, or increasing the activation time are employed. Since correspondence with temperature and concentration is limited in terms of apparatus or physical properties, correspondence with time is common. In the industrial production of activated carbon with high adsorption performance, a method of activating for a long time with a large-scale continuous activation apparatus is employed. For this reason, there is no choice but to produce small varieties and large quantities.

バイオマスからの活性炭の製造は炭化工程と炭化物を賦活する賦活工程とに分かれる。一般的には炭化をバイオマス発生地で行い、製品炭化物を集積して賦活工程を一括して行う方法が採られる。
炭化工程と賦活工程を同時に加工する方法として、特許文献1乃至4に示す連続式に炭化と賦活を行う活性炭製造装置と、特許文献5に示す非連続式(バッチ式)に炭化と賦活を行う活性炭製造装置とが提案されている。
特開2000-154012号公報 特開2004-034003号公報 特開2001-220120号公報 特許3322338号公報 特開2005-067972号公報
The production of activated carbon from biomass is divided into a carbonization step and an activation step for activating the carbide. In general, carbonization is performed in a biomass generation site, and product activation is accumulated and the activation process is performed collectively.
As a method of simultaneously processing the carbonization step and the activation step, the activated carbon manufacturing apparatus that performs carbonization and activation in a continuous manner shown in Patent Documents 1 to 4, and the carbonization and activation in a discontinuous type (batch type) shown in Patent Literature 5 are performed. An activated carbon production apparatus has been proposed.
Japanese Patent Laid-Open No. 2000-154012 JP 2004-034003 A JP 2001-220120 A Japanese Patent No. 3322338 Japanese Patent Laying-Open No. 2005-069772

しかしながら、特許文献1〜4に示す従来の連続賦活方法にて高品位活性炭を製造するには、長時間の賦活反応を得る為に、非常に大きな規模の賦活装置が必要であった。こうした大規模装置において、性能の異なる活性炭を製造する為の賦活条件の変更は、炭化工程も含めた装置内の原料、製品を全て取り出した後に行う必要が有るため、生産面、エネルギー面でロスが多いという問題がある。このため、多品種生産には不向きであった。   However, in order to produce a high-grade activated carbon by the conventional continuous activation methods shown in Patent Documents 1 to 4, a very large-scale activation device is required in order to obtain a long-time activation reaction. In such large-scale equipment, it is necessary to change the activation conditions for producing activated carbon with different performance after all the raw materials and products in the equipment including the carbonization process have been taken out, so there is a loss in terms of production and energy. There is a problem that there are many. For this reason, it was not suitable for multi-product production.

特許文献1及び2は、同一キルン内にて炭化及び賦活を行う連続生産装置であり、特許文献3および4は、連続式の炭化装置と連続式の賦活装置が連結されている連続生産装置である。いずれの装置も賦活反応時間の操作範囲が狭く、製品活性炭の種類を多くすることが出来ない。さらに、特許文献1は賦活ガス濃度の調整ができない為、活性炭品質にバラツキを生じるという問題があり、特許文献4は炭化及び賦活工程で発生する可燃ガスが有効に利用されていないという問題がある。   Patent Documents 1 and 2 are continuous production apparatuses that perform carbonization and activation in the same kiln, and Patent Documents 3 and 4 are continuous production apparatuses in which a continuous carbonization apparatus and a continuous activation apparatus are connected. is there. In either apparatus, the operating range of activation reaction time is narrow, and the types of product activated carbon cannot be increased. Furthermore, since Patent Document 1 cannot adjust the activation gas concentration, there is a problem that the activated carbon quality varies, and Patent Document 4 has a problem that the combustible gas generated in the carbonization and activation process is not effectively used. .

一方、特許文献5は同一熱処理炉にて炭化工程を行い、その後賦活工程を行う、という非連続方式であり、炭化時間と賦活時間との合計時間が1バッチの処理時間となる為、生産性が良くない。そのうえ、炭化工程で発生する可燃性ガスである乾留ガスを有効利用できず、エネルギー面でも不利であるという問題がある。   On the other hand, Patent Document 5 is a discontinuous system in which the carbonization step is performed in the same heat treatment furnace, and then the activation step is performed. Since the total time of the carbonization time and the activation time is one batch of processing time, productivity is increased. Is not good. In addition, there is a problem that the dry distillation gas, which is a combustible gas generated in the carbonization process, cannot be effectively used, which is disadvantageous in terms of energy.

また、炭化工程を別に行い、バッチ式賦活炉にて賦活工程のみを行う方式では、少量多品種生産に好適ではあるが、炭化工程で発生する可燃性ガスを有効利用できず、好ましくない。バッチ式賦活炉において、炭化物の賦活の終了後、製品活性炭の取り出しは、賦活炉そのものの温度を冷却した後に行われる場合が多い。このような方法では炉の冷却時間、次加工の際の再昇温時間などにより生産性が悪くなり、また昇降温によるエネルギーロスが生じる。バッチ式賦活炉は、個々のバッチごとの条件変更が容易であり多品種加工には有利であるが、熱効率及び生産効率の点で問題があった。   In addition, a method in which the carbonization step is performed separately and only the activation step is performed in a batch-type activation furnace is suitable for small-quantity multi-product production, but it is not preferable because the combustible gas generated in the carbonization step cannot be effectively used. In a batch type activation furnace, after the activation of the carbide is finished, the product activated carbon is often taken out after cooling the temperature of the activation furnace itself. In such a method, productivity deteriorates due to the cooling time of the furnace, the reheating temperature during the next processing, and the like, and energy loss due to the rising and falling temperature occurs. The batch-type activation furnace is easy to change conditions for each batch and is advantageous for multi-product processing, but has a problem in terms of thermal efficiency and production efficiency.

更に、国内で広く分布する間伐材、竹、廃木材、及び、その他バイオマスは全て活性炭の原料になるが、現在のような活性炭生産方式および装置では製造効率が非常に悪い。この為、国内では未利用のバイオマスを利用しての活性炭製造は盛んではない。年間10万トン以上の活性炭が国内で使用されているが、大部分が輸入品である。日本国内に広く薄く分布する多種のバイオマスを原料として、異なる性能を持つ種々の活性炭を製造できるエネルギー効率の良い小規模な活性炭製造装置が望まれている。   Furthermore, thinned wood, bamboo, waste wood, and other biomass that are widely distributed in Japan are all raw materials for activated carbon, but production efficiency is very poor with current activated carbon production systems and devices. For this reason, activated carbon production using unused biomass is not popular in Japan. More than 100,000 tons of activated carbon is used in Japan every year, but most are imported. An energy-efficient small-scale activated carbon production apparatus capable of producing various activated carbons having different performances from various types of biomass widely distributed in Japan is desired.

そこで、本発明は広く薄く分布するバイオマスを原料として多岐にわたって利用できる多品種の活性炭をエネルギー効率よく、かつ生産効率よく製造できる活性炭製造装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an activated carbon production apparatus capable of producing a wide variety of activated carbons that can be used in a wide variety of raw materials, which are widely distributed thinly, with energy efficiency and production efficiency.

上記課題を解決する為に、請求項1に記載の活性炭製造装置は、図1に示す通り、連続式に原料を炭化する連続炭化炉と、該連続炭化炉から排出される炭化物を収する炭化物収器と、前記連続炭化炉と前記炭化物収容器とを連結する第1連結部と、非連続式に炭化物を賦活する非連続賦活炉と、前記炭化物収器と前記非連続賦活炉とを連結するとともに、前記炭化物収容器に収している炭化物を前記非連続賦活炉へ移送する手段を具備する第2連結部と、を備えたことを特徴とする。
請求項1に記載の活性炭製造装置では、連続炭化炉と炭化物収器と非連続賦活炉が連結しており、炭化物を連続的に生産しつつ、該炭化物を一時的に炭化物収器に保管し、該炭化物をバッチ毎に賦活条件を変更できる非連続賦活炉に供給して賦活することが特徴である。
In order to solve the above problems, the activated carbon manufacturing apparatus according to claim 1, as shown in FIG. 1, a continuous carbonization furnace to carbonize the raw material continuous to yield volumes of carbide discharged from the continuous carbonization furnace carbides yield container, a first connecting portion connecting the carbide container and the continuous carbonization furnace, a non-continuous activation furnace for activated carbides non-continuous, the said carbide yield container discontinuous activation furnace with connecting the door, characterized in that and a second connecting portion having a means for transporting the carbides that yield capacity in the carbide container to the non-continuous activation furnace.
Activated carbon production apparatus according to claim 1 is connected and a continuous carbonizing oven carbides yield container discontinuous activation furnace while continuously producing carbides, temporarily carbide yield container of the carbide It is characterized in that it is stored and activated by supplying the carbide to a discontinuous activation furnace in which the activation conditions can be changed for each batch.

記非連続賦活炉が、該非連続賦活炉を冷却することなく、前記賦活物を排出できる排出手段を備えることが好ましい。 Before SL discontinuous activation furnace, without cooling the non-continuous activation furnace it is preferably provided with a discharge means for discharging the activated product.

請求項に記載の活性炭製造装置は、前記連続炭化炉から定量的に発生する乾留ガスと賦活炉から発生する賦活生成ガスとを主燃料とし、前記乾留ガスと賦活生成ガスとを同時に燃焼させることにより熱風を生成する熱風発生炉を具備し、該熱風発生炉にて発生した熱風を、炭化炉及び賦活炉の熱源とすることを特徴とする。図1では熱風を連続炭化炉及び非連続賦活炉に直列に供給する例を示すが、並列供給でもよい The activated carbon production apparatus according to claim 1 , wherein a dry distillation gas quantitatively generated from the continuous carbonization furnace and an activated product gas generated from the activation furnace are used as main fuels, and the dry distillation gas and the activated product gas are simultaneously burned. comprising a hot air generator furnace that generates hot air by the hot air generated in the heat air generating furnace, characterized in that the heat source for the carbonization furnace及beauty vehicle active furnace. Although FIG. 1 shows an example in which hot air is supplied in series to a continuous carbonization furnace and a discontinuous activation furnace, parallel supply may be used .

請求項に記載の活性炭製造方法は、連続式に原料を炭化する連続炭化ステップと、該連続炭化ステップで製造された炭化物を収する炭化物収ステップと、前記収容された炭化物を移送し、非連続式に賦活する非連続賦活ステップと、を備えたことを特徴とする。 Activated carbon manufacturing method according to claim 2, transferred and continuously carbonizing step of carbonizing the raw material continuous, carbides yield capacity step of yield volumes of carbide produced in the continuous carbonizing step, the stowed carbide And a discontinuous activation step for activating in a discontinuous manner.

前記非連続賦活ステップが、非連続賦活炉を冷却することなく、前記賦活物を排出する排出ステップを備えることが好ましい The discontinuous activation step, without cooling the non-continuous activated furnace is preferably provided with a discharge step of discharging the activation thereof.

請求項に記載の活性炭製造方法において、前記連続炭化ステップにて発生する乾留ガスと、前記非連続賦活ステップで発生する賦活生成ガスとを主燃料とし、前記乾留ガスと賦活生成ガスを同時に燃焼させることにより熱風を発生する熱風発生ステップと、該熱風発生ステップにて発生した熱風を、前記連続炭化ステップ及び前記非連続賦活ステップでの熱源として供給する熱風供給ステップと、を備えることを特徴とする。 The activated carbon production method according to claim 1 , wherein the dry distillation gas generated in the continuous carbonization step and the activated product gas generated in the discontinuous activation step are main fuels, and the dry distillation gas and the activated product gas are burned simultaneously. a hot air generator step of generating hot air by the hot air generated in the heat air generating step, the hot air supply step of supplying as a heat source in the continuous carbonizing step及beauty before Symbol discontinuous activation step, further comprising a Features.

請求項1の発明によれば、活性炭原料である炭化物を連続生産しつつ、この炭化物を連続炭化炉と非連続賦活炉とを間接的に連結している炭化物収器に一時保管し、この炭化物収器から炭化物をバッチ毎に条件変更が可能な非連続賦活炉に供給し賦活加工をするので、連続的に炭化加工しつつ多品種の活性炭を単一装置で製造することができる。 According to the present invention, while continuously producing a carbide is activated carbon raw material, and temporarily storing this carbide continuous carbonizing oven and discontinuous activation furnace indirectly linked to that carbides yield container and the since the carbides of a carbide yield container supplies discontinuous activation furnace capable conditions changed for each batch activation processing, can be produced in a single device activated carbon continuously carbonized processed while various kinds.

また、性能の異なる活性炭を製造する目的で賦活条件を変更したい場合、炭化工程は連続で加工を続け炭化物を炭化物収器に移送し続けながらも、賦活工程は連続方式でないので、バッチ毎に賦活時間、賦活温度、賦活用酸化性ガス種、などの変更が可能となる。賦活時間を変更する場合は炭化炉への原料供給速度を変更することで、炭化物収器の容量を超過することなく、また炭化物が不足することなく加工を続けることが可能である。異なる品質の活性炭製造が必要な場合は、賦活工程を開始する前に要求される賦活条件を設定して加工を開始すればよいので、切換が簡単である。 Also, if you want to change the activation conditions for the purpose of producing a different activated carbon in performance, while carbonization step continues to transport the carbides continue to work in a continuous carbide yield container, since activation process is not continuous mode, each batch It is possible to change the activation time, activation temperature, activated oxidizing gas species, and the like. When changing the activation time by changing the feeding rate of the carbonizing furnace, without exceeding the capacity of the carbide yield container, also it is possible to continue the processing without carbides is insufficient. When it is necessary to produce activated carbon having a different quality, it is only necessary to set the activation conditions required before starting the activation process and start the processing, so switching is easy.

前記非連続賦活炉が、該非連続賦活炉を冷却することなく、前記賦活物を排出できる排出手段を備える場合には、炭化工程は連続で加工を続け炭化物を炭化物収器に移送し続けながらも、賦活工程が終了した時点で賦活物は非連続賦活炉を冷却することなく、非連続賦活炉から排出され、また、賦活炉に前記炭化物収器から新たな炭化物を供給するので、非連続賦活方法でありながら賦活工程の終了から賦活工程の開始の間に降温、昇温する必要がない。したがって、昇温降温に時間とエネルギーを費やすことなく、次バッチの賦活加工が開始できるため、非連続式賦活炉でありながら、エネルギーロスが少なく、高い生産性を維持できる。したがって、連続炭化炉の生産性を阻害することなく、さまざまの条件で賦活加工が可能であり、多品種の活性炭の製造を実現できる。 The discontinuous activation furnace, without cooling the non-continuous activation furnace, when provided with a discharge means for discharging the activated product is charcoal step continues to transport the carbides continue to work in a continuous carbide yield container while, activation thereof at the time when the activation process is completed without cooling the non-continuous activation furnace, is discharged from the non-continuous activation furnace, also, since supplying new carbide from said carbide yield container to activation furnace, Although it is a non-continuous activation method, there is no need to lower or raise the temperature between the end of the activation process and the start of the activation process. Therefore, since the activation process of the next batch can be started without spending time and energy for temperature increase / decrease, the energy loss is small and high productivity can be maintained even though it is a discontinuous activation furnace. Therefore, activation processing is possible under various conditions without impairing the productivity of the continuous carbonization furnace, and the production of various types of activated carbon can be realized.

請求項の発明によれば、連続式炭化炉である為、ほぼ定量的に発生する乾留ガスと、バッチ賦活炉から発生する賦活生成ガスとを熱風発生炉の主燃料とし、発生する熱風を炭化炉および賦活炉の熱源とし、また、賦活に使用する賦活ガスの予熱熱源とすることができるため、エネルギー効率の優れた活性炭製造装置となる。 According to the invention of claim 1 , since it is a continuous carbonization furnace, the dry distillation gas generated almost quantitatively and the activation product gas generated from the batch activation furnace are used as the main fuel of the hot air generation furnace, and the generated hot air is used. Since it can be used as a heat source for a carbonization furnace and an activation furnace, and as a preheating heat source for an activation gas used for activation, an activated carbon production apparatus with excellent energy efficiency is obtained.

請求項によれば、記した請求項の効果と同様の効果を奏する。 According to claim 2, the same effect as the effect of the first aspect that describes before.

以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。図2に示す通り、実施形態の活性炭製造装置1は、原料を連続的に投入するためのホッパ2aと、ホッパ2aから連続的に排出される原料を連続的に移送するスクリューフィーダー2bと、スクリューフィーダー2bと接続されスクリューフィーダー2bから連続的に移送されてくる原料を受け入れる連続炭化炉3と、連続炭化炉3から排出される炭化物を収する炭化物収容器4と、連続炭化炉3と炭化物収容器4とを連結する炭化炉後部フットとダンパー5aとを備える第1連結部5と、炭化物を賦活する非連続賦活炉6と、炭化物収容器4と非連続賦活炉6とを連結するとともに炭化物収容器4に収容されている炭化物を非連続賦活炉6に移送するスクリューフィーダー7aを具備する第2連結部7と、を備えている。また、非連続賦活炉6は、炉の温度を冷却することなく、賦活物を排出できる排出手段を備えている。この排出手段は、排出用案内羽根を賦活炉本体62の内壁に具備する構成、排出用スクリューを賦活炉本体62の出口部分に装備する構成、若しくは賦活炉本体62を傾斜させる構成などがある。本実施形態では排出手段としての排出用の案内羽根8を賦活炉本体62の後部(出口)内壁に備えている。さらに、連続炭化炉3から発生する乾留ガスと非連続賦活炉6から発生する賦活生成ガスとを主燃料とし、熱風を発生させて、連続炭化炉3及び非連続賦活炉6の熱源とする熱風発生炉9と、を備えている。以下、詳細に説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 2, the activated carbon production apparatus 1 according to the embodiment includes a hopper 2a for continuously feeding raw materials, a screw feeder 2b for continuously transferring the raw materials continuously discharged from the hopper 2a, and a screw. continuous carbonization furnace 3 to receive the raw material coming continuously transferred from is connected to the feeder 2b screw feeder 2b, the carbides container 4 to yield volumes of carbide discharged from the continuous carbonization furnace 3, the continuous carbonization furnace 3 and carbide While connecting the 1st connection part 5 provided with the rear foot and the damper 5a of the carbonization furnace which connects the container 4, the discontinuous activation furnace 6 which activates carbide, the carbide container 4 and the discontinuous activation furnace 6 are connected. And a second connecting portion 7 including a screw feeder 7a for transferring the carbide stored in the carbide storage container 4 to the discontinuous activation furnace 6. Moreover, the discontinuous activation furnace 6 is equipped with the discharge means which can discharge | emit an activation thing, without cooling the temperature of a furnace. This discharge means includes a configuration in which discharge guide vanes are provided on the inner wall of the activation furnace main body 62, a configuration in which a discharge screw is provided at the exit portion of the activation furnace main body 62, or a configuration in which the activation furnace main body 62 is inclined. In this embodiment, the discharge guide vanes 8 as discharge means are provided on the inner wall of the rear portion (exit) of the activation furnace main body 62. Further, hot air is used as a heat source for the continuous carbonization furnace 3 and the discontinuous activation furnace 6 by generating hot air using the dry distillation gas generated from the continuous carbonization furnace 3 and the activation product gas generated from the discontinuous activation furnace 6 as the main fuel. And a generating furnace 9. Details will be described below.

連続炭化炉3は、原料である被処理物を炭化させる処理が行われ軸方向が横方向(例えば、水平方向)に設定された円筒体を有する炭化炉本体30と、炭化炉本体30の外側領域に同軸状に形成され炭化炉本体30の円筒体の長さ方向の大部分を覆い炭化炉本体30の円筒体より大径の円筒体を有し熱風により炭化炉本体30を加熱する炭化炉加熱室31と、炭化炉加熱室31の内部の熱風を外部に排出する排気管32と、を備えている。また、炭化炉本体30は、モーター、ギア、チェーンにより構成される炭化炉回転手段33により回転するように設定されている。炭化炉本体30内壁には攪拌羽根(図示略)が備えられており、原料は撹拌されることにより均一に加熱されるように設定されている。撹拌羽根(図示略)の傾斜により原料は撹拌されるごとに炭化炉本体30の入口から炭化炉本体30の後部に向かって移動するように設定されている。炭化炉本体30の入口から出口に亘り内壁全般に撹拌羽根(図示略)が配設される。炭化炉本体30の回転速度を炭化炉回転手段33により調整することにより被処理物の炭化炉内滞留時間が設定できる。製造された炭化物は第1連結部5を経て炭化物収容器4に貯蔵されるように設定されている。連続炭化炉3内の工程は連続的に行われる。炭化炉加熱室31は円柱状のパイプである炭化炉本体30の外側を同心円状に覆う空間を形成している。熱風がその空間を通り抜ける間に炭化炉本体30を加熱及び保温するように設定されている。炭化炉本体30の円筒体の外壁と、加熱室31の円筒体の端部との間はシールされていて、ここからの熱風の漏れを防いでいる。炭化物の原料は炭化炉本体30の内部を炭化炉回転手段33の回転と撹拌羽根(図示略)によって順次炭化炉本体30後部に移動してゆくように設定されている。炭化炉本体30前部から後部に移動する間に炭化物の原料は蒸し焼きされ炭化物となる。連続炭化炉3と炭化物収器4は、通常、垂直の関係になり、連続炭化炉3から炭化物収容器4へ排出される炭化物を移送する手段はあえて必要なく、自然落下でよい。ただし、必要により、回転羽根等の移動手段を設けても何等問題ない。 The continuous carbonization furnace 3 includes a carbonization furnace main body 30 having a cylindrical body whose carbonization is performed on a workpiece to be processed and whose axial direction is set in a horizontal direction (for example, a horizontal direction), and the outside of the carbonization furnace main body 30. A carbonization furnace that is coaxially formed in the region, covers most of the length of the cylinder body of the carbonization furnace body 30, has a larger diameter than the cylinder body of the carbonization furnace body 30, and heats the carbonization furnace body 30 with hot air A heating chamber 31 and an exhaust pipe 32 for discharging hot air inside the carbonization furnace heating chamber 31 to the outside are provided. The carbonization furnace main body 30 is set to rotate by a carbonization furnace rotating means 33 constituted by a motor, a gear, and a chain. The inner wall of the carbonization furnace main body 30 is provided with a stirring blade (not shown), and the raw material is set to be heated uniformly by being stirred. The raw material is set to move from the inlet of the carbonization furnace main body 30 toward the rear of the carbonization furnace main body 30 every time the raw material is stirred by the inclination of the stirring blade (not shown). A stirring blade (not shown) is disposed on the entire inner wall from the inlet to the outlet of the carbonization furnace main body 30. By adjusting the rotation speed of the carbonization furnace main body 30 by the carbonization furnace rotating means 33, the residence time of the workpiece in the carbonization furnace can be set. The manufactured carbide is set to be stored in the carbide container 4 through the first connecting portion 5. The processes in the continuous carbonization furnace 3 are performed continuously. The carbonization furnace heating chamber 31 forms a concentrically covering the outside of the carbonization furnace main body 30 that is a cylindrical pipe. It is set so that the carbonization furnace main body 30 is heated and kept warm while hot air passes through the space. The outer wall of the cylindrical body of the carbonization furnace main body 30 and the end of the cylindrical body of the heating chamber 31 are sealed to prevent leakage of hot air from here. The carbide raw material is set so that the inside of the carbonization furnace main body 30 is sequentially moved to the rear of the carbonization furnace main body 30 by the rotation of the carbonization furnace rotating means 33 and the stirring blade (not shown). While moving from the front part of the carbonization furnace main body 30 to the rear part, the raw material of the carbide is steamed and becomes carbide. Continuous carbonization furnace 3 and the carbide yield container 4 is usually made in a vertical relationship, it means for transferring the carbides discharged from the continuous carbonization furnace 3 to carbide container 4 is not dare necessary, may naturally fall. However, there is no problem even if a moving means such as a rotary blade is provided if necessary.

非連続賦活炉6は、炭化物の賦活を行う部分であり、賦活炉前部フット60と、軸方向が横方向(例えば、水平方向)に設定された円筒体を有する賦活炉加熱室61と、賦活炉加熱室61の内側領域に同軸状に形成された円筒体であって、その長さ方向の大部分が賦活炉加熱室61で覆われ、賦活炉加熱室61の円筒体より小径の円筒体を有し賦活炉加熱室61の熱風により加熱される賦活炉本体62と、賦活炉後部フット63と、を備えている。賦活炉本体62はモーター、ギア、チェーンにより構成される賦活炉回転手段64により回転するようになっている。炭化物収容器4に収された炭化物は第2連結部7によって賦活炉本体62に供給される。賦活炉本体62への炭化物の供給量は、スクリューフィーダー7aの回転速度と回転時間によって設定できる。設定量の炭化物が賦活炉本体62に供給された時点で、スクリューフィーダー7aの回転は停止される。賦活炉本体62内壁には攪拌羽根(図示略)が備えられ、攪拌羽根(図示略)によって炭化物が撹拌されることにより、賦活が均一に行われる。攪拌羽根(図示略)は賦活炉本体62では炭化物が存在する部分に装備され、賦活炉本体62内壁全般に撹拌羽根(図示略)が存在するように、出口の排出手段である案内羽根8のところまで装備されている。加工最中は、処理物は賦活炉本体62の入口方向へ押しやられる力を受け、若干、入口部に移動するように設定されている。一方、排出時は、加工最中とは賦活炉本体62の回転が逆の為、撹拌羽根(図示略)の角度は賦活炉本体62内部の処理物を入口部から出口部に移行させる角度を持つように設定されている。案内羽根8は撹拌羽根(図示略)よりも出口側に配置される。加工最中の賦活炉本体62の回転方向では案内羽根8は処理物を内側に押し戻す角度に設定されている。炭化炉3の加熱室31と同様に、賦活炉加熱室61は賦活炉本体62の外側に同心円状の空間を形成しており、熱風はその空間を通り抜ける。賦活炉本体62の円筒体の外壁と、賦活炉加熱室61の円筒体の端部との間はシールされていて、ここからの熱風の漏れを防いでいる。 The non-continuous activation furnace 6 is a part that activates carbides, an activation furnace front foot 60, and an activation furnace heating chamber 61 having a cylindrical body whose axial direction is set in the horizontal direction (for example, the horizontal direction), A cylindrical body formed coaxially in the inner region of the activation furnace heating chamber 61, most of the length direction is covered with the activation furnace heating chamber 61, and a cylinder having a smaller diameter than the cylinder of the activation furnace heating chamber 61. An activation furnace body 62 that has a body and is heated by hot air in the activation furnace heating chamber 61 and an activation furnace rear foot 63 are provided. The activation furnace main body 62 is rotated by an activation furnace rotating means 64 composed of a motor, a gear, and a chain. Carbides, which are yield capacity carbides container 4 is supplied to the activated furnace body 62 by the second coupling part 7. The amount of carbide supplied to the activation furnace body 62 can be set by the rotation speed and rotation time of the screw feeder 7a. When the set amount of carbide is supplied to the activation furnace main body 62, the rotation of the screw feeder 7a is stopped. The inner wall of the activation furnace main body 62 is provided with stirring blades (not shown), and the carbide is stirred by the stirring blades (not shown) so that the activation is performed uniformly. The agitating blade (not shown) is provided in a portion where carbide is present in the activation furnace main body 62, and the stirring blade (not shown) of the guide vane 8 serving as an outlet discharge means is provided on the entire inner wall of the activation furnace main body 62. Equipped up to now. During processing, the processed material is set so as to receive a force pushed toward the entrance of the activation furnace main body 62 and move slightly to the entrance. On the other hand, at the time of discharge, the rotation of the activation furnace main body 62 is opposite to that during the processing, so the angle of the stirring blade (not shown) is the angle at which the processed material inside the activation furnace main body 62 is transferred from the inlet to the outlet. It is set to have. The guide vanes 8 are arranged on the outlet side of the stirring vanes (not shown). In the rotational direction of the activation furnace main body 62 during the processing, the guide blade 8 is set to an angle at which the processed material is pushed back inward. Similar to the heating chamber 31 of the carbonization furnace 3, the activation furnace heating chamber 61 forms a concentric space outside the activation furnace body 62, and the hot air passes through the space. The space between the outer wall of the cylindrical body of the activation furnace main body 62 and the end of the cylindrical body of the activation furnace heating chamber 61 is sealed to prevent leakage of hot air from here.

賦活加工時間の終了時には、賦活炉本体62を冷却することなく賦活炉本体62の回転方向を逆にすることにより案内羽根8により賦活物は賦活炉本体62から排出されるように設定されている。賦活炉後部フット63に冷却装置10が接続され、排出された賦活物は冷却される。賦活ガス注入管11が賦活炉後部フット63を経由して賦活炉本体62内に配管されている。これにより、賦活炉本体62に対して、設定量の賦活ガスが賦活ガス注入管11を経由して、定量的に送られる。賦活ガスとしては水蒸気、二酸化炭素、酸素、空気、若しくはそれらの2種類以上の混合ガスなどが使用できる。   At the end of the activation processing time, the activation material is set to be discharged from the activation furnace body 62 by the guide vanes 8 by reversing the rotation direction of the activation furnace body 62 without cooling the activation furnace body 62. . The cooling device 10 is connected to the activation furnace rear foot 63, and the discharged activated material is cooled. The activation gas injection pipe 11 is piped into the activation furnace main body 62 via the activation furnace rear foot 63. Thereby, a set amount of activation gas is quantitatively sent to the activation furnace main body 62 via the activation gas injection pipe 11. As the activation gas, water vapor, carbon dioxide, oxygen, air, or a mixed gas of two or more thereof can be used.

第1連結部5と熱風発生炉9とは、乾留ガス移送管12を介して接続され、炭化炉本体30で発生する乾留ガスなどは、第1連結部5、乾留ガス移送管12を経由して熱風発生炉9に送られるように設定されている。賦活炉前部フット60と熱風発生炉9とは、賦活生成ガス移送管13を介して接続され、賦活反応によって生じる、一酸化炭素や水素ガスを含む生成ガスは、賦活生成ガス移送管13を経由して、熱風発生炉9に送られるように設定されている。   The first connecting part 5 and the hot air generating furnace 9 are connected via a dry distillation gas transfer pipe 12, and the dry distillation gas generated in the carbonization furnace main body 30 passes through the first connecting part 5 and the dry distillation gas transfer pipe 12. Is set to be sent to the hot air generating furnace 9. The activation furnace front foot 60 and the hot air generation furnace 9 are connected via the activation product gas transfer pipe 13, and the product gas containing carbon monoxide and hydrogen gas generated by the activation reaction is connected to the activation product gas transfer pipe 13. It is set to be sent to the hot-air generating furnace 9 via.

熱風発生炉9内は、前記供給される乾留ガス及び賦活生成ガスを完全燃焼させるものであり、熱風発生炉9内のガス温度は、補助バーナー92と燃焼用空気注入管93から注入される空気量によって調整される。熱風発生炉9と賦活炉加熱室61とは、熱風配管14を介して接続され、熱風発生炉9で発生した熱風が熱風配管14を経由して賦活炉加熱室61に送られ、賦活炉本体62の温度を所定温度に保つように構成されている。賦活炉加熱室61と炭化炉加熱室31とは、熱風連結配管15を介して接続され、熱風は賦活炉加熱室61から炭化炉加熱室31へ移動し炭化炉本体30を所定の温度に保つように設定されている。即ち、乾留ガス、賦活ガスは熱風発生炉9の内部で同時に燃焼され、発生した熱風は一つの熱風配管14から賦活炉加熱室61、熱風連結管15、炭化炉加熱室31、排気管32により、熱風出口へと直列に繋がっている。原料・炭化物・賦活物などは、熱風発生炉9から供給される熱風とは直接に接することがない構造である。   The hot air generating furnace 9 completely burns the supplied dry distillation gas and activated product gas, and the gas temperature in the hot air generating furnace 9 is the air injected from the auxiliary burner 92 and the combustion air injection pipe 93. Adjusted by quantity. The hot air generating furnace 9 and the activation furnace heating chamber 61 are connected via the hot air piping 14, and the hot air generated in the hot air generating furnace 9 is sent to the activation furnace heating chamber 61 via the hot air piping 14, and the activation furnace main body. The temperature 62 is maintained at a predetermined temperature. The activation furnace heating chamber 61 and the carbonization furnace heating chamber 31 are connected via the hot air connecting pipe 15, and the hot air moves from the activation furnace heating chamber 61 to the carbonization furnace heating chamber 31 to keep the carbonization furnace main body 30 at a predetermined temperature. Is set to That is, the dry distillation gas and the activation gas are simultaneously combusted inside the hot air generation furnace 9, and the generated hot air is transmitted from one hot air pipe 14 through the activation furnace heating chamber 61, the hot air connection pipe 15, the carbonization furnace heating chamber 31, and the exhaust pipe 32. It is connected in series to the hot air outlet. The raw material, carbide, activated material, and the like have a structure that does not come into direct contact with the hot air supplied from the hot air generator 9.

次に本発明実施形態の活性炭製造装置1による活性炭製造方法を説明する。ホッパ2aに搬入された被処理物はホッパ2aによって炭化炉本体30へ連続的に供給される。炭化炉本体30は炭化炉加熱室31によって加温され、炭化炉本体後部での温度は500〜1,200℃、望ましくは700〜900℃の任意の温度に調節される。炭化炉本体30内部での原料の滞留時間は炭化炉回転手段33の回転数により制御され、20〜600分、望ましくは30〜120分の滞留時間で運転される。炭化炉本体30で製造された炭化物は、第1連結部5を経て、炭化物収容器4に貯蔵される。ここまでの工程は連続的に行われる。   Next, the activated carbon manufacturing method by the activated carbon manufacturing apparatus 1 of embodiment of this invention is demonstrated. The workpieces carried into the hopper 2a are continuously supplied to the carbonization furnace main body 30 by the hopper 2a. The carbonization furnace main body 30 is heated by the carbonization furnace heating chamber 31, and the temperature at the rear part of the carbonization furnace main body is adjusted to an arbitrary temperature of 500 to 1,200 ° C, preferably 700 to 900 ° C. The residence time of the raw material inside the carbonization furnace main body 30 is controlled by the rotation speed of the carbonization furnace rotating means 33 and is operated with a residence time of 20 to 600 minutes, preferably 30 to 120 minutes. The carbide produced in the carbonization furnace main body 30 is stored in the carbide container 4 through the first connecting portion 5. The steps so far are performed continuously.

炭化物収容器4に収された炭化物は、第2連結部7に装備されているスクリューフィーダー7aによって、賦活炉本体62に供給される。設定量の炭化物が賦活炉本体62に供給された時点で、スクリューフィーダー7aの回転は停止される。賦活炉本体62は賦活炉加熱室61によって加温され、賦活炉本体62内部の温度は600〜1,500℃、望ましくは800〜1,000℃の任意の温度に調整される。水蒸気、二酸化炭素、空気、酸素、などの賦活ガスの一種類もしくは複数種が賦活ガス注入管11によって賦活炉本体62に供給され、賦活反応が始まる。供給した炭化物に対し均一な賦活を行う為に、賦活炉本体62は賦活炉回転手段64によって回転し、賦活炉本体内壁に具備された撹拌羽根(図示略)が炭化物を撹拌する。賦活時間は20〜2400分、望ましくは40〜600分にて加工される。賦活ガスの種類、賦活ガス供給量、賦活炉本体62内部の温度、賦活時間、などにより製品活性炭の吸着性能を調整することができる。賦活炉本体62において、処理物は加工最中には攪拌羽根(図示略)と案内羽根8により、入口方向へ押しやられる力を受け、若干、入口部に移動するが、その為にできた処理物の傾斜は水平になろうとする自然の力によって修正される。攪拌羽根(図示略)の高さはそれほど高くなく、処理物の量が充分に多く、撹拌羽根(図示略)は処理物によって埋まる形になる。
Carbides, which are yield capacity carbides container 4 by screw feeder 7a which is mounted on the second connecting part 7, is supplied to the activated furnace body 62. When the set amount of carbide is supplied to the activation furnace main body 62, the rotation of the screw feeder 7a is stopped. The activation furnace body 62 is heated by the activation furnace heating chamber 61, and the temperature inside the activation furnace body 62 is adjusted to an arbitrary temperature of 600 to 1,500 ° C., desirably 800 to 1,000 ° C. One or more kinds of activation gases such as water vapor, carbon dioxide, air, and oxygen are supplied to the activation furnace main body 62 through the activation gas injection pipe 11, and the activation reaction starts. In order to perform uniform activation on the supplied carbide, the activation furnace main body 62 is rotated by the activation furnace rotating means 64, and stirring blades (not shown) provided on the inner wall of the activation furnace main body stir the carbide. The activation time is 20 to 2400 minutes, preferably 40 to 600 minutes. The adsorption performance of the product activated carbon can be adjusted by the type of the activation gas, the supply amount of the activation gas, the temperature inside the activation furnace main body 62, the activation time, and the like. In the activation furnace main body 62, the processed material is subjected to a force pushed toward the inlet by the stirring blade (not shown) and the guide blade 8 during the processing, and slightly moves to the inlet. The inclination of the object is corrected by the natural force trying to level. The height of the stirring blade (not shown) is not so high, the amount of the processed material is sufficiently large, and the stirring blade (not shown) is filled with the processed material.

非連続賦活炉6における賦活設定時間が終了すると、処理物の排出処理を行う。このとき、賦活炉本体62の回転方向が逆になるため、撹拌羽根(図示略)が処理物を案内羽根8のところまで移動させるとともに、賦活物の排出手段である案内羽根8は処理物を出口側に押し出し、この案内羽根8により、賦活物は賦活炉後部フット63を経由して冷却装置10に移送される。本実施例では案内羽根を用いたが、いずれの方法でも良い。賦活物が賦活炉本体62から排出された後、新たな炭化物が炭化物収容器4より賦活炉本体62に供給される。賦活条件を変更したい場合は、この時点で変更を加えればよい。   When the activation setting time in the non-continuous activation furnace 6 is completed, the processed material is discharged. At this time, since the rotation direction of the activation furnace main body 62 is reversed, the stirring blade (not shown) moves the processed material to the position of the guide blade 8 and the guide blade 8 serving as a discharge means for the activated material supplies the processed material. Extruded to the outlet side, the activated material is transferred to the cooling device 10 via the activation furnace rear foot 63 by the guide vanes 8. In this embodiment, guide vanes are used, but any method may be used. After the activation material is discharged from the activation furnace main body 62, new carbide is supplied from the carbide container 4 to the activation furnace main body 62. If you want to change the activation conditions, change them at this point.

炭化炉本体30で発生する乾留ガスなどは、乾留ガス移送管12を経由して熱風発生炉9に送られる。水蒸気を賦活ガスとして用いる場合に賦活反応によって生じる、一酸化炭素及び水素ガスを含む生成ガスは賦活炉本体62から賦活生成ガス移送管13を経由して熱風発生炉9に送られる。   The dry distillation gas generated in the carbonization furnace main body 30 is sent to the hot air generation furnace 9 via the dry distillation gas transfer pipe 12. A product gas containing carbon monoxide and hydrogen gas generated by an activation reaction when steam is used as the activation gas is sent from the activation furnace main body 62 to the hot air generation furnace 9 through the activation product gas transfer pipe 13.

乾留ガス及び賦活発生ガスは、熱風発生炉9にて完全燃焼した後、補助バーナー92、あるいは燃焼用空気注入管93から注入する空気量、などにより温度調節された後、熱風配管14を経由して賦活炉加熱室61に送られ、賦活炉本体62の温度を所定温度に保つ。次に熱風は賦活炉加熱室61から熱風連結配管15により炭化炉加熱室31に送られ、炭化炉本体30を所定の温度に保つ。その後、熱風は排気管32より排出される。   The dry distillation gas and the activation generating gas are completely burned in the hot air generating furnace 9, adjusted in temperature by the amount of air injected from the auxiliary burner 92 or the combustion air injection pipe 93, etc., and then passed through the hot air piping 14. Is sent to the activation furnace heating chamber 61 to keep the temperature of the activation furnace body 62 at a predetermined temperature. Next, the hot air is sent from the activation furnace heating chamber 61 to the carbonization furnace heating chamber 31 through the hot air connection pipe 15 to keep the carbonization furnace main body 30 at a predetermined temperature. Thereafter, the hot air is discharged from the exhaust pipe 32.

以上、説明した実施形態によれば、活性炭原料である炭化物を連続生産しつつ、炭化物を連続炭化炉3と非連続賦活炉6とを間接的に連結している炭化物収容器4に一時保管し、炭化物収容器4から炭化物をバッチ毎に条件変更が可能な非連続賦活炉6に供給し賦活加工をするため、連続的に炭化加工しつつ多品種の活性炭を単一装置で製造することができる。   As described above, according to the embodiment described above, the carbide is temporarily stored in the carbide container 4 in which the continuous carbonization furnace 3 and the discontinuous activation furnace 6 are indirectly connected while continuously producing the carbide as the activated carbon raw material. In order to perform activation processing by supplying carbide from the carbide container 4 to the discontinuous activation furnace 6 capable of changing the conditions for each batch, it is possible to manufacture a variety of activated carbons with a single device while continuously carbonizing. it can.

連続炭化炉3が連続で加工を続け、炭化物を炭化物収容器4に移送し続けながらも、非連続賦活炉6にて賦活工程が終了した時点で非連続賦活炉6を冷却することなく賦活物を排出し、非連続賦活炉6に炭化物収容器4から新たな炭化物を供給し、非連続賦活炉6の昇温に時間を費やすことなく、非連続賦活炉6における次バッチの賦活加工が開始できるため、非連続式賦活炉でありながらエネルギーロスが少なく、また、生産性が高く、連続炭化炉3にも追従できる賦活加工が可能になる。   While the continuous carbonization furnace 3 continues processing and continues to transfer the carbide to the carbide container 4, the activated material is not cooled in the discontinuous activation furnace 6 when the activation process is completed in the discontinuous activation furnace 6. , Supplying new carbide from the carbide container 4 to the discontinuous activation furnace 6, and starting the activation process of the next batch in the discontinuous activation furnace 6 without spending time in raising the temperature of the discontinuous activation furnace 6 Therefore, although it is a discontinuous activation furnace, the energy loss is small, the productivity is high, and the activation process capable of following the continuous carbonization furnace 3 becomes possible.

性能の異なる活性炭を製造する目的で、非連続賦活炉6の賦活条件を変更したい場合、連続炭化炉3は連続で加工を続け炭化物を炭化物収容器4に移送し続けながらも、非連続賦活炉6は連続方式でないので、バッチ毎に賦活時間、賦活温度、賦活用酸化性ガス種などの変更が可能となる。異なる品質の活性炭製造が必要な場合は、非連続賦活炉6での賦活工程を開始する前に、要求される賦活条件を設定して加工を開始すればよいので、条件の設定が容易である。賦活時間を変更する場合は、連続炭化炉3への原料供給速度を変更することで、炭化物収容器4の容量を超過することなく、また炭化物が不足することなく加工を続けることが可能である。   When it is desired to change the activation conditions of the discontinuous activation furnace 6 for the purpose of producing activated carbon having different performances, the continuous carbonization furnace 3 continuously processes and continues to transfer the carbide to the carbide container 4, but the discontinuous activation furnace. Since 6 is not a continuous system, it is possible to change the activation time, activation temperature, activated oxidizing gas species, and the like for each batch. When it is necessary to manufacture activated carbon of different quality, it is only necessary to set the required activation conditions and start the processing before starting the activation process in the discontinuous activation furnace 6, so the conditions can be easily set. . When changing the activation time, it is possible to continue the processing without exceeding the capacity of the carbide container 4 and lacking the carbide by changing the feed rate of the raw material to the continuous carbonization furnace 3. .

また、非連続賦活方法でありながら、賦活工程終了から賦活工程開始の間に降温、昇温する必要がないため、エネルギーロスがなく、かつ、連続炭化炉3の生産性を阻害することなく、さまざまの条件で賦活加工が可能であり、多品種の活性炭の製造を実現できる。   In addition, although it is a discontinuous activation method, it is not necessary to lower the temperature and increase the temperature during the activation process from the end of the activation process, so there is no energy loss and without inhibiting the productivity of the continuous carbonization furnace 3, Activation processing is possible under various conditions, and it is possible to produce various types of activated carbon.

連続炭化炉3から発生する時間当りほぼ一定した量の乾留ガスと、非連続賦活炉6から発生する賦活生成ガスは熱風発生炉9に送られ、熱風発生の主燃料として利用される。発生した熱風は賦活炉6、炭化炉3の熱源として使用する。さらに賦活ガスの予熱熱源として利用もできる。本発明による活性炭製造装置によれば、装置規模によるが、活性炭製造に必要な熱エネルギーの一部を、若しくは全てを、製造過程から発生する乾留ガスと賦活生成ガスとを燃焼させることにより得ることができる。   An almost constant amount of dry distillation gas generated from the continuous carbonization furnace 3 and the activation product gas generated from the discontinuous activation furnace 6 are sent to the hot air generation furnace 9 and used as main fuel for generating hot air. The generated hot air is used as a heat source for the activation furnace 6 and the carbonization furnace 3. Further, it can be used as a preheating heat source for the activation gas. According to the activated carbon production apparatus according to the present invention, depending on the scale of the apparatus, part or all of the thermal energy necessary for the production of activated carbon is obtained by burning dry distillation gas and activation product gas generated from the production process. Can do.

次に、本発明の実施例を説明する。以下の実施例では、連続炭化炉3及び非連続賦活炉6として、外熱式ロータリーキルンを使用した。市販木質ペレット(株式会社ツツイ製)を原料として以下の条件で炭化物を製造した。後部の内部温度が850℃に設定された外熱式ロータリーキルンに原料を連続投入し、内部滞留時間を60分維持して炭化物を得た。この炭化物の原料絶乾重量に対する収率は28.9%であった。以下の実施例には全てこの炭化物を使用した。   Next, examples of the present invention will be described. In the following examples, an externally heated rotary kiln was used as the continuous carbonization furnace 3 and the discontinuous activation furnace 6. Carbide was produced under the following conditions using commercially available wood pellets (manufactured by Tsutsui Corporation) as raw materials. Raw materials were continuously charged into an external heating rotary kiln whose internal temperature at the rear was set to 850 ° C., and the internal residence time was maintained for 60 minutes to obtain a carbide. The yield of this carbide based on the raw dry weight was 28.9%. This carbide was used in all the following examples.

有効内容量32Literの外熱式ロータリーキルンにキルン有効内容量の30%にあたる9.6Liter(重量4,550g)の炭化物を投入し、内部温度850℃に維持し、回転速度を2回転/分にて、蒸気を毎分12g連続注入しつつ21時間保持して賦活物を得た。この賦活物の活性炭試験方法JIS K1474によるメチレンブルー吸着量は(以下、メチレンブルー吸着量と呼ぶ。)220ml/gであった。   An external heating rotary kiln with an effective internal capacity of 32 Liters is charged with 9.6 Liters (weight 4,550 g) of carbide equivalent to 30% of the effective internal capacity of the kiln, the internal temperature is maintained at 850 ° C., and the rotational speed is 2 revolutions / minute. The activated product was obtained by continuously injecting 12 g of steam per minute for 21 hours. The methylene blue adsorption amount of the activated material according to the activated carbon test method JIS K1474 (hereinafter referred to as methylene blue adsorption amount) was 220 ml / g.

投入炭化物がキルン有効内容量に対し15%である4.8Liter(重量2,275g)であることと、保持時間が13時間であること以外は実施例1と同じ条件で賦活物を得た。この賦活物のメチレンブルー吸着量は220ml/gであった。   An activated material was obtained under the same conditions as in Example 1 except that the charged carbide was 4.8 Liters (weight 2,275 g), which was 15% of the effective content of the kiln, and that the holding time was 13 hours. The methylene blue adsorption amount of this activation product was 220 ml / g.

投入炭化物がキルン有効内容量に対し3%である0.96Liter(重量455g)であることと、保持時間が4時間であること以外は実施例1と同じ条件で賦活物を得た。この賦活物のメチレンブルー吸着量は220ml/gであった。   An activated material was obtained under the same conditions as in Example 1 except that the input carbide was 0.96 Liter (weight 455 g) which was 3% of the effective content of the kiln and that the holding time was 4 hours. The methylene blue adsorption amount of this activation product was 220 ml / g.

実施例2と同じ条件で蒸気供給量を毎分6g、保持時間を17時間に変更して賦活物を得た。この賦活物のメチレンブルー吸着量は220 ml/gであった。   An activated material was obtained by changing the steam supply amount to 6 g / min and holding time to 17 hours under the same conditions as in Example 2. The methylene blue adsorption amount of this activation product was 220 ml / g.

投入炭化物がキルン有効内容量に対し2%である0.64Liter(重量303g)であることと、保持時間が4時間であること以外は実施例4と同じ条件で賦活物を得た。この賦活物のメチレンブルー吸着量は220ml/gであった。   An activated material was obtained under the same conditions as in Example 4 except that the input carbide was 0.64 Liter (weight: 303 g), which is 2% of the effective content of the kiln, and that the holding time was 4 hours. The methylene blue adsorption amount of this activation product was 220 ml / g.

実施例2と同じ条件で保持時間を8時間に変更して賦活物を得た。この賦活物のメチレンブルー吸着量は150ml/gであった。   Under the same conditions as in Example 2, the retention time was changed to 8 hours to obtain an activation product. The methylene blue adsorption amount of this activation product was 150 ml / g.

実施例2と同じ条件で保持時間を3時間に変更して賦活物を得た。この賦活物のメチレンブルー吸着量は70ml/gであった。   Under the same conditions as in Example 2, the retention time was changed to 3 hours to obtain an activation product. The methylene blue adsorption amount of this activation product was 70 ml / g.

実施例1,2,3から明らかなように、キルン内の被処理物の量が異なっても賦活時間を調整することにより製品活性炭の吸着性能を同等にすることが出来る。よって性能が同一な製品を、必要に応じたバッチあたりの量にて加工することができる。   As is clear from Examples 1, 2, and 3, even if the amount of workpieces in the kiln is different, the adsorption performance of the activated carbon product can be made equal by adjusting the activation time. Thus, products with the same performance can be processed in batches as needed.

実施例4、5から明らかなように、実施例1とは異なる供給蒸気量の条件下でかつキルン内の被処理物の量が異なっても賦活時間を調整することにより製品活性炭の吸着性能を同等にすることが出来る。   As is apparent from Examples 4 and 5, the adsorption performance of the activated carbon product can be improved by adjusting the activation time under the condition of the supply steam amount different from that in Example 1 and the amount of the object to be processed in the kiln is different. Can be equivalent.

実施例2、6、7から明らかなようにキルン内の被処理物量が一定であれば、賦活時間を調整することにより異なる性能の活性炭を製造することができる。   As is clear from Examples 2, 6, and 7, if the amount of workpieces in the kiln is constant, activated carbon having different performance can be produced by adjusting the activation time.

このように本発明の装置によれば、炭化工程を連続で加工しつつ発生する炭化物をいったん炭化物収容器に保留した後、必要量のみを非連続賦活炉に移送して必要な吸着性能に応じた賦活条件で加工することができる。   As described above, according to the apparatus of the present invention, the carbide generated while continuously processing the carbonization step is once held in the carbide container, and then only the necessary amount is transferred to the discontinuous activation furnace to meet the required adsorption performance. Can be processed under different activation conditions.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において、改変等を加えることが出来るものであり、それらの改変、均等物等も本発明の技術的範囲に含まれる。例えば、熱風を賦活炉加熱室61から炭化炉加熱室31へ直列に供給しているが、熱風発生炉9からの熱風を賦活炉加熱室61と炭化炉加熱室31とに対して並列に供給してもよい。   The present invention is not limited to the above-described embodiment, and modifications and the like can be made without departing from the technical idea of the present invention. It is included in the technical scope of the invention. For example, hot air is supplied in series from the activation furnace heating chamber 61 to the carbonization furnace heating chamber 31, but hot air from the hot air generator 9 is supplied in parallel to the activation furnace heating chamber 61 and the carbonization furnace heating chamber 31. May be.

本発明の構成を示すブロック図である。It is a block diagram which shows the structure of this invention. 本発明実施形態の活性炭製造装置1のブロック図である。It is a block diagram of activated carbon manufacturing apparatus 1 of an embodiment of the present invention.

符号の説明Explanation of symbols

1…活性炭製造装置 2a…ホッパ 2b…スクリューフィーダー 3…連続炭化炉
4…炭化物収容器 5…第1連結部 5a…ダンパー 6…非連続賦活炉
7…第2連結部 7a…スクリューフィーダー 8…案内羽根 9…熱風発生炉
10…冷却装置 11…賦活ガス注入管 12…乾留ガス移送管
13…賦活生成ガス移送管 14…熱風配管 15…熱風連結配管
30…炭化炉本体 31…炭化炉加熱室 32…排気管 33…炭化炉回転手段
60…賦活炉前部フット 61…賦活炉加熱室 62…賦活炉本体
63…賦活炉後部フット 64…賦活炉回転手段 92…補助バーナー
93…空気導入口
DESCRIPTION OF SYMBOLS 1 ... Activated carbon manufacturing apparatus 2a ... Hopper 2b ... Screw feeder 3 ... Continuous carbonization furnace 4 ... Carbide container 5 ... 1st connection part 5a ... Damper 6 ... Discontinuous activation furnace 7 ... 2nd connection part 7a ... Screw feeder 8 ... Guide Blade 9 ... Hot-air generating furnace 10 ... Cooling device 11 ... Activated gas injection pipe 12 ... Dry distillation gas transfer pipe 13 ... Activated product gas transfer pipe 14 ... Hot-air pipe 15 ... Hot-air connection pipe 30 ... Carbonization furnace body 31 ... Carbonization furnace heating chamber 32 ... exhaust pipe 33 ... carbonization furnace rotating means 60 ... activation furnace front foot 61 ... activation furnace heating chamber 62 ... activation furnace body 63 ... activation furnace rear foot 64 ... activation furnace rotating means 92 ... auxiliary burner 93 ... air inlet

Claims (2)

連続式に原料を炭化する連続炭化炉と、
該連続炭化炉から排出される炭化物を収する炭化物収器と、
前記連続炭化炉と前記炭化物収容器とを連結する第1連結部と、
非連続式に炭化物を賦活する非連続賦活炉と、
前記炭化物収器と前記非連続賦活炉とを連結するとともに、前記炭化物収容器に収している炭化物を前記非連続賦活炉へ移送する手段を具備する第2連結部と、
を備え、
前記連続炭化炉から定量的に発生する乾留ガスと前記非連続賦活炉から発生する賦活生成ガスとを主燃料とし、前記乾留ガスと賦活生成ガスを同時に燃焼させることにより熱風を生成する熱風発生炉を具備し、
該熱風発生炉にて発生した熱風を、前記連続炭化炉及び前記非連続賦活炉の熱源とすることを特徴とする活性炭製造装置。
A continuous carbonization furnace that continuously carbonizes the raw material;
Carbides yield container of the carbide to yield volume discharged from the continuous carbonization furnace,
A first connecting portion that connects the continuous carbonization furnace and the carbide container;
A discontinuous activation furnace that activates carbide in a discontinuous manner;
As well as connecting the discontinuous activation furnace and the carbide yield container, a second connecting part comprising means for transferring the carbides that yield capacity in the carbide container to the non-continuous activation furnace,
With
A hot air generator that generates hot air by burning the dry distillation gas and the activation product gas simultaneously, using as a main fuel the dry distillation gas that is quantitatively generated from the continuous carbonization furnace and the activation product gas that is generated from the discontinuous activation furnace Comprising
An activated carbon production apparatus characterized in that hot air generated in the hot air generator is used as a heat source for the continuous carbonization furnace and the discontinuous activation furnace .
連続式に原料を炭化する連続炭化ステップと、
該連続炭化ステップで製造された炭化物を収容する炭化物収容ステップと、
前記収容された炭化物を移送し、非連続式に賦活する非連続賦活ステップと、
前記連続炭化ステップにて定量的に発生する乾留ガスと、前記非連続賦活ステップで発生する賦活生成ガスとを主燃料として、前記乾留ガスと賦活生成ガスを同時に燃焼させ熱風を発生する熱風発生ステップと、
該熱風発生ステップにて発生した熱風を、前記連続炭化ステップ及び前記非連続賦活ステップでの熱源として供給する熱風供給ステップと、
を備えることを特徴とする活性炭製造方法。
A continuous carbonization step for continuously carbonizing the raw material;
A carbide containing step for containing the carbide produced in the continuous carbonization step;
A non-continuous activation step for transferring the contained carbide and activating in a discontinuous manner;
Hot air generating step for generating hot air by simultaneously burning the dry distillation gas and the activation product gas at the same time using the dry distillation gas quantitatively generated in the continuous carbonization step and the activation product gas generated in the discontinuous activation step as a main fuel. When,
A hot air supply step for supplying hot air generated in the hot air generation step as a heat source in the continuous carbonization step and the discontinuous activation step;
The activated carbon manufacturing method characterized by comprising .
JP2006185942A 2006-07-05 2006-07-05 Activated carbon production apparatus and activated carbon production method Expired - Fee Related JP4963573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185942A JP4963573B2 (en) 2006-07-05 2006-07-05 Activated carbon production apparatus and activated carbon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185942A JP4963573B2 (en) 2006-07-05 2006-07-05 Activated carbon production apparatus and activated carbon production method

Publications (2)

Publication Number Publication Date
JP2008013398A JP2008013398A (en) 2008-01-24
JP4963573B2 true JP4963573B2 (en) 2012-06-27

Family

ID=39070794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185942A Expired - Fee Related JP4963573B2 (en) 2006-07-05 2006-07-05 Activated carbon production apparatus and activated carbon production method

Country Status (1)

Country Link
JP (1) JP4963573B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911447B1 (en) 2008-02-21 2009-08-11 주식회사 삼오테크 Activation apparatus of continuity activated carbon and activated carbon
CN103395782B (en) * 2013-08-08 2015-05-20 北京金润华扬科技有限公司 Movable carbon activation method
JP5691118B1 (en) * 2014-07-15 2015-04-01 株式会社エム・イ−・ティ− Activated carbon production apparatus and activated carbon production method
JP5692620B1 (en) * 2014-07-15 2015-04-01 株式会社エム・イ−・ティ− Activated carbon production apparatus and activated carbon production method
CN104498063B (en) * 2014-11-25 2017-02-22 中南林业科技大学 Compound dry distiller used for manure processing
CN112209379B (en) * 2020-10-13 2023-11-28 中国铝业股份有限公司 Device and method for preparing activated carbon through continuous alkali activation
CN112707399A (en) * 2021-02-23 2021-04-27 上海骏芃环保科技有限公司 Carbonization-activation integrated activated carbon activation device
CN113247896A (en) * 2021-04-15 2021-08-13 中国铝业股份有限公司 Activated carbon activation device
CN116835580B (en) * 2023-06-26 2024-02-13 江苏汉华热管理科技有限公司 Preparation method of single-layer graphite heat conducting film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288504B2 (en) * 2000-04-28 2007-10-30 BLüCHER GMBH Method for producing spherical activation carbon
JP2005067972A (en) * 2003-08-26 2005-03-17 Met:Kk Method and apparatus for carbonization activation

Also Published As

Publication number Publication date
JP2008013398A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4963573B2 (en) Activated carbon production apparatus and activated carbon production method
CN106044767B (en) A kind of carbonization-activation integral processing unit (plant) and its processing method
CN103708452B (en) A kind of autothermal continuously carbonizing activation working method of biomass and device thereof
CN100338811C (en) Hydrogen generating apparatus and fuel cell power energy generating system
KR101916958B1 (en) Apparatus and method for pyrolysis carbonizing of sludge
CN205892761U (en) Carbomorphism activation integration processingequipment
CN101230280A (en) Solid biomass upright continuous retorting device
JP2019045078A (en) Method of semi-carbonizing biomass and device therefor
JP6573804B2 (en) Biomass fuel generator
CN203448114U (en) External-heating-type activated carbon drying and regenerating device
JP5536247B1 (en) Coal deactivation processing equipment
JP5691118B1 (en) Activated carbon production apparatus and activated carbon production method
CN108559538A (en) A kind of biomass pyrolysis furnace
JP2005067972A (en) Method and apparatus for carbonization activation
JP5692620B1 (en) Activated carbon production apparatus and activated carbon production method
CN105883797B (en) A kind of the oxidation carbonization system and method for the interior circulation of flue gas
CN105524633A (en) Multilayer continuous carbonization furnace
JP2002068723A (en) Method and device for manufacturing activated charcoal
CN206590902U (en) A kind of equipment for producing activated carbon
JP4567100B1 (en) Coconut charcoal manufacturing method and apparatus
JP6729906B1 (en) Heat treatment equipment
JP2001220120A (en) Method for manufacturing activated carbon from waste and manufacturing device
CN205590304U (en) Oxidation carbomorphism system of flue gas inner loop
CN110790273B (en) Constant-temperature carbonization-based charcoal making process
CN205528583U (en) Carbomorphism furnace assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Ref document number: 4963573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees