JP4957248B2 - プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池 - Google Patents

プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池 Download PDF

Info

Publication number
JP4957248B2
JP4957248B2 JP2006545007A JP2006545007A JP4957248B2 JP 4957248 B2 JP4957248 B2 JP 4957248B2 JP 2006545007 A JP2006545007 A JP 2006545007A JP 2006545007 A JP2006545007 A JP 2006545007A JP 4957248 B2 JP4957248 B2 JP 4957248B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
proton conductive
proton
polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006545007A
Other languages
English (en)
Other versions
JPWO2006051943A1 (ja
Inventor
隆行 鈴木
隆人 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006545007A priority Critical patent/JP4957248B2/ja
Publication of JPWO2006051943A1 publication Critical patent/JPWO2006051943A1/ja
Application granted granted Critical
Publication of JP4957248B2 publication Critical patent/JP4957248B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Description

本発明は、プロトン伝導性電解質膜及びプロトン伝導性電解質膜の製造方法に関し、更にはそれらプロトン伝導性電解質膜を燃料電池用電解質膜として用いる固体高分子型燃料電池に関する。
燃料電池は水素と酸素を反応させて電気を発生させる発電装置であり、発電反応で水しか生成されないという優れた性質を有しているので、温暖化やオゾン層破壊といった地球環境問題に対処する省エネルギーの技術として注目されている。
燃料電池には固体高分子型燃料電池、りん酸型燃料電池、溶融炭酸塩型燃料電池、固体酸化物型燃料電池の4種類がある。これらの中でも、固体高分子型燃料電池は作動温度が低い、電解質が固体(高分子の薄膜)であるという利点がある。固体高分子型燃料電池は、水素を直接用いる水素燃料型、メタノールを改質器を用いて水素に変換する改質型、改質器を用いずに直接メタノールを使用する直接メタノール型(DMFC、Direct Methanol Polymer Fuel Cell)の三つに大別される。DMFCは改質器が不要であるため小型、軽量化が可能であり、来るべきユビキタス社会に向けた個人用の携帯情報端末(PDA、Personal Digital Assistance)等の電池や専用バッテリーとして、その実用化が期待されている。
固体高分子型燃料電池の主な構成要素は、電極、触媒、電解質、セパレータである。電解質として高分子のプロトン伝導性電解質膜を使用する。プロトン伝導性電解質膜はイオン交換膜や湿度センサー等の用途に用いられているが、近年、固体高分子型燃料電池における電解質としての用途においても注目を集めている。例えば、デュポン社のナフィオン(登録商標)を代表とするスルホン酸基含有フッ素樹脂膜は、携帯用燃料電池における電解質としての利用が検討されている。
従来より知られているこれらのフッ素樹脂系プロトン伝導性膜は、メタノール透過性が大きいという欠点がある。プロトン伝導性膜をDMFC等の固体高分子型燃料電池の新たな用途において実用化を図るには、プロトン伝導性が高く、メタノール透過性が低い膜の開発が不可欠である。また、特にDMFCとしての性能向上を図る上では薄膜化が必須であり、膜の物理的強度も要求される。
そこで、空孔を有する多孔質膜にプロトン伝導性ポリマーを含浸させて、プロトン伝導性膜を得る方法が種々提案されている。
寸法安定性、取扱適性が改良され、そして同一のポリマー及び匹敵する厚さの従来の未強化のイオン交換膜に比較して、イオン伝導性及び反応体の気体のクロスオーバーが弱体化されていないイオン交換膜を提供することを目的に、ランダムに配向した個々の繊維で形成された多孔質支持体内にイオン伝導性ポリマーが埋め込まれている複合膜が開示されている(例えば、特許文献1参照。)。
また、メタノールの透過(クロスオーバー)をできるだけ抑制し、且つ高温(摂氏約130度以上)環境下での使用にも耐える電解質膜を提供することを目的に、メタノール及び水に対して実質的に膨潤しない多孔性基材の細孔にプロトン伝導性を有するポリマーを充填した電解質膜が開示されている(例えば、特許文献2参照。)。多孔性基材としては、セラミック、ガラス、アルミナ等の無機材料、またはポリテトラフルオロエチレン、ポリイミド等の耐熱性ポリマーが用いられる。多孔性基材の空孔率は10〜95%、平均孔径は0.001〜100μm、厚みは数μmのオーダーが好ましい、と記載されている。
また、耐久性と機械的強度を有するプロトン伝導性膜を提供することを目的に、リン酸基、ホスホン酸基またはホスフィン酸基を側鎖に有するポリマーを多孔質膜の空孔内に担持させてなるプロトン伝導性膜が開示されている(例えば、特許文献3参照。)。多孔質膜としては、超高分子量ポリオレフィン樹脂、フッ素樹脂が挙げられている。多孔質膜の空孔率は30〜85%、平均孔径は0.005〜10μm、厚みは5〜500μmが好ましい、と記載されている。
更にメタノールの透過(クロスオーバー)をできるだけ抑制することを目的に、無機多孔性基材の規則配列した細孔に、プロトン伝導性を有するポリマーを充填した電解質膜が開示されている(例えば、非特許文献1参照。)。
特開平10−312815号公報 国際公開第00/54351号パンフレット 特開2002−83514号公報 Electrochemistry,70,934(2002)
プロトン伝導性電解質膜を固体高分子型燃料電池の電解質として実用に耐えるためには、少なくともプロトン伝導性が十分に高いこと、メタノール透過性が十分に低いことが重要な因子となる。
従って、本発明の第1の目的はプロトン伝導性が十分に高く、メタノール透過性が十分に低いプロトン伝導性電解質膜を提供すること、及びこのような優れた性能を持ったプロトン伝導性電解質膜の製造方法を提供することにある。
本発明の第2の目的は、上記のような優れた性能を持ったプロトン伝導性電解質膜を電解質として有する固体高分子型燃料電池を提供することにある。
本発明の上記目的は、下記構成により達成された。
1.細孔を有する無機多孔質膜の該細孔中にプロトン伝導性ポリマーを充填したプロトン伝導性電解質膜であって、該プロトン伝導性ポリマーがハロアルキル化及びスルホン化された高分子化合物と下記一般式(1)で表される化合物との反応生成物であることを特徴とするプロトン伝導性電解質膜。
(式中、R1は炭素数4以下のアルキル基を表し、R2は任意の有機基を表し、m、nはいずれも1〜3の整数である。但し、m+n=4であり、mが2または3のときR2は異なる有機基であってもよい。)
2.前記プロトン伝導性ポリマーが、前記ハロアルキル化及びスルホン化された高分子化合物と請求の範囲第1項に記載の一般式(1)で表される化合物と反応性乳化剤との反応生成物であることを特徴とする1に記載のプロトン伝導性電解質膜。
3.前記無機多孔質膜が、無機粒子及び有機粒子を含む分散液を用いて該無機粒子及び該有機粒子を支持体上に保持させる工程、ならびに前記工程の後に該無機粒子、該有機粒子及び該支持体を焼成する工程を経て得られた無機多孔質膜であることを特徴とする1または2に記載のプロトン伝導性電解質膜。
4.前記無機粒子の一次平均粒径が10〜100nmであることを特徴とする3に記載のプロトン伝導性電解質膜。
5.前記高分子化合物がポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフェニレンスルフィド、ポリパラフェニレン、ポリフェンレンオキシドおよびポリイミドから選ばれる少なくとも1種であることを特徴とする1〜4のいずれか1項に記載のプロトン伝導性電解質膜。
6.前記プロトン伝導性ポリマーが架橋構造を有することを特徴とする1〜5のいずれか1項に記載のプロトン伝導性電解質膜。
7.前記一般式(1)で表される化合物のR2がエポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノアルキル基またはビニル基のうちの少なくとも1種を有する有機基であることを特徴とする1〜6のいずれか1項に記載のプロトン伝導性電解質膜。
8.前記無機多孔質膜の平均細孔径が10〜450nmであることを特徴とする1〜7のいずれか1項に記載のプロトン伝導性電解質膜。
9.前記無機多孔質膜の空隙率が40〜95%であることを特徴とする1〜8のいずれか1項に記載のプロトン伝導性電解質膜。
10.前記反応生成物が、前記細孔中で反応して生成した反応生成物であることを特徴とする1に記載のプロトン伝導性電解質膜。
11.前記反応生成物が、前記細孔中で反応して生成した反応生成物であることを特徴とする2に記載のプロトン伝導性電解質膜。
12.前記無機粒子を5〜60体積%、前記有機粒子を40〜95体積%の割合で用いることを特徴とする3〜11のいずれか1項に記載のプロトン伝導性電解質膜。
13.前記無機粒子及び有機粒子を含む分散液を用いて該無機粒子及び該有機粒子を支持体上に保持させる工程が、塗布工程であることを特徴とする3〜12のいずれか1項に記載のプロトン伝導性電解質膜。
14.カソード極、アノード極及び該両極に挟まれた電解質を有してなる固体高分子型燃料電池において、該電解質として1〜13のいずれか1項に記載のプロトン伝導性電解質膜を用いることを特徴とする固体高分子型燃料電池。
15.10に記載のプロトン伝導性電解質膜を製造する製造方法であって、細孔を有する無機多孔質膜の該細孔中にハロアルキル化及びスルホン化された高分子化合物と1に記載の一般式(1)で表される化合物とを充填し、反応させることを特徴とするプロトン伝導性電解質膜の製造方法。
16.11に記載のプロトン伝導性電解質膜を製造する製造方法であって、細孔を有する無機多孔質膜の該細孔中にハロアルキル化及びスルホン化された高分子化合物と1に記載の一般式(1)で表される化合物と反応性乳化剤とを充填し、反応させることを特徴とするプロトン伝導性電解質膜の製造方法。
本発明により、プロトン伝導性が十分に高く、メタノール透過性が十分に低いプロトン伝導性電解質膜とその製造方法、及びプロトン伝導性電解質膜を用いた固体高分子型燃料電池を提供することができた。
本発明の直接メタノール型固体高分子燃料電池の一実施形態を示す概略図である。 メタノール透過性を評価するためのH型セルの概略図である。
符号の説明
1 電解質膜
2 アノード極(燃料極)
3 カソード極(空気極)
4 外部回路
以下、本発明について詳細に説明する。
本発明のプロトン伝導性電解質膜は、細孔を有する無機多孔質膜の該細孔中にプロトン伝導性ポリマーを充填したプロトン伝導性電解質膜であって、このプロトン伝導性ポリマーがハロアルキル化及びスルホン化された高分子化合物と上記一般式(1)で表される化合物との反応生成物である。
本発明に係る細孔を有する無機多孔質膜としては、無機粒子及び有機粒子を含む分散液を用いてこの無機粒子及びこの有機粒子を支持体上に保持させる工程、ならびにこの工程の後に、この無機粒子、有機粒子、支持体を焼成する工程を得て得られた無機多孔質膜を用いることが好ましい。
本発明のプロトン伝導性電解質膜は、上記細孔を有する無機多孔質膜にプロトン伝導性ポリマーを充填することにより得られる。
支持体としては最終的には焼失または溶けて無くなるもの、あるいは剥がし取れるものであれば任意の素材の支持体を用いることができ、例えば、濾紙などの紙、不織布などの布、ポリエチレンテレフタレートなどの高分子フィルム等、任意の素材で形成した支持体を用いることができる。支持体の表面は平滑であることが好ましく、平滑であれば得られるプロトン伝導性電解質膜の面も平滑となり、固体高分子型燃料電池の電解質とした場合に、電極とプロトン伝導性電解質膜との界面での接触が密となる。支持体の表面粗さは特に制限はないが、無機粒子及び有機粒子を含む分散液を積層する面の表面粗さRzが3μm以下であることが好ましい。表面粗さRzはJISの十点平均面粗さRzのことをいう。測定には、例えば、東京精密社製の触針式の3次元粗さ計(サーフコム570A)等を用いることができる。また、無機粒子及び有機粒子を含む分散液を積層することによる支持体の反り(カール)、たわみなどを防ぐために、分散液を積層する面とは反対側の面にバッキング層を設けることが好ましい場合もある。
無機粒子としては、シリカ(SiO2)、アルミナ(Al23)、酸化ジルコニウム(ZrO2)、酸化ホウ素(B23)、チタニア(TiO2)等や、Ti、Al、B、Zrの水酸化物が挙げられる。これらは一種類でもいくつかの種類のものを混合して用いてもよい。本発明においては、シリカ(SiO2)が好ましい。またシリカ(SiO2)の中でも非晶質シリカが好ましく、乾式法、湿式法、エアロゲル法いずれの製法によるものでもよいが、湿式法のコロイダルシリカは更に好ましい。
本発明においては、無機粒子の粒径としては平均粒径が一次平均粒径で10nm以上のものが好ましく、より好ましくは10〜100nm、更に好ましくは10〜50nmである。なお、ここでいう無機粒子の一次平均粒径は、走査型電子顕微鏡により観察して無作為に粒子200個の長径を測定し、その長径の平均値をいう。
有機粒子としては、最終的には焼失または溶けて無くなるものであれば任意の素材の有機粒子を用いることができるが、分散液に用いる分散媒としての溶媒に膨潤しないものが好ましい。本発明においては、分散媒としては水系溶媒が好ましく、有機粒子としては、例えば、アクリル樹脂、スチレン樹脂、スチレン/アクリル系樹脂、スチレン/ジビニルベンゼン系樹脂、ポリエステル系樹脂、ウレタン系樹脂等のポリマービーズを用いることができる。本発明においては、有機粒子の平均粒径は10〜450nmが好ましく、更に好ましくは100〜300nmである。
本発明における無機多孔質膜は、無機粒子と有機粒子を含む分散液を積層させた後、焼成する工程を経て形成されるので、無機粒子同志が固着、焼結して薄膜を形成するのと同時に、主には有機粒子が占有していた部分が薄膜内で細孔を形成する。本発明においては、無機多孔質膜の細孔の平均細孔径は10〜450nmが好ましく、更に好ましくは平均細孔径が100〜300nmである。平均細孔径は、例えば、島津製作所社製ポアサイザー9320等を用い、水銀圧入法により求めることができる。このようにして形成された無機多孔質膜にプロトン伝導性ポリマーを充填させて得られたプロトン伝導性電解質膜は、高いプロトン伝導性、低いメタノール透過性を有することが判明した。
本発明においては、多孔質膜の空隙率は40〜95%であることが好ましく、より好ましくは50〜70%である。
空隙率は多孔質膜の単位面積S(cm2)当たりの質量W(g)、平均厚みt(μm)及び密度d(g/cm3)から次式により算出することができる。
空隙率(%)=(1−(104・W/(S・t・d)))×100
無機粒子を5〜60体積%、有機粒子を40〜95体積%の割合で用いることにより、多孔質膜の空隙率を上記範囲に調整することができる。体積%は、無機粒子の体積と有機粒子の体積の総和に対する各々の粒子の体積の割合を百分率で表したものである。
次に、本発明に係る無機粒子及び有機粒子を含む分散液の調製方法について説明する。
無機粒子と有機粒子の使用割合は上記の通りであるが、分散液の濃度としては固形分濃度として5〜80質量%、好ましくは10〜40質量%となるように調製する。
分散媒としては水系溶媒が好ましい。水系溶媒としては水及びアルコール類など各種既知のものが使用できるが、水または水を主成分とする混合溶媒が好ましく使用される。
無機粒子と有機粒子を分散する分散助剤としては、例えば、高級脂肪酸塩、アルキル硫酸塩、アルキルエステル硫酸塩、アルキルスルホン酸塩、スルホコハク酸塩、ナフタレンスルホン酸塩、アルキルリン酸塩、ポリオキシアルキレンアルキルエーテルリン酸塩、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、グリセリンエステル、ソルビタンエステル、ポリオキシエチレン脂肪酸アミド、アミンオキシド等の各種の界面活性剤を用いることができる。
分散方法としては、例えば、ボールミル、サンドミル、アトライター、ロールミル、アジテータ、ヘンシェルミキサ、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジェットミル、ペイントシェーカー等が挙げられ、これらは単独であるいは適宜組み合わせて用いることができる。
無機粒子及び有機粒子を含む分散液を積層する工程としては、分散液を減圧吸引濾過器を用いてメンブレンフィルタでろ過を行い、メンブレンフィルタ上に無機粒子及び有機粒子を含む層を堆積させ乾燥し、メンブレンフィルタを剥ぎ取る方法、あるいは分散液を支持体に塗布して乾燥する方法などがある。本発明においては、分散液を支持体に塗布する方式が好ましい。塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、エクストルージョン法等、従来より知られた塗布方式を採用することができる。
無機多孔質膜を形成するには、無機粒子及び有機粒子を含む分散液を層状に保持して、乾燥したものを焼成することにより得られる。層状に保持して、乾燥したものを焼成するには、支持体が焼失または溶けて無くなるものであれば支持体上に分散液を層状に保持し、乾燥して、無機粒子及び有機粒子を支持体上に保持し、これを窒素雰囲気中で電気炉で加熱処理して焼成すればよい。
無機粒子と有機粒子の支持体上で保持されている状態としては、無機粒子と有機粒子が互いに、均一に分散していることが好ましい状態である。
加熱処理は、例えば、ケイ化モリブデンといった発熱体を備えた電気炉を用いて行うことができ、1500℃以下、より好ましくは400〜1300℃で行われる。加熱のための時間は目的とする質多孔膜の大きさにより適宜設定することが可能であり、具体的には、例えば、5〜24時間程度の加熱時間を用いることができる。加熱時間が長いと焼結が進行して、平均細孔径が小さくなることがある。多孔質膜を得るための加熱処理における昇温速度及び降温速度は、適宜設定することができる。昇温速度及び降温速度の双方について、10〜300℃/時間とすることが好ましい。また仮焼成、本焼成と2回に分けて、加熱処理を行うことも好ましい。
本発明に係る無機多孔質膜の細孔中に充填されるプロトン伝導性ポリマーは、ハロアルキル化及びスルホン化された高分子化合物と一般式(1)で表される化合物とを反応させたポリマー、またはハロアルキル化及びスルホン化された高分子化合物、一般式(1)で表される化合物、及び反応性乳化剤とを反応させたポリマーである。
前記ハロアルキル化及びスルホン化された高分子化合物としては、分子内に芳香族環を有する重合体をハロアルキル化及びスルホン化したものが好ましい。また、エンジニアリングプラスチックとして知られている高分子化合物を、ハロアルキル化及びスルホン化したものを用いることが耐久性向上のために好ましい。エンジニアリングプラスチックは一般的な定義はなく、金属のように構造材として使用可能な高弾性、高強度のプラスチックをいう。おおよその概念としては、弾性率が2.45×109Pa以上、熱変形温度が100℃以上といわれている(例えば、小林力夫、牧廣著『エンジニアリングプラスチック』参照)。但し、ポリカーボネート、ポリアリレート等のナチュラル樹脂は弾性率が1.96×109〜2.45×109Paであるが、エンジニアリアングプラスチックとして扱う(鈴木技術士事務所編『エンジニアリングプラスチック便覧』参照)。
好ましい高分子化合物としては、例えば、ポリベンザゾール(PBZ)、ポリアラミド(PARまたはケブラー(Kevlar)(登録商標))、ポリベンズオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリベンズイミダゾール(PBI)、ポリパラフェニレンテレフタルイミド(PPTA)、ポリスルホン(PSU)、ポリイミド(PI)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルホキシド(PPSO)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィドスルホン(PPS/SO2)、ポリパラフェニレン(PPP)、ポリフェニルキノキサリン(PPQ)、ポリアリールケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルスルホン(PES)、ポリエーテルエーテルスルホン(PEES)、ポリアリールスルホン、ポリアリールエーテルスルホン(PAS)、ポリフェニルスルホン(PPSU)、ポリフェニレンスルホン(PPSO2)、ポリエーテルイミド、フッ素化ポリイミド、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン−ケトン(PEKK)、ポリエーテルエーテルケトン−ケトン(PEEKK)、ポリエーテルケトンエーテルケトン−ケトン(PEKEKK)、及びポリスチレン(PS)が挙げられる。これらの高分子化合物は単独でもよいし、2種以上を併用してもよい。特に好ましくはポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフェニレンスルフィド、ポリパラフェニレン、ポリフェニレンオキシド、ポリイミドから選ばれる少なくとも1種である。
上記高分子化合物は、分子量が10000〜100000で従来公知のものであれば何ら制限なく用いられる。
高分子化合物のハロアルキル化及びスルホン化の方法は、例えば、先ず高分子化合物を90%以上、好ましくは95%以上の硫酸に攪拌下に溶解し、次いでこれにハロアルキル化試剤を添加してスルホン化及びハロアルキル化を実施する。高分子化合物にスルホン酸基の導入を制御するために、一般に0〜100℃の範囲で均一に溶解することが好ましい。温度が高い場合はスルホン酸基の導入比率が高く、ハロアルキル基の導入比率は低くなり、逆に温度を低くすればスルホン酸基の導入が制限され、ハロアルキル基の導入比率が多くなる。
用いられるハロアルキル化試薬としては、例えば、クロルメチルメチルエーテル、ブロムメチルメチルエーテル、ヨードメチルメチルエーテル、クロルエチルエチルエーテル、クロルエチルメチルエーテル等が挙げられる。なお、この方法は溶媒である硫酸が溶媒として大過剰に存在する状態での反応であり、極めて反応速度が早いため、充分に高分子化合物の硫酸溶液を均一に攪拌しながら、ハロアルキル化試薬を添加する必要がある。また、ハロアルキル基の高分子化合物への導入量は、添加するハロアルキル化試薬のモル数と高分子化合物のハロアルキル基が導入されるユニットのモル数との比で制御することもできる。反応は非常に早く進行するが、反応時間は10分〜16時間の間で選定される。反応後は残余のハロアルキル化試薬を窒素気流によって除去し、除外した後、大量の水中に投入し、沈澱析出させ、次いで充分に水洗することによって、ハロアルキル化及びスルホン化された高分子化合物を得ることができる。なお、ハロアルキル基、スルホン酸基の存在はNMR分析、元素分析等によって確認できる。
反応活性なハロアルキル基は、後述する前記一般式(1)で表される化合物と反応することができ、また同一種のハロアルキル化及びスルホン化された高分子化合物同士で架橋構造を形成することができ、2種以上のハロアルキル化及びスルホン化された高分子化合物が架橋構造を形成することもできる。このようなポリマーによりプロトン伝導性ポリマーの性能を向上させることができる。
前記一般式(1)で表される化合物のR1は、炭素数4以下のアルキル基を表し、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。一般式(1)で表される化合物のR2は、任意の有機基を表すが、共重合可能な基が好ましく、さらにハロアルキル化及びスルホン化された高分子化合物あるいは反応性乳化剤と反応可能な有機基であることが好ましく、特にエポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノアルキル基またはビニル基のうちの少なくとも1種を含有する有機基であることが好ましい。
一般式(1)で表される化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。
一般式(1)で表される化合物はシリル基が反応して架橋構造を形成することもできる。更には一般式(1)で表される化合物のシリル基が、無機多孔質の表面シラノール基と反応して結合することも好ましい態様の1つである。
前記反応性乳化剤は、ハロアルキル化及びスルホン化された高分子化合物または上記一般式(1)で表される化合物と反応し得る基を有する界面活性剤であり、反応性乳化剤としては、分子内に不飽和二重結合を少なくとも1種以上有するアニオン性及び/またはノニオン性の乳化剤が好ましく用いられる。反応性乳化剤は、分子内に疎水性基、親水性基及び反応性基を各々少なくとも1個有する化合物が好ましく、上記疎水性基は脂肪族または芳香族炭化水素基からなり、上記親水性基はポリオキシアルキレンエーテル基に代表されるノニオン性基、スルホン酸塩、カルボン酸塩、燐酸塩に代表されるアニオン性基を含有し、上記反応性基はビニルエーテル基、アリルエーテル基、ビニルフェニル基、アリルフェニル基、アクリル酸またはメタクリル酸のエステルまたはアミド基、マレイン酸等の不飽和二塩基酸のエステルまたはアミド基を含有するものが好ましい。
上記反応性乳化剤としては、例えば、特開昭62−22803号公報、同62−104802号公報、同62−104803号公報、同62−221431号公報、同62−221432号公報、同62−225237号公報、同62−244430号公報、同62−286528号公報、同62−289228号公報、同62−289229号公報、同63−12334号公報、同63−54930号公報、同63−77530号公報、同63−77531号公報、同63−77532号公報、同63−84624号公報、同63−84625号公報、同63−126535号公報、同63−126536号公報、同63−147530号公報、同63−319035号公報、特開平1−11630号公報、同1−22338号公報、同1−22627号公報、同1−22628号公報、同1−30632号公報、同1−34430号公報、同1−34431号公報、同1−34432号公報、同1−99638号公報、同1−99639号公報、同4−50204号公報、同4−53802号公報、同4−55401号公報に記載されたものが挙げられる。
また、上記反応性乳化剤の具体例としては、例えば、1−(メタ)アリロキシ−2−ヒドロキシプロパン、(メタ)アクリロイルオキシ−2−ヒドロキシプロパン、(メタ)アリロキシカルボニルメチル−3−アルコキシ(ポリオキシアルキレノキシ)−2−ヒドロキシプロパン、アルキルフェノキシ(ポリオキシアルキレノキシ)−2−ヒドロキシプロパンまたはアシロキシ(ポリオキシアルキレノキシ)−2−ヒドロキシプロパンまたはそのアルキレンオキシド付加物あるいはこれらの硫酸または燐酸エステルまたはその塩、ビスフェノール化合物またはグリコール化合物のアルキレンオキシド付加物あるいはこれらの硫酸または燐酸エステルまたはその塩、ビニルまたはアリルフェノール化合物のアルキレンオキシド付加物あるいはこれらの硫酸または燐酸エステルまたはその塩、スルホコハク酸のモノアリル−モノアルキルエステルまたはその塩、スルホコハク酸のモノ(3−アリロキシ−2−ヒドロキシプロピル)−モノアルキルエステルまたはその塩等が挙げられる。
具体的には、「アデカリアソープNE」、「アデカリアソープSE」、「アデカリアソープER」、「アデカリアソープSR」、「アデカリアソープPP」、「アデカリアソープPPE」(商品名、旭電化(株)製)、「アクアロンKH」、「アクアロンHS」、「アクアロンBC」、「アクアロンRN」、「ニューフロンティア」(商品名、第一工業製薬(株)製)、「エレミノールES」、「エレミノールJS」、「エレミノールRS」、「エレミノールMON」、「エレミノールHA」(商品名、三洋化成工業(株)製)、「ラテムル」(商品名、花王(株)製)等が挙げられるが、これらに限られるものではない。これらの反応性乳化剤は一種または二種以上を組み合わせて使用してもよい。
無機多孔質膜の細孔中にプロトン伝導性ポリマーを充填する方法は特に限定されるものでなく、例えば、多孔質膜に前記プロトン伝導性ポリマー溶液を塗布する方法、多孔質膜を前記プロトン伝導性ポリマー溶液に浸漬する方法などにより、多孔質膜の細孔中にプロトン伝導性ポリマーを充填することができる。その際、超音波を使用したり、減圧にすることによりプロトン伝導性ポリマーを細孔中に充填し易くすることができる。
好ましくはプロトン伝導性ポリマーの前駆体(前記ハロアルキル化及びスルホン化された高分子化合物、前記一般式(1)で表される化合物、前記反応性乳化剤等)及び触媒、重合開始剤等を含有する溶液を多孔質膜の細孔中に充填し、熱反応や光反応等、従来より知られている適宜の方法により、In−situ反応させ、プロトン伝導性ポリマーとする方法である。その際、超音波を使用したり、減圧にすることにより前記プロトン伝導性ポリマーの前駆体等を含有する溶液を細孔中に充填し易くすることができる。無機多孔質膜の細孔表面を親水化処理した後に、前記プロトン伝導性ポリマーの前駆体等を含有する溶液を多孔質膜の細孔中に充填させ、In−situ反応する方法も好ましい。また、前記プロトン伝導性ポリマーの前駆体及び触媒等を含有する溶液の粘度を適宜に調整して、細孔中に充填し易くすることも好ましい。
前記ハロアルキル化及びスルホン化された高分子化合物、前記一般式(1)で表される化合物、前記反応性乳化剤等を反応させる方法としては、ハロアルキルを開裂させ反応させる方法、重合開始剤を用いて不飽和結合を反応させる方法、シリル基を反応させる方法等が好ましく用いられる。ハロアルキル基を開裂させ反応させる方法としては、ルイス酸やHF、H2SO4、H3PO4などのプロトン酸によりイオン的に開裂させる方法、あるいは紫外線、電子線などの光、あるいは熱によりラジカル的に開裂させる方法などが用いられるが、光あるいは熱を用いる方法が好適である。
前記重合開始剤としては、従来より知られているものを適宜に用いればよい。例えば、熱重合開始剤として、2,2′−アゾビスイソブチロニトリル、2,2′−アゾビスプロピオニトリル等のアゾビスニトリル系化合物、過酸化ベンゾイル、過酸化ラウロイル、過酸化アセチル、過安息香酸t−ブチル、α−クミルヒドロパーオキサイド、ジ−t−ブチルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、過酸類、アルキルパーオキシカルバメート類、ニトロソアリールアシルアミン類等の有機過酸化物、過硫酸カリウム、過硫酸アンモニウム、過塩素酸カリウム等の無機過酸化物、ジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム、アゾビス置換アルカン類、ジアゾチオエーテル類、アリールアゾスルフォン類等のアゾまたはジアゾ系化合物、ニトロソフェニル尿素、テトラメチルチウラムジスルフィド、ジアリールジスルフィド類、ジベンゾイルジスルフィド、テトラアルキルチウラムジスルフィド類、ジアルキルキサントゲン酸ジスルフィド類、アリールスルフィン酸類、アリールアルキルスルフォン類、1−アルカンスルフィン酸類等を挙げることができる。
これらの中で特に好ましいものは常温での安定性に優れ、加熱時の分解速度が速い化合物であり、開始剤は全重合性の組成物中、通常0.1〜30質量%が好ましく、0.5〜20質量%の範囲がより好ましい。
光重合開始剤としては、R−(CO)x−R′(R、R′=水素原子または炭化水素基、x=2〜3)により表される隣接ポリケトン化合物類(例えば、ジアセチル、ジベンジル等)、R−CO−CHOH−R′(R、R′=水素または炭化水素基)により表されるカルボニルアルコール類(例えば、ベンゾイン等)、R−CH(OR″)−CO−R′(R、R′、R″=炭化水素基)により表されるアシロイン・エーテル類(例えば、ベンゾインメチルエーテル等)、Ar−CR(OH)−CO−Ar(Ar=アリール基、R=炭化水素基)により表される置換アシロイン類(例えば、α−アルキルベンゾイン等)、及び多核キノン類(例えば、9,10−アンスラキノン等)等を挙げることができる。
光重合開始剤の使用量は、不飽和化合物の合計質量に対して0.5〜5質量%の範囲が好ましく、より好ましくは1〜3質量%の範囲である。触媒、重合開始剤はそれぞれ単独でまたは併用して使用することができる。
前記ハロアルキル化及びスルホン化された高分子化合物と一般式(1)で表される化合物との質量比は、100:0.1〜1:1の範囲が好ましく、前記ハロアルキル化及びスルホン化された高分子化合物と反応性乳化剤との質量比は、100:0.1〜1:1の範囲が好ましい。
なお、前記プロトン伝導性ポリマーのイオン交換容量としては、0.5〜5.0ミリ当量/g乾燥樹脂、好ましくは1.0〜4.5ミリ当量/g乾燥樹脂である。イオン交換容量が0.5ミリ当量/g乾燥樹脂より小さい場合はイオン伝導抵抗が大きくなり、4.5ミリ当量/g乾燥樹脂より大きい場合には水に溶解しやすくなる。
前記イオン交換容量は次の測定方法により求めることができる。まず、前記プロトン伝導性ポリマーを2mol/Lの塩化ナトリウム水溶液に5分間程度浸漬し、酸性基のプロトンをナトリウムに置換する。ナトリウム置換により溶液中に遊離してきたプロトンに対し、濃度既知の水酸化ナトリウムによる中和滴定を行う。そして、前記プロトン伝導性ポリマーの乾燥質量(W)と中和滴定に要した水酸化ナトリウムの容量(V)からプロトンの量(H+)を算出し、次式によりイオン交換容量(meq/g)を求める。なお次式は、0.05mol/LのNaOH水溶液で中和滴定を行った場合の例を示している。
イオン交換容量(meq/g)=H+/W=(0.05V×10-3/W)×103
本発明のプロトン伝導性電解質膜の平均膜厚は特に制限はないが、通常は500μm以下であり、好ましくは300μm以下、より好ましくは50〜200μmである。膜厚は1/10000シックネスゲージで測定できる。平均膜厚は任意の箇所を5点を測定し、その平均を算出することにより求めることができる。
本発明のプロトン伝導性電解質膜は燃料電池に用いることができる。燃料電池の中でもメタノール燃料電池が好ましく、特に直接メタノール型固体高分子燃料電池が好ましい。
次に、直接メタノール型固体高分子燃料電池について、図1を参照して説明する。図1は、本発明のプロトン伝導性電解質膜を電解質膜して用いた直接メタノール型固体高分子燃料電池の一実施形態を示す概略図である。
図1において、それぞれ符号1は電解質膜、符号2はアノード極(燃料極)、符号3はカソード極(空気極)、符号4は外部回路を表す。燃料としてはメタノール水溶液Aを用いる。
アノード極2では、メタノールは水と反応して二酸化炭素と水素イオン(H+)を生成して電子(e-)を放出する。水素イオン(H+)は、電解質1を通ってカソード極3に向い、電子(e-)は外部回路4に流れる。一方、二酸化炭素を含むメタノール成分が減少した水溶液A′は系外に排出される。アノード極2での反応は下記式で表される。
CH3OH+H2O→CO2+6H++6e-
カソード極3では、空気B中の酸素と電解膜1を通ってきた水素イオン(H+)と外部回路4からきた電子(e-)とが反応して水を生成する。一方、水を含む酸素が減少した空気B′は系外に排出される。カソード極3での反応は下記式で表される。
3/2O2+6H++6e-→3H2
燃料電池の全体の反応としては次式のようになる。
CH3OH+3/2O2→CO2+2H2
アノード極2の構造は従来から知られている構造とすることができる。例えば、電解質1側から触媒層及び触媒層を支持する支持体から構成される。また、カソード極3の構造も従来から知られている構造とすることができる。例えば、電解質1側から触媒層及び触媒層を支持する支持体から構成される。
アノード極2及びカソード極3の触媒としては、公知の触媒を用いることができる。例えば、白金、パラジウム、ルテニウム、イリジウム、金などの貴金属触媒、また白金−ルテニウム、鉄−ニッケル−コバルト−モリブデン−白金などの合金が用いられる。
触媒層は導電性を改善する目的で電子伝導体(導電材)材料を含むことが好ましい。電子伝導体(導電材)としては特に限定されるものではないが、電子伝導性と耐触性の点から無機導電性物質が好ましく用いられる。中でもカーボンブラック、黒鉛質や炭素質の炭素材、あるいは金属や半金属が挙げられる。ここで炭素材としては、チャネルブラック、サーマルブラック、ファーネスブラック、アセチレンブラックなどのカーボンブラックが、電子伝導性と比表面積の大きさから好ましく用いられる。特に、白金担持カーボンなどのように触媒を担持した電子伝導体(導電材)が好ましく用いられる。
固体高分子電解質膜と電極とを接合して膜−電極接合体(MEA:Membrane Electrode Assembly)を製造する方法としては、例えば、カーボン粒子に担持させた白金触媒粉をポリテトラフロロエチレン懸濁液と混合し、カーボンペーパーに塗布し、熱処理して触媒層を形成後、電解質膜と同一の電解質溶液を触媒層に塗布し、電解質膜とホットプレスして一体化する方法がある。この他、電解質膜と同一の電解質溶液を予め白金触媒粉にコーティングする方法、触媒ペーストを電解質膜へ塗布する方法、電解質膜に電極を無電解メッキする方法、電解質膜に白金属の金属錯イオンを吸着させた後、還元する方法等がある。
以上の様にして作製した電解質膜と電極との接合体の外側に、燃料流路と酸化剤流路を形成する溝が形成された集電体としての燃料配流板(セパレータ)と、酸化剤配流板(セパレータ)とを配したものを単セルとし、この単セルを複数個、冷却板等を介して積層することにより、燃料電池が構成される。
本発明を実施例に基づき更に詳しく説明するが、本発明は実施例に限定されるものではない。
実施例1
〈多孔質膜の作製〉
〈多孔質膜No.1の作製〉
ポリスチレン微粒子(モリテックス社製5008B、平均粒径80nm)とコロイダルシリカ(日産化学社製スノーテックス50、一次平均粒径20nm)の混合物(ポリスチレン微粒子70体積%、コロイダルシリカ30体積%)を、希薄界面活性剤水溶液中に高速ホモジナイザーを用いて撹拌、分散させた。分散液の濃度は20質量%となるようにした。それぞれの分散液をポリエチレンテレフタレート支持体上に、バーコーターを用いて乾燥後の膜厚が150μmとなるように塗布、乾燥し、乾燥後、ポリエチレンテレフタレート支持体を剥離し、昇温スピード60℃/時間で600℃まで昇温させ、600℃で3時間仮焼成後、昇温スピード120℃/時間で1000℃まで昇温させ、1000℃で3時間焼成し、多孔質膜No.1を作製した。
〈多孔質膜No.2〜4の作製〉
多孔質膜No.1において、ポリスチレン微粒子とコロイダルシリカを表1のように代えた以外は、多孔質膜No.1と同様にして多孔質膜No.2〜4を作製した。
但し、ポリスチレン微粒子の平均粒径が220nm、430nmのものは、それぞれモリテックス社製5022B、5043Bを使用した。また、コロイダルシリカの一次平均粒径が50nm、100nmのものは、それぞれ日産化学社製スノーテックスYL、スノーテックスMPを使用した。
多孔質膜No.1〜4の細孔径及び空隙率を表1に記した。空隙率は単位面積当S(cm2)あたりの質量W(g)、平均厚みt(μm)及び密度d(g/cm3)から次式により算出した。
空隙率(%)=(1−(104・W/(S・t・d)))×100
平均細孔径の測定は、例えば、島津製作所社製ポアサイザー9320を用い、水銀圧入法により測定した。
〔プロトン伝導性電解質膜の製造〕
〔プロトン伝導性電解質膜No.1の製造〕
上記で作製した多孔質膜No.1に下記の方法でプロトン伝導性ポリマーを充填し、プロトン伝導性電解質膜(電解質膜No.1)を製造した。
N,N−ジメチルアセトアミド中に、クロロメチル化及びスルホン化ポリエーテルエーテルケトン、3−グリシドキシプロピルトリメトキシシランを質量比で100:15となるよう混合し、減圧下で混合液の中に多孔質膜を浸漬させた。このように処理した多孔質膜をポリエチレンテレフタレート製フィルムに挟んで加熱し、100℃で5時間乾燥することにより、プロトン伝導性電解質膜を作製した。プロトン伝導性電解質膜の平均膜厚は150μmであった。平均膜厚はシックネスゲージで任意の箇所を5点測定し、その平均を算出して求めた。
〔プロトン伝導性電解質膜No.2〜12の製造〕
プロトン伝導性電解質膜No.1において、クロロメチル化及びスルホン化された高分子化合物、一般式(1)で表される化合物及び反応性乳化剤を表2のように代えた以外は、プロトン伝導性電解質膜No.1と同様にしてプロトン伝導性電解膜No.2〜12を作製した。
〔プロトン伝導性電解質膜の評価〕
比較としてナフィオン117(デュポン社製)も用意した。
(プロトン伝導度)
プロトン伝導性電解質膜を水中(25℃)で膨潤させ、その後2枚の白金電極に挟んで、ヒューレットパッカード社製LCRメーターHP4284Aを用いて、インピーダンス測定を行い、プロトン伝導度を算出した。
(メタノール透過性)
図2のH型セルにプロトン伝導性電解質膜を挟み、Aセルに入れた2mol/Lメタノール水溶液からBセルの純水中に透過してくるメタノール量を、島津製作所社製ガスクロマトグラフィー(GC−14B)で測定した。結果を表3に示す。
表3の結果から、本発明のプロトン伝導性電解質膜(電解質膜No.1〜10)はプロトン伝導性が高く、メタノール透過性が低いことがわかる。比較のプロトン伝導性電解質膜(電解質膜No.11、12)はナフィオン117と同様にプロトン伝導性は高いが、メタノール透過性が高いという欠点があることがわかる。
〔燃料電池の作製と評価〕
作製したプロトン伝導性電解質膜(電解質膜No.1〜12)及び比較試料としてナフィオン117を用いて膜−電極接合体(MEA)を下記の方法で作製し、評価した。
〈電極の作製〉
炭素繊維クロス基材にポリテトラフルオロエチレン(PTFE)で撥水処理を行った後、PTFEを20質量%含むカーボンブラック分散液を塗工、焼成して電極基材を作製した。この電極基材上に、Pt−Ru担持カーボンとナフィオン(デュポン社製)溶液からなるアノード電極触媒塗液を塗工、乾燥してアノード電極を、またPt担持カーボンとナフィオン(デュポン社製)溶液からなるカソード電極触媒塗液を塗工、乾燥してカソード電極を作製した。
〈膜−電極接合体(MEA)の作製〉
作製したプロトン伝導性電解質膜(電解質膜No.1〜12)及びナフィオン117を、それぞれアノード電極とカソード電極で夾持し、加熱プレスすることで膜−電極複合体(MEA)(MEA−No.1〜12)及びMEA−ナフィオン117を作製した。この膜−電極接合体(MEA)をセパレータに挟み、アノード側に3%メタノール水溶液、カソード側に空気を流して燃料電池を作動し、電流電圧特性の評価を行った。電圧0.4Vでの電流密度を表4に示す。
表4の結果から、本発明に係る膜−電極接合体(MEA)(MEA−No.1〜10)は、比較の膜−電極接合体(MEA)(MEA−No.11、12)及びMEA−ナフィオン117に比べて、電流密度が大きいことがわかる。

Claims (16)

  1. 細孔を有する無機多孔質膜の該細孔中にプロトン伝導性ポリマーを充填したプロトン伝導性電解質膜であって、該プロトン伝導性ポリマーがハロアルキル化及びスルホン化された高分子化合物と下記一般式(1)で表される化合物との反応生成物であることを特徴とするプロトン伝導性電解質膜。
    (式中、R1は炭素数4以下のアルキル基を表し、R2は任意の有機基を表し、m、nはいずれも1〜3の整数である。但し、m+n=4であり、mが2または3のときR2は異なる有機基であってもよい。)
  2. 前記プロトン伝導性ポリマーが、前記ハロアルキル化及びスルホン化された高分子化合物と請求の範囲第1項に記載の一般式(1)で表される化合物と反応性乳化剤との反応生成物であることを特徴とする請求の範囲第1項に記載のプロトン伝導性電解質膜。
  3. 前記無機多孔質膜が、無機粒子及び有機粒子を含む分散液を用いて該無機粒子及び該有機粒子を支持体上に保持させる工程、ならびに前記工程の後に該無機粒子、該有機粒子及び該支持体を焼成する工程を経て得られた無機多孔質膜であることを特徴とする請求の範囲第1または第2項に記載のプロトン伝導性電解質膜。
  4. 前記無機粒子の一次平均粒径が10〜100nmであることを特徴とする請求の範囲第3項に記載のプロトン伝導性電解質膜。
  5. 前記高分子化合物がポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフェニレンスルフィド、ポリパラフェニレン、ポリフェンレンオキシドおよびポリイミドから選ばれる少なくとも1種であることを特徴とする請求の範囲第1〜4項のいずれか1項に記載のプロトン伝導性電解質膜。
  6. 前記プロトン伝導性ポリマーが架橋構造を有することを特徴とする請求の範囲第1〜5項のいずれか1項に記載のプロトン伝導性電解質膜。
  7. 前記一般式(1)で表される化合物のR2がエポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノアルキル基またはビニル基のうちの少なくとも1種を有する有機基であることを特徴とする請求の範囲第1〜6項のいずれか1項に記載のプロトン伝導性電解質膜。
  8. 前記無機多孔質膜の平均細孔径が10〜450nmであることを特徴とする請求の範囲第1〜7項のいずれか1項に記載のプロトン伝導性電解質膜。
  9. 前記無機多孔質膜の空隙率が40〜95%であることを特徴とする請求の範囲第1〜8項のいずれか1項に記載のプロトン伝導性電解質膜。
  10. 前記反応生成物が、前記細孔中で反応して生成した反応生成物であることを特徴とする請求の範囲第1項に記載のプロトン伝導性電解質膜。
  11. 前記反応生成物が、前記細孔中で反応して生成した反応生成物であることを特徴とする請求の範囲第2項に記載のプロトン伝導性電解質膜。
  12. 前記無機粒子を5〜60体積%、前記有機粒子を40〜95体積%の割合で用いることを特徴とする請求の範囲第3〜11項のいずれか1項に記載のプロトン伝導性電解質膜。
  13. 前記無機粒子及び有機粒子を含む分散液を用いて該無機粒子及び該有機粒子を支持体上に保持させる工程が、塗布工程であることを特徴とする請求の範囲第3〜12項のいずれか1項に記載のプロトン伝導性電解質膜。
  14. カソード極、アノード極及び該両極に挟まれた電解質を有してなる固体高分子型燃料電池において、該電解質として請求の範囲第1〜13項のいずれか1項に記載のプロトン伝導性電解質膜を用いることを特徴とする固体高分子型燃料電池。
  15. 請求の範囲第10項に記載のプロトン伝導性電解質膜を製造する製造方法であって、細孔を有する無機多孔質膜の該細孔中にハロアルキル化及びスルホン化された高分子化合物と請求の範囲第1項に記載の一般式(1)で表される化合物とを充填し、反応させることを特徴とするプロトン伝導性電解質膜の製造方法。
  16. 請求の範囲第11項に記載のプロトン伝導性電解質膜を製造する製造方法であって、細孔を有する無機多孔質膜の該細孔中にハロアルキル化及びスルホン化された高分子化合物と請求の範囲第1項に記載の一般式(1)で表される化合物と反応性乳化剤とを充填し、反応させることを特徴とするプロトン伝導性電解質膜の製造方法。
JP2006545007A 2004-11-15 2005-11-14 プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池 Expired - Fee Related JP4957248B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006545007A JP4957248B2 (ja) 2004-11-15 2005-11-14 プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004330199 2004-11-15
JP2004330199 2004-11-15
JP2006545007A JP4957248B2 (ja) 2004-11-15 2005-11-14 プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池
PCT/JP2005/020838 WO2006051943A1 (ja) 2004-11-15 2005-11-14 プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池

Publications (2)

Publication Number Publication Date
JPWO2006051943A1 JPWO2006051943A1 (ja) 2008-05-29
JP4957248B2 true JP4957248B2 (ja) 2012-06-20

Family

ID=36336608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006545007A Expired - Fee Related JP4957248B2 (ja) 2004-11-15 2005-11-14 プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池

Country Status (2)

Country Link
JP (1) JP4957248B2 (ja)
WO (1) WO2006051943A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324558A (ja) * 1986-07-16 1988-02-01 Hitachi Zosen Corp 溶融炭酸塩型燃料電池用電極の製造方法
WO2000054351A1 (fr) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Membrane electrolytique pour pile a combustible et son procede de fabrication, et pile a combustible et son procede de fabrication
JP2002083612A (ja) * 2000-09-07 2002-03-22 Takehisa Yamaguchi 電解質膜及びその製造方法、並びに燃料電池及びその製造方法
JP2004171994A (ja) * 2002-11-21 2004-06-17 Ube Ind Ltd 多孔質膜を基材としたハイブリッド材料の製造方法
JP4419550B2 (ja) * 2003-12-16 2010-02-24 コニカミノルタホールディングス株式会社 プロトン伝導性電解質膜の製造方法とプロトン伝導性電解質膜、及びプロトン伝導性電解質膜を用いた燃料電池
JP2005332801A (ja) * 2004-04-23 2005-12-02 Sekisui Chem Co Ltd プロトン伝導性膜、複合化プロトン伝導性膜及び燃料電池
JP4613528B2 (ja) * 2004-06-24 2011-01-19 コニカミノルタホールディングス株式会社 プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質膜を用いた固体高分子型燃料電池

Also Published As

Publication number Publication date
JPWO2006051943A1 (ja) 2008-05-29
WO2006051943A1 (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4728208B2 (ja) 燃料電池用高分子電解質膜及びこれを含む燃料電池システム
US8153329B2 (en) Proton conducting electrolyte membrane and production method thereof and solid polymer fuel cell using the same
JP5010823B2 (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
JP4419550B2 (ja) プロトン伝導性電解質膜の製造方法とプロトン伝導性電解質膜、及びプロトン伝導性電解質膜を用いた燃料電池
CA2689513C (en) Electrolyte membrane and membrane electrode assembly using the same
JP2012069536A (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
JP5195286B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP4957544B2 (ja) プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質膜を用いた固体高分子型燃料電池
JP4895563B2 (ja) 補強された高分子電解質膜
JP5044894B2 (ja) 固体高分子型燃料電池用プロトン伝導性電解質膜、該プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池
CN107615545A (zh) 聚合物电解质膜、包括其的膜电极组件和包括该膜电极组件的燃料电池
JP2006331848A (ja) プロトン伝導性電解質膜とその製造方法、及び固体高分子型燃料電池
JP2006147278A (ja) 固体燃料電池用電解質膜−電極接合体及びその製造方法
JP2003257453A (ja) 高分子固体電解質およびその製造方法ならびにそれを用いた固体高分子型燃料電池
KR100612233B1 (ko) 연료전지용 막/전극 접합체, 이의 제조방법 및 이를포함하는 연료전지
CN114094152B (zh) 用于膜电极组件的电极及其制造方法
JP4957248B2 (ja) プロトン伝導性電解質膜、プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池
JP4915043B2 (ja) プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質膜を用いた固体高分子型燃料電池
JP6105215B2 (ja) 固体高分子型燃料電池用膜電極接合体
JPWO2006126346A1 (ja) プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質膜を用いた固体高分子型燃料電池
JP2005285413A (ja) プロトン伝導性膜、プロトン伝導性膜の製造方法、及びプロトン伝導性膜を用いた固体高分子形燃料電池
JP2006318663A (ja) プロトン伝導性電解質膜とその製造方法、及び固体高分子型燃料電池
JP2005310612A (ja) 固体燃料電池
JP2006140030A (ja) 燃料電池用電極及び燃料電池
JP2006185849A (ja) 燃料電池用固体高分子電解質膜、および、その製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees