JP4961166B2 - 自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ - Google Patents

自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ Download PDF

Info

Publication number
JP4961166B2
JP4961166B2 JP2006162331A JP2006162331A JP4961166B2 JP 4961166 B2 JP4961166 B2 JP 4961166B2 JP 2006162331 A JP2006162331 A JP 2006162331A JP 2006162331 A JP2006162331 A JP 2006162331A JP 4961166 B2 JP4961166 B2 JP 4961166B2
Authority
JP
Japan
Prior art keywords
control
value
horizontal
speed
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006162331A
Other languages
English (en)
Other versions
JP2007331426A (ja
Inventor
健蔵 野波
振玉 辛
智 鈴木
大輔 中澤
義朗 小出
敬太郎 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirobo Ltd
Original Assignee
Hirobo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirobo Ltd filed Critical Hirobo Ltd
Priority to JP2006162331A priority Critical patent/JP4961166B2/ja
Publication of JP2007331426A publication Critical patent/JP2007331426A/ja
Application granted granted Critical
Publication of JP4961166B2 publication Critical patent/JP4961166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、設定される目標値に向けて小型無人ヘリコプタを自律的に飛行制御する装置及び方法に関し、特に離陸から着陸までの完全な自律飛行を実現する自律飛行制御装置及び自律飛行方法に関する。
ヘリコプタ機体は、前後、左右、上下方向の運動や空中静止(ホバリング)等、固定翼機では実施するのが難しい行動範囲を有する機体であり、様々な場面で柔軟に活用できる可能性を有している。例えば、送電線点検のような高所で行う点検作業、災害現場での撮影作業、あるいは地雷を探知する作業等、有人機が行うのには困難または危険な場所での活用が期待されている。近年、こうしたヘリコプタ機体の有効性に着目し、ヘリコプタ機体を予め与えられた目標値に向けて、自律的に飛行させるための研究がなされている(特許文献1参照)。
特開2000−118498号公報
しかしながら、上記特許文献1に提案されているヘリコプタ機体は、離陸制御時から着陸制御時までの完全な自律飛行を実現するものではなく、離着陸制御時に地上操作員が無線遠隔操作を行っている。これは、離着陸制御時において、以下のような技術上・実用上の課題が存在していたためである。すなわち、離陸制御時において、ヘリコプタ機体は接地状態にあり、ヘリコプタ機体の脚が地面に拘束された状態にある。この状態では姿勢角指令に追随できなくなり、過大な制御指令が出力されて機体が転倒するおそれがある。また、姿勢角の均衡が取れていないため地面から速やかに離隔させることができず、仮にできたとしても姿勢角の均衡が取れるまでは地面近傍で不安定な状態が続くため、安定した離陸制御ができないという問題がある。一方、着陸制御時において、ヘリコプタ機体を安定した状態で着陸させるために、接地時の降下速度を十分小さくしなければならない。このため、通常の自律飛行とは異なる「着陸制御時の制御系」を別途備えるという考え方があるが、必然的にソフトウェア構成の複雑化をもたらすことによりコストが増大するという問題がある。なお、仮に「着陸制御時の制御系」を別途備えることができたとしても、接地時に機体が地面との摩擦により拘束されて姿勢角指令に追随できなくなり、過大な制御指令が出力されて機体が転倒するおそれがあり、安定した着陸制御ができないという問題がある。
こうした課題を解決する技術として、離着陸制御時に地上操作員が無線遠隔操作を行わず、離陸制御時から着陸制御時まで完全なヘリコプタ機体の自律飛行を実現するとともに、コストが増大するのを抑制することを目的とした、自律飛行制御装置及び方法が提案されている(特許文献2参照)。
特開2004−130852号公報
以下、特許文献2に開示されている技術内容について説明する。図22はヘリコプタ機体に搭載する自律飛行制御装置を示したものである。自律飛行制御装置2200は、その構成を大きく分けると、鉛直方向について制御を行う鉛直方向制御部2210と、水平方向について制御を行う水平方向制御部2220と、鉛直方向制御部2210及び水平方向制御部2220を実行する各種制御プログラムを管理するプログラム格納部2230とからなる。
鉛直方向制御部2210は、現在の高度、所定の鉛直速度目標値、鉛直速度目標値を積分して算出する高度目標値、及び現在の鉛直速度を基に鉛直速度制御値を算出する高度制御部2211を備え、鉛直速度制御値を鉛直方向制御値として出力する。舵角駆動用アクチュエータは鉛直方向制御値に従ってコレクティブピッチ舵角を制御することにより、機体の鉛直方向を制御する。
水平方向制御部2220は、現在の水平位置、及び所定の水平位置目標値を基に水平位置制御値(水平速度目標値)を算出し、現在の水平速度、及び算出する水平位置制御値(水平速度目標値)を基に水平速度制御値(姿勢角目標値)を算出する水平位置制御部2221と、現在の姿勢角、現在の姿勢角速度、及び算出する水平速度制御値(姿勢角目標値)を基に姿勢角制御値を算出する姿勢角制御部2222とを備え、姿勢角制御値を水平方向制御値として出力する。舵角駆動用アクチュエータは水平方向制御値に従ってサイクリックピッチ舵角を制御することにより、機体の水平方向を制御する。
また、プログラム格納部830は、離陸制御時の制御に用いる離陸制御プログラム、着陸制御時の制御に用いる着陸制御プログラム、及び自律飛行制御時の制御に用いる所定の飛行パターンデータに基づく自律飛行制御プログラムを管理する。
すなわち、自律飛行制御装置2200は、地上操作員からの指令、あるいはGPSセンサ、慣性センサ、及び角速度センサ等の各種センサがヘリコプタ機体の現状態等を検出することにより、それに応じて各種制御プログラムを実行し、高度制御部2211が鉛直方向制御値を算出し、水平位置制御部821及び姿勢角制御部822が水平方向制御値を算出している。これにより、鉛直方向制御値に従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御して機体の鉛直方向を制御し、また、水平方向制御値に従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御して機体の水平方向を制御する。
また、自律飛行制御装置2200は、離陸制御時において、ヘリコプタ機体の脚が地面に拘束されない程度、すなわち、地面から完全に離隔する安全高度(以下、安全高度と記載する)を第1の目標高度として設定し、また、ヘリコプタ機体が自律飛行を開始する点(以下、自律飛行開始点と記載する)を第2の目標高度として設定している。そして、自律飛行制御装置2200で実行する離陸制御プログラムは、離陸開始点から第1の目標高度(安全高度)までの制御と、第1の目標高度(安全高度)から第2の目標高度(自律飛行開始点)までの制御とに分け、それぞれの制御で用いる制御部の構成や値について変更や抑制等しており、第1の目標高度(安全高度)の検出に従って切り換わる。
具体的には、鉛直方向制御部2210において、離陸開始点から第1の目標高度(安全高度)までは、高度制御部2211は用いず、一定の割合で増加する鉛直速度制御値を鉛直方向制御値として与えることによって、舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を上昇させる。そして、第1の目標高度(安全高度)の検出に従って切り換わり、第1の目標高度(安全高度)から第2の目標高度(自律飛行開始点)までは、高度制御部2211を用いて、現在の高度、所定の鉛直速度目標値、鉛直速度目標値を積分して算出する高度目標値、及び現在の鉛直速度を基に算出する鉛直速度制御値を鉛直方向制御値として出力し、これに従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を上昇させる。
一方、水平方向制御部2220において、離陸開始点から第1の目標高度(安全高度)までは、水平位置偏差をゼロに設定して水平位置制御部2221を抑制し、また、姿勢角偏差をゼロに設定して姿勢角制御部2222を抑制する。そして、第1の目標高度(安全高度)の検出に従って切り換わり、第1の目標高度(安全高度)から第2の目標高度(自律飛行開始点)までは、水平位置制御部2221及び姿勢角制御部2222の抑制を解除し、水平位置制御部2221において、現在の水平位置と所定の水平位置目標値との偏差を入力して水平位置偏差積分値を算出し、また、姿勢角制御部822において、現在の姿勢角と水平位置制御部2221から入力される姿勢角目標値との偏差を入力して姿勢角偏差積分値を算出する。これにより、接地状態で機体の脚と地面との摩擦により機体が拘束されて姿勢角指令に追随できない場合に、過大な制御指令が出力されて機体が転倒するのを防止している。
さらに、自律飛行制御装置2200は、着陸制御時において、ヘリコプタ機体が安全に着陸できる地上付近(以下、地上付近と記載する)を第1の目標高度として設定し、また、ヘリコプタ機体が着陸する点(以下、着陸点)を第2の目標高度として設定している。そして、自律飛行制御装置2200で実行する着陸制御プログラムは、着陸開始点から第1の目標高度(地上付近)までの制御と、第1の目標高度(地上付近)から第2の目標高度(着陸点)までの制御とに分け、それぞれの制御で用いる制御部の構成や値について変更や抑制等しており、第1の目標高度(地上付近)の検出に従って切り換わる。
具体的には、鉛直方向制御部2210において、着陸開始点から第1の目標高度(地上付近)までは、高度制御部2211を用いて、現在の高度、高度変化に従って減少する所定の鉛直速度目標値、鉛直速度目標値を積分して算出する高度目標値、及び現在の鉛直速度を基に算出する鉛直速度制御値を鉛直方向制御値として出力し、これに従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を下降させる。そして、第1の目標高度(地上付近)の検出に従って切り換わり、第1の目標高度(地上付近)から第2の目標高度(着陸点)までは、高度制御部2211を用いて、高度変化に従って減少する所定の鉛直速度目標値をさらに小さくすることによって、算出する鉛直速度制御値をさらに小さくし、これを鉛直方向制御値として出力し、これに従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を下降させる。
一方、水平方向制御部2220において、着陸開始点から第1の目標高度(地上付近)までは、水平位置制御部2221及び姿勢角制御部2222を抑制しないで水平方向制御を行う。つまり、現在の水平位置と所定の水平位置目標値との偏差を入力して水平位置偏差積分値を算出し、また、姿勢角制御部2222を用いて、現在の姿勢角と水平位置制御部2221から入力される姿勢角目標値との偏差を入力して姿勢角偏差積分値を算出する。そして、第1の目標高度(地上付近)の検出に従って切り換わり、第1の目標高度(地上付近)から第2の目標高度(着陸点)までは、水平位置偏差をゼロに設定して水平位置制御部2221を抑制し、また、姿勢角偏差をゼロに設定して姿勢角制御部2222を抑制する。なお、地上付近は、安全高度とほぼ同じ高度を示しているが、説明の便宜上、用語を統一していない。また、自律飛行制御装置2200は、自律飛行制御時において、自律飛行制御プログラムを実行し、自律飛行制御装置2200内の各種制御部の構成を用いて所定の飛行パターンデータに基づいた自律飛行を行う。
以下、自律飛行制御装置2200の各種制御部の構成、ならびに離陸制御時、自律飛行制御時、及び着陸制御時の動作について説明する。なお、ここでいう安全高度とは、ヘリコプタ機体の脚が地面に拘束されないほどの高度を示し、この点から高度制御部2211を適用する。また、地上付近は、安全高度とほぼ同じ高度を示しているが、説明の便宜上、用語を統一していない。また、自律飛行制御装置2200は、自律飛行制御時において、自律飛行制御プログラムを実行し、自律飛行制御装置2200内の各種制御部の構成を用いて所定の飛行パターンデータに基づいた自律飛行を行う。
つづいて、各種制御部について説明する。図23は高度制御部2211の内部構成をブロック図で示したものである。高度制御部2211は、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の高度と、所定の鉛直速度目標値を積分して算出する高度目標値との偏差(高度偏差)を算出する高度偏差算出部2301と、この高度偏差の積分値を算出する高度偏差積分値算出部2302と、GPSセンサが検出する現在の鉛直速度と所定の鉛直速度目標値との偏差(鉛直速度偏差)を算出する鉛直速度偏差算出部2303と、高度偏差算出部2301が算出する高度偏差、高度偏差積分値算出部2302が算出する高度偏差積分値、及び鉛直速度偏差算出部2303が算出する鉛直速度偏差に対して所定のゲインをかけるゲイン処理部2304と、所定のゲインをかけた、高度偏差、高度偏差積分値、及び鉛直速度偏差を加算することにより、鉛直速度制御値を算出する加算部2305とを備えている。これにより、高度制御部2211では、現在の高度、所定の鉛直速度目標値、鉛直速度目標値を積分して算出する高度目標値、及び現在の鉛直速度を基に鉛直速度制御値を算出し、鉛直速度制御値を鉛直方向制御値として出力し、鉛直方向制御値に従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御して機体の鉛直方向を制御する。
図24は水平位置制御部2221の内部構成をブロック図で示したものである。水平位置制御部2221は、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平位置と所定の水平位置目標値との偏差(水平位置偏差)を算出する水平位置偏差算出部2401と、この水平位置偏差の積分値を算出する水平位置偏差積分値算出部2402と、水平位置偏差算出部2401が算出する水平位置偏差、水平位置偏差積分値算出部2402が算出する水平位置偏差積分値に対して所定のゲインをかけるゲイン処理部2403と、所定のゲインをかけた、水平位置偏差、及び水平位置偏差積分値を加算することにより、地球座標系の水平位置制御値(水平速度目標値)を算出する加算部2404と、算出する地球座標系の水平位置制御値(水平速度目標値)を機体座標系の水平位置制御値(水平速度目標値)に座標変換する座標変換部2405と、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平速度と座標変換部2405から出力する機体座標系の水平位置制御値(水平速度目標値)との偏差(水平速度偏差)を算出する水平速度偏差算出部2406と、水平速度偏差算出部2406が算出する水平速度偏差に対して所定のゲインをかけて水平速度制御値(姿勢角目標値)を算出するゲイン処理部2407とを備えている。これにより、水平位置制御部2221では、現在の水平位置、所定の水平位置目標値を基に水平位置制御値(水平速度目標値)を算出し、算出する水平位置制御値(水平速度目標値)、現在の水平速度を基に水平速度制御値(姿勢角目標値)を算出し、これを姿勢角制御部2222へ出力する。
図25は姿勢角制御部2222の内部構成をブロック図で示したものである。姿勢角制御部2222は、ヘリコプタ機体に搭載している慣性センサが検出する現在の姿勢角と水平位置制御部2221が算出する水平速度制御値(姿勢角目標値)との偏差(姿勢角偏差)を算出する姿勢角偏差算出部2501と、この姿勢角偏差の積分値を算出する姿勢角偏差積分値算出部2502と、姿勢角偏差算出部2501が算出する姿勢角偏差、姿勢角偏差積分値算出部2502が算出する姿勢角偏差積分値に対して所定のゲインをかけるゲイン処理部2503と、所定のゲインをかけた、姿勢角偏差、及び姿勢角偏差積分値を加算する加算部2504と、加算部2504で加算した値からヘリコプタ機体に搭載している角速度センサが検出する現在の姿勢角速度を減算することにより、水平速度制御値(姿勢角制御値)を算出する減算部1105とを備えている。これにより、姿勢角制御部2222では、水平速度制御値(姿勢角目標値)、現在の姿勢角、及び現在の姿勢角速度を基に姿勢角制御値を算出し、姿勢角制御値を水平方向制御値として出力し、水平方向制御値に従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御して機体の水平方向を制御する。
以上のように構成された自律飛行制御装置の離陸制御プログラムを実行したときの離陸制御時の制御について図26を用いて説明する。はじめに、離陸制御時の鉛直方向制御を説明する。自律飛行制御装置2200は、地上操作員からの離陸指令を受信すると、エンジンを始動し、離陸制御プログラムを実行する。離陸制御プログラムは、機体が離陸開始点から第1の目標高度(安全高度)まで上昇する間、高度制御部2211を用いずに鉛直方向制御を行う(ステップ261a)。具体的には、離陸制御プログラムは、高度制御部2211を用いず、一定の割合で増加する鉛直速度制御値を鉛直方向制御値として与えることによって、舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を上昇させる(ステップ262a)。そして、ヘリコプタ機体に搭載しているGPSセンサが、第1の目標高度(安全高度)を検出すると(ステップ263a)、実行中の離陸制御プログラムは、機体が第1の目標高度(安全高度)から第2の目標高度(自律飛行開始点)まで上昇する間、高度制御部2211を用いて鉛直方向制御を行う(ステップステップ264a)。具体的には、離陸制御プログラムは、現在の高度、所定の鉛直速度目標値、鉛直速度目標値を積分して算出する高度目標値、及び現在の鉛直速度を基に算出する鉛直速度制御値を鉛直方向制御値として出力し、これに従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を上昇させる(ステップ265a)。その後、ヘリコプタ機体に搭載しているGPSセンサが、第2の目標高度(自律飛行開始点)を検出すると(ステップ266a)、自律飛行制御装置2200は、離陸制御プログラムを終了して一定時間ホバー飛行を行った後、プログラム格納部2230で管理している自律飛行制御プログラムを実行し、自律飛行制御装置2200内の各種制御部の構成を用いて所定の飛行パターンデータに基づいた自律飛行を行う。
一方、離陸制御時の水平方向制御を説明する。離陸制御プログラムは、機体が離陸開始点から第1の目標高度(安全高度)まで上昇する間、水平位置制御部2221及び姿勢角制御部2222を抑制して水平方向制御を行う(ステップ261b)。具体的には、離陸制御プログラムは、水平位置偏差積分値算出部2402への水平位置偏差をゼロに設定して水平位置制御部2221を抑制し、また、姿勢角偏差積分値算出部2502への姿勢角偏差をゼロに設定して姿勢角制御部2222を抑制する(ステップ262b)。これにより、水平位置制御部2221で算出される水平速度制御値(姿勢角目標値)や、姿勢角制御部2222で算出される姿勢角制御値を抑制することができ、姿勢角制御部2222で算出する姿勢角制御値を水平方向制御値として出力し、これに従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御し、機体の水平方向を制御する(ステップ263b)。これにより、接地状態で機体の脚と地面との摩擦により機体が拘束されて姿勢角指令に追随できない場合に、過大な制御指令が出力されて機体が転倒するのを防止している。そして、ヘリコプタ機体に搭載しているGPSセンサが、第1の目標高度(安全高度)に到達したことを検出すると、実行中の離陸制御プログラムは、機体が第1の目標高度(安全高度)から第2の目標高度(自律飛行開始点)まで上昇する間、水平位置制御部2221及び姿勢角制御部2222の抑制を解除して水平方向制御を行う(ステップ264b)。具体的には、離陸制御プログラムは、水平位置制御部2221において、現在の水平位置と所定の水平位置目標値との偏差を水平位置偏差積分値算出部2402に入力して水平位置偏差積分値を算出し、また、姿勢角制御部2222において、現在の姿勢角と水平位置制御部2221が算出する水平速度制御値(姿勢角目標値)との偏差を姿勢角偏差積分値算出部2502に入力して姿勢角偏差積分値を算出する(ステップ265b)。そして、姿勢角制御部2222が算出する姿勢角制御値を水平方向制御値として出力し、これに従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御し、機体の水平方向を制御する(ステップ266b)。
つづいて自律飛行制御装置の着陸制御プログラムを実行したときの着陸制御時の制御について図27を用いて説明する。自律飛行制御装置800は、自律飛行制御プログラムを実行し、自律飛行制御装置2200内の各種制御部の構成を用いて所定の飛行パターンデータに基づいた自律飛行を行った後、機体を所定の着陸点の上空の着陸開始点で一定時間ホバー飛行させ、着陸制御プログラムを実行する。はじめに、着陸制御時の鉛直方向制御を説明する。着陸制御プログラムは、機体が着陸開始点から第1の目標高度(地上付近)まで下降する間、高度制御部2211を用いて鉛直方向制御を行う(ステップ271a)。具体的には、着陸制御プログラムは、高度制御部2211を用いて、現在の高度、高度変化に従って減少する所定の鉛直速度目標値、鉛直速度目標値を積分して算出する高度目標値、及び現在の鉛直速度を基に算出する鉛直速度制御値を鉛直方向制御値として出力し、これに従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を下降させる(ステップ272a、273a).そして、ヘリコプタ機体に搭載しているGPSセンサが、第1の目標高度(地上付近)を検出すると(ステップ274a)、実行中の着陸制御プログラムは、機体が第1の目標高度(地上付近)から第2の目標高度(着陸点)まで下降する間、さらに小さな鉛直速度目標値を与え、高度制御部2211を用いて鉛直方向制御を行う(ステップ275a、276a)。具体的には、高度変化に従って減少する所定の鉛直速度目標値をさらに小さくすることによって、高度制御部2211が算出する鉛直速度制御値をさらに小さくし、これを鉛直方向制御値として出力し、これに従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御し、機体を下降させる。その後、ヘリコプタ機体に搭載しているGPSセンサが、第2の目標高度(着陸点)を検出すると(ステップ277a)、自律飛行制御装置2200は、着陸制御プログラムを終了する。
一方、着陸制御時の水平方向の動作を説明する。着陸制御プログラムは、機体が着陸開始点から第1の目標高度(地上付近)まで下降する間、水平位置制御部2221及び姿勢角制御部2222を用いて水平方向制御を行う(ステップ271b)。具体的には、着陸制御プログラムは、水平位置制御部2221において、現在の水平位置と所定の水平位置目標値との偏差を水平位置偏差積分値算出部2402に入力して水平位置偏差積分値を算出し、また、姿勢角制御部2222において、現在の姿勢角と水平位置制御部2221が算出する水平速度制御値(姿勢角目標値)との偏差を姿勢角偏差積分値算出部2502に入力して姿勢角偏差積分値を算出する。そして、姿勢角制御部2222が算出する姿勢角制御値を水平方向制御値として出力し、これに従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御し、機体の水平方向を制御する(ステップ272b)。そして、ヘリコプタ機体に搭載しているGPSセンサが、第1の目標高度(地上付近)に到達したことを検出すると、実行中の着陸制御プログラムは、機体が第1の目標高度(地上付近)から第2の目標高度(着陸点)まで下降する間、水平位置制御部2221及び姿勢角制御部2222を抑制して水平方向制御を行う(ステップ273b)。具体的には、着陸制御プログラムは、水平位置偏差積分値算出部2402への水平位置偏差をゼロに設定して水平位置制御部2221を抑制し、また、姿勢角偏差積分値算出部2502への姿勢角偏差をゼロに設定して姿勢角制御部2222を抑制する(ステップ274b)。そして、水平位置制御部2221で算出される水平速度制御値(姿勢角目標値)や、姿勢角制御部2222で算出される姿勢角制御値を抑制することができ、姿勢角制御部2222で算出する姿勢角制御値を水平方向制御値として出力し、これに従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御し、機体の水平方向を制御する(ステップ275b)。これにより、接地状態で機体の脚と地面との摩擦により機体が拘束されて姿勢角指令に追随できない場合に、過大な制御指令が出力されて機体が転倒するのを防止している。
しかしながら、特許文献2は、離陸制御時における離陸開始点から安全高度までの制御、または着陸制御時における地上付近から着陸点までの制御において、水平位置を用いているため、安定した離着陸制御ができないという問題がある。すなわち、GPSセンサにより検出する機体の水平位置は数メートルから十数メートルの範囲で値が不連続的に変化する場合があり、このような場合、機体の水平位置は不連続的に検出される。これは特に、地上付近において顕著であり、機体の水平位置が不連続的に検出されることに伴い、最終的に出力される水平方向制御値が地上付近において不安定な状態になる。この対応策として、特許文献2は、機体が地上付近にあるときは、水平位置偏差積分値算出部2402及び姿勢角偏差積分値算出部2502への入力をゼロに設定することにより、算出する水平方向制御値を抑制しているが、安定した離着陸制御を保証するものではない。このことは、機体の高度の検出についても同様であり、機体の高度も不連続的に検出されることがあり、最終的に出力される鉛直方向制御値が地上付近において不安定な状態になる。
また、特許文献2は、離着陸制御時において、第1の目標高度、第2の目標高度を設定し、離陸または着陸開始点から第1の目標高度までの制御と、第1の目標高度から第2の目標高度までの制御とに分け、第1の目標高度の検出に従って、それぞれの制御で用いる制御部の構成や値について変更や抑制等しているため、処理が複雑になるという問題がある。しかも、それは、第1の目標高度の検出に従って切り換わるので、正常に行われなかった場合には安定した離着陸制御を保証するものではない。
さらに、特許文献2は、第1の目標高度の検出に従って、ゲインを変更しているおそれもある。ゲインを変更することにより、余分な処理が加わることはもちろん、最悪の場合、ゲインを変更する前後で指令値信号の連続性が保たれず、安定した離着陸制御を保証するものではない。
一方、本出願人は、先の出願において、実験によりヘリコプタ機体の動特性を示す線形モデル式を導出し、これを基に製造した自律飛行制御装置を提案している(特許文献3参照)。特許文献3に示されている自律飛行制御装置は、線形モデル式を用いることにより装置内部で行う処理を単純化できるので、自律飛行制御装置の小型化を実現でき、また、これにより小型無人ヘリコプタへ搭載することも可能にし、汎用性を高めることができる。
特開2004−256020号公報
本発明は、上記特許文献1及び2のような問題点に着目し、また、ヘリコプタ機体の動特性を示す線形モデル式を基に製造した小型化を実現できる自律飛行制御装置について、安定した離着陸制御を行うことができる自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタを提供することを目的とする。
本発明の自律飛行制御装置は、離陸制御時または着陸制御時に安定した制御を行うため、鉛直方向においては高度を用いた演算を行わずに鉛直方向制御値を出力し、一方、水平方向においては水平位置を用いた演算を行わずに水平方向制御値を出力する。すなわち、本発明の自律飛行制御装置は、現在の鉛直速度、及び離陸制御時または着陸制御時に用いる所定の鉛直速度目標値を基に鉛直速度制御値を算出する鉛直速度制御部を有する鉛直方向制御部と、現在の水平速度、及び所定の水平速度目標値を基に水平速度制御値を算出する水平速度制御部と、現在の姿勢角、及び前記水平速度制御値を基に姿勢角制御値を算出する姿勢角制御部とを有する水平方向制御部とを備え、前記鉛直速度制御部が算出する鉛直速度制御値を鉛直方向制御値として出力し、前記姿勢角制御部が算出する姿勢角制御値を水平方向制御値として出力することを特徴とする。上記した本発明の自律飛行制御装置を小型無人ヘリコプタに搭載することにより、ヘリコプタ機体は、離陸開始時から着陸終了時まで完全な自律飛行を実現し、離着陸制御時には安定した制御を行う。
また、本発明の自律飛行制御装置は、離陸制御時または着陸制御時においては、安全高度または地上付近の検出による切り換えを行わず、所定の目標高度に到達するまで、現在の値と所定の目標値との偏差を積分し、ヘリコプタ機体の動特性を基にした各種モデル式を用いてゲインを決定し、各種偏差及び各種偏差積分値に決定したゲインをかけた後に加算することにより各種制御値を算出することを特徴とする。
また、本発明の自律飛行制御装置は、離陸制御時または着陸制御時においては、各種制御部の構成や値について変更や抑制等せず、各種制御部で算出する制御値が、設定した各種制限値を超えているか否かについての判定処理を行い、超えている場合には、各種制御値と制限値との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する各種制御値を出力するアンチワインドアップ処理部を備えることを特徴とする。
本発明の自律飛行制御装置によれば、鉛直方向においては高度を用いた演算を行わずに鉛直方向制御値を出力し、一方、水平方向においては水平位置を用いた演算を行わずに水平方向制御値を出力するので、不連続的に検出される高度や水平位置の影響を受けず、離陸制御時または着陸制御時に安定した制御を行うことができる。
また、本発明の自律飛行制御装置を搭載した小型無人ヘリコプタによれば、ヘリコプタ機体は、離陸開始時から着陸終了時まで完全な自律飛行を実現し、離着陸制御時には安定した制御を行うことができる。
以下、本発明を実施するための最良の形態について説明する。図1はヘリコプタ機体に搭載する自律飛行制御装置を示したものである。自律飛行制御装置100は、その構成を大きく分けると、鉛直方向について制御を行う鉛直方向制御部110と、水平方向について制御を行う水平方向制御部120と、鉛直方向制御部110及び水平方向制御部120を実行する各種制御プログラムを管理するプログラム格納部130とからなる。
鉛直方向制御部110は、現在の高度、及び所定の高度目標値を基に高度制御値(鉛直速度目標値)を算出する高度制御部111と、現在の鉛直速度、及び算出する高度制御値(鉛直速度目標値)または所定の鉛直速度目標値を基に鉛直速度制御値を算出する鉛直速度制御部112とを備え、鉛直速度制御値を鉛直方向制御値として出力する。舵角駆動用アクチュエータは鉛直方向制御値に従ってコレクティブピッチ舵角を制御することにより、機体の鉛直方向を制御する。
水平方向制御部120は、現在の水平位置、及び所定の水平位置目標値を基に水平位置制御値(水平速度目標値)を算出する水平位置制御部121と、現在の水平速度、及び算出する水平速度制御値(水平速度目標値)または所定の水平速度目標値を基に水平速度制御値(姿勢角目標値)を算出する水平速度制御部122と、現在の姿勢角、及び算出する姿勢角目標値を基に姿勢角制御値を算出する姿勢角制御部123とを備え、姿勢角制御値を水平方向制御値として出力する。舵角駆動用アクチュエータは水平方向制御値に従ってサイクリックピッチ舵角を制御することにより、機体の水平方向を制御する。
また、プログラム格納部130は、離陸制御時の制御に用いる離陸制御プログラム、着陸制御時の制御に用いる着陸制御プログラム、及び自律飛行制御時の制御に用いる所定の飛行パターンデータに基づく自律飛行制御プログラムを管理する。
すなわち、自律飛行制御装置100は、地上操作員からの指令、あるいはヘリコプタ機体に搭載しているGPSセンサ及び慣性センサ等の各種センサがヘリコプタ機体の現状態等を検出することにより、それに応じて各種制御プログラムを実行し、各種制御プログラムに従って鉛直方向制御値、及び水平方向制御値を算出している。
また、自律飛行制御装置100は、離陸制御時または着陸制御時、自律飛行制御時において、各種制御部の構成や値について設定しており、各種プログラムは、離陸制御や着陸制御の開始、あるいは自律飛行制御の開始等の検出に従って切り換わる。
具体的には、鉛直方向制御部110において、離陸制御時または着陸制御時では、高度制御部111は用いず、鉛直速度制御部112のみを用いる。この時、鉛直速度制御部112は、現在の鉛直速度、及び離陸制御時または着陸制御時に用いる所定の鉛直速度目標値を入力して鉛直速度制御値を算出する。
また、鉛直方向制御部110において、自律飛行制御時では、高度制御部111及び鉛直速度制御部112を用いる。この時、高度制御部111は、現在の高度及び自律飛行制御時に用いる所定の高度目標値を入力して高度制御値(鉛直速度目標値)を算出し、鉛直速度制御部112は、現在の鉛直速度及び高度制御部111が算出する高度制御値(鉛直速度目標値)を入力して鉛直速度制御値を算出する。
一方、水平方向制御部120において、離陸制御時または着陸制御時では、水平位置制御部121は用いず、水平速度制御部122及び姿勢角制御部123を用いる。この時、水平速度制御部122は、現在の水平速度、及び離陸制御時または着陸制御時に用いる所定の水平速度目標値を入力して水平速度制御値(姿勢角目標値)を算出する。姿勢角制御部123は、現在の姿勢角及び水平速度制御部122が算出する水平速度制御値(姿勢角目標値)を入力して姿勢角制御値を算出する。
また、水平方向制御部120において、自律飛行制御時では、水平位置制御部121、水平速度制御部122及び姿勢角制御部123を用いる。この時、水平位置制御部121は、現在の水平位置及び自律飛行制御時に用いる所定の水平位置目標値を入力して水平位置制御値(水平速度目標値)を算出し、水平速度制御部122は、現在の水平速度及び水平位置制御部121が算出する水平位置制御値(水平速度目標値)を入力して水平速度制御値を算出し、姿勢角制御部123は、現在の姿勢角及び水平速度制御部122が算出する水平速度制御値(姿勢角目標値)を入力して姿勢角制御値を算出する。
また、自律飛行制御装置100は、鉛直速度制御部112において算出する鉛直速度制御値、水平速度制御部122において算出する水平速度制御値(姿勢角目標値)、及び姿勢角制御部123において算出する姿勢角制御値について、出力閾値である制限値を超えているか否かについての判定処理を行い、各種制限値以下の制御値を出力するアンチワインドアップ処理を行う。
具体的には、鉛直速度制御部112は、「鉛直速度制御値」の出力閾値である「鉛直速度に関する制限値」について、離陸制御時または着陸制御時と、自律飛行制御時とで異なる制限値を設定している(表1参照)。「鉛直速度に関する制限値」は過大な鉛直速度制御値の出力を防止するために設定された値であり、自律飛行制御時よりも離着陸制御時の方を大きく設定している。これはブレードのコレクティブピッチを下げることを考慮したものである。鉛直速度制御部112では、算出する「鉛直速度制御値」が「鉛直速度に関する制限値(表1参照)」を超えているか否かについての判定処理を行い、超えている場合には、「鉛直速度制御値」と「鉛直速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「鉛直速度制御値」を鉛直方向制御値として出力するアンチワインドアップ処理を行う。
Figure 0004961166
また、水平速度制御部122は、「水平速度制御値(姿勢角目標値)」の出力閾値である「水平速度に関する制限値」について、離陸制御時または着陸制御時と、自律飛行制御時とで異なる制限値を設定している(表2参照)。「水平速度に関する制限値」は過大な水平速度制御値(姿勢角目標値)の出力を防止するために設定された値であり、自律飛行制御時よりも離着陸制御時の方を小さく設定している。これは離陸制御時または着陸制御時の機体の姿勢を安定した状態に維持することを考慮したものである。水平速度制御部122では、算出する「水平速度制御値(姿勢角目標値)」が「水平速度に関する制限値(表2参照)」を超えているか否かについての判定処理を行い、超えている場合には、「水平速度制御値(姿勢角目標値)」と「水平速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「水平速度制御値」を姿勢角制御部123へ出力するアンチワインドアップ処理を行う。
Figure 0004961166
さらに、姿勢角制御部123は、「姿勢角制御値」の出力閾値である「姿勢角に関する制限値」について、離陸制御時または着陸制御時と、自律飛行制御時とで異なる制限値を設定している(表3参照)。「姿勢角に関する制限値」は過大な姿勢角制御値の出力を防止するために設定された値であり、自律飛行制御時よりも離着陸制御時の方を小さく設定している。これは、離陸制御時または着陸制御時の機体の姿勢を安定した状態に維持することを考慮したものである。姿勢角制御部123では、算出する「姿勢角制御値」が「姿勢角に関する制限値(表3参照)」を超えているか否かについての判定処理を行い、超えている場合には、「姿勢角制御値」と「姿勢角に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「姿勢角制御値」を水平方向制御値として出力するアンチワインドアップ処理を行う。
Figure 0004961166
つづいて、各種制御部について説明する。図2は高度制御部111の内部構成をブロック図で示したものである。高度制御部111は、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の高度と、自律飛行制御時に用いる所定の高度目標値との偏差(高度偏差)を算出する高度偏差算出部201と、与えられた高度目標値に到達するよう、ヘリコプタ機体の動特性を基にした高度を制御する高度制御モデル式を用いてゲインを決定し、「高度偏差」に決定したゲインをかけることにより「高度制御値(鉛直速度目標値)」を算出するゲイン処理部202を備え、「高度制御値(鉛直速度目標値)」を鉛直速度制御部112へ出力する。ここで、高度制御モデル式は、以下に示すモデル式を用いる。
Figure 0004961166
図3は鉛直速度制御部112の内部構成をブロック図で示したものである。鉛直速度制御部112は、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の鉛直速度と、自律飛行制御時に高度制御部111で算出する「高度制御値(鉛直速度目標値)」あるいは離陸制御時または着陸制御時に用いる「所定の鉛直速度目標値」との偏差(鉛直速度偏差)を算出する鉛直速度偏差算出部301と、この鉛直速度偏差の積分値を算出する鉛直速度偏差積分値算出部302と、与えられた鉛直速度目標値に到達するよう、ヘリコプタ機体の動特性を基にした鉛直速度を制御する鉛直速度制御モデル式を用いてゲインを決定し、「鉛直速度偏差」及び「鉛直速度偏差積分値」に決定したゲインをかけた後に加算することにより「鉛直速度制御値」を算出するゲイン処理部303と、ゲイン処理部303で算出する「鉛直速度制御値」が「鉛直速度に関する制限値(表1参照)」を超えているか否かについての判定処理を行い、超えている場合には、「鉛直速度制御値」と「鉛直速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけて鉛直速度偏差算出部301へフィードバックし、一方、超えていない場合には、算出する「鉛直速度制御値」を鉛直方向制御値として出力するアンチワインドアップ処理部304とを備えている。ここで、鉛直速度制御モデル式は、以下に示すモデル式を用いる。
Figure 0004961166
図4は水平位置制御部121の内部構成をブロック図で示したものである。水平位置制御部121は、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平位置と、自律飛行制御時に用いる所定の水平位置目標値との偏差(水平位置偏差)を算出する水平位置偏差算出部401と、与えられた水平位置目標値に到達するよう、ヘリコプタ機体の動特性を基にした水平位置を制御する水平位置制御モデル式を用いてゲインを決定し、「水平位置偏差」に決定したゲインをかけることにより「水平位置制御値(水平速度目標値)」を算出するゲイン処理部402を備え、「水平位置制御値(水平速度目標値)」を水平速度制御部122へ出力する。ここで、水平位置制御モデル式は、以下に示すモデル式を用いる。
Figure 0004961166
図5は水平速度制御部122の内部構成をブロック図で示したものである。水平速度制御部122は、ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平速度と、自律飛行制御時に水平位置制御部121で算出する「水平位置制御値(水平速度目標値)」あるいは離陸制御時または着陸制御時に用いる「所定の水平速度目標値」との偏差(水平速度偏差)を算出する水平速度偏差算出部501と、この水平速度偏差の積分値を算出する水平速度偏差積分値算出部502と、与えられた水平速度目標値に到達するよう、ヘリコプタ機体の動特性を基にした水平速度を制御する水平速度制御モデル式を用いてゲインを決定し、「水平速度偏差」及び「水平速度偏差積分値」に決定したゲインをかけた後に加算することにより「水平速度制御値(姿勢角目標値)」を算出するゲイン処理部503と、ゲイン処理部503で算出する「水平速度制御値(姿勢角目標値)」が「水平速度に関する制限値(表2参照)」を超えているか否かについての判定処理を行い、超えている場合には、「水平速度制御値(姿勢角目標値)」と「水平速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけて水平速度偏差算出部501へフィードバックし、一方、超えていない場合には、算出する「水平速度制御値(姿勢角目標値)」を出力するアンチワインドアップ処理部504とを備えている。ここで、水平速度制御モデル式は、以下に示すモデル式を用いる。
Figure 0004961166
図6は姿勢角制御部123の内部構成をブロック図で示したものである。姿勢角制御部123は、ヘリコプタ機体に搭載している慣性センサが検出する現在の姿勢角と、水平速度制御部122で算出する「水平速度制御値(姿勢角目標値)」との偏差(姿勢角偏差)を算出する姿勢角偏差算出部601と、この姿勢角偏差の積分値を算出する姿勢角偏差積分値算出部602と、与えられた「水平速度制御値(姿勢角目標値)」に到達するよう、ヘリコプタ機体の動特性を基にした姿勢角を制御する姿勢角制御モデル式を用いてゲインを決定し、「姿勢角偏差」及び「姿勢角偏差積分値」に決定したゲインをかけた後に加算することにより「姿勢角制御値」を算出するゲイン処理部603と、ゲイン処理部604で算出する「姿勢角制御値」が「姿勢角に関する制限値(表3参照)」を超えているか否かについての判定処理を行い、超えている場合には、「姿勢角制御値」と「姿勢角に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけて姿勢角偏差算出部601へフィードバックし、一方、超えていない場合には、算出する「姿勢角制御値」を水平方向制御値として出力するアンチワインドアップ処理部604とを備えている。ここで、姿勢角制御モデル式は、以下に示すモデル式を用いる。
Figure 0004961166
以上のように構成された自律飛行制御装置をヘリコプタ機体に搭載したときの離陸開始時から着陸終了時までの全体の流れについて図7を用いて説明する。自律飛行制御装置100は、地上操作員からの離陸指令を受信すると(START→ステップ71)、エンジンを始動し、回転数制御を行う(ステップ72)。回転数制御は、ヘリコプタ機体に搭載している回転数計測センサによって計測される現在のエンジン回転数と予め設定されている回転数目標値との偏差にゲインをかけることで回転数制御値(スロットル信号)を算出し、前記回転数制御値をフィードバックすることによって現在のエンジン回転数を回転数目標値に常に追従させる制御である。ヘリコプタ機体に搭載している回転数計測センサが回転数目標値に到達したことを検出すると、自律飛行制御装置100は、離陸制御プログラムを実行し、離陸制御時の鉛直方向制御及び水平方向制御を行う(ステップ73)。これに従い、ヘリコプタ機体は、離陸開始点から離陸制御時の目標高度である自律飛行開始点まで上昇する。つづいて、ヘリコプタ機体に搭載しているGPSセンサが自律飛行開始点を検出すると、自律飛行制御装置100は、離陸制御プログラムの実行から自律飛行制御プログラムの実行に切り換え、自律飛行制御時の鉛直方向制御及び水平方向制御を行う(ステップ74)。これに従い、ヘリコプタ機体は、一定時間のホバー飛行を行った後、所定の飛行パターンデータに従って自律飛行する。その後、ヘリコプタ機体は所定の着陸点の上空の着陸開始点まで移動する。つづいて、ヘリコプタ機体に搭載しているGPSセンサが着陸開始点を検出すると、自律飛行制御装置100は、自律飛行制御プログラムの実行から着陸制御プログラムの実行に切り換え、着陸制御時の鉛直方向制御及び水平方向制御を行う(ステップ75)。これに従い、ヘリコプタ機体は、一定時間のホバー飛行を行った後、着陸開始点から着陸制御時の目標高度である着陸点まで下降する。その後、ヘリコプタ機体に搭載しているGPSセンサが着陸点を検出すると、自律飛行制御装置100は、着陸制御プログラムの実行を終了するとともに、ヘリコプタ機体のエンジンを停止する(ステップ76,77→END)。上記ステップ71乃至707に示すような流れにより、自律飛行制御装置100を搭載したヘリコプタ機体は、離陸開始時から着陸終了時まで完全な自律飛行を実現し、離着陸制御時には安定した離着陸を行う。なお、機体が着陸したか否かについての判定、エンジンの停止等は、地上操作員が行っても良い。
次に、ステップ73で実行する離陸制御プログラムの動作について図8を用いて説明する。はじめに、離陸制御時の鉛直方向制御について説明する。自律飛行制御装置100は、離陸制御プログラムを実行すると、機体が離陸開始点から離陸制御時の目標高度である自律飛行開始点まで上昇する間、高度制御部111を用いずに鉛直速度制御部112のみを用いて鉛直方向制御を行う(ステップ81a)。
具体的には、鉛直速度制御部112は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の鉛直速度」と「離陸制御時に用いる所定の鉛直速度目標値」との偏差を積分し(ステップ82a)、また、「離陸制御時に用いる所定の鉛直速度目標値」に到達するよう、ヘリコプタ機体の動特性を基にした鉛直速度を制御する鉛直速度制御モデル式を用いてゲインを決定し、「鉛直速度偏差」及び「鉛直速度偏差積分値」に決定したゲインをかけた後に加算することにより「鉛直速度制御値」を算出する(ステップ83a)。そして、算出する「鉛直速度制御値」が「離陸制御時の鉛直速度に関する制限値(表1参照)」を超えているか否かについての判定処理を行い、超えている場合には、算出する「鉛直速度制御値」と「鉛直速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「鉛直速度制御値」を鉛直方向制御値として出力するアンチワインドアップ処理を行う(ステップ84a)。すなわち、鉛直速度制御部112で算出する「鉛直速度制御値」が過大となっても、「離陸制御時の鉛直速度に関する制限値」以上の「鉛直速度制御値」が鉛直方向制御値として出力されることはないので、安定した状態で機体を上昇させることができる。上記ステップ81aからステップ84aの処理を繰り返し行い、鉛直方向制御値に従って舵角駆動用アクチュエータがコレクティブ舵角を制御して機体の鉛直方向を制御することにより、機体は離陸開始点から自律飛行開始点まで安定した状態で上昇する。そして、ヘリコプタ機体に搭載しているGPSセンサが自律飛行開始点を検出すると、自律飛行制御装置100は、離陸制御プログラムの実行から自律飛行制御プログラムの実行に切り換える(ステップ85a)。
一方、離陸制御時の水平方向制御について説明する。自律飛行制御装置100は、離陸制御プログラムを実行すると、機体が離陸開始点から離陸制御時の目標高度である自律飛行開始点まで上昇する間、水平位置制御部121を用いず水平速度制御部122及び姿勢角制御部123を用いて水平方向制御を行う(ステップ81b)。
具体的には、水平速度制御部122は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平速度」と「離陸制御時に用いる所定の水平速度目標値」との偏差を積分し(ステップ82b)、また、「離陸制御時に用いる所定の水平速度目標値」に到達するよう、ヘリコプタ機体の動特性を基にした水平速度を制御する水平速度制御モデル式を用いてゲインを決定し、「水平速度偏差」及び「水平速度偏差積分値」に決定したゲインをかけた後に加算することにより「水平速度制御値(姿勢角目標値)」を算出する(ステップ83b)。そして、算出する「水平速度制御値(姿勢角目標値)」が「離陸制御時の水平速度に関する制限値(表2参照)」を超えているか否かについての判定処理を行い、超えている場合には、「水平速度制御値」と「水平速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「水平速度制御値(姿勢角目標値)」を出力するアンチワインドアップ処理を行う(ステップ84b)。すなわち、水平速度制御部122で算出する「水平速度制御値(姿勢角目標値)」が過大となっても、「離陸制御時の水平速度に関する制限値」以上の「水平速度制御値(姿勢角目標値)」が出力されることはない。
つづいて、姿勢角制御部123は、「ヘリコプタ機体に搭載している慣性センサが検出する現在の姿勢角」と「水平速度制御値(姿勢角目標値)」との偏差を積分し(ステップ85b)、また、「水平速度制御値(姿勢角目標値)」に到達するよう、ヘリコプタ機体の動特性を基にした姿勢角を制御する姿勢角制御モデル式を用いてゲインを決定し、「姿勢角偏差」及び「姿勢角偏差積分値」に決定したゲインをかけた後に加算することにより「姿勢角制御値」を算出する(ステップ86b)。そして、算出する「姿勢角制御値」が「離陸制御時の姿勢角に関する制限値(表3参照)」を超えているか否かについての判定処理を行い、超えている場合には、「姿勢角制御値」と「姿勢角に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「姿勢角制御値」を水平方向制御値として出力するアンチワインドアップ処理を行う(ステップ87b)。すなわち、姿勢角制御部123で算出する「姿勢角制御値」が過大となっても、「離陸制御時の姿勢角に関する制限値」以上の「姿勢角制御値」が水平方向制御値として出力されることはないので、機体が安定した状態を維持することができる。例えば、接地状態で機体の脚と地面との摩擦により機体が拘束されて姿勢角指令に追随できない場合には過大な制御値が算出されるが、これに制限値を設定してアンチワインドアップ処理を行うことにより、過大な水平方向制御値の出力を防止し、機体が転倒するのを防止している。上記ステップ81bからステップ87bの処理を繰り返し行い、水平方向制御値に従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御して機体の水平方向を制御することにより、機体は離陸開始点から自律飛行開始点まで安定した状態を維持する。
次に、ステップ74で実行する自律飛行制御プログラムの動作について図9を用いて説明する。はじめに、自律飛行制御時の鉛直方向制御について説明する。自律飛行制御装置100は、自律飛行制御プログラムを実行すると、機体が自律飛行開始点から自律飛行制御時の目標高度である着陸開始点まで自律飛行する間、高度制御部111及び鉛直速度制御部112を用いて鉛直方向制御を行う(ステップ91a)。
具体的には、高度制御部111は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の高度」と「自律飛行制御時に用いる所定の高度目標値」との偏差を算出し、また、「自律飛行制御時に用いる所定の高度目標値」に到達するよう、ヘリコプタ機体の動特性を基にした高度を制御する高度制御モデル式を用いてゲインを決定し、「高度偏差」に決定したゲインをかけることにより「高度制御値(鉛直速度目標値)」を算出する(ステップ92a)。
つづいて、鉛直速度制御部112は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の鉛直速度」と「高度制御値(鉛直速度目標値)」との偏差を積分し(ステップ93a)、また、「高度制御値(鉛直速度目標値)」に到達するよう、ヘリコプタ機体の動特性を基にした鉛直速度を制御する鉛直速度制御モデル式を用いてゲインを決定し、「鉛直速度偏差」及び「鉛直速度偏差積分値」に決定したゲインをかけた後に加算することにより「鉛直速度制御値」を算出する(ステップ94a)。そして、算出する「鉛直速度制御値」が「自律飛行制御時の鉛直速度に関する制限値(表1参照)」を超えているか否かについての判定処理を行い、超えている場合には、算出する「鉛直速度制御値」と「鉛直速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「鉛直速度制御値」を鉛直方向制御値として出力するアンチワインドアップ処理を行う(ステップ95a)。すなわち、鉛直速度制御部112で算出する「鉛直速度制御値」が過大となっても、「自律飛行制御時の鉛直速度に関する制限値」以上の「鉛直速度制御値」が鉛直方向制御値として出力されることはないので、安定した状態で機体を自律飛行させることができる。上記ステップ91aからステップ95aの処理を繰り返し行い、鉛直方向制御値に従って舵角駆動用アクチュエータがコレクティブ舵角を制御して機体の鉛直方向を制御することにより、機体は自律飛行開始点から着陸開始点まで所定の飛行パターンデータに従って安定した状態で自律飛行する。そして、ヘリコプタ機体に搭載しているGPSセンサが着陸開始点を検出すると、自律飛行制御装置100は自律飛行制御プログラムの実行から着陸制御プログラムの実行に切り替える(ステップ96a)
一方、自律飛行制御時の水平方向制御について説明する。自律飛行制御装置100は、自律飛行制御プログラムを実行すると、機体が自律飛行開始点から着陸開始点まで自律飛行する間、水平位置制御部121、水平速度制御部122及び姿勢角制御部123を用いて水平方向制御を行う(ステップ91b)。
具体的には、水平位置制御部121は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平位置」と「自律飛行制御時に用いる所定の水平位置目標値」との偏差を算出し、また、「自律飛行制御時に用いる所定の水平位置目標値」に到達するよう、ヘリコプタ機体の動特性を基にした水平位置を制御する水平位置制御モデル式を用いてゲインを決定し、「水平位置偏差」に決定したゲインをかけることにより「水平位置制御値(水平速度目標値)」を算出する(ステップ92b)。
つづいて、水平速度制御部122は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平速度」と「水平位置制御値(水平速度目標値)」との編纂を積分し(ステップ93b)、また、「水平位置制御値(水平速度目標値)」に到達するよう、ヘリコプタ機体の動特性を基にした水平速度を制御する水平速度制御モデル式を用いてゲインを決定し、「水平速度偏差」及び「水平速度偏差積分値」に決定したゲインをかけた後に加算することにより「水平速度制御値(姿勢角目標値)」を算出する(ステップ94b)。そして、算出する「水平速度制御値(姿勢角目標値)」が「自律飛行制御時の水平速度に関する制限値(表2参照)」を超えているか否かについての判定処理を行い、超えている場合には、算出する「水平速度制御値(姿勢角目標値)」と「水平速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「水平速度制御値(姿勢角目標値)」を出力するアンチワインドアップ処理を行う(ステップ95b)。すなわち、水平速度制御部112で算出する「水平速度制御値(姿勢角目標値)」が過大となっても、「自律飛行制御時の水平速度に関する制限値」以上の「水平速度制御値(姿勢角目標値)」が出力されることはない。
つづいて、姿勢角制御部123は、「ヘリコプタ機体に搭載している慣性センサが検出する現在の姿勢角」と「水平速度制御値(姿勢角目標値)」との偏差を積分し(ステップ96b)、また、「水平速度制御値(姿勢角目標値)」に到達するよう、ヘリコプタ機体の動特性を基にした姿勢角を制御する姿勢角制御モデル式を用いてゲインを決定し、「姿勢角偏差」及び「姿勢角偏差積分値」に決定したゲインをかけた後に加算することにより「姿勢角制御値」を算出する(ステップ97b)。そして、算出する「姿勢角制御値」が「自律飛行制御時の姿勢角に関する制限値(表3参照)」を超えているか否かについての判定処理を行い、超えている場合には、「姿勢角制御値」と「姿勢角に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「姿勢角制御値」を水平方向制御値として出力するアンチワインドアップ処理を行う(ステップ98b)。すなわち、姿勢角制御部123で算出する「姿勢角制御値」が過大となっても、「自律飛行制御時の姿勢角に関する制限値」以上の「姿勢角制御値」が水平方向制御値として出力されることはないので、機体が安定した状態を維持することができる。
次に、ステップ75で実行する着陸制御プログラムの動作について図10を用いて説明する。はじめに、着陸制御時の鉛直方向制御について説明する。自律飛行制御装置100は、着陸制御プログラムを実行すると、機体が着陸開始点から着陸制御時の目標高度である着陸点まで下降する間、高度制御部111を用いずに鉛直速度制御部112のみを用いて鉛直方向制御を行う(ステップ101a)。
具体的には、鉛直速度制御部112は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の鉛直速度」と「着陸制御時に用いる所定の鉛直速度目標値」との偏差を積分し(ステップ102a)、また、「着陸制御時に用いる所定の鉛直速度目標値」に到達するよう、ヘリコプタ機体の動特性を基にした鉛直速度を制御する鉛直速度制御モデル式を用いてゲインを決定し、「鉛直速度偏差」及び「鉛直速度偏差積分値」に決定したゲインをかけた後に加算することにより「鉛直速度制御値」を算出する(ステップ103a)。そして、算出する「鉛直速度制御値」が「着陸制御時の鉛直速度に関する制限値(表1参照)」を超えているか否かについての判定処理を行い、超えている場合には、算出する「鉛直速度制御値」と「鉛直速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「鉛直速度制御値」を鉛直方向制御値として出力するアンチワインドアップ処理を行う(ステップ104a)。すなわち、鉛直速度制御部112で算出する「鉛直速度制御値」が過大となっても、「着陸制御時の鉛直速度に関する制限値」以上の「鉛直速度制御値」が鉛直方向制御値として出力されることはないので、安定した状態で機体を下降させることができる。上記ステップ101aからステップ104aの処理を繰り返し行い、鉛直方向制御値に従って舵角駆動用アクチュエータがコレクティブピッチ舵角を制御して機体の鉛直方向を制御することにより、機体は着陸開始点から着陸点まで安定した状態で下降する。そして、ヘリコプタ機体に搭載しているGPSセンサが着陸点を検出すると、自律飛行制御装置100は、着陸制御プログラムの実行を終了する(ステップ105a)。
一方、着陸制御時の水平方向制御について説明する。自律飛行制御装置100は、着陸制御プログラムを実行すると、機体が着陸開始点から着陸制御時の目標高度である着陸点まで下降する間、水平位置制御部121を用いずに水平速度制御部122及び姿勢角制御部123を用いて水平方向制御を行う(ステップ101b)。
具体的には、水平速度制御部122は、「ヘリコプタ機体に搭載しているGPSセンサが検出する現在の水平速度」と「着陸制御時に用いる所定の水平速度目標値」との偏差を積分し(ステップ102b)、また、「着陸制御時に用いる所定の水平速度目標値」に到達するよう、ヘリコプタ機体の動特性を基にした水平速度を制御する水平速度制御モデル式を用いてゲインを決定し、「水平速度偏差」及び「水平速度偏差積分値」に決定したゲインをかけた後に加算することにより「水平速度制御値(姿勢角目標値)」を算出する(ステップ103b)。そして、算出する「水平速度制御値(姿勢角目標値)」が「着陸制御時の水平速度に関する制限値(表2参照)」を超えているか否かについての判定処理を行い、超えている場合には、「水平速度制御値」と「水平速度に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「水平速度制御値(姿勢角目標値)」を出力するアンチワインドアップ処理を行う(ステップ104b)。すなわち、水平速度制御部122で算出する「水平速度制御値(姿勢角目標値)」が過大となっても、「着陸制御時の水平速度に関する制限値」以上の「水平速度制御値(姿勢角目標値)」が出力されることはない。
つづいて、姿勢角制御部123は、「ヘリコプタ機体に搭載している慣性センサが検出する現在の姿勢角」と「水平速度制御値(姿勢角目標値)」との偏差を積分し(ステップ105b)、また、「水平速度制御値(姿勢角目標値)」に到達するよう、ヘリコプタ機体の動特性を基にした姿勢角を制御する姿勢角制御モデル式を用いてゲインを決定し、「姿勢角偏差」及び「姿勢角偏差積分値」に決定したゲインをかけた後に加算することにより「姿勢角制御値」を算出する(ステップ106b)。そして、算出する「姿勢角制御値」が「着陸制御時の姿勢角に関する制限値(表3参照)」を超えているか否かについての判定処理を行い、超えている場合には、「姿勢角制御値」と「姿勢角に関する制限値」との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけてフィードバックし、一方、超えていない場合には、算出する「姿勢角制御値」を水平方向制御値として出力するアンチワインドアップ処理を行う(ステップ107b)。すなわち、姿勢角制御部123で算出する「姿勢角制御値」が過大となっても、「着陸制御時の姿勢角に関する制限値」以上の「姿勢角制御値」が水平方向制御値として出力されることはないので、機体が安定した状態を維持することができる。例えば、接地状態で機体の脚と地面との摩擦により機体が拘束されて姿勢角指令に追随できない場合には過大な制御値が算出されるが、これに制限値を設定してアンチワインドアップ処理を行うことにより、過大な水平方向制御値の出力を防止し、機体が転倒するのを防止している。上記ステップ101bからステップ107bの処理を繰り返し行い、水平方向制御値に従って舵角駆動用アクチュエータがサイクリックピッチ舵角を制御して機体の水平方向を制御することにより、機体は着陸開始点から着陸点まで安定した状態を維持する。
以上の説明から明らかなように、本実施の形態の自律飛行制御装置100は、であり、
これをヘリコプタ機体に搭載する。自律飛行制御装置100は、ヘリコプタ機体に搭載する形態が基本であるが、他の装置にも必要に応じて適用することも可能である。ヘリコプタ機体に搭載するその他の構成には、自律飛行制御装置100から出力される制御値を制御信号に変換する制御信号処理部、制御信号に従って駆動するサーボモータ、及びヘリコプタ機体の飛行状態を検出するGPSセンサや慣性センサ等の各種センサがある。なお、自律飛行制御装置100の一部あるいは全部を地上局に備える形態もある。地上局に自律飛行制御装置100の一部あるいは全部を備える場合はヘリコプタ機体との間で無線通信を行うのでヘリコプタ機体には無線部を備える必要がある。
なお、本実施の形態の自律飛行制御装置100は、離着陸制御時や自律飛行制御時に地上操作員が無線遠隔操作を行わず、離陸制御時から着陸制御時まで完全なヘリコプタ機体の自律飛行を実現することができるものであるが、オペレータアシストモード機能としても良い。すなわち、自律飛行制御装置100の鉛直方向制御部110あるいは水平方向制御部120に与えられる各種所定の目標値に変えて、図21に示すようなコントローラをオペレータが操作することにより、各種目標値を与えても良い。上記の説明からも明らかなように、自律飛行制御装置100の各種制御部において算出する制御値が各種制御部の出力閾値である制限値を超えているか否かについての判定処理をし、制限値以下の制御値を出力するアンチワインドアップ処理を行うので、過大な制御値が出力されることはなく、素人でも簡単に小型無人ヘリコプタを操作できる。
図11は自律飛行制御時の鉛直方向制御部110の閉ループを示している。また、図12は、離着陸制御時の鉛直方向制御部110の閉ループを示している。なお、各ブロックは図11に示されているものと同様である。図13は、離着陸制御時の水平方向制御部110の閉ループを示している。また、図14は、アンチワインドアップ処理部604を有する姿勢角制御部123の閉ループを示している。なお、本実施の形態では、鉛直速度制御部112、水平速度制御部122、姿勢角制御部123にアンチワインドアップ処理部を備えているが、必要に応じて高度制御部111や水平位置制御部121にアンチワインドアップ処理部を備えてもよい。図15は、高度制御実験の結果を示している。点線で示されているのは高度目標値であり、実線で示されているのは、GPSセンサにより検出された高度である。図に示すように、機体は高度目標値に追従していることがわかる。
また、図16は、10秒付近で離陸し、35秒付近で着陸する実験を行ったときの鉛直速度制御の結果を示している。点線で示されているのは鉛直速度目標値であり、実線で示されているのは、GPSセンサにより検出された鉛直速度である。図に示すように、機体は鉛直速度目標値に追従していることがわかる。図17は、鉛直方向に関する実験結果を示しており、それぞれ高度データ(最上段)、鉛直速度データ(中段)、鉛直方向制御値(下段)を示している。図18は、離着陸時における水平方向に関する実験結果を示しており、それぞれヘリコプタ機体前後方向の速度と左右方向の速度の値を示している。また、図19は、ピッチ運動に関する実験データを示している。図20は、ロール運動に関する実験データを示している。
本発明の一実施の形態で用いる自律飛行制御装置の内部構成を示したブロック図 高度制御部の内部構成を示したブロック図 鉛直速度制御部の内部構成を示したブロック図 水平位置制御部の内部構成を示したブロック図 水平速度制御部の内部構成を示したブロック図 姿勢角制御部の内部構成を示したブロック図 離陸開始時から着陸終了時までの全体の流れを示したフロー図 離陸制御プログラムを実行したときの自律飛行制御装置の動作を示したフロー図 自律飛行制御プログラムを実行したときの自律飛行制御装置の動作を示したフロー図 着陸制御プログラムを実行したときの自律飛行制御装置の動作を示したフロー図 自律飛行制御時の鉛直方向制御部の閉ループを示した図 離着陸制御時の鉛直方向制御部の閉ループを示した図 離着陸制御時の水平方向制御部の閉ループを示した図 アンチワインドアップ処理部を有する姿勢角制御部の閉ループを示した図 高度制御実験の結果を示した図 10秒付近で離陸し、35秒付近で着陸する実験を行ったときの鉛直速度制御の結果を示した図 鉛直方向に関する実験結果を示した図 水平方向に関する実験結果を示した図 ピッチ運動に関する実験データを示した図 ロール運動に関する実験データを示した図 オペレータアシストモードに用いるコントローラを示した図 特許文献2の自律飛行制御装置の内部構成を示したブロック図 特許文献2の高度制御部の内部構成を示したブロック図 特許文献2の水平位置制御部の内部構成を示したブロック図 特許文献2の姿勢角制御部の内部構成を示したブロック図 特許文献2の離陸制御プログラムを実行したときの自律飛行制御装置の動作を示したフロー図 特許文献2の着陸制御プログラムを実行したときの自律飛行制御装置の動作を示したフロー図
符号の説明
100 自律飛行制御装置
110 鉛直方向制御部
111 高度制御部
112 鉛直速度制御部
120 水平方向制御部
121 水平位置制御部
122 水平速度制御部
123 姿勢角制御部
201 高度偏差算出部
202 ゲイン処理部
301 鉛直速度偏差算出部
302 鉛直速度偏差積分値算出部
303 ゲイン処理部
304 アンチワインドアップ処理部
401 水平位置偏差算出部
402 ゲイン処理部
501 水平速度偏差算出部
502 水平速度偏差積分値算出部
503 ゲイン処理部
504 アンチワインドアップ処理部
601 姿勢角偏差算出部
602 姿勢角偏差積分値算出部
603 ゲイン処理部
604 アンチワインドアップ処理部

Claims (17)

  1. 現在の鉛直速度、及び離陸制御時または着陸制御時に用いる所定の鉛直速度目標値を基に鉛直速度制御値を算出する鉛直速度制御部を有する鉛直方向制御部と、
    現在の水平速度、及び所定の水平速度目標値を基に水平速度制御値を算出する水平速度制御部と、現在の姿勢角、及び前記水平速度制御値を基に姿勢角制御値を算出する姿勢角制御部とを有する水平方向制御部とを備え、
    前記鉛直速度制御部が算出する鉛直速度制御値を鉛直方向制御値として出力し、
    前記姿勢角制御部が算出する姿勢角制御値を水平方向制御値として出力するとともに、
    前記鉛直速度制御部は、
    現在の鉛直速度と、離陸制御時または着陸制御時に用いる所定の鉛直速度目標値との鉛直速度偏差を算出する鉛直速度偏差算出部と、
    前記鉛直速度偏差の積分値を算出する鉛直速度偏差積分値算出部と、
    ヘリコプタ機体の動特性を基にした鉛直速度を制御する鉛直速度制御モデル式を用いてゲインを決定し、前記鉛直速度偏差及び前記鉛直速度偏差積分値に決定したゲインをかけた後に加算することにより鉛直速度制御値を算出するゲイン処理部とを備え、
    前記鉛直速度制御モデル式は、
    Figure 0004961166
    を用いることを特徴とする自律飛行制御装置。
  2. 前記ゲイン処理部で算出する鉛直速度制御値が鉛直速度に関する制限値を超えているか否かについての判定処理を行い、超えている場合には、鉛直速度制御値と鉛直速度に関する制限値との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけて前記鉛直速度偏差算出部へフィードバックし、一方、超えていない場合には、算出する鉛直速度制御値を鉛直方向制御値として出力するアンチワインドアップ処理部を備えることを特徴とする請求項1に記載の自律飛行制御装置。
  3. 前記水平速度制御部は、現在の水平速度と、離陸制御時または着陸制御時に用いる所定の水平速度目標値との水平速度偏差を算出する水平速度偏差算出部と、前記水平速度偏差の積分値を算出する水平速度偏差積分値算出部と、ヘリコプタ機体の動特性を基にした水平速度を制御する水平速度制御モデル式を用いてゲインを決定し、前記水平速度偏差及び前記水平速度偏差積分値に決定したゲインをかけた後に加算することにより水平速度制御値を算出するゲイン処理部とを備えることを特徴とする請求項1に記載の自律飛行制御装置。
  4. 前記水平速度制御モデル式は、
    Figure 0004961166
    を用いることを特徴とする請求項3に記載の自律飛行制御装置。
  5. 前記ゲイン処理部で算出する水平速度制御値が水平速度に関する制限値を超えているか否かについての判定処理を行い、超えている場合には、水平速度制御値と水平速度に関する制限値との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけて前記水平速度偏差算出部へフィードバックし、一方、超えていない場合には、算出する水平速度制御値を前記姿勢角制御部へ出力するアンチワインドアップ処理部を備えることを特徴とする請求項3又は4に記載の自律飛行制御装置。
  6. 前記姿勢角制御部は、現在の姿勢角と、前記水平速度制御部で算出する水平速度制御値を用いて姿勢角偏差を算出する姿勢角偏差算出部と、前記姿勢角偏差の積分値を算出する姿勢角偏差積分値算出部と、ヘリコプタ機体の動特性を基にした姿勢角を制御する姿勢角制御モデル式を用いてゲインを決定し、前記姿勢角偏差及び前記姿勢角偏差積分値に決定したゲインをかけた後に加算することにより姿勢角制御値を算出するゲイン処理部とを備えることを特徴とする請求項1に記載の自律飛行制御装置。
  7. 前記姿勢角制御モデル式は、
    Figure 0004961166
    を用いることを特徴とする請求項6に記載の自律飛行制御装置。
  8. 前記ゲイン処理部で算出する姿勢角制御値が姿勢角に関する制限値を超えているか否かについての判定処理を行い、超えている場合には、姿勢角制御値と姿勢角に関する制限値との偏差を算出し、アンチワインドアップ処理に用いるフィードバックゲインをかけて前記姿勢角偏差算出部へフィードバックし、一方、超えていない場合には、算出する姿勢角制御値を水平方向制御値として出力するアンチワインドアップ処理部を備えることを特徴とする請求項6又は7に記載の自律飛行制御装置。
  9. 前記鉛直方向制御部は、現在の高度、及び自律飛行制御時に用いる所定の高度目標値を基に高度制御値を算出する高度制御部を備え、
    前記水平方向制御部は、現在の水平位置、及び所定の水平位置目標値を基に水平位置制御値を算出する水平位置制御部を備えることを特徴とする請求項1に記載の自律飛行制御装置。
  10. 前記高度制御部は、現在の高度と、自律飛行制御時に用いる所定の高度目標値との高度偏差を算出する高度偏差算出部と、ヘリコプタ機体の動特性を基にした高度を制御する高度制御モデル式を用いてゲインを決定し、前記高度偏差に決定したゲインをかけることにより高度制御値を算出するゲイン処理部とを備え、前記高度制御値を前記鉛直速度制御部へ出力することを特徴とする請求項9に記載の自律飛行制御装置。
  11. 前記高度制御モデル式は、
    Figure 0004961166
    を用いることを特徴とする請求項10に記載の自律飛行制御装置。
  12. 前記水平位置制御部は、現在の水平位置と、自律飛行制御時に用いる所定の水平位置目標値との水平位置偏差を算出する水平位置偏差算出部と、ヘリコプタ機体の動特性を基にした水平位置を制御する水平位置制御モデル式を用いてゲインを決定し、前記水平位置偏差に決定したゲインをかけることにより水平位置制御値を算出するゲイン処理部とを備え、前記水平位置制御値を前記水平速度制御部へ出力することを特徴とする請求項9に記載の自律飛行制御装置。
  13. 前記水平位置制御モデル式は、
    Figure 0004961166
    を用いることを特徴とする請求項12に記載の自律飛行制御装置。
  14. 鉛直速度に関する制限値は、離陸あるいは着陸制御時と自律飛行制御時とで異なる値に設定することを特徴とする請求項2に記載の自律飛行制御装置。
  15. 水平速度に関する制限値は、離陸あるいは着陸制御時と自律飛行制御時とで異なる値に設定することを特徴とする請求項5に記載の自律飛行制御装置。
  16. 姿勢角に関する制限値は、離陸あるいは着陸制御時と自律飛行制御時とで異なる値に設定することを特徴とする請求項8に記載の自律飛行制御装置。
  17. 現在の鉛直速度、及び離陸制御時または着陸制御時に用いる所定の鉛直速度目標値を基に鉛直速度制御値を算出する鉛直速度制御部を有する鉛直方向制御部と、
    現在の水平速度、及び所定の水平速度目標値を基に水平速度制御値を算出する水平速度制御部と、現在の姿勢角、及び前記水平速度制御値を基に姿勢角制御値を算出する姿勢角制御部とを有する水平方向制御部とを備え、
    前記鉛直速度制御部が算出する鉛直速度制御値を鉛直方向制御値として出力し、
    前記姿勢角制御部が算出する姿勢角制御値を水平方向制御値として出力するとともに、
    前記鉛直速度制御部は、
    現在の鉛直速度と、離陸制御時または着陸制御時に用いる所定の鉛直速度目標値との鉛直速度偏差を算出する鉛直速度偏差算出部と、
    前記鉛直速度偏差の積分値を算出する鉛直速度偏差積分値算出部と、
    ヘリコプタ機体の動特性を基にした鉛直速度を制御する鉛直速度制御モデル式を用いてゲインを決定し、前記鉛直速度偏差及び前記鉛直速度偏差積分値に決定したゲインをかけた後に加算することにより鉛直速度制御値を算出するゲイン処理部とを備え、
    前記鉛直速度制御モデル式は、
    Figure 0004961166
    を用いる自律飛行制御装置を搭載したことを特徴とする小型無人ヘリコプタ。
JP2006162331A 2006-06-12 2006-06-12 自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ Active JP4961166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162331A JP4961166B2 (ja) 2006-06-12 2006-06-12 自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162331A JP4961166B2 (ja) 2006-06-12 2006-06-12 自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ

Publications (2)

Publication Number Publication Date
JP2007331426A JP2007331426A (ja) 2007-12-27
JP4961166B2 true JP4961166B2 (ja) 2012-06-27

Family

ID=38931328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162331A Active JP4961166B2 (ja) 2006-06-12 2006-06-12 自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ

Country Status (1)

Country Link
JP (1) JP4961166B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713231B2 (ja) * 2010-10-14 2015-05-07 独立行政法人国立高等専門学校機構 飛行体
CN102156480A (zh) * 2010-12-30 2011-08-17 清华大学 基于自然地标和视觉导航的无人直升机自主着陆方法
KR101273835B1 (ko) * 2012-04-09 2013-06-11 한국항공우주산업 주식회사 항공기 종축 제어 모듈 및 그 모듈을 이용한 항공기 종축 제어 방법
CN105676875A (zh) * 2015-03-10 2016-06-15 张超 无人机自动着陆系统
WO2016164241A1 (en) * 2015-04-10 2016-10-13 Virzoom, Inc. Virtual reality exercise game
CN104950901B (zh) * 2015-07-03 2017-07-28 天津大学 无人直升机姿态误差有限时间收敛非线性鲁棒控制方法
CN105134392B (zh) * 2015-07-21 2018-06-29 华南理工大学 小型无人直升机汽油发动机转速控制系统及其控制方法
CN105173063B (zh) * 2015-09-29 2017-04-05 北京精密机电控制设备研究所 一种无人机用一体式电动舵机
JP6776752B2 (ja) 2016-09-13 2020-10-28 富士通株式会社 飛行装置、飛行装置制御プログラム及び飛行装置制御方法
CN110543182B (zh) * 2019-09-11 2022-03-15 济宁学院 一种小型无人旋翼机自主着陆控制方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628455A (en) * 1983-05-06 1986-12-09 Sperry Corporation Cross axis torque limiter for helicopter autopilot
JP4109767B2 (ja) * 1998-10-09 2008-07-02 ヤマハ発動機株式会社 無人ヘリコプタの飛行制御システム
JP2002149204A (ja) * 2000-11-14 2002-05-24 Ebara Corp 制御装置
JP4300010B2 (ja) * 2002-10-08 2009-07-22 富士重工業株式会社 無人ヘリコプタ、無人ヘリコプタの離陸方法及び無人ヘリコプタの着陸方法
JP4141860B2 (ja) * 2003-02-26 2008-08-27 健蔵 野波 小型無人ヘリコプタの自律制御装置及びプログラム
JP4284264B2 (ja) * 2004-10-29 2009-06-24 富士重工業株式会社 無人ヘリコプタ及びその制御方法
JP4644522B2 (ja) * 2005-05-06 2011-03-02 国立大学法人 千葉大学 小型無人ヘリコプタの自律飛行制御装置及び自律飛行制御方法

Also Published As

Publication number Publication date
JP2007331426A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4961166B2 (ja) 自律飛行制御装置及び自律飛行制御装置を搭載した小型無人ヘリコプタ
JP4300010B2 (ja) 無人ヘリコプタ、無人ヘリコプタの離陸方法及び無人ヘリコプタの着陸方法
EP3370129B1 (en) Rotorcraft control mode transition smoothing
JP4141860B2 (ja) 小型無人ヘリコプタの自律制御装置及びプログラム
US20200140075A1 (en) Maintaining attitude control of unmanned aerial vehicles using pivoting propulsion motors
EP3269640B1 (en) Unmanned aerial vehicle
US11561539B2 (en) Aircraft control mode transition smoothing
JP4133435B2 (ja) 小型無人ヘリコプタの自律制御方法
Danjun et al. Autonomous landing of quadrotor based on ground effect modelling
CN108394565B (zh) 用于旋翼飞行器的动力需求预测系统
US10739790B2 (en) Control method to damp quadrotor slung payload mode
CN106444795B (zh) 可移动物体的起飞辅助的方法以及系统
US10691140B2 (en) Rotorcraft control mode transition smoothing
JP2009507704A (ja) 航空機用自動速度制御装置
JP6195237B2 (ja) Qtw機の飛行制御システム
CN102331778A (zh) 手持装置及利用其控制无人飞行载具的方法
CN108427426B (zh) 空中吊车负载振荡控制方法和系统
KR101746794B1 (ko) 항공기의 롤 트림 제어장치 및 제어방법
KR101622277B1 (ko) 모듈화된 쿼드 로터 제어 시스템 및 그의 제어 방법
JP2017007429A (ja) 制御装置、航空機、及びプログラム
KR101621461B1 (ko) 쿼드 로터 자세 제어 시스템 및 그의 제어 방법
EP3613671B1 (en) Rotorcraft control mode transition smoothing
JP2005349871A (ja) 回転翼航空機の高度制御装置
JP2021160436A (ja) 飛行体の制御方法、飛行体、情報処理装置及び情報処理システム
CN112166393A (zh) 无人飞行器控制方法、控制装置及计算机可读存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250