JP4962900B2 - Fuel cell and manufacturing method thereof - Google Patents

Fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP4962900B2
JP4962900B2 JP2006263847A JP2006263847A JP4962900B2 JP 4962900 B2 JP4962900 B2 JP 4962900B2 JP 2006263847 A JP2006263847 A JP 2006263847A JP 2006263847 A JP2006263847 A JP 2006263847A JP 4962900 B2 JP4962900 B2 JP 4962900B2
Authority
JP
Japan
Prior art keywords
resin frame
separator
electrolyte
adhesive
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006263847A
Other languages
Japanese (ja)
Other versions
JP2008084707A (en
Inventor
功一 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006263847A priority Critical patent/JP4962900B2/en
Publication of JP2008084707A publication Critical patent/JP2008084707A/en
Application granted granted Critical
Publication of JP4962900B2 publication Critical patent/JP4962900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池及びその製造方法にかかり、特に、樹脂フレームとセパレータとを接着剤で接合してなる燃料電池及びその製造方法に関する。   The present invention relates to a fuel cell and a manufacturing method thereof, and more particularly to a fuel cell in which a resin frame and a separator are joined with an adhesive and a manufacturing method thereof.

従来から、一般的な燃料電池として、例えば、電解質膜と、該電解質膜の一方の面に配置されたアノード電極と、他方の面に配置されたカソード電極と、を有する膜−電極接合体(MEA:Membrane Electrode Assembly、以下、単に「MEA」という)の両側に、樹脂フレームを介してセパレータを配設した構造を備えたものがある。このような燃料電池では、通常、前記MEAを挟んで配設された樹脂フレーム同士、及び樹脂フレームとセパレータは、接着剤によって接合されており、通常、当該樹脂フレームの外周端に、エアや接着剤を逃がすための孔や溝が形成されている。   Conventionally, as a general fuel cell, for example, a membrane-electrode assembly having an electrolyte membrane, an anode electrode disposed on one surface of the electrolyte membrane, and a cathode electrode disposed on the other surface ( Some have a structure in which separators are disposed on both sides of an MEA (Membrane Electrode Assembly, hereinafter simply referred to as “MEA”) via a resin frame. In such a fuel cell, the resin frames arranged between the MEAs, and the resin frame and the separator are usually bonded by an adhesive, and air or adhesive is usually attached to the outer peripheral end of the resin frame. Holes and grooves for releasing the agent are formed.

このような構成を備えた燃料電池では、エアや接着剤を逃がすための孔や溝から接着剤が外部にはみ出すことがあり、当該樹脂フレームの外周端に接着剤バリが形成される虞があった。この接着剤のはみ出しを抑制するには、使用する接着剤の塗布量を適切に制御することが考えられるが、接着剤の塗布量を少なくすると、接着強度が低下するため、接着強度を維持し且つ接着剤のはみ出しを抑制する最適な塗布量で接着剤を塗布することは困難であるのが実状である。   In the fuel cell having such a configuration, the adhesive may protrude to the outside through holes or grooves for allowing air or adhesive to escape, and there is a possibility that an adhesive burr may be formed at the outer peripheral edge of the resin frame. It was. In order to prevent the adhesive from sticking out, it is conceivable to appropriately control the amount of adhesive used. However, if the amount of adhesive applied is reduced, the adhesive strength decreases, so the adhesive strength is maintained. In fact, it is difficult to apply the adhesive with an optimal application amount that suppresses the protrusion of the adhesive.

そこで、例えば、前記樹脂フレームのシール部に、シール用接着剤のはみ出しを抑制するための堰を形成したものが紹介されている。(例えば、特許文献1参照)。また、セパレータのシール面に接着剤溜まり用の溝を形成したものも紹介されている。(例えば、特許文献2参照)。   In view of this, for example, a structure in which a weir is formed in the seal portion of the resin frame to prevent the sealing adhesive from protruding is introduced. (For example, refer to Patent Document 1). In addition, an adhesive reservoir groove formed on the seal surface of the separator is also introduced. (For example, refer to Patent Document 2).

また、電解質膜の両面に触媒層をそれぞれ配置した膜電極複合体と、該膜電極複合体の両面に配置した第1および第2のガス拡散層と、前記第1及び第2のガス拡散層に反応ガスをそれぞれ供給するためのセパレータと、前記反応ガスをシールするためのガスケットとを備え、前記ガスケットは、前記セパレータと対峙してガス拡散層表面上に配設されると共に、少なくとも前記第1および第2のガス拡散層を共通に貫通する貫通孔を介して一体化されてなる燃料電池も紹介されている。(例えば、特許文献3参照)。
特開2003−77499号公報 特開2002−367631号公報 W2002/89240号公報 特開2006−19204号公報 特開2005−216802号公報
Further, a membrane electrode assembly in which catalyst layers are respectively disposed on both surfaces of the electrolyte membrane, first and second gas diffusion layers disposed on both surfaces of the membrane electrode complex, and the first and second gas diffusion layers And a gasket for sealing the reaction gas, the gasket being disposed on the surface of the gas diffusion layer so as to face the separator, and at least the first gas. A fuel cell is also introduced which is integrated through a through-hole that penetrates the first and second gas diffusion layers in common. (For example, refer to Patent Document 3).
JP 2003-77499 A Japanese Patent Laid-Open No. 2002-367631 W2002 / 89240 Publication JP 2006-19204 A JP 2005-216802 A

しかしながら、前述した特許文献1にかかる燃料電池は、樹脂フレームと、この樹脂フレームに隣接するセパレータとの間に接着剤層を配設し、この接着剤層によって、当該樹脂フレームとセパレータとの接着を行っているため、接着面積に限界があり、現状で使用されている接着剤により、接着剤層と樹脂フレーム間、及び接着剤層とセパレータ間における接着力をさらに向上させることが困難である。   However, in the fuel cell according to Patent Document 1 described above, an adhesive layer is disposed between a resin frame and a separator adjacent to the resin frame, and the adhesive layer adheres the resin frame to the separator. Therefore, it is difficult to further improve the adhesive force between the adhesive layer and the resin frame and between the adhesive layer and the separator with the adhesive currently used. .

また、特許文献2及び3にかかる燃料電池には、樹脂フレームが配設されておらず、したがって、樹脂フレーム同士の固定方法については何ら言及されていない。さらに特許文献3にかかる燃料電池は、セパレータとUEA(Unitized Electrode Assembly)との固定方法についても言及していない。   In addition, the fuel cells according to Patent Documents 2 and 3 are not provided with a resin frame, and therefore no mention is made of a method for fixing the resin frames. Furthermore, the fuel cell according to Patent Document 3 does not mention a fixing method between the separator and UEA (Unitized Electrode Assembly).

本発明は、このような事情に鑑みなされたものであり、接着剤のはみ出しを抑止することができると共に、電解質−電極接合体の両側に配設される樹脂フレームとセパレータとの接着強度を向上させることが可能な燃料電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can prevent the adhesive from protruding and improve the adhesive strength between the resin frame and the separator disposed on both sides of the electrolyte-electrode assembly. It is an object of the present invention to provide a fuel cell and a method for manufacturing the same.

この目的を達成するため本発明は、電解質の一方の面にアノード電極が設けられ、他方の面にカソード電極が設けられた電解質−電極接合体と、セパレータと樹脂フレームとを接着剤で接合したセパレータ−樹脂フレーム接合体と、を有し、前記樹脂フレームを前記電解質−電極接合体に対向させて当該電解質−電極接合体の両側に前記セパレータ−樹脂フレーム接合体を積層してなる燃料電池であって、前記セパレータ−樹脂フレーム接合体は前記電解質−電極接合体の発電部よりも外寸が大きく、前記樹脂フレームの前記セパレータとの接着が可能な領域が前記電解質膜−電極接合体の外周よりも外側に位置すると共に当該領域に貫通孔が形成され、前記電解質膜−電極接合体の一側に積層された前記セパレータ−樹脂フレーム接合体における前記接着剤と、前記電解質膜−電極接合体の他側に積層された前記セパレータ−樹脂フレーム接合体における前記接着剤とが前記貫通孔内で一体化してなる燃料電池を提供するものである。 In order to achieve this object, the present invention is an electrolyte-electrode assembly in which an anode electrode is provided on one surface of an electrolyte and a cathode electrode is provided on the other surface, and a separator and a resin frame are bonded with an adhesive. A separator-resin frame assembly, and the separator-resin frame assembly is laminated on both sides of the electrolyte-electrode assembly with the resin frame side opposed to the electrolyte-electrode assembly. The separator-resin frame assembly has a larger outer dimension than the power generation part of the electrolyte-electrode assembly, and the region of the resin frame that can be bonded to the separator is the electrolyte membrane-electrode assembly. The separator-resin frame assembly which is located outside the outer periphery and has a through hole formed in the region, and is laminated on one side of the electrolyte membrane-electrode assembly There is provided a fuel cell in which the said adhesive in the resin frame assembly is formed by integrally in the through hole - said the adhesive definitive, the electrolyte membrane - the separators which is laminated on the other side of the electrode assembly .

この構成を備えた燃料電池は、樹脂フレームのセパレータとの接着が可能な領域に、当該樹脂フレームとセパレータとを接着するための接着剤が貫通する貫通孔が形成されているため、当該樹脂フレームとセパレータとの間に介在する接着剤と、前記貫通孔を貫通する接着剤とが一体となって互いに協同し合い、当該樹脂フレームとセパレータとを接着することになる。したがって、樹脂フレームとセパレータとの接着強度を向上させることができる。また、前記接着剤は、前記貫通孔を貫通するため、樹脂フレームの外周端(端面)から接着剤がはみ出すことを抑制することができる。そしてまた、前記貫通孔は、接着剤やエアを逃がす役割も果たすため、樹脂フレームに接着剤やエアを逃がすための孔や溝を別途形成する必要がなく、樹脂フレーム構造が複雑化することを抑制することもできる。   In the fuel cell having this configuration, since a through-hole through which an adhesive for bonding the resin frame and the separator passes is formed in an area where the resin frame can be bonded to the separator, the resin frame The adhesive interposed between the separator and the adhesive and the adhesive penetrating the through hole are integrated and cooperate with each other to bond the resin frame and the separator. Therefore, the adhesive strength between the resin frame and the separator can be improved. Moreover, since the said adhesive agent penetrates the said through-hole, it can suppress that an adhesive agent protrudes from the outer peripheral end (end surface) of a resin frame. In addition, since the through hole also serves to release the adhesive and air, it is not necessary to separately form holes and grooves for releasing the adhesive and air in the resin frame, which complicates the resin frame structure. It can also be suppressed.

また、本発明にかかる燃料電池では、前記貫通孔が、前記電解質−電極接合体と、セパレータ−樹脂フレーム接合体の積層方向に貫通する構成を備えることができる。   In the fuel cell according to the present invention, the through hole may have a structure that penetrates in the stacking direction of the electrolyte-electrode assembly and the separator-resin frame assembly.

そしてまた、本発明にかかる燃料電池では、前記接着剤が、前記電解質−電極接合体の一方の面に積層された樹脂フレームに形成された貫通孔と、当該電解質−電極接合体の他方の面に積層された樹脂フレームに形成された貫通孔の両者を貫通する構成とすることもできる。このように構成することで、前記利点に加え、樹脂フレームとセパレータとの間に塗布された接着剤と、樹脂フレーム同士の間に塗布された接着剤とが、貫通孔を通して一体となり互いに協同し合い、前記樹脂フレームとセパレータとの間の接着強度が向上することは勿論のこと、電解質−電極接合体を挟んで積層された樹脂フレーム同士間の接着強度も向上させることができる。すなわち、電解質−電極接合体と、この電解質−電極接合体を挟んだ両側に積層されたセパレータ−樹脂フレーム接合体とが、貫通孔を貫通する接着剤によって一体化されるため、これらをより強固に接着することができる。   Moreover, in the fuel cell according to the present invention, the adhesive includes a through-hole formed in a resin frame laminated on one surface of the electrolyte-electrode assembly, and the other surface of the electrolyte-electrode assembly. It can also be set as the structure which penetrates both of the through-holes formed in the resin frame laminated | stacked on. With this configuration, in addition to the advantages described above, the adhesive applied between the resin frame and the separator and the adhesive applied between the resin frames are integrated and cooperate with each other through the through hole. In addition, the adhesive strength between the resin frame and the separator can be improved, as well as the adhesive strength between the resin frames laminated with the electrolyte-electrode assembly interposed therebetween. That is, since the electrolyte-electrode assembly and the separator-resin frame assembly laminated on both sides of the electrolyte-electrode assembly are integrated by the adhesive penetrating the through-hole, these are further strengthened. Can be glued to.

また、本発明は、電解質の一方の面にアノード電極が設けられ、他方の面にカソード電極が設けられた電解質−電極接合体と、セパレータと樹脂フレームとを接合してなるセパレータ−樹脂フレーム接合体と、を有し、前記セパレータ−樹脂フレーム接合体は前記電解質−電極接合体の発電部よりも外寸が大きく、前記樹脂フレームを前記電解質−電極接合体に対向させて当該電解質−電極接合体の両側に前記セパレータ−樹脂フレーム接合体を積層してなる燃料電池の製造方法であって、前記樹脂フレームの前記セパレータとの接着が可能な領域であって前記電解質膜−電極接合体の外周よりも外側に位置する部分に、接着剤が貫通する貫通孔を形成する工程と、前記セパレータと樹脂フレームとを前記貫通孔を貫通した接着剤により接着し、セパレータ−樹脂フレーム接合体を形成する工程と、前記電解質−電極接合体の両側に前記セパレータ−樹脂フレーム接合体を積層し、当該電解質−電極接合体の一方の面に積層された樹脂フレームと、当該電解質−電極接合体の他方の面に積層された樹脂フレームとを、前記貫通孔を貫通して一体化した接着剤により接着する工程と、を備えた燃料電池の製造方法を提供するものである。 Further, the present invention provides a separator-resin frame joint formed by joining an electrolyte-electrode assembly in which an anode electrode is provided on one surface of the electrolyte and a cathode electrode on the other surface, and a separator and a resin frame. The separator-resin frame assembly has a larger outer dimension than the power generation part of the electrolyte-electrode assembly, and the electrolyte-electrode is disposed with the resin frame side facing the electrolyte-electrode assembly. A method of manufacturing a fuel cell in which the separator-resin frame assembly is laminated on both sides of a joined body, the region of the resin frame being attachable to the separator, wherein the electrolyte membrane-electrode assembly against a portion located outside the outer periphery, forming a through hole which the adhesive penetrates, by an adhesive and the separator and the resin frame through the through hole And forming the separator-resin frame assembly, and laminating the separator-resin frame assembly on both sides of the electrolyte-electrode assembly, and then laminating the separator-resin frame assembly on one surface of the electrolyte-electrode assembly. And a step of adhering a resin frame laminated on the other surface of the electrolyte-electrode assembly with an adhesive that penetrates the through-hole and is integrated. Is.

この燃料電池の製造方法によれば、樹脂フレームに形成された貫通孔を貫通する接着剤によって、当該樹脂フレームとセパレータとが接着されるため、接着強度が向上する。また、前記接着剤は、前記貫通孔を貫通するため、樹脂フレームの外周面(端面)から接着剤がはみ出すことを抑制することができる。そしてまた、前記貫通孔は、接着剤やエアを逃がす役割も果たすため、樹脂フレームに接着剤やエアを逃がすための孔や溝を別途形成する必要がなく、樹脂フレーム構造が複雑化することを抑制することもできる。   According to this method of manufacturing a fuel cell, the resin frame and the separator are bonded by the adhesive that passes through the through-hole formed in the resin frame, so that the adhesive strength is improved. Moreover, since the said adhesive agent penetrates the said through-hole, it can suppress that an adhesive agent protrudes from the outer peripheral surface (end surface) of a resin frame. In addition, since the through hole also serves to release the adhesive and air, it is not necessary to separately form holes and grooves for releasing the adhesive and air in the resin frame, which complicates the resin frame structure. It can also be suppressed.

また、本発明にかかる燃料電池の製造方法は、前記電解質−電極接合体の一方の面に積層された樹脂フレームに形成した貫通孔と、当該電解質−電極接合体の他方の面に積層された樹脂フレームに形成した貫通孔の両方に、前記接着剤を貫通させる工程をさらに備えることができる。この工程をさらに備えることで、電解質−電極接合体と、この電解質−電極接合体の両側に積層されたセパレータ−樹脂フレーム接合体とを、前記両方の貫通孔を貫通する接着剤によって接着することができるため、前記樹脂フレームとセパレータとの間の接着強度が向上することは勿論のこと、電解質−電極接合体を挟んで積層された樹脂フレーム同士間の接着強度も向上させることができ、これらをより強固に接着することができる。   The fuel cell manufacturing method according to the present invention includes a through hole formed in a resin frame laminated on one surface of the electrolyte-electrode assembly, and a laminate on the other surface of the electrolyte-electrode assembly. A step of allowing the adhesive to penetrate both through holes formed in the resin frame may be further provided. By further comprising this step, the electrolyte-electrode assembly and the separator-resin frame assembly laminated on both sides of the electrolyte-electrode assembly are bonded by an adhesive that penetrates both through holes. Therefore, the adhesive strength between the resin frame and the separator can be improved, as well as the adhesive strength between the resin frames laminated with the electrolyte-electrode assembly interposed therebetween. Can be bonded more firmly.

本発明にかかる燃料電池は、樹脂フレームとセパレータとが、前記貫通孔を貫通する接着剤によって接着された構造を有しているため、当該樹脂フレームとセパレータとの接着強度を向上させることができる。また、前記接着剤は、前記貫通孔を貫通するため、樹脂フレームの外周面から接着剤がはみ出すことを抑制することができる。この結果、信頼性の高い燃料電池を提供することができる。また、前記貫通孔は、接着剤やエアを逃がす役割も果たすため、樹脂フレームに接着剤やエアを逃がすための孔や溝を別途形成する必要がなく、従来に比べ、樹脂フレーム構造を簡略化することができる。   The fuel cell according to the present invention has a structure in which the resin frame and the separator are bonded to each other with an adhesive penetrating the through hole, so that the adhesive strength between the resin frame and the separator can be improved. . Moreover, since the said adhesive agent penetrates the said through-hole, it can suppress that an adhesive agent protrudes from the outer peripheral surface of a resin frame. As a result, a highly reliable fuel cell can be provided. In addition, the through-hole also plays a role of releasing adhesive and air, so there is no need to separately form holes and grooves for releasing adhesive and air in the resin frame, making the resin frame structure simpler than before can do.

本発明にかかる燃料電池の製造方法によれば、樹脂フレームに形成された貫通孔を貫通する接着剤によって、当該樹脂フレームとセパレータとを接着することができるため、接着強度が向上する。また、前記接着剤は、前記貫通孔を貫通するため、樹脂フレームの外周面から接着剤がはみ出すことを抑制することができる。この結果、信頼性の高い燃料電池を製造することができる。また、前記貫通孔は、接着剤やエアを逃がす役割も果たすため、樹脂フレームに接着剤やエアを逃がすための孔や溝を別途形成する必要がなく、従来に比べ、樹脂フレーム構造が簡略化した燃料電池を製造することもできる。   According to the method of manufacturing a fuel cell according to the present invention, the resin frame and the separator can be bonded by the adhesive that penetrates the through hole formed in the resin frame, so that the adhesive strength is improved. Moreover, since the said adhesive agent penetrates the said through-hole, it can suppress that an adhesive agent protrudes from the outer peripheral surface of a resin frame. As a result, a highly reliable fuel cell can be manufactured. In addition, the through hole also plays a role of releasing adhesive and air, so there is no need to separately form holes and grooves for releasing adhesive and air in the resin frame, making the resin frame structure simpler than before The manufactured fuel cell can also be manufactured.

次に、本発明の好適な実施の形態にかかる燃料電池及びその製造方法について図面を参照して説明する。なお、以下に記載される実施の形態は、本発明を説明するための例示であり、本発明をこれらの実施の形態にのみ限定するものではない。したがって、本発明は、その要旨を逸脱しない限り、様々な形態で実施することができる。   Next, a fuel cell and a method for manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the drawings. In addition, embodiment described below is the illustration for demonstrating this invention, and this invention is not limited only to these embodiment. Therefore, the present invention can be implemented in various forms without departing from the gist thereof.

図1は、本実施の形態にかかる燃料電池のセル積層方向を上下方向とした姿勢での全体概略図、図2は、図1に示す燃料電池の構成要素であるMEAの一部を拡大して示す断面図、図3は、図1に示す燃料電池の構成要素である単セルの分解斜視図、図4は、図1に示す燃料電池の構成要素である樹脂フレームの平面図、図5は、図4に示すV−V線に沿った断面図、図6は、図1に示す燃料電池の構成要素である単セルの接続方法を模式的に示す断面図、図7は、図1に示す燃料電池の構成要素である単セルの接続構造の一部を模式的に示す拡大図である。   FIG. 1 is an overall schematic diagram of the fuel cell according to the present embodiment in a posture in which the cell stacking direction is the vertical direction, and FIG. 2 is an enlarged view of a part of the MEA that is a component of the fuel cell shown in FIG. 3 is an exploded perspective view of a single cell that is a component of the fuel cell shown in FIG. 1, FIG. 4 is a plan view of a resin frame that is a component of the fuel cell shown in FIG. Is a cross-sectional view taken along the line V-V shown in FIG. 4, FIG. 6 is a cross-sectional view schematically showing a method of connecting single cells that are components of the fuel cell shown in FIG. 1, and FIG. It is an enlarged view which shows typically a part of connection structure of the single cell which is a component of the fuel cell shown in FIG.

なお、各図では、各部材の厚さやサイズ、拡大・縮小率等は、説明を判りやすくするため、実際のものとは一致させずに記載した。また、本実施の形態にかかる樹脂フレームには、複数の貫通孔が点在しているが、説明を判りやすくするため、図6では、樹脂フレームの両側に貫通孔が各々1つ形成されているように記載してある。さらにまた、図7では、説明を判りやすくするため、1つの貫通孔の周辺の状態を模式的に示してある。   In each figure, the thickness, size, enlargement / reduction ratio, and the like of each member are shown without matching with actual ones for easy understanding. In addition, the resin frame according to the present embodiment is dotted with a plurality of through holes. However, in order to make the explanation easy to understand, one through hole is formed on each side of the resin frame in FIG. It is described as such. Furthermore, in FIG. 7, the state around one through hole is schematically shown for easy understanding.

本実施の形態で説明する燃料電池は、固体高分子電解質型燃料電池であり、例えば、燃料電池自動車等に搭載することができるが、自動車以外に用いられてもよい。   The fuel cell described in the present embodiment is a solid polymer electrolyte fuel cell, and can be mounted on, for example, a fuel cell vehicle, but may be used other than the vehicle.

図1〜図7に示すように、本実施の形態にかかる燃料電池1は、MEA(膜−電極接合体)10と、MEA10の一方の面に配置された樹脂フレーム21と、MEA10の他方の面に配設された樹脂フレーム22と、樹脂フレーム21のMEA10が配設されている側とは反対側の面に配設されたセパレータ23と、樹脂フレーム22のMEA10が配設されている側とは反対側の面に配設されたセパレータ24と、を重ねて形成した単セル25を備え、この単セル25を複数積層し、セル積層方向両端に、ターミナル30、インシュレータ31、エンドプレート32を配置してスタック33を構成し、スタック33をセル積層方向に締め付け、スタック33の外側でセル積層方向に延びる締結部材34(たとえば、テンションプレート、スルーボルトなど)とボルト35またはナットで固定したものからなる。   As shown in FIGS. 1 to 7, the fuel cell 1 according to the present embodiment includes an MEA (membrane-electrode assembly) 10, a resin frame 21 disposed on one surface of the MEA 10, and the other of the MEA 10. The resin frame 22 disposed on the surface, the separator 23 disposed on the surface of the resin frame 21 opposite to the side on which the MEA 10 is disposed, and the side on which the MEA 10 of the resin frame 22 is disposed And a single cell 25 formed by overlapping a separator 24 disposed on the opposite surface, and a plurality of single cells 25 are stacked, and a terminal 30, an insulator 31, an end plate 32 are provided at both ends of the cell stacking direction. To form the stack 33, tighten the stack 33 in the cell stacking direction, and extend the fastening member 34 (for example, a tension plate, screw) extending in the cell stacking direction outside the stack 33. Boruto etc.) and consists of those bolted 35 or nut.

MEA10は、イオン交換膜からなる電解質膜11と、電解質膜11の一方の面に配置されると共に、触媒層12及び拡散層13からなるアノード電極(燃料極)14と、電解質膜11の他方の面に配置されると共に、触媒層15及び拡散層16からなるカソード電極(酸化剤極)17を備えて構成されている。   The MEA 10 is disposed on one surface of the electrolyte membrane 11 made of an ion exchange membrane, the electrolyte membrane 11, an anode electrode (fuel electrode) 14 made up of the catalyst layer 12 and the diffusion layer 13, and the other of the electrolyte membrane 11. The cathode electrode (oxidant electrode) 17 composed of the catalyst layer 15 and the diffusion layer 16 is provided on the surface.

樹脂フレーム21は、MEA10のアノード電極14側に配設されており、樹脂フレーム22は、MEA10のカソード電極17側に配設されている。この樹脂フレーム21及び22は、MEA10の発電部がセパレータ23及び24に対し露出するように中抜きされており、その両側に、マニホルド部40A及び40Bが形成されている。マニホルド部40Aには、入り側の冷却水マニホルド41IN、出側の燃料ガスマニホルド42OUT、入り側の空気マニホルド43INが設けられている。一方、マニホルド部40Bには、出側の冷却水マニホルド41OUT、入り側の燃料ガスマニホルド42IN、出側の空気マニホルド43OUTが設けられている。また、樹脂フレーム21及び22には、マニホルド部40A及び40Bと、セパレータ23及び24に各々形成されたガス流路部53及び54とを連通するガス流路連通部47が形成されている。 The resin frame 21 is disposed on the anode electrode 14 side of the MEA 10, and the resin frame 22 is disposed on the cathode electrode 17 side of the MEA 10. The resin frames 21 and 22 are hollowed out so that the power generation section of the MEA 10 is exposed to the separators 23 and 24, and manifold sections 40A and 40B are formed on both sides thereof. The manifold section 40A is provided with an inlet side cooling water manifold 41 IN , an outlet side fuel gas manifold 42 OUT , and an inlet side air manifold 43 IN . On the other hand, the manifold section 40B is provided with an outlet side cooling water manifold 41 OUT , an inlet side fuel gas manifold 42 IN , and an outlet side air manifold 43 OUT . Further, the resin frames 21 and 22 are formed with gas flow passage communication portions 47 that communicate the manifold portions 40A and 40B with the gas flow passage portions 53 and 54 formed in the separators 23 and 24, respectively.

この樹脂フレーム21及び22の、セパレータ23及び24と接着可能な領域(図4に網点で示す領域、以下、単に「接着可能領域」という)には、単セル25の積層方向に貫通する貫通孔60が複数形成されている。この複数の貫通孔60は、樹脂フレーム21及び22の接着可能領域に点在しており、単セル25を形成する際に、樹脂フレーム21とセパレータ23とを接着するための接着剤70、樹脂フレーム22とセパレータ24とを接着するための接着剤70、及び樹脂フレーム21と樹脂フレーム22とを接着する接着剤70が貫通するように構成されている。すなわち、図6及び図7に示すように、樹脂フレーム21とセパレータ23との間に塗布された接着剤70と、樹脂フレーム21と樹脂フレーム22との間に塗布された接着剤70と、樹脂フレーム22とセパレータ24との間に塗布された接着剤70とが、貫通孔60を通して一体となって互いに協同し合い、MEA10の両面に各々積層されてMEA10を挟持する樹脂フレーム21及び22、及びセパレータ23及び24を強固に接着するため、従来の単セルに比べ、各部材間の接着強度を向上することができる。この貫通孔60は、セルの積層方向に貫通していれば、その形状は特に限定されるものではなく、例えば、略円柱形状、略多角柱形状等、所望により任意に決定することができる。また、貫通方向に沿って蛇腹状となった(凹凸が形成された)貫通孔であってもよい。   In the resin frames 21 and 22, a region that can be bonded to the separators 23 and 24 (a region indicated by halftone dots in FIG. 4, hereinafter simply referred to as “bondable region”) penetrates in the stacking direction of the single cells 25. A plurality of holes 60 are formed. The plurality of through-holes 60 are scattered in the region where the resin frames 21 and 22 can be bonded, and an adhesive 70 and a resin for bonding the resin frame 21 and the separator 23 when the single cell 25 is formed. An adhesive 70 for adhering the frame 22 and the separator 24 and an adhesive 70 for adhering the resin frame 21 and the resin frame 22 pass therethrough. That is, as shown in FIGS. 6 and 7, an adhesive 70 applied between the resin frame 21 and the separator 23, an adhesive 70 applied between the resin frame 21 and the resin frame 22, and a resin Resin frames 21 and 22 in which an adhesive 70 applied between the frame 22 and the separator 24 cooperates with each other through the through-hole 60 and is laminated on both surfaces of the MEA 10 to sandwich the MEA 10; Since the separators 23 and 24 are firmly bonded, the bonding strength between the members can be improved as compared with the conventional single cell. The shape of the through-hole 60 is not particularly limited as long as it penetrates in the cell stacking direction, and can be arbitrarily determined as desired, for example, a substantially cylindrical shape, a substantially polygonal column shape, or the like. Moreover, the through-hole which became bellows shape (unevenness | corrugation was formed) along the penetration direction may be sufficient.

また、接着剤70は、貫通孔60を貫通した状態で、樹脂フレーム21とセパレータ23との間、樹脂フレーム21と樹脂フレーム22との間、樹脂フレーム22とセパレータ24との間に存在することになるため、貫通孔60が形成されていない場合と比べると、その存在領域(存在容積)が大きくなるため、接着剤70の最適塗布量を制御し易くすることができる。さらにまた、貫通孔60は、樹脂フレーム21及び22の外周端(端面)には形成されていないため、樹脂フレーム21及び22の外周端から接着剤70がはみ出すことを抑制することができる。したがって、樹脂フレーム21及び22の外周端に接着剤のバリが形成されることが殆どない。そしてまた、貫通孔60は、接着剤70やエアを逃がす役割も果たすため、樹脂フレーム21及び22に接着剤70やエアを逃がすための孔や溝を別途形成する必要がなく、加工上も有利である。   Further, the adhesive 70 is present between the resin frame 21 and the separator 23, between the resin frame 21 and the resin frame 22, and between the resin frame 22 and the separator 24 in a state of passing through the through hole 60. Therefore, as compared with the case where the through-hole 60 is not formed, the existence area (existing volume) becomes large, so that the optimum application amount of the adhesive 70 can be easily controlled. Furthermore, since the through hole 60 is not formed at the outer peripheral ends (end surfaces) of the resin frames 21 and 22, it is possible to suppress the adhesive 70 from protruding from the outer peripheral ends of the resin frames 21 and 22. Therefore, an adhesive burr is hardly formed on the outer peripheral ends of the resin frames 21 and 22. Moreover, since the through hole 60 also plays a role of releasing the adhesive 70 and air, it is not necessary to separately form holes and grooves for releasing the adhesive 70 and air in the resin frames 21 and 22, which is advantageous in processing. It is.

セパレータ23及び24は、不透過性を有し、例えば、ステンレス板に導電性金属をメッキ(例えば、ニッケルメッキ)したものから構成することができる。これらのセパレータ23及び24は、隣接するセル間の導電通路を構成している。セパレータ23のMEA10と対向する面(MEA10側を向く面)には、燃料ガス流路53Aが形成されたガス流路部53が形成されている。セパレータ23のガス流路部53が形成されている面とは反対側の面には、冷却水流路55が形成されている。また、セパレータ24のMEA10と対向する面には、酸化ガス流路54Aが形成されたガス流路部54が形成され、セパレータ24のガス流路部54が形成されている面とは反対側の面には、冷却水流路56が形成されている。また、セパレータ23及び24にも前述した入り側の冷却水マニホルド41IN、出側の燃料ガスマニホルド42OUT、入り側の空気マニホルド43IN、出側の冷却水マニホルド41OUT、入り側の燃料ガスマニホルド42IN、出側の空気マニホルド43OUTが形成されている。 The separators 23 and 24 are impermeable, and can be composed of, for example, a stainless plate plated with a conductive metal (for example, nickel plating). These separators 23 and 24 constitute a conductive path between adjacent cells. A gas flow channel portion 53 in which a fuel gas flow channel 53A is formed is formed on the surface of the separator 23 facing the MEA 10 (the surface facing the MEA 10 side). A cooling water passage 55 is formed on the surface of the separator 23 opposite to the surface on which the gas passage portion 53 is formed. Further, a gas flow channel portion 54 in which an oxidizing gas flow channel 54A is formed is formed on the surface of the separator 24 that faces the MEA 10, and is opposite to the surface on which the gas flow channel portion 54 of the separator 24 is formed. A cooling water channel 56 is formed on the surface. The separators 23 and 24 also have the aforementioned inlet-side cooling water manifold 41 IN , outlet-side fuel gas manifold 42 OUT , inlet-side air manifold 43 IN , outlet-side cooling water manifold 41 OUT , and inlet-side fuel gas. A manifold 42 IN and an outlet air manifold 43 OUT are formed.

なお、燃料ガス流路53Aと酸化ガス流路54Aとは、MEA10を挟んで互いに対応している。また、セパレータ23に形成された冷却水流路55と、セパレータ24に形成された冷却水流路56は、セル積層方向に隔てられることなく連通している。   The fuel gas channel 53A and the oxidizing gas channel 54A correspond to each other with the MEA 10 interposed therebetween. Further, the cooling water channel 55 formed in the separator 23 and the cooling water channel 56 formed in the separator 24 communicate with each other without being separated in the cell stacking direction.

また、セパレータ23と樹脂フレーム21とで、セパレータ−樹脂フレーム接合体を構成し、セパレータ24と樹脂フレーム22とで、セパレータ−樹脂フレーム接合体を構成している。   The separator 23 and the resin frame 21 constitute a separator-resin frame assembly, and the separator 24 and the resin frame 22 constitute a separator-resin frame assembly.

この単セル25は、以下の製造方法を含んで製造することができる。すなわち、入り側の冷却水マニホルド41IN、出側の燃料ガスマニホルド42OUT、入り側の空気マニホルド43IN、出側の冷却水マニホルド41OUT、入り側の燃料ガスマニホルド42IN、出側の空気マニホルド43OUTや、ガス流路連通部47、MEA10が露出する中抜き等が形成された樹脂フレーム21及び22の接着可能領域に、複数の貫通孔60を形成する。この時、貫通孔60の設置箇所、設置数は、所望により任意に決定することができる。また、貫通孔60を形成した後で、前述した各種マニホルド、ガス流路連通部47、中抜き等を形成してもよい。 This single cell 25 can be manufactured including the following manufacturing method. That is, the inlet side cooling water manifold 41 IN , the outlet side fuel gas manifold 42 OUT , the inlet side air manifold 43 IN , the outlet side cooling water manifold 41 OUT , the inlet side fuel gas manifold 42 IN , and the outlet side air A plurality of through holes 60 are formed in the adherable region of the resin frames 21 and 22 where the manifold 43 OUT , the gas flow path communication portion 47, the hollows where the MEA 10 is exposed, and the like are formed. At this time, the installation location and the number of installation of the through hole 60 can be arbitrarily determined as desired. Moreover, after forming the through-hole 60, you may form various manifolds mentioned above, the gas flow path communication part 47, a hollow, etc. FIG.

次に、樹脂フレーム21の接着可能領域内であって、セパレータ23と樹脂フレーム21との間に、接着剤70を配設する。この時、接着剤70は、樹脂フレーム21側に塗布してもよく、セパレータ23側に塗布してもよく、両方に塗布してもよい。次いで、樹脂フレーム21とセパレータ23とを、接着剤70によって接着し、両者を接合してセパレータ−樹脂フレーム接合体を形成する。この時、接着剤70は、貫通孔60内に浸入して貫通し、樹脂フレーム21とセパレータ23は、強固に接合される。同様に、樹脂フレーム22とセパレータ24も接合する。   Next, the adhesive 70 is disposed between the separator 23 and the resin frame 21 in the region where the resin frame 21 can be bonded. At this time, the adhesive 70 may be applied to the resin frame 21 side, may be applied to the separator 23 side, or may be applied to both. Next, the resin frame 21 and the separator 23 are bonded together with an adhesive 70 and bonded together to form a separator-resin frame assembly. At this time, the adhesive 70 enters the through hole 60 and penetrates, and the resin frame 21 and the separator 23 are firmly bonded. Similarly, the resin frame 22 and the separator 24 are also joined.

次いで、MEA10の両面に、前述したセパレータ−樹脂フレーム接合体を各々積層する。この時、樹脂フレーム21のMEA10に対向する面の接着可能領域には、貫通孔60から貫通した接着剤70が付着しており、樹脂フレーム22のMEA10に対向する面の接着可能領域には、貫通孔60から貫通した接着剤70が付着しているため、樹脂フレーム21と樹脂フレーム22は、この接着剤70によって強固に接合される。このようにして、MEA10を挟持する樹脂フレーム21及び22、及びセパレータ23及び24は、貫通孔60を貫通して一体化した接着剤70によって互いに強固に接着される。   Next, the separator-resin frame assembly described above is laminated on both surfaces of the MEA 10. At this time, the adhesive 70 penetrating from the through hole 60 is attached to the adhesive region of the surface facing the MEA 10 of the resin frame 21, and the adhesive region of the surface of the resin frame 22 facing the MEA 10 is Since the adhesive 70 penetrating from the through hole 60 is attached, the resin frame 21 and the resin frame 22 are firmly joined by the adhesive 70. In this manner, the resin frames 21 and 22 and the separators 23 and 24 that sandwich the MEA 10 are firmly bonded to each other by the adhesive 70 that penetrates the through hole 60 and is integrated.

なお、本実施の形態では、セル積層方向に平行に貫通する貫通孔60について説明したが、これに限らず、貫通孔60は、例えば、図8に示すように、セル積層方向に対し所望の角度αで傾いていてもよい。   In the present embodiment, the through hole 60 penetrating in parallel to the cell stacking direction has been described. However, the present invention is not limited to this. For example, the through hole 60 may have a desired shape with respect to the cell stacking direction as shown in FIG. It may be inclined at an angle α.

また、本実施の形態では、樹脂フレーム21及び22、及びセパレータ23及び24を、一体化した接着剤70によって接着した場合について説明したが、これに限らず、樹脂フレーム21及び22に貫通孔60が形成されており、樹脂フレーム21とセパレータ23が貫通孔60を貫通した接着剤70によって接着され、樹脂フレーム22とセパレータ24が貫通孔60を貫通した接着剤70によって接着されていれば、例えば、樹脂フレーム21と樹脂フレーム22との間に、他の部材を介在させる等してもよい。   In the present embodiment, the case where the resin frames 21 and 22 and the separators 23 and 24 are bonded by the integrated adhesive 70 has been described. However, the present invention is not limited thereto, and the through holes 60 are formed in the resin frames 21 and 22. If the resin frame 21 and the separator 23 are bonded by the adhesive 70 penetrating the through hole 60, and the resin frame 22 and the separator 24 are bonded by the adhesive 70 penetrating the through hole 60, for example, Further, another member may be interposed between the resin frame 21 and the resin frame 22.

本実施の形態にかかる燃料電池のセル積層方向を上下方向とした姿勢での全体概略図である。It is the whole schematic figure in the posture which made the cell lamination direction of the fuel cell concerning this embodiment the up-and-down direction. 図1に示す燃料電池の構成要素であるMEAの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of MEA which is a component of the fuel cell shown in FIG. 図1に示す燃料電池の構成要素である単セルの分解斜視図である。It is a disassembled perspective view of the single cell which is a component of the fuel cell shown in FIG. 図1に示す燃料電池の構成要素である樹脂フレームの平面図である。It is a top view of the resin frame which is a component of the fuel cell shown in FIG. 図4に示すV−V線に沿った断面図である。It is sectional drawing along the VV line shown in FIG. 図1に示す燃料電池の構成要素である単セルの接続方法を模式的に示す断面図である。It is sectional drawing which shows typically the connection method of the single cell which is a component of the fuel cell shown in FIG. 図1に示す燃料電池の構成要素である単セルの接続構造の一部を模式的に示す拡大図である。FIG. 2 is an enlarged view schematically showing a part of a single cell connection structure which is a component of the fuel cell shown in FIG. 1. 本発明の他の実施の形態にかかる樹脂フレームの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of resin frame concerning other embodiment of this invention.

符号の説明Explanation of symbols

1…燃料電池、10…MEA、21、22…樹脂フレーム、23、24…セパレータ、25…単セル、60…貫通孔、70…接着剤 DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 10 ... MEA, 21, 22 ... Resin frame, 23, 24 ... Separator, 25 ... Single cell, 60 ... Through-hole, 70 ... Adhesive

Claims (5)

電解質の一方の面にアノード電極が設けられ、他方の面にカソード電極が設けられた電解質−電極接合体と、セパレータと樹脂フレームとを接着剤で接合したセパレータ−樹脂フレーム接合体と、を有し、前記樹脂フレームを前記電解質−電極接合体に対向させて当該電解質−電極接合体の両側に前記セパレータ−樹脂フレーム接合体を積層してなる燃料電池であって、
前記セパレータ−樹脂フレーム接合体は前記電解質−電極接合体の発電部よりも外寸が大きく、前記樹脂フレームの前記セパレータとの接着が可能な領域が前記電解質膜−電極接合体の外周よりも外側に位置すると共に当該領域に貫通孔が形成され、
前記電解質膜−電極接合体の一側に積層された前記セパレータ−樹脂フレーム接合体における前記接着剤と、前記電解質膜−電極接合体の他側に積層された前記セパレータ−樹脂フレーム接合体における前記接着剤とが前記貫通孔内で一体化してなる燃料電池。
An anode electrode provided on one surface of the electrolyte, the electrolyte is the cathode electrodes disposed on the other face - Yes and resin frame assembly, the - electrode assembly, a separator and a separator and bonded with an adhesive resin frame A fuel cell in which the separator-resin frame assembly is laminated on both sides of the electrolyte-electrode assembly with the resin frame side facing the electrolyte-electrode assembly,
The separator-resin frame assembly has a larger outer dimension than the power generation part of the electrolyte-electrode assembly, and the region of the resin frame that can be bonded to the separator is outside the outer periphery of the electrolyte membrane-electrode assembly. And a through hole is formed in the region,
The adhesive in the separator-resin frame assembly laminated on one side of the electrolyte membrane-electrode assembly, and the separator-resin frame assembly laminated on the other side of the electrolyte membrane-electrode assembly. A fuel cell in which an adhesive is integrated in the through hole .
前記貫通孔は、前記積層方向に貫通してなる請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the through hole penetrates in the stacking direction. 前記接着剤は、前記電解質−電極接合体の一方の面に積層された樹脂フレームに形成された貫通孔と、当該電解質−電極接合体の他方の面に積層された樹脂フレームに形成された貫通孔の両者を貫通してなる請求項1または請求項2記載の燃料電池。   The adhesive includes a through hole formed in a resin frame laminated on one surface of the electrolyte-electrode assembly, and a penetration formed in a resin frame laminated on the other surface of the electrolyte-electrode assembly. The fuel cell according to claim 1 or 2, wherein both the holes are penetrated. 電解質の一方の面にアノード電極が設けられ、他方の面にカソード電極が設けられた電解質−電極接合体と、セパレータと樹脂フレームとを接合してなるセパレータ−樹脂フレーム接合体と、を有し、前記セパレータ−樹脂フレーム接合体は前記電解質−電極接合体の発電部よりも外寸が大きく、前記樹脂フレームを前記電解質−電極接合体に対向させて当該電解質−電極接合体の両側に前記セパレータ−樹脂フレーム接合体を積層してなる燃料電池の製造方法であって、
前記樹脂フレームの前記セパレータとの接着が可能な領域であって前記電解質膜−電極接合体の外周よりも外側に位置する部分に、接着剤が貫通する貫通孔を形成する工程と、
前記セパレータと樹脂フレームとを前記貫通孔を貫通した接着剤により接着し、セパレータ−樹脂フレーム接合体を形成する工程と、
前記電解質−電極接合体の両側に前記セパレータ−樹脂フレーム接合体を積層し、当該電解質−電極接合体の一方の面に積層された樹脂フレームと、当該電解質−電極接合体の他方の面に積層された樹脂フレームとを、前記貫通孔を貫通して一体化した接着剤により接着する工程と、
を備えた燃料電池の製造方法。
An electrolyte-electrode assembly in which an anode electrode is provided on one surface of the electrolyte and a cathode electrode is provided on the other surface; and a separator-resin frame assembly formed by bonding a separator and a resin frame. The separator-resin frame assembly has a larger outer dimension than the power generation part of the electrolyte-electrode assembly, and the resin frame side faces the electrolyte-electrode assembly, and the separator-resin frame assembly is placed on both sides of the electrolyte-electrode assembly. A method for producing a fuel cell in which a separator-resin frame assembly is laminated,
Forming a through-hole through which the adhesive penetrates in a portion of the resin frame that can be bonded to the separator and located outside the outer periphery of the electrolyte membrane-electrode assembly ;
Bonding the separator and the resin frame with an adhesive penetrating the through hole to form a separator-resin frame assembly;
The separator-resin frame assembly is laminated on both sides of the electrolyte-electrode assembly, the resin frame laminated on one surface of the electrolyte-electrode assembly, and the other surface of the electrolyte-electrode assembly Bonding the resin frame made with an adhesive that penetrates the through hole and is integrated ;
A fuel cell manufacturing method comprising:
前記電解質−電極接合体の一方の面に積層された樹脂フレームに形成した貫通孔と、当該電解質−電極接合体の他方の面に積層された樹脂フレームに形成した貫通孔の両方に、前記接着剤を貫通させる工程をさらに備えた請求項4記載の燃料電池の製造方法。   The adhesive is bonded to both the through hole formed in the resin frame laminated on one surface of the electrolyte-electrode assembly and the through hole formed in the resin frame laminated on the other surface of the electrolyte-electrode assembly. The method for producing a fuel cell according to claim 4, further comprising a step of penetrating the agent.
JP2006263847A 2006-09-28 2006-09-28 Fuel cell and manufacturing method thereof Expired - Fee Related JP4962900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263847A JP4962900B2 (en) 2006-09-28 2006-09-28 Fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263847A JP4962900B2 (en) 2006-09-28 2006-09-28 Fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008084707A JP2008084707A (en) 2008-04-10
JP4962900B2 true JP4962900B2 (en) 2012-06-27

Family

ID=39355337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263847A Expired - Fee Related JP4962900B2 (en) 2006-09-28 2006-09-28 Fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4962900B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055813A (en) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd Assembling structure of fuel cell
JP4066117B2 (en) * 1999-06-11 2008-03-26 Nok株式会社 Gasket for fuel cell
JP2002117872A (en) * 2000-08-01 2002-04-19 Honda Motor Co Ltd Seal for fuel cell
JP4420159B2 (en) * 2000-08-04 2010-02-24 Nok株式会社 Fuel cell separator
JP2002231274A (en) * 2001-02-01 2002-08-16 Fuji Electric Co Ltd Solid high polymer fuel cell
EP1391956B1 (en) * 2001-04-23 2011-07-13 Nok Corporation Fuel cell and method of manufacturing the fuel cell
JP4000790B2 (en) * 2001-06-08 2007-10-31 トヨタ自動車株式会社 Fuel cell having seal structure
JP4151314B2 (en) * 2001-06-18 2008-09-17 トヨタ自動車株式会社 Fuel cell
JP3793141B2 (en) * 2002-11-14 2006-07-05 株式会社日立製作所 Polymer electrolyte fuel cell and separator
JP2005216802A (en) * 2004-02-02 2005-08-11 Toyota Motor Corp Fuel cell, manufacturing method of the same, and manufacturing jig
JP4815762B2 (en) * 2004-07-05 2011-11-16 トヨタ自動車株式会社 Fuel cell
JP4595476B2 (en) * 2004-10-04 2010-12-08 トヨタ自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2008084707A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4899339B2 (en) Fuel cell separator
JP5412804B2 (en) Fuel cell stack
JP2007335353A (en) Fuel cell
US10707497B2 (en) Fuel cell
US10818938B2 (en) Fuel cell stack having laminated cells
JP2008078071A (en) Fuel cell stack
JP2007053007A (en) Fuel cell
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
US7824817B2 (en) Fuel cell
JP2010040169A (en) Fuel cell and manufacturing method of same
JP2008059760A (en) Fuel cell, and manufacturing method of fuel cell
WO2012165257A1 (en) Fuel cell separator plate, fuel cell separator, fuel cell, and method for manufacturing fuel cell separator plate
US20090053581A1 (en) Separator and fuel cell
JP2018181500A (en) Manufacturing method for fuel battery single cell
JP2007122898A (en) Fuel cell
JP4962900B2 (en) Fuel cell and manufacturing method thereof
JP2006147258A (en) Separator and fuel battery stack
JP6229874B2 (en) Membrane electrode assembly with frame, single fuel cell and fuel cell stack
JP6241594B2 (en) Membrane electrode assembly with frame, single fuel cell and fuel cell stack
JP2007250228A (en) Fuel cell
JP2010015939A (en) Fuel cell
JP2009252420A (en) Fuel cell and resin frame for fuel cell
JP2007149413A (en) Separator for fuel cell
JP2008293728A (en) Gas passage composing member
JP2009016067A (en) Separator and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees