JP4960328B2 - Network power transmission protection device - Google Patents

Network power transmission protection device Download PDF

Info

Publication number
JP4960328B2
JP4960328B2 JP2008259786A JP2008259786A JP4960328B2 JP 4960328 B2 JP4960328 B2 JP 4960328B2 JP 2008259786 A JP2008259786 A JP 2008259786A JP 2008259786 A JP2008259786 A JP 2008259786A JP 4960328 B2 JP4960328 B2 JP 4960328B2
Authority
JP
Japan
Prior art keywords
station
power transmission
stations
section
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008259786A
Other languages
Japanese (ja)
Other versions
JP2010093901A (en
Inventor
恭之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008259786A priority Critical patent/JP4960328B2/en
Publication of JP2010093901A publication Critical patent/JP2010093901A/en
Application granted granted Critical
Publication of JP4960328B2 publication Critical patent/JP4960328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、電源系統に接続された電気所を含む複数の電気所を、両端に遮断器を設けた送電線によりそれぞれ接続してループ状に構成した送電系統を保護するネットワーク送電保護装置に関する。   The present invention relates to a network power transmission protection device that protects a power transmission system configured in a loop by connecting a plurality of electric stations including an electric station connected to a power supply system through power transmission lines having circuit breakers at both ends.

一般に、送電系統では、短絡や地絡などの事故が生じた場合、その事故の位置や種類などを識別して遮断器を動作させる保護継電器によって保護されている。従来の送電線保護方式は、送電線毎に分離独立して保護を行うものである。これに対し、近年、電源と遮断器とを備えた電気所を複数配置して、これらを送電線によりループ状に結合してなる、ループ系統の送電システムが実施されるようになった(例えば、特許文献1参照)。   Generally, in the power transmission system, when an accident such as a short circuit or a ground fault occurs, the power transmission system is protected by a protective relay that operates the circuit breaker by identifying the position and type of the accident. The conventional power transmission line protection method performs protection independently for each power transmission line. On the other hand, in recent years, a loop-system power transmission system has been implemented in which a plurality of electrical stations including a power source and a circuit breaker are arranged and these are connected in a loop shape by a power transmission line (for example, , See Patent Document 1).

図7は、このようなループ状の送電系統における保護装置の構成を示す。図7は、電気所を4箇所とした場合の構成図である。   FIG. 7 shows a configuration of a protection device in such a loop-shaped power transmission system. FIG. 7 is a configuration diagram when there are four electrical stations.

図7において、送電系統は4箇所の電気所11〜14とこれら電気所間を接続する送電線41〜44で構成される。4箇所の電気所11〜14のうち、電気所11は電源系統71に接続され、他の電気所12,13,14は図示していないが負荷系統に接続されているものとする。これら複数の電気所11〜14間を接続してループ状に構成する送電線41〜44は、それぞれ両端に遮断器31及び31a,32及び32a,33及び33a,34及び34aを設けている。   In FIG. 7, the power transmission system includes four electric stations 11 to 14 and power transmission lines 41 to 44 that connect these electric stations. Of the four electric stations 11 to 14, the electric station 11 is connected to the power supply system 71, and the other electric stations 12, 13, and 14 are connected to the load system (not shown). The power transmission lines 41 to 44 connected in a loop shape by connecting the plurality of electric stations 11 to 14 are provided with circuit breakers 31 and 31a, 32 and 32a, 33 and 33a, 34 and 34a, respectively.

また、前記複数の電気所11〜14のうち、一つの電気所11には演算局21が設けられ、残りの電気所12,13,14にはそれぞれ端末局22,23,24が設けられている。これら演算局21及び複数の端末局22,23,24相互間は、通信線61,62,63,64を含む通信手段により情報の授受が可能であり、全体として1組の保護系60を構成している。   Of the plurality of electric stations 11 to 14, one electric station 11 is provided with an arithmetic station 21, and the remaining electric stations 12, 13, and 14 are provided with terminal stations 22, 23, and 24, respectively. Yes. Information can be exchanged between the arithmetic station 21 and the plurality of terminal stations 22, 23, 24 by communication means including communication lines 61, 62, 63, 64, and constitutes a set of protection systems 60 as a whole. is doing.

前記各送電線41,42,43,44の両端には、図示しない計測手段の入力用として、変流器51及び51a,52及び52a,53及び53a,54及び54aがそれぞれ設けられ、対応する送電線に流れる電気量を個別に抽出する。なお、計測手段は、各電気所11,12,13,14に設けられた演算局21又は端末局22,23,24内に構成されている。   Current transformers 51 and 51a, 52 and 52a, 53 and 53a, 54 and 54a are provided at both ends of each of the power transmission lines 41, 42, 43 and 44 for input of measuring means (not shown). The amount of electricity flowing through the transmission line is extracted individually. In addition, the measuring means is comprised in the calculation station 21 or the terminal stations 22, 23, 24 provided in each electric station 11, 12, 13, 14.

上記構成において、電気所11に接続された送電線41,44を流れる電気量は演算局21の計測手段により測定され、電気所12に接続された送電線41,42を流れる電気量は端末局22の計測手段により測定され、電気所13に接続された送電線42,43を流れる電気量は端末局23の計測手段により測定され、電気所14に接続された送電線43,44を流れる電気量は端末局24の計測手段により測定される。これら端末局22〜24によって測定された電気量情報は、搬送ネットワーク通信線61〜64を介して演算局21に送信される。   In the above configuration, the amount of electricity flowing through the power transmission lines 41 and 44 connected to the electric station 11 is measured by the measuring means of the arithmetic station 21, and the amount of electricity flowing through the power transmission lines 41 and 42 connected to the electric station 12 is The amount of electricity measured by the measuring means 22 and flowing through the transmission lines 42 and 43 connected to the electric station 13 is measured by the measuring means of the terminal station 23 and the electricity flowing through the transmission lines 43 and 44 connected to the electric station 14 The quantity is measured by the measuring means of the terminal station 24. The electrical quantity information measured by these terminal stations 22 to 24 is transmitted to the computing station 21 via the carrier network communication lines 61 to 64.

演算局21は、各端末局22,23,24から受信した各送電線の電気量情報を基に、各送電線両端の差電流比率を求めて送電線別に事故の有無を検出する。そして、事故が発生した場合、事故が発生した故障区間両端の遮断器に対する遮断指令を、各電気所11〜14の図示しない遮断制御回路に、自局21又は他の端末局22,23,24を介して出力する。例えば、図1において演算局21が送電線41の事故を検出した場合、演算局21は、自局21から送電線41の一端遮断器31に対する故障遮断指令を出力すると共に、搬送ネットワーク通信線61を介して端末局22へ、送電線41の他端遮断器31aに対する故障遮断指令を送信する。演算局21の遮断制御回路は自局による故障遮断指令により一端遮断器31を開放動作させる。また、端末局22は、演算局21から受信した故障遮断指令により、その遮断制御回路は遮断器31aへ開放指令を出力する。以上により、故障区間である送電線41の両端の遮断器31,31aが開放され、送電線41は保護される。   The computing station 21 detects the presence or absence of an accident for each transmission line by obtaining a difference current ratio between both ends of each transmission line on the basis of the electrical quantity information of each transmission line received from each terminal station 22, 23, 24. When an accident occurs, a shut-off command for the circuit breakers at both ends of the failure section where the accident occurs is sent to the shut-off control circuit (not shown) of each of the electric stations 11 to 14 or the other terminal stations 22, 23, 24. Output via. For example, when the computing station 21 detects an accident in the transmission line 41 in FIG. 1, the computing station 21 outputs a failure cutoff command for the one-way circuit breaker 31 of the transmission line 41 from the own station 21 and the carrier network communication line 61. Is transmitted to the terminal station 22 through the terminal block 22 through the failure interrupt command to the other end circuit breaker 31a. The shut-off control circuit of the arithmetic station 21 opens the one-way circuit breaker 31 in response to a fault shut-off command from the own station. The terminal station 22 outputs a release command to the circuit breaker 31a in response to the failure cutoff command received from the arithmetic station 21. By the above, the circuit breakers 31 and 31a of the both ends of the power transmission line 41 which is a failure area are open | released, and the power transmission line 41 is protected.

また、送電線42に事故が生じた場合は、演算局21は、端末局22,23から送られてきた送電線42の両端の電気量情報に基づいて送電線42に事故が発生したことを検出する。そして、送電線42の両端に設けられた遮断器32,32aを開放すべく、搬送ネットワーク通信線61,62を介して対応する端末局22,23へ遮断器32,32aの故障遮断指令を送信する。端末局22,23は、演算局21から受信した故障遮断指令により遮断器32,32aへ開放指令を出力する。以上により、故障区間である送電線42の両端の遮断器32,32aが開放され、送電線42は保護される。   Further, when an accident occurs in the transmission line 42, the computing station 21 determines that the accident has occurred in the transmission line 42 based on the electrical quantity information at both ends of the transmission line 42 sent from the terminal stations 22 and 23. To detect. Then, in order to open the circuit breakers 32 and 32 a provided at both ends of the power transmission line 42, a failure interruption command for the circuit breakers 32 and 32 a is transmitted to the corresponding terminal stations 22 and 23 via the carrier network communication lines 61 and 62. To do. The terminal stations 22 and 23 output an open command to the circuit breakers 32 and 32a in response to the failure interrupt command received from the arithmetic station 21. As described above, the circuit breakers 32 and 32a at both ends of the power transmission line 42, which is the failure section, are opened, and the power transmission line 42 is protected.

上記動作は他の送電線43,44についても同様である。すなわち、送電線43の事故については送電線42の事故が対応し、送電線44の事故については送電線41での事故が対応し、それぞれ対応する送電線41,42の事故での説明と同じ動作をする。
特開平9−233674号公報
The above operation is the same for the other power transmission lines 43 and 44. That is, the accident of the power transmission line 43 corresponds to the accident of the power transmission line 42, the accident of the power transmission line 44 corresponds to the accident of the power transmission line 41, and is the same as the description of the accident of the corresponding power transmission lines 41 and 42, respectively. To work.
Japanese Patent Laid-Open No. 9-233684

このように演算局21は、各端末局22,23,24からの情報を入手して送電線41〜44で発生した事故を検出し、この事故が発生した故障区間を切り離して健全区間への通電を維持する。   In this way, the arithmetic station 21 obtains information from each of the terminal stations 22, 23, and 24, detects an accident that has occurred in the power transmission lines 41 to 44, isolates the failure section in which the accident has occurred, and returns to the healthy section. Maintain power.

しかし、端末局22,23,24のいずれか一つ又は複数に異常が発生すると、演算局21には異常となった端末局(例えば、22とする)からの情報が入手されなくなる。すなわち、端末局22では、電気所12に接続された送電線41,42に流れる電気量を測定できないので、演算局21は、送電線41又は42に事故が生じてもこの事故を検出することができない。このため、演算局21からの指令により電気所12において遮断器31a、32を遮断させることができず、故障区間を解列することができない。この場合、ループ状に接続された送電線41〜44全体を保護する図示しない保護装置が動作し、電源系統71に最も近い遮断器31,34aを開放させ、ループ状に接続された送電線41〜44全体を保護している。   However, if an abnormality occurs in any one or more of the terminal stations 22, 23, and 24, information from the terminal station that has become abnormal (for example, 22) cannot be obtained in the computing station 21. That is, since the terminal station 22 cannot measure the amount of electricity flowing through the power transmission lines 41 and 42 connected to the electric power station 12, the arithmetic station 21 detects this accident even if an accident occurs in the power transmission line 41 or 42. I can't. For this reason, the circuit breakers 31a and 32 cannot be interrupted at the electric station 12 by a command from the arithmetic station 21, and the fault section cannot be disconnected. In this case, a protection device (not shown) that protects the entire transmission lines 41 to 44 connected in a loop operates, and the circuit breakers 31 and 34a closest to the power supply system 71 are opened to transmit the transmission lines 41 connected in a loop. Protect the entire ~ 44.

このように、端末局22,23,24のいずれかが異常になると、健全区間を含めたループ状の送電線41〜44全体が切り離されてしまうため、停電範囲が拡大してしまう。   As described above, when any one of the terminal stations 22, 23, and 24 becomes abnormal, the entire loop-shaped power transmission lines 41 to 44 including the healthy section are disconnected, so that the power outage range is expanded.

本発明の目的は、ループ状に接続された送電線に事故が生じた場合、該当送電線を確実に保護すると共に、停電範囲を最小限に留めることができ、かつ迅速に故障区間を解列できるネットワーク送電保護装置を提供することにある。   It is an object of the present invention to reliably protect a transmission line when an accident occurs in a transmission line connected in a loop, to minimize the power outage range, and to quickly disconnect a failure section. It is to provide a network power transmission protection device that can be used.

本発明のネットワーク送電保護装置は、電源系統に接続された電気所を含む複数の電気所を、両端に遮断器を設けた送電線によりそれぞれ接続してループ状に構成した送電系統を保護するネットワーク送電保護装置であって、前記各送電線の両端にそれぞれ設けられ、対応する送電線に流れる電気量を個別に計測する計測手段と、前記複数の電気所の一つに設けられた2組の演算局、及び他の電気所に設けられたそれぞれ2組の端末局を有し、これら各組毎に通信手段により前記演算局及び複数の端末局相互間で、前記計測手段により計測された電気量情報を含む各種情報の授受が可能な2組の保護系と、これら2組の保護系の前記演算局及び各端末局に設けられ、それぞれ自局及び他局の異常有無を相互に監視する自己・相互監視手段と、前記電気所に、前記遮断器毎に設けられ、対応する遮断器を開動作させる遮断制御回路と、前記2組の保護系の各演算局にそれぞれ設けられ、前記各計測手段により計測された各送電線の両端の電気量情報を前記各保護系別に対応する端末局から収集し、これら各送電線両端の電気量情報から送電線毎の故障の有無を前記保護系別に検出し、故障有りの場合、故障区間両端の遮断器を遮断させる遮断指令を各電気所の遮断制御回路に、同じ保護系の自局又は他の端末局を介して出力する故障区間検知手段とを備え、この故障区間検知手段は、前記自己・相互監視手段がいずれかの端末局の異常を検出すると、検出された異常端末局を擁する電気所に接続された複数の送電線を直列な一つの区間として拡張し、この拡張された区間の両端電気量に基づいて該当する拡張区間での故障の有無を前記各保護系別に判定する区間拡張検知機能を有し、かつ、各保護系から遮断対象の遮断器に対して出力される遮断指令は、前記遮断対象の遮断器が前記拡張区間の端部に位置するか否かを各保護系別に判断し、前記拡張区間の端部に位置すると判断した保護系は、拡張瞬時要素及び拡張限時要素の遮断指令を出力し、前記拡張区間では無いと判断した保護系は、区間瞬時要素の遮断指令を出力し、前記遮断制御回路は、自電気所に設けられた2組の保護系から出力される前記遮断指令のうち、一方の組の区間瞬時要素と他方の組の拡張瞬時要素又は他方の組の区間瞬時要素との論理積、一方の組の区間瞬時要素又は一方の組の拡張瞬時要素と他方の組の区間瞬時要素との論理積、一方の組の拡張限時要素と他方の組の拡張限時要素との論理積とをそれぞれ構成し、これら全論理積の論理和をとって対応する遮断器を開動作させ、かつ前記2組の保護系毎に、前記遮断指令の各要素に対するバイパス回路をそれぞれ有し、前記自己・相互監視手段により自電気所に設けられた2組の保護系のいずれか一方の異常が検出されたときは、異常保護系による遮断指令をバイパスさせ、自電気所に設けられた2組の保護系がそれぞれ異常の場合は、異常保護系による遮断指令のバイパスを行わないように構成したことを特徴とする。   The network power transmission protection device of the present invention is a network that protects a power transmission system configured in a loop by connecting a plurality of electric power stations including an electric power station connected to a power supply system through power transmission lines provided with breakers at both ends. A power transmission protection device, which is provided at each end of each power transmission line and individually measures the amount of electricity flowing through the corresponding power transmission line, and two sets provided at one of the plurality of electrical stations There are two sets of terminal stations provided in the calculation station and other electric stations, and the electric power measured by the measurement means between the calculation station and the plurality of terminal stations by the communication means for each set. Two sets of protection systems capable of sending and receiving various types of information including quantity information, and the computing station and each terminal station of these two sets of protection systems, each monitoring the presence / absence of abnormality of the own station and other stations, respectively. Self and mutual monitoring means, The electrical control station is provided for each of the circuit breakers, and is provided for each of the operation control circuits of the two protection systems, and the circuit break control circuit for opening the corresponding circuit breaker, and each of the measurement units measured by the measurement means. Collect the electrical quantity information at both ends of the transmission line from the corresponding terminal station for each protection system, detect the presence or absence of failure for each transmission line from the electrical quantity information at both ends of each transmission line for each protection system, In this case, the failure section is provided with a failure section detecting means for outputting a break command for breaking the breakers at both ends of the failure section to the break control circuit of each electric station via the own protection station or another terminal station. The detecting means, when the self / mutual monitoring means detects an abnormality of any of the terminal stations, expands a plurality of transmission lines connected to the electric station having the detected abnormal terminal station as one section in series, Electric quantity at both ends of this expanded section Based on the section extension detection function for determining whether or not there is a failure in the corresponding extension section based on each protection system, and the shutdown command output from each protection system to the circuit breaker to be shut down is It is determined for each protection system whether or not the target circuit breaker is located at the end of the extension section, and the protection system determined to be located at the end of the extension section is a command to shut off the extension instantaneous element and the extension time limit element. The protection system that has determined that it is not in the extended section outputs a section instantaneous element shut-off command, and the shut-off control circuit outputs the shut-off that is output from the two sets of protection systems provided in its own electrical station. Of the commands, the logical product of one set of section instantaneous elements and the other set of extended instantaneous elements or the other set of section instantaneous elements, one set of section instantaneous elements or one set of extended instantaneous elements and the other set Logical AND with one set of interval instantaneous elements, expansion of one set A logical product of the time limit element and the other set of extended time limit elements, each of which is ORed to open the corresponding circuit breaker, and for each of the two sets of protection systems, A bypass circuit is provided for each element of the shut-off command, and when an abnormality in either one of the two protection systems provided at the self-electricity station is detected by the self / mutual monitoring means, the fault protection system shuts off. It is characterized in that the command is bypassed, and when the two protection systems provided in the own electric station are abnormal, the shut-off command is not bypassed by the abnormality protection system.

本発明によれば、ループ状送電系統を構成する各電気所に、演算局及び複数の端末局、並びにこれらの間で相互に情報授受が可能な保護系を2組設け、一方の保護系を構成するいずれかの局が異常となっても、異常の生じていない他方の保護系により、送電線を確実に保護して停電区間を最小限に留めることができる。   According to the present invention, each electric station constituting the loop-shaped power transmission system is provided with two sets of a computing station, a plurality of terminal stations, and two protection systems capable of exchanging information with each other. Even if any of the constituent stations becomes abnormal, the other protection system in which no abnormality has occurred can reliably protect the transmission line and minimize the power outage section.

以下、本発明によるネットワーク送電保護装置の一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a network power transmission protection device according to the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施の形態を示している。保護対象となるループ状の送電系統は図7で示したものと基本的に同じであり、4つの電気所11〜14とその電気所間を接続する送電線41〜44で構成される。4つの電気所11〜14のうち、電気所11は電源系統71に接続され、他の電気所12,13,14は図示しない負荷系統に接続されているものとする。各送電線41〜44は、それぞれ両端に遮断器31及び31a,32及び32a,33及び33a,34及び34aを設けている。   FIG. 1 shows an embodiment of the present invention. The loop-shaped power transmission system to be protected is basically the same as that shown in FIG. 7, and includes four electric stations 11 to 14 and power transmission lines 41 to 44 connecting the electric stations. Of the four electric stations 11 to 14, the electric station 11 is connected to the power supply system 71, and the other electric stations 12, 13, and 14 are connected to a load system (not shown). The power transmission lines 41 to 44 are provided with circuit breakers 31 and 31a, 32 and 32a, 33 and 33a, 34 and 34a at both ends, respectively.

また、一つの電気所11には演算局21が設けられ、残りの電気所12,13,14にはそれぞれ端末局22,23,24が設けられている。これら演算局21及び複数の端末局22,23,24相互間は、通信線61,62,63,64を含む通信手段により情報の授受が可能であり、全体として1組の保護系60を構成している。   One electric station 11 is provided with a calculation station 21, and the remaining electric stations 12, 13, and 14 are provided with terminal stations 22, 23, and 24, respectively. Information can be exchanged between the arithmetic station 21 and the plurality of terminal stations 22, 23, 24 by communication means including communication lines 61, 62, 63, 64, and constitutes a set of protection systems 60 as a whole. is doing.

この他に、同様の構成の保護系60aをもう一組設け、2組の保護系60,60aによりループ状の送電系を保護している。もう一つの保護系60aも、一つの電気所11に設けられた演算局21aと、残りの電気所12,13,14に設けられた端末局22a,23a,24aとを有し、これら演算局21a及び複数の端末局22a,23a,24aの相互間は、通信線61a,62a,63a,64aを含む通信手段により情報の授受が可能に構成されている。   In addition, another set of protection systems 60a having the same configuration is provided, and the loop-shaped power transmission system is protected by two sets of protection systems 60 and 60a. The other protection system 60a also includes a calculation station 21a provided in one electric station 11, and terminal stations 22a, 23a, and 24a provided in the remaining electric stations 12, 13, and 14, and these calculation stations are provided. Between 21a and the plurality of terminal stations 22a, 23a, 24a, information is exchanged by communication means including communication lines 61a, 62a, 63a, 64a.

前記各送電線41,42,43,44の両端には、変流器51及び51a,52及び52a,53及び53a,54及び54aがそれぞれ設けられ、対応する送電線に流れる電気量を個別に抽出し、後述する計測手段に出力する。   Current transformers 51 and 51a, 52 and 52a, 53 and 53a, 54 and 54a are provided at both ends of each of the power transmission lines 41, 42, 43 and 44, respectively, and the amount of electricity flowing through the corresponding power transmission lines is individually determined. Extract and output to the measuring means described later.

演算局21,21aは、基本的に同じ構成であり、それぞれ図2で示すように、計測手段101、故障区間検知手段102、通信手段103、自己・相互監視手段104を有する。また、端末局22及び22a,23及び23a,24及び24aも基本的に同じ構成であり、図3で示すように、計測手段201、通信手段203、自己・相互監視手段204を有する。なお、図3は端末局22,22aについて示しているが、他の端末局23及び23a,24及び24aも内部構成は同じである。   The arithmetic stations 21 and 21a have basically the same configuration, and each includes a measuring unit 101, a failure section detecting unit 102, a communication unit 103, and a self / mutual monitoring unit 104 as shown in FIG. Also, the terminal stations 22 and 22a, 23 and 23a, 24 and 24a have basically the same configuration, and include a measuring unit 201, a communication unit 203, and a self / mutual monitoring unit 204 as shown in FIG. 3 shows the terminal stations 22 and 22a, the other terminal stations 23 and 23a, 24 and 24a have the same internal configuration.

演算局21,21aの計測手段101は、電気所11に設けられた変流器51及び54aの2次回路に接続し、送電線41及び44の電気量を計測する。端末局22及び22a(23及び23a、24及び24a)の計測手段201は、電気所12(13,14)に設けられた変流器51a及び52(52a及び53、53a及び54)の2次回路に接続し、送電線41及び42(42及び43、43及び44)の電気量を計測する。   The measuring means 101 of the arithmetic stations 21 and 21a is connected to the secondary circuit of the current transformers 51 and 54a provided in the electric station 11, and measures the amount of electricity of the power transmission lines 41 and 44. The measuring means 201 of the terminal stations 22 and 22a (23 and 23a, 24 and 24a) is the secondary of the current transformers 51a and 52 (52a and 53, 53a and 54) provided in the electric station 12 (13, 14). Connect to the circuit and measure the amount of electricity in the transmission lines 41 and 42 (42 and 43, 43 and 44).

これら各端末局22及び22a,23及び23a、24及び24aの計測手段201で計測された電流値はディジタル信号に変換され電気量情報となり、それぞれ通信手段203から対応する保護系60又は60aの通信線61,62,63,64又は61a,62a,63a,64aを経て演算局21又は21aの通信手段103に送られ、故障区間検知手段102に入力される。なお、演算局21,21aの計測手段101で計測された電流値もディジタル信号に変換され電気量情報として、自局の故障区間検知手段102に入力される。   The current values measured by the measuring means 201 of each of these terminal stations 22 and 22a, 23 and 23a, 24 and 24a are converted into digital signals to become electric quantity information, and the communication of the corresponding protection system 60 or 60a from the communication means 203, respectively. It is sent to the communication means 103 of the arithmetic station 21 or 21a via the lines 61, 62, 63, 64 or 61a, 62a, 63a, 64a and inputted to the failure section detection means 102. The current value measured by the measuring means 101 of the arithmetic stations 21 and 21a is also converted into a digital signal and input to the failure section detecting means 102 of the own station as electric quantity information.

各演算局21,21aの故障区間検知手段102は、自局の計測手段101により計測された電気量情報、及び通信手段103により収集された各端末局22,23,24及び22a,23a,24aの計測手段201により計測された電気量情報を用いて各送電線41〜44の両端の差電流比率を求めて、保護系60,60a別に、送電線別の事故の有無を検出する。   The failure section detecting means 102 of each arithmetic station 21, 21 a includes the electric quantity information measured by the measuring means 101 of the own station and the terminal stations 22, 23, 24 and 22 a, 23 a, 24 a collected by the communication means 103. The electric current information measured by the measuring means 201 is used to obtain a difference current ratio between both ends of each of the transmission lines 41 to 44, and the presence or absence of an accident for each transmission line is detected for each of the protection systems 60 and 60a.

すなわち、各送電線41〜44に事故が無い場合は、それらの両端における電流計測値は同じ方向で互いにほぼ等しい値となる。しかし、送電線41〜44に事故が生じた場合、事故送電線の両端における電流は方向が互いに逆向き(内向き)となるため、事故送電線の両端における差電流比率が大きくなる。故障区間検知手段102は、送電線両端の差電流比率が閾値を越えれば、この送電線に事故が発生していると判断する。   That is, when there is no accident in each of the power transmission lines 41 to 44, the current measurement values at both ends thereof are substantially equal to each other in the same direction. However, when an accident occurs in the power transmission lines 41 to 44, the directions of the currents at both ends of the accident power transmission line are opposite to each other (inward), so that the difference current ratio at both ends of the accident power transmission line increases. The failure section detection means 102 determines that an accident has occurred in this power transmission line if the difference current ratio between both ends of the power transmission line exceeds a threshold value.

故障区間検知手段102は、このような事故検知機能により事故の生じた送電線を検出すると、この事故の生じた故障区間両端の遮断器を遮断させるべく対応する遮断器を有する電気所の遮断制御回路106,206へ遮断指令を出力する。例えば、送電線41に事故が生じた場合、故障区間検知手段102は、故障区間である送電線41の両端の遮断器31,31aを遮断させるべく、これらが設置された電気所11及び12の遮断制御回路106,206へ遮断器31,31aに対する遮断指令を出力する。   When the fault section detecting means 102 detects a power transmission line in which an accident has occurred by such an accident detection function, the fault control unit 102 has a corresponding circuit breaker to cut off the circuit breakers at both ends of the fault section where the accident has occurred. A cutoff command is output to the circuits 106 and 206. For example, when an accident occurs in the power transmission line 41, the failure section detection unit 102 detects the breakers 31 and 31a at both ends of the power transmission line 41, which is the failure section, of the electrical stations 11 and 12 where they are installed. The interruption | blocking command with respect to the circuit breakers 31 and 31a is output to the interruption | blocking control circuits 106 and 206. FIG.

ここで、故障区間検知手段102は、2つの保護系60,60aを構成する演算局21,21aにそれぞれ設けられているので、遮断制御回路106,206への故障遮断指令は、両保護系60,60aから出力される。すなわち、2つの演算局21,21aが設置された電気所11では、図4で示すように、遮断制御回路106に対して、一方の保護系60を構成する演算局21から遮断指令1が出力され、他方の保護系60aを構成する演算局21aから遮断指令2が出力される。すなわち、電気所11については、一方の保護系60からの遮断指令1は、自電気所11に設けられた演算局21から出力され、他方の保護系60aからの遮断指令2は、同じく自電気所11に設けられた演算局21aから出力され、これらが共にオンすることで遮断器3(電気所11の31又は34a)を開放させるように構成している。また、2つの端末局22,22aが設置された電気所12では、図5で示すように、遮断制御回路206に対して、一方の保護系60を構成する端末局22から遮断指令1が出力され、他方の保護系60aを構成する演算局22aから遮断指令2が出力される。図5は電気所12について示したが、他の電気所13,14についても同じである。   Here, since the failure section detection means 102 is provided in each of the arithmetic stations 21 and 21a constituting the two protection systems 60 and 60a, the failure interruption command to the interruption control circuits 106 and 206 is sent to both protection systems 60 and 60a. , 60a. That is, at the electric station 11 where the two arithmetic stations 21 and 21a are installed, as shown in FIG. 4, the shutoff command 1 is output from the arithmetic station 21 constituting one of the protection systems 60 to the shutoff control circuit 106. Then, the shutoff command 2 is output from the arithmetic station 21a constituting the other protection system 60a. That is, for the electric station 11, the shut-off command 1 from one protection system 60 is output from the arithmetic station 21 provided in the own power station 11, and the shut-off command 2 from the other protection system 60a is also the same as the self-electricity The circuit breaker 3 (31 or 34a of the electric station 11) is opened by being output from the arithmetic station 21a provided at the station 11 and turning on both of them. Further, in the electric station 12 where the two terminal stations 22 and 22a are installed, as shown in FIG. 5, the shutdown command 1 is output from the terminal station 22 constituting one protection system 60 to the shutdown control circuit 206. Then, the shut-off command 2 is output from the arithmetic station 22a constituting the other protection system 60a. Although FIG. 5 shows the electric station 12, the same applies to the other electric stations 13 and 14.

演算局21,21a及び各端末局22,22a〜24,24aに設けられた自己・相互監視手段104,204は、自局が健全な状態か、及び他局が健全かを監視する機能を有する。すなわち、各局21及び21a,22及び22a,23及び23a,24及び24aは、図2及び図3で示すように、異常が生じると動作する異常検出接点105,205,・・・を持っており、この接点105,205,・・・の状態により自局の状態を監視すると共に、この接点状態を、通信手段103,203,・・・を介して隣接する他局についても監視し、各局において、自局及び他局が健全か否かを相互に監視している。各端末局22,22a〜24,24aから演算局21,21aへの異常検出情報は、図示しない遠方監視用の伝送線により伝送される。いずれにしても演算局21,21a及び端末局22,22a〜24,24aを相互に監視し、異常の生じた局を特定する機能を有している。   The self / mutual monitoring means 104 and 204 provided in the arithmetic stations 21 and 21a and the terminal stations 22, 22a to 24 and 24a have a function of monitoring whether the own station is in a healthy state and whether other stations are healthy. . That is, each station 21 and 21a, 22 and 22a, 23 and 23a, 24 and 24a has abnormality detection contacts 105, 205,... That operate when an abnormality occurs, as shown in FIGS. The state of the own station is monitored according to the state of the contacts 105, 205,..., And the contact state is also monitored for other adjacent stations via the communication means 103, 203,. , It monitors each other whether its own station and other stations are healthy. The abnormality detection information from the terminal stations 22, 22a to 24, 24a to the arithmetic stations 21, 21a is transmitted through a remote monitoring transmission line (not shown). In any case, the computing stations 21 and 21a and the terminal stations 22, 22a to 24, and 24a are mutually monitored, and have a function of specifying a station where an abnormality has occurred.

故障区間検知手段102は、前述のように、2組の保護系の各演算局21,21aにそれぞれ設けられており、各送電線41〜44の両端の電気量情報を各保護系60,60a別に対応する端末局22〜24,22a〜24aから収集し、これら電気量情報から送電線41〜44毎の故障の有無を保護系60,60a別に検出する。そして、故障有りの場合、故障区間両端の遮断器を遮断させるための遮断指令を各電気所11〜14の遮断制御回路106,206に出力する。   As described above, the failure section detection means 102 is provided in each of the two computation systems 21 and 21a of the protection system, and the electrical quantity information at both ends of the power transmission lines 41 to 44 is obtained from the protection systems 60 and 60a. Separately collected from the corresponding terminal stations 22 to 24 and 22a to 24a, and the presence / absence of a failure for each of the power transmission lines 41 to 44 is detected for each protection system 60 and 60a from these electric quantity information. And when there exists a failure, the interruption | blocking command for breaking off the circuit breaker of both ends of a failure area is output to the interruption | blocking control circuits 106 and 206 of each electric station 11-14.

この故障区間検知手段102は、自己・相互監視手段104,204がいずれかの端末局22〜24,22a〜24aの異常を検出すると、検出された異常端末局を擁する電気所(例えば12とする)に接続された複数の送電線41,42を直列な一つの区間として拡張する。そして、この拡張された区間の両端電気量に基づいて該当する拡張区間での故障の有無を、各保護系60,60a別に判定する区間拡張検知機能を有する。   When the self / mutual monitoring means 104, 204 detects an abnormality in any of the terminal stations 22-24, 22a-24a, the failure section detection means 102 is an electric station (for example, 12) that has the detected abnormal terminal station. The plurality of power transmission lines 41 and 42 connected to () are expanded as one section in series. And it has the section expansion detection function which determines the presence or absence of the failure in a corresponding expansion section separately for each protection system 60 and 60a based on the both-ends electric quantity of this expanded section.

また、この故障区間検知手段102は、前述のように、各保護系60,60aから、送電線の故障区間検知に伴う遮断対象の遮断器への遮断指令1,2を出力する。すなわち、まず、遮断対象の遮断器が、端末局の異常に伴う拡張区間の端部に位置するか否かを、各保護系60,60a別に判断する。そして、拡張区間の端部に位置すると判断した保護系60又は60aは、遮断指令1又は2として拡張瞬時要素1c又は2a、及び拡張限時要素1d又は2dの遮断指令を出力し、図6により後述する遮断制御回路106又は206における該当接点をオンさせる。これに対し、拡張区間では無いと判断した保護系60又は60aは、遮断指令1又は2として区間瞬時要素1a又は2b、及び1b又は2cの遮断指令を出力し、図6により後述する該当接点をオンさせる。   In addition, as described above, the failure section detection means 102 outputs the shut-off commands 1 and 2 to the breaker to be shut off accompanying the detection of the fault section of the power transmission line from each of the protection systems 60 and 60a. That is, first, it is determined for each protection system 60, 60a whether or not the circuit breaker to be interrupted is located at the end of the extended section due to the abnormality of the terminal station. Then, the protection system 60 or 60a determined to be located at the end of the extended section outputs the cutoff command for the extended instantaneous element 1c or 2a and the extended time limit element 1d or 2d as the cutoff command 1 or 2, and will be described later with reference to FIG. The corresponding contact in the interruption control circuit 106 or 206 to be turned on is turned on. On the other hand, the protection system 60 or 60a determined not to be in the extended section outputs the section instantaneous element 1a or 2b and 1b or 2c block command as the block command 1 or 2, and the corresponding contact described later with reference to FIG. Turn it on.

遮断制御回路106,206は、各電気所11〜14に設置された遮断器を遮断させるためにそれぞれ設けられている。これら各遮断制御回路106,206には、図4及び図5で示したように、2組の保護系60,60aからの遮断指令1,2が入力される。このため、遮断制御回路106,206は、図6で示すように、自電気所に設けられた2組の保護系60,60aから出力される遮断指令1,2について、以下に説明する論理積をとって対応する遮断器3を開動作させるように構成されている。   The shutoff control circuits 106 and 206 are provided to shut off the circuit breakers installed at the electrical stations 11 to 14, respectively. As shown in FIGS. 4 and 5, the shutoff commands 1 and 2 from the two sets of protection systems 60 and 60a are input to the shutoff control circuits 106 and 206, respectively. For this reason, as shown in FIG. 6, the shut-off control circuits 106 and 206 are connected to the shut-off commands 1 and 2 output from the two sets of protection systems 60 and 60a provided in the self-electricity station. And the corresponding circuit breaker 3 is opened.

すなわち、遮断制御回路106,206は、自電気所に設けられた2組の保護系60,60aから出力される遮断指令1,2のうち、一方の組の区間瞬時要素1aと他方の組の拡張瞬時要素2a又は他方の組の区間瞬時要素2bとの論理積、一方の組の区間瞬時要素1b又は一方の組の拡張瞬時要素1cと他方の組の区間瞬時要素2cとの論理積、一方の組の拡張限時要素1dと他方の組の拡張限時要素2dとの論理積とをそれぞれ構成するように該当する接点を接続し、これら全論理積の論理和をとって対応する遮断器3を開動作させるように構成している。   That is, the shutoff control circuits 106 and 206 have one set of the section instantaneous elements 1a and the other set of the shutoff commands 1 and 2 output from the two sets of protection systems 60 and 60a provided in the own power station. Logical product of the extended instantaneous element 2a or the other set of section instantaneous elements 2b, one product of the section instantaneous element 1b or one set of extended instantaneous elements 1c and the other set of section instantaneous elements 2c, Corresponding contacts are connected so as to constitute the logical product of the expansion time limit element 1d of the other set and the expansion time limit element 2d of the other set, and the corresponding circuit breaker 3 is obtained by taking the logical sum of all the logical products. It is configured to open.

また、遮断制御回路106,206は、図6で示すように、2組の保護系60,60a毎に、遮断指令1,2の各要素に対するバイパス回路111,112をそれぞれ有する。このうちバイパス回路111のバイパス接点111aは、遮断指令1の区間瞬時要素1b及び拡張瞬時要素1cに対してそれぞれ並列接続され、またバイパス接点111bは、遮断指令1の拡張限時要素1dに対して並列接続され、それらのオン動作により対応する要素をバイパスする。また、バイパス回路112のバイパス接点112aは、遮断指令2の拡張瞬時要素2a及び区間瞬時要素2bに対してそれぞれ並列接続され、またバイパス接点112bは遮断指令2の拡張限時要素2dに対して並列接続され、それらのオン動作により対応する要素をバイパスする。   Moreover, the interruption | blocking control circuits 106 and 206 have the bypass circuits 111 and 112 with respect to each element of interruption | blocking instruction | commands 1 and 2, respectively for every 2 sets of protection systems 60 and 60a, as shown in FIG. Among these, the bypass contact 111a of the bypass circuit 111 is connected in parallel to the section instantaneous element 1b and the extended instantaneous element 1c of the cutoff command 1, and the bypass contact 111b is connected in parallel to the extended time limit element 1d of the cutoff command 1. Connected, bypassing the corresponding elements by their on operation. The bypass contact 112a of the bypass circuit 112 is connected in parallel to the extended instantaneous element 2a and the section instantaneous element 2b of the cutoff command 2, and the bypass contact 112b is connected in parallel to the extended time limit element 2d of the cutoff command 2. The corresponding elements are bypassed by their ON operation.

これらバイパス回路111,112は、自己・相互監視手段104,204により自電気所に設けられた2組の保護系60,60aのいずれか一方の異常が検出されたときは、異常保護系(60又は60a)による遮断指令1又は2をバイパスさせる。ただし、自電気所に設けられた2組の保護系60,60aがそれぞれ異常の場合は、異常保護系による遮断指令のバイパスを行わないように構成した。   These bypass circuits 111 and 112 are connected to the abnormality protection system (60) when an abnormality is detected in one of the two protection systems 60 and 60a provided in the own electric station by the self / mutual monitoring means 104 and 204. Alternatively, the cutoff command 1 or 2 according to 60a) is bypassed. However, when the two sets of protection systems 60 and 60a provided in the own electric station are abnormal, the bypass command is not bypassed by the abnormality protection system.

この2組の保護系60,60aによるループ状送電系統の保護動作は基本的に同じであり、演算局21,21aは、送電線41〜44のいずれかの区間において事故を検出した場合、端末局22〜24又は端末局22a〜24aの異常状態に応じて表1に示すような事故検知を行い、故障検出区間両端遮断器を擁する端末局へ故障遮断指令を送信する。

Figure 0004960328
The protection operation of the loop power transmission system by the two sets of protection systems 60 and 60a is basically the same, and when the arithmetic stations 21 and 21a detect an accident in any section of the power transmission lines 41 to 44, the terminal Accident detection as shown in Table 1 is performed according to the abnormal state of the stations 22 to 24 or the terminal stations 22a to 24a, and a failure cut-off command is transmitted to the terminal station having a break detection section both-end circuit breaker.
Figure 0004960328

以下、表1を用いて端末局22〜24及び端末局22a〜24aの異常発生と、それに伴う区間拡張機能による保護動作をパターン分けして説明する。   Hereinafter, the occurrence of an abnormality in the terminal stations 22 to 24 and the terminal stations 22a to 24a and the protection operation by the section extension function will be described in different patterns using Table 1.

表1に示すように端末局の異常状態は、64パターンとなる。これらのうち、(パターン1)の端末局22〜24及び22a〜24aが全局正常の場合について基本的な動作を説明し、その後、以下に記す代表的な6パターンを例にとって端末局に異常が生じた場合の保護動作を説明する。   As shown in Table 1, the abnormal state of the terminal station is 64 patterns. Among these, the basic operation will be described in the case where the terminal stations 22 to 24 and 22a to 24a of (Pattern 1) are all normal, and then the terminal station has an abnormality taking the following six typical patterns as an example. The protection operation when it occurs will be described.

(パターン2):全電気所に備えた二組の端末局の内、一組の1台のみが異常となった場合
(パターン16):全電気所に備えた二組の端末局の内、一組がすべて異常、もう一組の1台のみが異常の場合
(パターン28):全電気所に備えた二組の端末局の内、同一電気所の2台のみが異常の場合
(パターン35):全電気所に備えた二組の端末局の内、一組の1台、もう一組の1台のみが異常の場合
(パターン41):全電気所に備えた二組の端末局の内、一組の1台、もう一組の2台が異常の場合
(パターン59):全電気所に備えた二組の端末局の内、一組の2台、もう一組の2台が異常の場合
以下、上記各パターンについて詳細を説明する。
(Pattern 2): When only one of the two sets of terminal stations provided at all electrical stations becomes abnormal (Pattern 16): Of the two sets of terminal stations provided at all electrical stations, When one set is abnormal and only one other set is abnormal (Pattern 28): Of two sets of terminal stations provided at all electric stations, only two units at the same electric station are abnormal (Pattern 35) ): When one set of two terminal stations provided at all electric power stations and only one other set are abnormal (Pattern 41): Two sets of terminal stations provided at all electric power stations If one set and one set are abnormal (Pattern 59): Of the two sets of terminal stations provided at all electric power stations, one set of two sets and the other set of two sets Case of Abnormality The details of each of the above patterns will be described below.

(パターン1)
演算局21,21aが送電線41〜44のいずれかで事故を検出した場合、演算局21は、事故発生区間に応じて搬送ネットワーク通信線61〜63を介して端末局22〜24へ事故遮断指令を送信する。演算局21aも、事故発生区間に応じて搬送ネットワーク通信線61a〜63aを介して端末局22a〜24aへ事故遮断指令を送信する。事故遮断指令を受信した二組の端末局(22と22a,23と23a,24と24a)は、それぞれ遮断器へ開放指令を出力する。各端末局の遮断制御回路206は、図6で示したように二組の端末局による遮断指令1,2の論理積で構成されているため、二組の端末局が共に同じ遮断器3への開放指令1,2を出力した場合にのみ、遮断器3が開放し、送電線の保護を行う。このパターン1では、端末局22〜24及び22a〜24aが全局正常のため、送電線(例えば、42とする)に事故が発生した場合、事故が発生した故障区間両端の遮断器32,32aが設置された電気所(例えば12,13)では、二組の端末局22及び22a,23及び23aが同じ遮断器3(32,32a)への開放指令1(区間瞬時要素1a,1b)及び2(区間瞬時要素2b,2c)を出力する。この場合、遮断対象の遮断器区間32,32a故障区間である送電線42の両端遮断器32,32aであり、前述した拡張区間の遮断器ではないため、遮断指令1としては区間瞬時要素1a,1bがオンとなり、遮断指令2としては区間瞬時要素2b,2cがオンとなる。このため、両遮断器32,32aの遮断制御回路206では、区間瞬時要素1a,2bの論理積及び区間瞬時要素1b,2cの論理積がそれぞれ成立するので、これら故障区間両端の遮断器3(32,32a)は瞬時に遮断動作する。
(Pattern 1)
When the computing stations 21 and 21a detect an accident in any of the power transmission lines 41 to 44, the computing station 21 cuts off the accident to the terminal stations 22 to 24 via the carrier network communication lines 61 to 63 according to the accident occurrence section. Send a command. The arithmetic station 21a also transmits an accident cutoff command to the terminal stations 22a to 24a via the carrier network communication lines 61a to 63a according to the accident occurrence section. The two sets of terminal stations (22 and 22a, 23 and 23a, and 24 and 24a) that have received the accident interruption command output an opening command to the circuit breaker, respectively. Since the shutoff control circuit 206 of each terminal station is configured by the logical product of the shutoff commands 1 and 2 by the two sets of terminal stations as shown in FIG. 6, the two sets of terminal stations are both connected to the same circuit breaker 3. Only when the opening commands 1 and 2 are output, the circuit breaker 3 is opened and the transmission line is protected. In this pattern 1, since the terminal stations 22 to 24 and 22a to 24a are all normal, when the accident occurs on the power transmission line (for example, 42), the circuit breakers 32 and 32a at both ends of the failure section where the accident has occurred. In the installed electric station (for example, 12, 13), two sets of terminal stations 22 and 22a, 23, and 23a are connected to the same circuit breaker 3 (32, 32a) with an opening command 1 (section instantaneous elements 1a, 1b) and 2 (Section instantaneous element 2b, 2c) is output. In this case, the circuit breaker sections 32 and 32a to be interrupted are the both-end circuit breakers 32 and 32a of the power transmission line 42 that is the failure section, and are not the circuit breakers of the extended section described above. 1b is turned on, and the section instantaneous elements 2b and 2c are turned on as the cutoff command 2. For this reason, in the interruption control circuit 206 of both circuit breakers 32 and 32a, the logical product of the section instantaneous elements 1a and 2b and the logical product of the section instantaneous elements 1b and 2c are established, respectively. 32, 32a) are instantaneously interrupted.

(パターン2)
このパターン2は、全電気所に備えた二組の端末局の内、一組の1台、すなわち、端末局22aに異常が生じた場合である。
(Pattern 2)
This pattern 2 is a case where an abnormality has occurred in one of the two sets of terminal stations provided at all electric power stations, that is, the terminal station 22a.

このような状態において、送電線41に事故が発生すると演算局21は、端末局22から送信される送電線41の電気量情報と演算局21自身が計測する送電線41の電気量情報を基に送電線41の事故を検出する。その結果、遮断器31への開放指令1(区間瞬時要素1a,1b)を出力するともに、端末局22へ故障遮断指令を出力する。故障遮断指令を受信した端末局22は、遮断器31aへ開放指令1(区間瞬時要素1a,1b)を出力する。   In such a state, when an accident occurs in the power transmission line 41, the computation station 21 uses the electrical quantity information of the transmission line 41 transmitted from the terminal station 22 and the electrical quantity information of the transmission line 41 measured by the computation station 21 itself. An accident in the transmission line 41 is detected. As a result, an opening command 1 (interval instantaneous elements 1a and 1b) to the circuit breaker 31 is output, and a failure interrupting command is output to the terminal station 22. The terminal station 22 that has received the failure cutoff command outputs the release command 1 (section instantaneous elements 1a and 1b) to the circuit breaker 31a.

また、演算局21aは、端末局22aが異常であるため、端末局23aから送信される送電線42の電気量情報と演算局21a自身が計測する送電線41の電気量情報を基に、拡張区間である送電線41〜送電線42の事故を検出する。その結果、遮断器31への開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力すると共に、端末局23aへ故障遮断指令を出力する。端末局23aは、演算局21aから受信した故障遮断指令により遮断器32aへ開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力する。   Further, since the terminal station 22a is abnormal, the arithmetic station 21a is expanded based on the electric quantity information of the power transmission line 42 transmitted from the terminal station 23a and the electric quantity information of the power transmission line 41 measured by the arithmetic station 21a itself. Accidents of the transmission lines 41 to 42 that are sections are detected. As a result, an opening command 2 (expansion instantaneous element 2a, expansion time limit element 2d) to the circuit breaker 31 is output, and a fault interruption command is output to the terminal station 23a. The terminal station 23a outputs the release command 2 (the extended instantaneous element 2a and the extended time limit element 2d) to the circuit breaker 32a in response to the failure cutoff command received from the arithmetic station 21a.

ここで、送電線41に事故が発生した場合、各電気所に配置された遮断制御回路106,206,・・・は、二組の保護系60,60aによる開放指令1,2の論理積で構成されていることから、遮断器31は、健全な演算局21により開放指令1(区間瞬時要素1a,1b)が、演算局21aにより開放指令2(拡張瞬時要素2a、拡張限時要素2d)が出力されている。このため、区間瞬時要素1aと拡張瞬時要素2aの論理積が成立し、瞬時に開放動作する。遮断器31aは、端末局22aが異常であるため、端末局22のみから開放指令1(区間瞬時要素1a,1b)が出力されている。しかし、端末局22aが異常の場合、自装置の自己、相互監視手段204により、図6で示した自局バイパス回路112がオンするため、遮断器31aは、端末局22のみの開放指令1の区間瞬時要素1aとバイパス回路12のバイパス接点112aとの論理積が成立し、開放動作する。遮断器32aについては、前述のように端末局23aによる開放指令2(拡張瞬時要素2a、拡張限時要素2d)が出力されているが、端末局23が正常であるためバイパス回路111はオンせず、開放指令1はオフのままである。このため、図6の論理積構成により開放しない。   Here, when an accident occurs in the power transmission line 41, the shut-off control circuits 106, 206,... Arranged at each electric station are logical products of the opening commands 1 and 2 by the two protection systems 60 and 60a. Since the circuit breaker 31 is configured, the release command 1 (interval instantaneous elements 1a and 1b) is issued by the sound computation station 21, and the release command 2 (extended instantaneous element 2a and expansion time limit element 2d) is issued by the computation station 21a. It is output. For this reason, the logical product of the section instantaneous element 1a and the extended instantaneous element 2a is established, and the opening operation is instantaneously performed. In the circuit breaker 31a, since the terminal station 22a is abnormal, the release command 1 (section instantaneous elements 1a and 1b) is output only from the terminal station 22. However, when the terminal station 22a is abnormal, the own station bypass circuit 112 shown in FIG. The logical product of the section instantaneous element 1a and the bypass contact 112a of the bypass circuit 12 is established, and the opening operation is performed. As for the circuit breaker 32a, the release command 2 (the extended instantaneous element 2a and the extended time limit element 2d) is output from the terminal station 23a as described above, but the bypass circuit 111 is not turned on because the terminal station 23 is normal. The release command 1 remains off. For this reason, it is not opened by the logical product configuration of FIG.

以上のように、端末局22aが異常で、送電線41で事故が発生した場合、送電区間1のみ開放される。送電線42,43,44のいずれかで事故が発生した場合も、事故が発生した送電線に対応する送電区間2,3,4のいずれかのみが開放される。   As described above, when the terminal station 22a is abnormal and an accident occurs in the power transmission line 41, only the power transmission section 1 is opened. Even when an accident occurs in any of the power transmission lines 42, 43, 44, only one of the power transmission sections 2, 3, 4 corresponding to the power transmission line in which the accident has occurred is opened.

このことは他のパターン3〜15についても言え、いずれか一方の組の端末極が全局正常であれば、他の組の端末局のどれに異常が生じても、事故が発生した送電線に対応する送電区間1,2,3,4のいずれかのみが開放される。   This also applies to the other patterns 3 to 15, and if any one set of terminal poles is normal for all stations, no matter which of the other set of terminal stations is abnormal, Only one of the corresponding power transmission sections 1, 2, 3, 4 is opened.

(パターン16)
このパターン16では一方の組のすべての端末局22,23,24と他方の組の1台の端末局22aとが異常の場合である。
(Pattern 16)
In this pattern 16, all the terminal stations 22, 23, 24 in one set and one terminal station 22a in the other set are abnormal.

このような状態において、送電線41に事故が発生すると、演算局21は、同じ組の端末局22,23,24が異常であるため、自身が計測する送電線41,44の電気量情報を基に、送電線41〜送電線44の拡張区間での事故を検出し、この拡張区間両端の遮断器31,34aへ、それぞれ開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力する。演算局21aは、同じ組の端末局22aが異常であるため、隣接する端末局23aから送信される送電線42の電気量情報と演算局21a自身が計測する送電線41の電気量情報を基に送電線41〜送電線42の拡張区間での事故を検出し、この拡張区間両端の一方の遮断器31への開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力すると共に、他方の遮断器32aを遮断させるべく端末局23aへ故障遮断指令を出力する。端末局23aは、演算局21aから受信した故障遮断指令により遮断器32aへ開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力する。   In such a state, when an accident occurs in the power transmission line 41, the computing station 21 uses the electric quantity information of the power transmission lines 41 and 44 measured by itself because the terminal stations 22, 23 and 24 of the same set are abnormal. Based on this, an accident in the extended section of the power transmission line 41 to the power transmission line 44 is detected, and the opening command 1 (the extended instantaneous element 1c and the extended time limit element 1d) is output to the circuit breakers 31 and 34a at both ends of the extended section. . Since the computing station 21a is abnormal in the same terminal station 22a, the computing station 21a is based on the electrical quantity information of the transmission line 42 transmitted from the adjacent terminal station 23a and the electrical quantity information of the transmission line 41 measured by the computing station 21a itself. , An accident in the extended section of the transmission line 41 to the transmission line 42 is detected, and an opening command 2 (expanded instantaneous element 2a, extended time limit element 2d) to one of the circuit breakers 31 at both ends of the expanded section is output. A fault interrupt command is output to the terminal station 23a to shut off the circuit breaker 32a. The terminal station 23a outputs the release command 2 (the extended instantaneous element 2a and the extended time limit element 2d) to the circuit breaker 32a in response to the failure cutoff command received from the arithmetic station 21a.

ここで、遮断器31は、2組の演算局21,21aから開放指令1(拡張瞬時要素1c、拡張限時要素1d),2(拡張瞬時要素2a、拡張限時要素2d)が同時に出力されているため、図6における拡張限時要素1d,2dの論理積が成立し、限時を持って開放動作する。遮断器32aは、端末局23aの開放指令2(拡張瞬時要素2a、拡張限時要素2d)のみが出力されている。また、端末局23が異常であるため、自装置の自己、相互監視手段204により、自局バイパス回路111がオンしており、バイパス接点111bと拡張限時要素2dとの論理積が成立し、遮断器32aは、端末局23aのみの開放指令2(拡張限時要素2d)で限時を持って開放動作する。   Here, the circuit breaker 31 outputs the release commands 1 (the extended instantaneous element 1c and the extended time limit element 1d) and 2 (the extended instantaneous element 2a and the extended time limit element 2d) from the two sets of arithmetic stations 21 and 21a at the same time. Therefore, the logical product of the expansion time limit elements 1d and 2d in FIG. 6 is established, and the release operation is performed with a time limit. The circuit breaker 32a outputs only the opening command 2 (the extended instantaneous element 2a and the extended time limit element 2d) of the terminal station 23a. Further, since the terminal station 23 is abnormal, the own station bypass circuit 111 is turned on by its own device and the mutual monitoring means 204, the logical product of the bypass contact 111b and the expansion time limit element 2d is established, and the interruption is performed. The device 32a performs a release operation with a time limit by the release command 2 (expansion time limit element 2d) of only the terminal station 23a.

また、遮断器34aにも、演算局21から開放指令1が出力されているが、演算局21aが正常であるため、遮断制御回路106の論理積構成により開放しない。   Also, the opening command 1 is also output from the arithmetic station 21 to the circuit breaker 34a. However, since the arithmetic station 21a is normal, it is not opened due to the logical product configuration of the cutoff control circuit 106.

以上のように一方の組の全端末局22,23,24と他方の組のいずれかの端末局(パターン16では22a)が異常の場合、2組の端末局(パターン16では22,22a)が異常となる電気所(パターン16では12)が生じる。この場合、2組の端末局22,22aが異常となる電気所12では、この電気所に接続される送電線41,42の電気量を計測できないので、その中の送電線(例えば41)で事故が発生した場合、この送電線41を含む拡張された送電区間1〜2が開放される。同様に、送電線42で事故が発生した場合も、送電区間1〜2が開放される。送電線43で事故が発生した場合は、その両端における電気所13,14では、一方の組の端末局23,24が異常であるが他方の組の端末局23a、24aは正常であるため、両端の遮断器33,33aはそれぞれ図6で示したアンド条件が成立するので開動作し、送電区間3のみ開放される。送電線44で事故が発生した場合も、両端の電気所には11,14には正常な端末局が存在するので、両端の遮断器34,34aはそれぞれ図6で示したアンド条件が成立するので開動作し、送電区間4のみ開放される。   As described above, when all the terminal stations 22, 23, and 24 in one set and one of the other sets (22 in pattern 16) are abnormal, two sets of terminal stations (22 and 22a in pattern 16) An electric station (12 in pattern 16) is generated. In this case, in the electric station 12 where the two sets of terminal stations 22 and 22a are abnormal, the amount of electricity of the transmission lines 41 and 42 connected to the electric station cannot be measured. When an accident occurs, the extended power transmission sections 1 and 2 including the power transmission line 41 are opened. Similarly, when an accident occurs on the power transmission line 42, the power transmission sections 1 and 2 are opened. When an accident occurs in the power transmission line 43, the terminal stations 23 and 24 in one set are abnormal in the electric stations 13 and 14 at both ends, but the terminal stations 23a and 24a in the other set are normal. The circuit breakers 33 and 33a at both ends are opened because the AND condition shown in FIG. 6 is satisfied, and only the power transmission section 3 is opened. Even when an accident occurs in the power transmission line 44, since there are normal terminal stations at the electric stations 11 and 14 at both ends, the AND conditions shown in FIG. 6 are established for the circuit breakers 34 and 34a at both ends. Therefore, it opens and only the power transmission section 4 is opened.

これらの動作は、他の同種パターン17〜18及び22〜24でも同じであり、また、2組の端末局が異常となる電気所が複数となるパターン19〜21及び24〜27でも同じである。いずれの場合も、2組の端末局が異常となった電気所では、接続される送電線の電気量が計測できなくなるので、少なくとも一方の組の端末局が正常な電気所間まで区間を広げて、保護が行われる。   These operations are the same for the other similar patterns 17 to 18 and 22 to 24, and are the same for the patterns 19 to 21 and 24 to 27 in which two sets of terminal stations have a plurality of electrical stations. . In either case, at the electric station where two sets of terminal stations become abnormal, the amount of electricity in the connected transmission line cannot be measured, so at least one of the terminal stations expands the section between the normal electric stations. Protection.

(パターン28)
このパターン28は、両方の組の端末局22,22aが異常の電気所12がある場合である。
(Pattern 28)
This pattern 28 is a case where both sets of terminal stations 22 and 22a have an abnormal electric power station 12.

端末局22,22aが異常の場合、送電線41に事故が発生すると演算局21は、同じ組の端末局22が異常のため、これに隣接する端末局23から送信される送電線42の電気量情報と、演算局21自身が計測する送電線41の電気量情報を基に送電線41〜送電線42の拡張区間での事故を検出する。その結果、遮断器31への開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力すると共に、端末局23へ故障遮断指令を出力する。端末局23は、演算局21から受信した故障遮断指令により遮断器32aへ開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力する。演算局21aは、同じ組の端末局22aが異常のため、これに隣接する端末局23aから送信される送電線42の電気量情報と演算局21a自身が計測する送電線41の電気量情報を基に拡張された送電線41〜送電線42の事故を検出し、遮断器31への開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力すると共に、端末局23aへ故障遮断指令を出力する。端末局23aは、演算局21aから受信した故障遮断指令により遮断器32aへ開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力する。   When the terminal stations 22 and 22a are abnormal, if the accident occurs in the power transmission line 41, the arithmetic station 21 detects that the power of the power transmission line 42 transmitted from the adjacent terminal station 23 because the same set of terminal stations 22 is abnormal. An accident in the extended section of the power transmission line 41 to the power transmission line 42 is detected based on the quantity information and the electric quantity information of the power transmission line 41 measured by the computation station 21 itself. As a result, the release command 1 (expansion instantaneous element 1c, expansion time limit element 1d) to the circuit breaker 31 is output, and the fault interruption command is output to the terminal station 23. The terminal station 23 outputs the release command 1 (the extended instantaneous element 1c and the extended time limit element 1d) to the circuit breaker 32a in accordance with the failure cutoff command received from the arithmetic station 21. Since the same set of terminal stations 22a is abnormal, the arithmetic station 21a uses the electric quantity information of the power transmission line 42 transmitted from the adjacent terminal station 23a and the electric quantity information of the power transmission line 41 measured by the arithmetic station 21a itself. An accident in the power transmission line 41 to the power transmission line 42 expanded based on the detection is detected, and an opening command 2 (expansion instantaneous element 2a, expansion time limit element 2d) is output to the circuit breaker 31, and a fault interruption command is issued to the terminal station 23a. Output. The terminal station 23a outputs the release command 2 (the extended instantaneous element 2a and the extended time limit element 2d) to the circuit breaker 32a in response to the failure cutoff command received from the arithmetic station 21a.

このように遮断器31は、演算局21,21aにより開放指令1(拡張瞬時要素1c、拡張限時要素1d),2(拡張瞬時要素2a、拡張限時要素2d)が同時に出力され、また、遮断器32aは、端末局23,23aにより開放指令1(拡張瞬時要素1c、拡張限時要素1d),2(拡張瞬時要素2a、拡張限時要素2d)が同時に出力されているため、それぞれ拡張限時要素1dと拡張限時要素2dとの論理積が成立し、限時を持って開放動作する。   In this way, the circuit breaker 31 outputs the release commands 1 (expansion instantaneous element 1c, expansion time limit element 1d) and 2 (expansion instantaneous element 2a, expansion time limit element 2d) simultaneously by the arithmetic stations 21, 21a. 32a, since the release commands 1 (expansion instantaneous element 1c and expansion time limit element 1d) and 2 (expansion instantaneous element 2a and expansion time limit element 2d) are output simultaneously by the terminal stations 23 and 23a, the expansion time limit element 1d and The logical product with the extended time limit element 2d is established, and the release operation is performed with a time limit.

以上、説明したように2組の端末局22,22aが異常となる電気所12では、この電気所に接続される送電線41,42の電気量を計測できないので、その中の送電線(例えば41)で事故が発生した場合、この送電線41を含む送電区間1〜2が開放される。同様に、送電線42で事故が発生した場合も、送電区間1〜2が開放される。送電線43で事故が発生した場合は、その両端における電気所13,14では、それぞれ両方の組の端末局23及び23a、24及び24aが正常であるため、両端の遮断器33,33aはそれぞれ図6で示したアンド条件が成立するので開動作し、送電区間3のみ開放される。送電線44で事故が発生した場合も、両端の電気所には11,14は正常な端末局が存在するので、両端の遮断器34,34aはそれぞれ図6で示したアンド条件が成立するので開動作し、送電区間4のみ開放される。   As described above, in the electric station 12 where the two sets of terminal stations 22 and 22a are abnormal, the amount of electricity of the transmission lines 41 and 42 connected to the electric station cannot be measured. When an accident occurs in 41), the power transmission sections 1 and 2 including the power transmission line 41 are opened. Similarly, when an accident occurs on the power transmission line 42, the power transmission sections 1 and 2 are opened. When an accident occurs in the power transmission line 43, since both sets of terminal stations 23 and 23 a, 24 and 24 a are normal at the electric stations 13 and 14 at both ends, the circuit breakers 33 and 33 a at both ends are respectively Since the AND condition shown in FIG. 6 is satisfied, the opening operation is performed and only the power transmission section 3 is opened. Even if an accident occurs in the power transmission line 44, since the normal terminal stations 11 and 14 exist at the electric stations at both ends, the AND conditions shown in FIG. 6 are established for the circuit breakers 34 and 34a at both ends. The opening operation is performed and only the power transmission section 4 is opened.

これらの動作は、他の同種パターン29〜30でも同じであり、また、2組の端末局が異常となる電気所が複数となるパターン31〜34でも同じである。いずれの場合も、2組の端末局が異常となった電気所では、接続される送電線の電気量が計測できなくなるので、両方の組の端末局が正常な電気所間まで区間を広げて、保護が行われる。   These operations are the same for the other similar patterns 29 to 30, and are the same for the patterns 31 to 34 in which there are a plurality of electrical stations where the two sets of terminal stations become abnormal. In either case, at the electric station where two sets of terminal stations are abnormal, the amount of electricity in the connected transmission line cannot be measured, so both sets of terminal stations can extend the section between normal electric stations. , Protection is done.

(パターン35)
このパターン35は、一方の組の電気所12における1台の端末局22と、隣接する他の電気所13における他方の組の1台の端末局23aとが異常の場合である。
(Pattern 35)
This pattern 35 is a case where one terminal station 22 in one set of electric stations 12 and one terminal station 23a of the other set in another adjacent electric station 13 are abnormal.

このように端末局22,23aが異常の場合、送電線41に事故が発生すると演算局21は、同じ組の端末局22が異常のため、これに隣接する同じ組の端末局23から送信される送電線42の電気量情報と、演算局21自身が計測する送電線41の電気量情報を基に、送電線41〜送電線42の拡張区間での事故を検出する。その結果、遮断器31への開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力すると共に、端末局23へ故障遮断指令を出力する。端末局23は、演算局21から受信した故障遮断指令により遮断器32aへ開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力する。演算局21aは、同じ組の端末局22aから送信される送電線41の電気量情報と演算局21a自身が計測する送電線41の電気量情報を基に送電線41の事故を検出する。その結果、遮断器31への開放指令2(区間瞬時要素2b,2c)を出力し、端末局22aへ故障遮断指令を出力する。故障遮断指令を受信した端末局22aは、遮断器31aへ開放指令2(区間瞬時要素2b,2c)を出力する。   When the terminal stations 22 and 23a are abnormal in this way, when an accident occurs in the power transmission line 41, the computation station 21 is transmitted from the same set of terminal stations 23 adjacent thereto because the same set of terminal stations 22 is abnormal. Accidents in the extended sections of the transmission lines 41 to 42 are detected based on the information on the amount of electricity in the transmission line 42 and the amount of electricity in the transmission line 41 measured by the computing station 21 itself. As a result, the release command 1 (expansion instantaneous element 1c, expansion time limit element 1d) to the circuit breaker 31 is output, and the fault interruption command is output to the terminal station 23. The terminal station 23 outputs the release command 1 (the extended instantaneous element 1c and the extended time limit element 1d) to the circuit breaker 32a in accordance with the failure cutoff command received from the arithmetic station 21. The computing station 21a detects an accident in the transmission line 41 based on the electrical quantity information of the transmission line 41 transmitted from the same set of terminal stations 22a and the electrical quantity information of the transmission line 41 measured by the computing station 21a itself. As a result, an opening command 2 (interval instantaneous elements 2b and 2c) to the circuit breaker 31 is output, and a failure interrupting command is output to the terminal station 22a. The terminal station 22a that has received the failure cutoff command outputs the release command 2 (section instantaneous elements 2b and 2c) to the circuit breaker 31a.

ここで、遮断器31は、演算局21,21aにより開放指令1(拡張瞬時要素1c、拡張限時要素1d),2(区間瞬時要素2b,2c)が同時に出力されているため、拡張瞬時要素1cと区間瞬時要素2cとの論理積が成立し、瞬時に開放動作する。遮断器31aは、端末局22aのみから開放指令2(区間瞬時要素2b,2c)が出力されているが、端末局22が異常となっているので、自己、相互監視手段204により、自局バイパス回路111がオンになっている。このため、遮断器31aは、端末局22aのみの開放指令2(区間瞬時要素2c)とバイパス接点111aとの論理積が成立し、瞬時に開放動作する。さらに、遮断器32aは、端末局23のみ開放指令1(拡張瞬時要素1c、拡張限時要素1d)が出力されており、端末局23aが異常のため、自局バイパス回路112がオンになっているので、遮断器32aは、拡張限時要素1dとバイパス接点112bとの論理積が成立し、限時を持って開放制御される。   Here, since the circuit breaker 31 outputs the release commands 1 (extended instantaneous element 1c, extended time limit element 1d) and 2 (interval instantaneous elements 2b, 2c) simultaneously by the arithmetic stations 21, 21a, the extended instantaneous element 1c AND of the section instantaneous element 2c is established, and the opening operation is instantaneously performed. The circuit breaker 31a outputs the release command 2 (interval instantaneous elements 2b and 2c) only from the terminal station 22a. Circuit 111 is on. For this reason, the circuit breaker 31a establishes a logical product of the opening command 2 (section instantaneous element 2c) of the terminal station 22a only and the bypass contact 111a, and opens immediately. Further, the circuit breaker 32a outputs the release command 1 (extended instantaneous element 1c, extended time limit element 1d) only to the terminal station 23, and the terminal station 23a is abnormal, so that the local station bypass circuit 112 is turned on. Therefore, the circuit breaker 32a is logically controlled by the expansion time limit element 1d and the bypass contact 112b, and is controlled to be opened with a time limit.

この場合、送電区間1の両端遮断器31,31aと送電区間2の片側の遮断器32aが開放されるため、送電経路としては、送電区間1〜2が開放される。送電線42で事故が発生した場合、その両端遮断器32,32aのみが遮断されるので送電区間2のみ開放される。送電線43で事故が発生した場合、送電区間2の片側遮断器32と送電区間3の両端遮断器33,33aとが開放動作するため、送電経路としては、送電区間2〜3が開放される。送電線44で事故が発生した場合、その両端遮断器34,34aが開放動作するため、送電区間4のみ開放される。   In this case, since both-end circuit breakers 31 and 31a of the power transmission section 1 and the circuit breaker 32a on one side of the power transmission section 2 are opened, the power transmission sections 1 and 2 are opened as the power transmission path. When an accident occurs in the power transmission line 42, only the both-end circuit breakers 32 and 32a are cut off, so that only the power transmission section 2 is opened. When an accident occurs in the power transmission line 43, the one-side circuit breaker 32 in the power transmission section 2 and the both-end circuit breakers 33 and 33a in the power transmission section 3 are opened, so the power transmission sections 2 to 3 are opened as a power transmission path. . When an accident occurs in the power transmission line 44, both end circuit breakers 34 and 34a are opened, so that only the power transmission section 4 is opened.

これに対し、パターン36のように、一方の組の電気所12における1台の端末局22と、健全区間を介した他の電気所14における他方の組の1台の端末局24aとが異常の場合は、どの送電線41〜44に事故が生じても、この事故が発生した送電線両端の遮断器がそれぞれ開放動作する。したがって、送電線41の事故には送電区間1が開放され、送電線42の事故には送電区間2が開放され、送電線43の事故には送電区間3が開放され、送電線44の事故には送電区間4が開放される。   On the other hand, as shown in pattern 36, one terminal station 22 in one set of electrical stations 12 and one terminal station 24a in the other set in other electrical stations 14 through a healthy section are abnormal. In this case, even if an accident occurs in any of the transmission lines 41 to 44, the circuit breakers at both ends of the transmission line in which the accident has occurred are opened. Therefore, the power transmission section 1 is opened for the power transmission line 41 accident, the power transmission section 2 is opened for the power transmission line 42 accident, the power transmission section 3 is opened for the power transmission line 43 accident, and the power transmission line 44 accident occurs. The power transmission section 4 is opened.

これらの関係は、他のパターン37〜40についても同じである。   These relationships are the same for the other patterns 37-40.

(パターン41)
このパターン41は、一方の組の1台の端末局22と、他方の組の2台の端末局22a,23aとが異常の場合である。
(Pattern 41)
This pattern 41 is a case where one terminal station 22 in one set and the two terminal stations 22a and 23a in the other set are abnormal.

端末局22と端末局22a,23aとが異常の場合、送電線41に事故が発生すると、演算局21は、同じ組の端末局22が異常のため、これに隣接する同じ組の端末局23から送信される送電線42の電気量情報と、演算局21自身が計測する送電線41の電気量情報を基に、拡張された送電線41〜送電線42の事故を検出する。その結果、遮断器31への開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力し、端末局23へ故障遮断指令を出力する。端末局23は、演算局21から受信した故障遮断指令により遮断器32aへ開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力する。演算局21aは、同じ組の端末局22a,23aが異常のため、これらに隣接する同じ組の端末局24aから送信される送電線43の電気量情報と、演算局21a自身が計測する送電線41の電気量情報を基に送電線41〜送電線43の拡張区間の事故を検出する。その結果、遮断器31への開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力すると共に、端末局24aへ故障遮断指令を出力する。端末局24aは、演算局21aから受信した故障遮断指令により遮断器33aへ開放指令2(拡張瞬時要素2a、拡張限時要素2d)を出力する。   If the terminal station 22 and the terminal stations 22a and 23a are abnormal and an accident occurs in the power transmission line 41, the arithmetic station 21 has the same set of terminal stations 23 adjacent to this because the same set of terminal stations 22 is abnormal. Accidents of the extended power transmission line 41 to power transmission line 42 are detected based on the information on the amount of electricity of the power transmission line 42 transmitted from and the information on the amount of electricity of the power transmission line 41 measured by the computing station 21 itself. As a result, an opening command 1 (extended instantaneous element 1c, extended time limit element 1d) to the circuit breaker 31 is output, and a failure interrupting command is output to the terminal station 23. The terminal station 23 outputs the release command 1 (the extended instantaneous element 1c and the extended time limit element 1d) to the circuit breaker 32a in accordance with the failure cutoff command received from the arithmetic station 21. Since the computation station 21a is abnormal in the same set of terminal stations 22a and 23a, the electrical quantity information of the power transmission line 43 transmitted from the same set of terminal stations 24a adjacent thereto and the transmission line measured by the computation station 21a itself. An accident in the extended section of the power transmission line 41 to the power transmission line 43 is detected based on the electric quantity information 41. As a result, an opening command 2 (extended instantaneous element 2a, extended time limit element 2d) to the circuit breaker 31 is output, and a fault interrupting command is output to the terminal station 24a. The terminal station 24a outputs the release command 2 (the extended instantaneous element 2a and the extended time limit element 2d) to the circuit breaker 33a according to the failure cutoff command received from the arithmetic station 21a.

ここで、遮断器31は、演算局21,21aにより開放指令1(拡張瞬時要素1c、拡張限時要素1d),2(拡張瞬時要素2a、拡張限時要素2d)が同時に出力されているため、拡張限時要素1dと拡張限時要素2dとの論理積が成立し、限時を持って開放制御される。遮断器32aは、端末局23のみ開放指令1(拡張瞬時要素1c、拡張限時要素1d)が出力されており、端末局23aが異常となっているため、自局バイパス回路112がオンになるので、拡張限時要素1dとバイパス接点112bとの論理積が成立し、限時を持って開放制御される。遮断器33aは、端末局24aのみ開放指令2(拡張瞬時要素2a、拡張限時要素2d)が出力されているが、端末局24が正常であるため、バイパス回路111がオンせず、論理積構成により開放しない。   Here, since the circuit breakers 31 output the release commands 1 (expanded instantaneous element 1c, extended time limit element 1d) and 2 (expanded instantaneous element 2a, extended time limit element 2d) simultaneously by the arithmetic stations 21, 21a, A logical product of the time limit element 1d and the extended time limit element 2d is established, and release control is performed with a time limit. Since the circuit breaker 32a outputs the release command 1 (extended instantaneous element 1c, extended time limit element 1d) only to the terminal station 23 and the terminal station 23a is abnormal, the local station bypass circuit 112 is turned on. The logical product of the expansion time limit element 1d and the bypass contact 112b is established, and the opening control is performed with a time limit. The circuit breaker 33a outputs the release command 2 (extended instantaneous element 2a, extended time limit element 2d) only to the terminal station 24a, but since the terminal station 24 is normal, the bypass circuit 111 is not turned on, and the logical product configuration Does not open.

以上のように、端末局22と端末局22a,23aが異常で、送電線41で事故が発生した場合、遮断器31,32aが開放動作するので、送電区間1〜2が開放される。送電線42で事故が発生した場合も、同様の動作で送電区間1〜2が開放される。送電線43で事故が発生した場合は、遮断器33,33aのみが開放動作するので、送電区間3のみ開放される。送電線44で事故が発生した場合、遮断器34,34aのみが開放動作するので、送電区間4のみ開放される。   As described above, when the terminal station 22 and the terminal stations 22a and 23a are abnormal and an accident occurs in the power transmission line 41, the circuit breakers 31 and 32a are opened, so that the power transmission sections 1 and 2 are opened. Even when an accident occurs in the power transmission line 42, the power transmission sections 1 and 2 are opened by the same operation. When an accident occurs in the power transmission line 43, only the circuit breakers 33 and 33a are opened, so that only the power transmission section 3 is opened. When an accident occurs on the power transmission line 44, only the circuit breakers 34 and 34a are opened, so that only the power transmission section 4 is opened.

他のパターン42〜58は、いずれも一方の組の1台の端末局と、他方の組の2台の端末局とが異常の場合の組み合わせであり、異常発生端末局の位置により開放される送電区間は異なるものの、保護の考えからはパターン41と同じである。   The other patterns 42 to 58 are combinations when one terminal station of one set and two terminal stations of the other set are abnormal, and are released depending on the position of the terminal station where the abnormality occurred. Although the power transmission section is different, it is the same as the pattern 41 from the viewpoint of protection.

(パターン59)
このパターン59は、一方の組の2台の端末局22,23と、他方の組の2台の端末局23a,24aとが異常の場合である。
(Pattern 59)
The pattern 59 is a case where the two terminal stations 22 and 23 in one set and the two terminal stations 23a and 24a in the other set are abnormal.

端末局22,23と端末局23a,24aとが異常の場合、送電線41に事故が発生すると、演算局21は、同じ組の端末局22,23が異常のため、これに隣接する同じ組の端末局24から送信される送電線43の電気量情報と、演算局21自身が計測する送電線41の電気量情報を基に、送電線41〜送電線43の拡張区間の事故を検出する。その結果、遮断器31への開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力し、端末局24へ故障遮断指令を出力する。端末局24は、演算局21から受信した故障遮断指令により遮断器33aへ開放指令1(拡張瞬時要素1c、拡張限時要素1d)を出力する。演算局21aは、同じ組の端末局22aから送信される送電線41の電気量情報と、演算局21a自身が計測する送電線41の電気量情報を基に送電線41の事故を検出する。その結果、遮断器31への開放指令2(区間瞬時要素2b,2c)を出力すると共に、端末局22aへ故障遮断指令を出力する。端末局22aは、演算局21aから受信した故障遮断指令により遮断器31aへ開放指令2(区間瞬時要素2b,2c)を出力する。   If the terminal stations 22 and 23 and the terminal stations 23a and 24a are abnormal and an accident occurs in the power transmission line 41, the arithmetic station 21 detects that the same set of terminal stations 22 and 23 is abnormal, and therefore the same set adjacent to the same set. Accidents in the extended sections of the transmission lines 41 to 43 are detected based on the information on the amount of electricity of the transmission line 43 transmitted from the terminal station 24 and the amount of electricity on the transmission line 41 measured by the arithmetic station 21 itself. . As a result, the release command 1 (expansion instantaneous element 1c, expansion time limit element 1d) to the circuit breaker 31 is output, and the fault interruption command is output to the terminal station 24. The terminal station 24 outputs the release command 1 (the extended instantaneous element 1c and the extended time limit element 1d) to the circuit breaker 33a in response to the failure cutoff command received from the arithmetic station 21. The computation station 21a detects an accident in the transmission line 41 based on the electrical quantity information of the power transmission line 41 transmitted from the same terminal station 22a and the electrical quantity information of the transmission line 41 measured by the computation station 21a itself. As a result, an opening command 2 (interval instantaneous elements 2b and 2c) to the circuit breaker 31 is output, and a failure interrupting command is output to the terminal station 22a. The terminal station 22a outputs the release command 2 (section instantaneous elements 2b and 2c) to the circuit breaker 31a in response to the failure cutoff command received from the arithmetic station 21a.

ここで、遮断器31は、演算局21,21aにより開放指令1(拡張瞬時要素1c、拡張限時要素1d),2(区間瞬時要素2b,2c)が同時に出力されているため、拡張瞬時要素1cと区間瞬時要素2cとの論理積が成立し、瞬時に開放制御される。遮断器31aは、端末局22aのみ開放指令2(区間瞬時要素2b,2c)が出力されているが、端末局22が異常であるため、自局バイパス回路111がオンとなり、区間瞬時要素2cとバイパス接点111aとの論理積が成立し、瞬時に開放制御される。遮断器33aは、端末局24のみ開放指令1(拡張瞬時要素1c、拡張限時要素1d)が出力されているが、端末局24aが異常であるため、自局バイパス回路112がオンとなり、拡張限時要素1dとバイパス接点112bとの論理積が成立し、限時を持って開放制御される。   Here, since the circuit breaker 31 outputs the release commands 1 (extended instantaneous element 1c, extended time limit element 1d) and 2 (interval instantaneous elements 2b, 2c) simultaneously by the arithmetic stations 21, 21a, the extended instantaneous element 1c AND of the section instantaneous element 2c is established and the opening control is instantaneously performed. The circuit breaker 31a outputs the release command 2 (interval instantaneous elements 2b and 2c) only to the terminal station 22a. However, since the terminal station 22 is abnormal, the local station bypass circuit 111 is turned on, A logical product with the bypass contact 111a is established, and the opening control is instantaneously performed. The circuit breaker 33a outputs the release command 1 (extended instantaneous element 1c, expansion time limit element 1d) only to the terminal station 24. However, since the terminal station 24a is abnormal, the local station bypass circuit 112 is turned on and the expansion time limit A logical product of the element 1d and the bypass contact 112b is established, and the opening control is performed with a time limit.

以上のように、送電区間1の両端遮断器31,31aと、送電区間3の片側遮断器33aが開放動作するため、送電経路としては、送電区間1〜3が開放される。送電線42で事故が発生した場合、遮断器32,33aが開放動作するので、送電区間2〜3が開放される。送電線43で事故が発生した場合も、遮断器32,33aが開放動作するので、送電区間2〜3が開放される。送電線44で事故が発生した場合は、送電区間2の片側の遮断器32と送電区間4の両端遮断器34,34aが開放されるため、送電経路としては、送電区間2〜4が開放される。   As described above, since the both-end circuit breakers 31 and 31a in the power transmission section 1 and the one-side circuit breaker 33a in the power transmission section 3 are opened, the power transmission sections 1 to 3 are opened as the power transmission path. When an accident occurs in the power transmission line 42, the circuit breakers 32 and 33a are opened, so that the power transmission sections 2 to 3 are opened. Even when an accident occurs in the power transmission line 43, the circuit breakers 32 and 33a are opened, so that the power transmission sections 2 to 3 are opened. When an accident occurs on the power transmission line 44, the circuit breaker 32 on one side of the power transmission section 2 and the circuit breakers 34, 34a on the power transmission section 4 are opened, so that the power transmission sections 2 to 4 are opened as power transmission paths. The

他のパターン60〜64は、いずれも一方の組の2台の端末局と、他方の組の2台の端末局とが異常の場合の組み合わせであり、異常発生端末局の位置により開放される送電区間は異なるものの、保護の考えからはパターン59と同じである。   The other patterns 60 to 64 are combinations when the two terminal stations of one set and the two terminal stations of the other set are abnormal, and are released depending on the position of the abnormal terminal station. Although the power transmission section is different, it is the same as the pattern 59 from the viewpoint of protection.

このように、二組の保護系60,60aを備え、それぞれの故障遮断出力1,2と装置の自己・相互監視手段による故障遮断出力バイパス回路11,12を論理積で構成することによって、端末局異常時においても送電線の保護機能を維持することができる。   In this way, by providing two sets of protection systems 60, 60a, and by configuring the respective fault cutoff outputs 1, 2 and the fault cutoff output bypass circuits 11, 12 by means of the device's self / mutual monitoring means by logical product, the terminal Even when the station is abnormal, the power transmission line protection function can be maintained.

本発明によるネットワーク送電保護装置の一実施の形態を説明する系統構成図である。It is a system configuration | structure figure explaining one Embodiment of the network power transmission protection apparatus by this invention. 同上一実施の形態に用いられる演算局の構成を説明するブロック図である。It is a block diagram explaining the structure of the arithmetic station used for one embodiment same as the above. 同上一実施の形態に用いられる端末局の構成を説明するブロック図である。It is a block diagram explaining the structure of the terminal station used for one embodiment same as the above. 同上一実施の形態における2組の演算局を有する電気所での遮断制御回路との関係を説明するブロック図である。It is a block diagram explaining the relationship with the interruption | blocking control circuit in the electric station which has two sets of arithmetic stations in one Embodiment same as the above. 同上一実施の形態における2組の端末局を有する電気所での遮断制御回路との関係を説明するブロック図である。It is a block diagram explaining the relationship with the interruption | blocking control circuit in the electric station which has two sets of terminal stations in one Embodiment same as the above. 同上一実施の形態における遮断制御回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the interruption | blocking control circuit in one Embodiment same as the above. 従来技術を説明する系統構成図である。It is a system configuration | structure figure explaining a prior art.

符号の説明Explanation of symbols

1、2 遮断指令
11,12,13,14 電気所
21,21a 演算局
22,22a,23,23a,24,24a 端末局
41,42,43,44 送電線
60,60a 保護系
71 電源系統
101,201 計測手段
102 故障区間検知手段
103,203 通信手段
104,204 自己・相互監視手段
1, 2, 13, 14 Electric station 21, 21a Arithmetic station 22, 22a, 23, 23a, 24, 24a Terminal station 41, 42, 43, 44 Transmission line 60, 60a Protection system 71 Power supply system 101 , 201 Measuring means 102 Failure section detecting means 103, 203 Communication means 104, 204 Self / mutual monitoring means

Claims (1)

電源系統に接続された電気所を含む複数の電気所を、両端に遮断器を設けた送電線によりそれぞれ接続してループ状に構成した送電系統を保護するネットワーク送電保護装置であって、
前記各送電線の両端にそれぞれ設けられ、対応する送電線に流れる電気量を個別に計測する計測手段と、
前記複数の電気所の一つに設けられた2組の演算局、及び他の電気所に設けられたそれぞれ2組の端末局を有し、これら各組毎に通信手段により前記演算局及び複数の端末局相互間で、前記計測手段により計測された電気量情報を含む各種情報の授受が可能な2組の保護系と、
これら2組の保護系の前記演算局及び各端末局に設けられ、それぞれ自局及び他局の異常有無を相互に監視する自己・相互監視手段と、
前記電気所に、前記遮断器毎に設けられ、対応する遮断器を開動作させる遮断制御回路と、
前記2組の保護系の各演算局にそれぞれ設けられ、前記各計測手段により計測された各送電線の両端の電気量情報を前記各保護系別に対応する端末局から収集し、これら各送電線両端の電気量情報から送電線毎の故障の有無を前記保護系別に検出し、故障有りの場合、故障区間両端の遮断器を遮断させる遮断指令を各電気所の遮断制御回路に、同じ保護系の自局又は他の端末局を介して出力する故障区間検知手段とを備え、
この故障区間検知手段は、前記自己・相互監視手段がいずれかの端末局の異常を検出すると、検出された異常端末局を擁する電気所に接続された複数の送電線を直列な一つの区間として拡張し、この拡張された区間の両端電気量に基づいて該当する拡張区間での故障の有無を前記各保護系別に判定する区間拡張検知機能を有し、
かつ、各保護系から遮断対象の遮断器に対して出力される遮断指令は、前記遮断対象の遮断器が前記拡張区間の端部に位置するか否かを各保護系別に判断し、前記拡張区間の端部に位置すると判断した保護系は、拡張瞬時要素及び拡張限時要素の遮断指令を出力し、前記拡張区間では無いと判断した保護系は、区間瞬時要素の遮断指令を出力し、
前記遮断制御回路は、自電気所に設けられた2組の保護系から出力される前記遮断指令のうち、一方の組の区間瞬時要素と他方の組の拡張瞬時要素又は他方の組の区間瞬時要素との論理積、一方の組の区間瞬時要素又は一方の組の拡張瞬時要素と他方の組の区間瞬時要素との論理積、一方の組の拡張限時要素と他方の組の拡張限時要素との論理積とをそれぞれ構成し、これら全論理積の論理和をとって対応する遮断器を開動作させ、かつ前記2組の保護系毎に、前記遮断指令の各要素に対するバイパス回路をそれぞれ有し、前記自己・相互監視手段により自電気所に設けられた2組の保護系のいずれか一方の異常が検出されたときは、異常保護系による遮断指令をバイパスさせ、自電気所に設けられた2組の保護系がそれぞれ異常の場合は、異常保護系による遮断指令のバイパスを行わないように構成した
ことを特徴とするネットワーク送電保護装置。
A network power transmission protection device for protecting a power transmission system configured in a loop by connecting a plurality of electric power stations including an electric power station connected to a power supply system by power transmission lines provided with circuit breakers at both ends,
Measuring means that is provided at both ends of each of the transmission lines and individually measures the amount of electricity flowing through the corresponding transmission line;
There are two sets of arithmetic stations provided in one of the plurality of electric stations, and two sets of terminal stations provided in other electric stations, and the arithmetic station and the plurality of terminal stations are provided by communication means for each of these sets. Two sets of protection systems capable of exchanging various types of information including the electrical quantity information measured by the measuring means between the terminal stations of
Self-mutual monitoring means for monitoring the presence / absence of abnormality of the own station and other stations, provided in the arithmetic station and each terminal station of these two sets of protection systems,
A breaker control circuit that is provided for each breaker in the electrical station and opens the corresponding breaker; and
Collected from the terminal station corresponding to each protection system is the electrical quantity information of both ends of each transmission line provided by each calculation station of the two sets of protection systems and measured by the measurement means. The presence or absence of failure for each transmission line is detected from the electrical quantity information at both ends for each protection system, and when there is a failure, the same protection system is used for the shutdown control circuit at each electric station to send a shutdown command to shut off the circuit breakers at both ends of the failure section Fault zone detection means for outputting via its own station or other terminal station,
When the self / mutual monitoring means detects an abnormality in one of the terminal stations, the failure section detection means uses a plurality of power transmission lines connected to the electric station having the detected abnormal terminal station as one section in series. Expanded, having a section expansion detection function for determining the presence or absence of a failure in the corresponding expanded section based on the both-end electricity quantity of the expanded section for each protection system,
In addition, the interruption command output from each protection system to the circuit breaker to be interrupted determines whether or not the circuit breaker to be interrupted is located at the end of the extension section for each protection system, and The protection system determined to be located at the end of the section outputs a shutoff command for the extended instantaneous element and the expansion time limit element, and the protection system determined to be not the extended section outputs a shutoff command for the section instantaneous element,
The shut-off control circuit includes one set of section instantaneous elements and the other set of extended instantaneous elements or the other set of section instantaneouss among the shut-off commands output from two sets of protection systems provided at the self-electricity station. Logical AND of one set of interval instantaneous elements or one set of extended instantaneous elements and the other set of interval instantaneous elements, one set of extended time limit elements and the other set of extended time limit elements And the corresponding circuit breaker is opened by opening the corresponding circuit breaker, and each of the two protection systems has a bypass circuit for each element of the shut-off command. When an abnormality in either one of the two protection systems provided at the self-electricity station is detected by the self / mutual monitoring means, the shut-off command by the abnormality protection system is bypassed and provided at the self-electricity station. If the two protection systems are abnormal, Network transmission protection apparatus characterized by being configured so as not to bypass the blocking command by normal protection system.
JP2008259786A 2008-10-06 2008-10-06 Network power transmission protection device Expired - Fee Related JP4960328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259786A JP4960328B2 (en) 2008-10-06 2008-10-06 Network power transmission protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259786A JP4960328B2 (en) 2008-10-06 2008-10-06 Network power transmission protection device

Publications (2)

Publication Number Publication Date
JP2010093901A JP2010093901A (en) 2010-04-22
JP4960328B2 true JP4960328B2 (en) 2012-06-27

Family

ID=42256063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259786A Expired - Fee Related JP4960328B2 (en) 2008-10-06 2008-10-06 Network power transmission protection device

Country Status (1)

Country Link
JP (1) JP4960328B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103537A (en) * 1982-12-02 1984-06-15 Mitsubishi Electric Corp Canned motor
JP2006050813A (en) * 2004-08-05 2006-02-16 Toshiba Corp Digital relay device
JP5044328B2 (en) * 2007-08-29 2012-10-10 株式会社東芝 Network power transmission protection device

Also Published As

Publication number Publication date
JP2010093901A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
EP3001535B1 (en) Protection control system for process bus, merging unit, and computation device
CN102906847B (en) The earth detector of function is stoped with involuntary maneuver
EP2206208B1 (en) Differential protection method, system and device
KR102005080B1 (en) Automatic control system capable of detecting and recovering faulty power
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
KR101064508B1 (en) fault location automatic separation method of terminal for distributing automation
JP5044328B2 (en) Network power transmission protection device
JP2013062974A (en) Protection relay system
JP5208684B2 (en) Ground fault protection relay system
JP4960328B2 (en) Network power transmission protection device
JP5645535B2 (en) Protective relay system for multi-terminal transmission systems
JP2005312180A (en) Digital protective relay system
JPWO2004042883A1 (en) Protective relay
JP2009055765A (en) Protective device for network power transmission
KR101105302B1 (en) Overhead loop power distribution system
JPH0847165A (en) Bidirectional protection relaying system and bidirectional protection distance relay in the power line
JP2009055764A (en) Network power transmission protector
KR102330825B1 (en) System for detecting fault of ring main unit
JP2009022063A (en) Power transmission line protection system, and protection relay device
JP2011015517A (en) Protection system of distribution line
JP2008278662A (en) Bus protective relaying device
JP6698414B2 (en) Power transmission line protection system
JP6645759B2 (en) Current differential relay system
JP2005333777A (en) Control device provided with systematically interconnected protection function of sog switch
JP2013093963A (en) Distribution automation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4960328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees