JP4955541B2 - Method for producing gas oil by catalytic cracking of Fischer-Tropsch products - Google Patents

Method for producing gas oil by catalytic cracking of Fischer-Tropsch products Download PDF

Info

Publication number
JP4955541B2
JP4955541B2 JP2007513930A JP2007513930A JP4955541B2 JP 4955541 B2 JP4955541 B2 JP 4955541B2 JP 2007513930 A JP2007513930 A JP 2007513930A JP 2007513930 A JP2007513930 A JP 2007513930A JP 4955541 B2 JP4955541 B2 JP 4955541B2
Authority
JP
Japan
Prior art keywords
gas oil
fischer
compound
catalyst
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007513930A
Other languages
Japanese (ja)
Other versions
JP2008500418A (en
Inventor
ヤン・ロデヴィヤク・マリア・ディーリックス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2004/050931 external-priority patent/WO2004106462A1/en
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2008500418A publication Critical patent/JP2008500418A/en
Application granted granted Critical
Publication of JP4955541B2 publication Critical patent/JP4955541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

発明の分野
本発明は、フィッシャー・トロプシュ生成物の接触分解により、ガス油をガソリンとの組合わせで製造する方法に関する。
The present invention relates to a process for producing gas oil in combination with gasoline by catalytic cracking of Fischer-Tropsch products.

発明の背景
ガス油の沸点範囲の沸点を有するパラフィン系生成物は、フィッシャー・トロプシュ誘導合成生成物から製造できることが知られている。しかし、フィッシャー・トロプシュ生成物から受入可能なオクタン価を有するガソリンとパラフィン系ガス油を単一転化方法を用いて製造するのは容易ではない。これは、フィッシャー・トロプシュ生成物自体が大部分、低オクタン価かオクタン価向上に寄与しないノーマルパラフィンで構成されるからである。フィッシャー・トロプシュ生成物から受入可能なオクタン価を有するガソリンを製造する方法として、接触分解について記載した文献は種々知られている。例えばUS−A−4684756は、鉄で触媒したフィッシャー・トロプシュ法で得られるフィッシャー・トロプシュワックスを直接、接触分解してガソリンフラクションを製造する方法を開示している。ガソリン収量は、57.2重量%である。
BACKGROUND OF THE INVENTION It is known that paraffinic products having boiling points in the boiling range of gas oils can be produced from Fischer-Tropsch derived synthesis products. However, it is not easy to produce gasoline and paraffinic gas oil having an octane number acceptable from the Fischer-Tropsch product using a single conversion process. This is because the Fischer-Tropsch product itself is mostly composed of normal paraffins that do not contribute to a low octane number or a low octane number. Various documents describing catalytic cracking are known as methods for producing gasoline having an acceptable octane number from Fischer-Tropsch products. For example, US-A-4684756 discloses a process for producing gasoline fractions by direct catalytic cracking of Fischer-Tropsch wax obtained by an iron-catalyzed Fischer-Tropsch process. The gasoline yield is 57.2% by weight.

接触分解を含む前記方法のうち幾つかの方法の欠点は、ガソリンと組合わせて製造されるガス油フラクションのセタン価が低すぎる上、ガス油の収量が低いことである。
US−A−4684756 WO−A−9934917 AU−A−698391 US−A−20020111521 WO−A−200029511 EP−B−832171
Disadvantages of some of the above processes involving catalytic cracking are that the cetane number of the gas oil fraction produced in combination with gasoline is too low and the yield of gas oil is low.
US-A-4684756 WO-A-9934917 AU-A-698391 US-A-200201111521 WO-A-200095511 EP-B-832171

本発明の目的は、主生成物としてガソリンが生成する、フィッシャー・トロプシュ生成物の接触分解法により、高品質のパラフィン系ガス油を製造することである。   The object of the present invention is to produce high quality paraffinic gas oils by catalytic cracking of Fischer-Tropsch products, where gasoline is produced as the main product.

発明の概要
ガス油の製造方法は、
(a)フィッシャー・トロプシュ合成生成物から第一ガス油フラクション及び該ガス油フラクションより高い沸点を有するフラクションを単離する工程、
(b)該重質フラクションを、酸性母材及び大細孔モレキュラーシーブを含有する触媒を含む触媒系と、立上がり管反応器中、温度450〜650℃、接触時間1〜10秒及び触媒対油比2〜20kg/kgで接触させる工程、
(c)工程(b)の生成物から第二ガス油フラクションを単離する工程、
(d)第一ガス油フラクションを第二ガス油と配合する工程、
による。
SUMMARY OF THE INVENTION
(A) isolating the first gas oil fraction and the fraction having a boiling point higher than the gas oil fraction from the Fischer-Tropsch synthesis product;
(B) The heavy fraction is mixed with a catalyst system containing an acidic base material and a catalyst containing a large pore molecular sieve, in a riser reactor, at a temperature of 450 to 650 ° C., a contact time of 1 to 10 seconds, and a catalyst to oil. Contacting at a ratio of 2 to 20 kg / kg,
(C) isolating the second gas oil fraction from the product of step (b);
(D) combining the first gas oil fraction with the second gas oil;
by.

発明の詳細な説明
出願人は、工程(a)で得られる第一ガス油フラクションは、フィッシャー・トロプシュ合成生成物の接触分解により得られる第二ガス油のセタン価を向上することを見い出した。好ましい実施態様では、比較的重質のフィッシャー・トロプシュ生成物が接触分解工程(b)の原料として使用される。接触分解したガス油フラクションを工程(a)で得られるようなパラフィンで富化すると、ガス油のセタン価は、ディーゼル燃料のブレンド成分として好適なレベルまで増大する。他の利点は、工程(b)では流動接触分解(FCC)法として知られている周知の方法が利用できることである。
Detailed Description of the Invention Applicants have found that the first gas oil fraction obtained in step (a) improves the cetane number of the second gas oil obtained by catalytic cracking of the Fischer-Tropsch synthesis product. In a preferred embodiment, a relatively heavy Fischer-Tropsch product is used as feedstock for the catalytic cracking step (b). Enriching the catalytically cracked gas oil fraction with paraffin as obtained in step (a) increases the cetane number of the gas oil to a level suitable as a blend component of diesel fuel. Another advantage is that a well known process known as fluid catalytic cracking (FCC) process can be used in step (b).

フィッシャー・トロプシュ合成生成物は、原則として、周知のフィッシャー・トロプシュ合成反応を行った際、得られるいかなる反応生成物でもよい。工程(b)では比較的重質のフィッシャー・トロプシュ生成物を使用することが好ましい。この重質原料は、炭素原子数30以上の化合物を30重量%以上、好ましくは50重量%以上、更に好ましくは55重量%以上有することが好ましい。更にフィッシャー・トロプシュ生成物中の炭素原子数60以上の化合物と炭素原子数30以上の化合物との重量比は少なくとも0.2、好ましくは少なくとも0.4、更に好ましくは少なくとも0.55である。フィッシャー・トロプシュ生成物は、ASF−α値(Anderson−Schulz−Flory連鎖成長ファクター)が少なくとも0.925、好ましくは少なくとも0.935、更に好ましくは少なくとも0.945、なお更に好ましくは少なくとも0.955のC20+フラクションを含むことが好ましい。 The Fischer-Tropsch synthesis product may in principle be any reaction product obtained when a well-known Fischer-Tropsch synthesis reaction is performed. In step (b) it is preferred to use a relatively heavy Fischer-Tropsch product. The heavy raw material preferably contains a compound having 30 or more carbon atoms in an amount of 30% by weight or more, preferably 50% by weight or more, and more preferably 55% by weight or more. Further, the weight ratio of the compound having 60 or more carbon atoms and the compound having 30 or more carbon atoms in the Fischer-Tropsch product is at least 0.2, preferably at least 0.4, more preferably at least 0.55. The Fischer-Tropsch product has an ASF-α value (Anderson-Schulz-Flory chain growth factor) of at least 0.925, preferably at least 0.935, more preferably at least 0.945, and even more preferably at least 0.955. Of C 20 + fractions.

工程(b)で使用されるフィッシャー・トロプシュ生成物の初期沸点は、好適には200℃未満から450℃以下の範囲であってよい。フィッシャー・トロプシュ合成生成物を工程(b)で使用する前に、フィッシャー・トロプシュ合成生成物からガス油範囲の沸点を有する全ての化合物を分離すれば、初期沸点は300〜450℃が好ましい。出願人は、このようなフィッシャー・トロプシュ生成物から出発し、このようにして、ガス油範囲の沸点を有するフィッシャー・トロプシュフラクションを排除すると、ガス油が高収量で得られることを見い出した。このような比較的重質のフィッシャー・トロプシュ生成物は、比較的重質のフィッシャー・トロプシュ生成物を生成するいずれの方法によっても得られる。全てのフィッシャー・トロプシュ法が必ずしもこのような重質生成物を生じるのではない。好ましい方法は、コバルトで触媒したフィッシャー・トロプシュ法である。好適なフィッシャー・トロプシュ法の一例は、WO−A−9934917及びAU−A−698392に記載されている。これらの方法は前述のようなフィッシャー・トロプシュ生成物を生成できる。   The initial boiling point of the Fischer-Tropsch product used in step (b) may suitably be in the range of less than 200 ° C to 450 ° C. If all the compounds having a boiling point in the gas oil range are separated from the Fischer-Tropsch synthesis product before the Fischer-Tropsch synthesis product is used in step (b), the initial boiling point is preferably 300 to 450 ° C. Applicants have found that starting from such Fischer-Tropsch products and thus eliminating Fischer-Tropsch fractions having boiling points in the gas oil range, gas oils can be obtained in high yields. Such a relatively heavy Fischer-Tropsch product can be obtained by any method that produces a relatively heavy Fischer-Tropsch product. Not all Fischer-Tropsch processes necessarily produce such heavy products. A preferred method is the cobalt catalyzed Fischer-Tropsch process. An example of a suitable Fischer-Tropsch method is described in WO-A-9934917 and AU-A-698392. These methods can produce a Fischer-Tropsch product as described above.

比較的重質のフィッシャー・トロプシュ生成物を得るのに使用される好ましい触媒は、好適には、(aa)(1)チタニア又はチタニア前駆体、(2)液体及び(3)この使用した液体量に少なくとも一部不溶のコバルト化合物を混合して、混合物を形成し、(bb)こうして得られた混合物を造形、乾燥し、次いで(cc)こうして得られた組成物を仮焼することにより得られるコバルト含有触媒である。   Preferred catalysts used to obtain a relatively heavy Fischer-Tropsch product are preferably (aa) (1) titania or titania precursor, (2) liquid and (3) the amount of liquid used. Obtained by mixing at least partly insoluble cobalt compound to form a mixture, (bb) shaping and drying the mixture thus obtained, and (cc) calcining the composition thus obtained. It is a cobalt-containing catalyst.

このコバルト化合物の好ましくは50重量%以上、更に好ましくは70重量%以上、なお更に好ましくは80重量%以上、最も好ましくは90重量%以上は、使用した液体量に不溶である。コバルト化合物は、好ましくは金属コバルト粉末、水酸化コバルト又はコバルト酸化物、更に好ましくはCo(OH)又はCoである。コバルト化合物は、好ましくは耐火性酸化物量に対し60重量%以下、更に好ましくは10〜40重量%の範囲の量で使用される。触媒は、少なくとも1種の促進剤金属、好ましくはマンガン、バナジウム、レニウム、ルテニウム、ジルコニウム、チタン又はクロム、最も好ましくはマンガンを含有することが好ましい。促進剤金属は、コバルトと促進剤金属との原子比が好ましくは少なくとも4、更に好ましくは少なくとも5となるような量で使用される。好適には少なくとも1種の促進剤金属化合物は、工程(aa)に存在する。好適にはコバルト化合物は、沈殿後、任意に仮焼により得られる。コバルト化合物及び少なくとも1種の促進剤金属化合物は、好ましくは共沈により、更に好ましくは一定pHで共沈により得られる。好ましくはコバルト化合物は、チタニア又はチタニア前駆体の少なくとも一部の存在下、好ましくは全部のチタニア又はチタニア前駆体の存在下で沈殿させる。工程(aa)の混合は、混練又は磨砕により行うことが好ましい。こうして得られた混合物は、次にペレット化、押出、造粒又は圧潰、好ましくは押出により造形する。得られた混合物は、固形分を30〜90重量%、好ましくは50〜80重量%の範囲で含有することが好ましい。好ましくは、工程(aa)で得られた混合物はスラリーであり、こうして得られたスラリーは造形し、噴霧乾燥により乾燥する。得られたスラリーの固形分は、好ましくは1〜30重量%、更に好ましくは5〜20重量%の範囲である。仮焼は好ましくは400〜750℃の範囲、更に好ましくは500〜650℃の範囲で行われる。更なる詳細は、WO−A−9934917に記載されている。 Preferably 50% by weight or more of this cobalt compound, more preferably 70% by weight or more, still more preferably 80% by weight or more, and most preferably 90% by weight or more is insoluble in the amount of liquid used. The cobalt compound is preferably metallic cobalt powder, cobalt hydroxide or cobalt oxide, more preferably Co (OH) 2 or Co 3 O 4 . The cobalt compound is preferably used in an amount of 60% by weight or less, more preferably 10 to 40% by weight, based on the amount of refractory oxide. The catalyst preferably contains at least one promoter metal, preferably manganese, vanadium, rhenium, ruthenium, zirconium, titanium or chromium, most preferably manganese. The promoter metal is used in an amount such that the atomic ratio of cobalt to promoter metal is preferably at least 4, more preferably at least 5. Preferably at least one promoter metal compound is present in step (aa). Preferably the cobalt compound is optionally obtained by calcination after precipitation. The cobalt compound and the at least one promoter metal compound are preferably obtained by coprecipitation, more preferably by coprecipitation at a constant pH. Preferably the cobalt compound is precipitated in the presence of at least a portion of titania or titania precursor, preferably in the presence of all titania or titania precursor. The mixing in the step (aa) is preferably performed by kneading or grinding. The mixture thus obtained is then shaped by pelletization, extrusion, granulation or crushing, preferably by extrusion. The obtained mixture preferably contains a solid content in the range of 30 to 90% by weight, preferably 50 to 80% by weight. Preferably, the mixture obtained in step (aa) is a slurry, and the slurry thus obtained is shaped and dried by spray drying. The solid content of the obtained slurry is preferably in the range of 1 to 30% by weight, more preferably 5 to 20% by weight. The calcination is preferably performed in the range of 400 to 750 ° C, more preferably in the range of 500 to 650 ° C. Further details are described in WO-A-9934917.

フィッシャー・トロプシュ法は、通常、125〜350℃、好ましくは175〜275℃の範囲の温度で行われる。圧力は、通常、5〜150バール絶対圧、好ましくは5〜80バール絶対圧、特に5〜70バール絶対圧の範囲である。水素(H)及び一酸化炭素(合成ガス)は、0.5〜2.5の範囲のモル比でこのプロセスに供給される。本発明方法で合成ガスのガスの時間当り空間速度(GHSV)は、広範囲に変化でき、通常、400〜10000Nl/l/h、例えば400〜4000Nl/l/hの範囲である。用語GHSVは当該技術分野で周知であり、合成ガスのNl容量、即ち、STP状態(0℃、1バール絶対圧)で触媒粒子、即ち、粒子間の空隙を除く触媒1リットルと1時間接触させた時のリットル数に関する。固定触媒床の場合、GHSVは、触媒床、即ち、粒子間の空隙を除く触媒床1リットル当りとしても表現できる。フィッシャー・トロプシュ合成は、スラリー反応器、好ましくは触媒床中で実施できる。更なる詳細は、WO−A−9934917に記載されている。 The Fischer-Tropsch process is usually performed at a temperature in the range of 125 to 350 ° C, preferably 175 to 275 ° C. The pressure is usually in the range from 5 to 150 bar absolute, preferably from 5 to 80 bar absolute, in particular from 5 to 70 bar absolute. Hydrogen (H 2) and carbon monoxide (synthesis gas) is supplied to the process at a molar ratio in the range of 0.5 to 2.5. In the process according to the invention, the gas hourly space velocity (GHSV) can vary over a wide range and is usually in the range of 400 to 10000 Nl / l / h, for example 400 to 4000 Nl / l / h. The term GHSV is well known in the art and is contacted for 1 hour with Nl volume of synthesis gas, ie, 1 liter of catalyst excluding voids between the particles in STP state (0 ° C., 1 bar absolute pressure). Concerning the number of liters. In the case of a fixed catalyst bed, GHSV can also be expressed as a catalyst bed, ie per liter of catalyst bed excluding voids between particles. Fischer-Tropsch synthesis can be carried out in a slurry reactor, preferably in a catalyst bed. Further details are described in WO-A-9934917.

合成ガスは、炭素(炭化水素)供給原料で出発する、部分酸化、水蒸気改質及びこれら方法の組合わせのような周知の方法により得られる。可能な供給原料の例は、天然ガス、随伴ガス、製油所オフガス、原油の残留フラクション、石炭、ペットコークス、バイオマス、例えば木材である。部分酸化は、触媒しても触媒しなくてもよい。水蒸気改質は、例えば慣用の水蒸気改質、自熱式改質(ATR)及び対流式水蒸気改質であってよい。好適な部分酸化法の例は、Shellガス化法及びShell石炭ガス化法である。   Syngas is obtained by well known methods such as partial oxidation, steam reforming and combinations of these methods, starting with a carbon (hydrocarbon) feedstock. Examples of possible feedstocks are natural gas, associated gas, refinery offgas, residual fraction of crude oil, coal, pet coke, biomass such as wood. Partial oxidation may or may not be catalyzed. The steam reforming may be, for example, conventional steam reforming, autothermal reforming (ATR) and convective steam reforming. Examples of suitable partial oxidation methods are Shell gasification and Shell coal gasification.

フィッシャー・トロプシュ生成物は、硫黄及び窒素を含有する化合物を全く又は微量しか含有しない。これは不純物を全く又は殆ど含有しない、フィッシャー・トロプシュ反応の誘導生成物には普通のことである。一般に硫黄及び窒素水準は、現在、硫黄については5ppm、窒素については1ppmという検出限界未満である。フィッシャー・トロプシュ生成物は、オレフィン及び/又は酸素化物を除去するため、水素化処理を必要とすることなく、工程(a)の原料に直接使用できるという利点がある。   Fischer-Tropsch products contain no or only trace amounts of compounds containing sulfur and nitrogen. This is normal for the induced product of the Fischer-Tropsch reaction, which contains no or little impurities. In general, sulfur and nitrogen levels are currently below the detection limit of 5 ppm for sulfur and 1 ppm for nitrogen. The Fischer-Tropsch product has the advantage that it can be used directly as a raw material in step (a) without the need for hydroprocessing to remove olefins and / or oxygenates.

工程(b)で使用される触媒系は、少なくとも母材及び大細孔モレキュラーシーブを含む触媒で構成される。好適な大細孔モレキュラーシーブの例は、例えばゼオライトY、超安定ゼオライトY及びゼオライトXのようなホウジャサイト(FAU)型である。母材は好ましくは酸性母材である。酸性母材は、好適には非晶質アルミナを含み、好ましくは触媒の10重量%を超える部分は非晶質アルミナである。母材は更に例えば燐酸アルミニウム、粘土、シリカ及びそれらの混合物を含有してよい。非晶質アルミナは、モレキュラーシーブを適切に結合するのに十分な結合機能を有する母材を得るための結合剤としても使用してよい。好適な触媒の例は、流動接触分解法で使用される市販の触媒である。これらの触媒は、モレキュラーシーブとしてゼオライトYと、母材中に少なくともアルミナとを含有する。   The catalyst system used in step (b) is composed of a catalyst containing at least a base material and a large pore molecular sieve. Examples of suitable large pore molecular sieves are the faujasite (FAU) type such as zeolite Y, ultrastable zeolite Y and zeolite X. The base material is preferably an acidic base material. The acidic matrix suitably comprises amorphous alumina, preferably more than 10% by weight of the catalyst is amorphous alumina. The matrix may further contain, for example, aluminum phosphate, clay, silica and mixtures thereof. Amorphous alumina may also be used as a binder to obtain a matrix having a sufficient bonding function to properly bond the molecular sieve. Examples of suitable catalysts are commercially available catalysts used in fluid catalytic cracking processes. These catalysts contain zeolite Y as a molecular sieve and at least alumina in the base material.

原料と触媒との接触温度は、好ましくは450〜650℃の範囲である。この温度は、更に好ましくは475℃を超え、なお更に好ましくは500℃を超える。良好なガソリン収量は600℃を超える温度で見られる。しかし、600℃よりも高温では、熱分解反応が起こり、例えばメタン及びエタンのような望ましくないガス状生成物が生成する。このため、温度は更に好ましくは600℃未満である。本方法は、各種の反応器で実施してよい。石油誘導原料に対して操作するFCC法に比べてコークスの生成が比較的少ないので、この方法は、固定床反応器で行うことが可能である。しかし、触媒を再生可能にするための一層簡単な優先順位は、流動床反応器又は立上り管反応器のいずれかである。本方法を立上り管反応器で実施する場合、好ましい接触時間は1〜10秒、更に好ましくは2〜7秒の範囲である。触媒対油比は、好ましくは2〜20kg/kgの範囲である。良好な結果は、15kg/kg未満、更には10kg/kg未満の低い触媒対油比で得られることが見い出された。   The contact temperature between the raw material and the catalyst is preferably in the range of 450 to 650 ° C. This temperature is more preferably greater than 475 ° C and even more preferably greater than 500 ° C. Good gasoline yield is seen at temperatures above 600 ° C. However, at temperatures above 600 ° C., pyrolysis reactions occur and undesired gaseous products such as methane and ethane are produced. For this reason, the temperature is more preferably less than 600 ° C. The process may be carried out in various reactors. This method can be carried out in a fixed bed reactor because coke formation is relatively small compared to the FCC method operating on petroleum derived feedstocks. However, a simpler priority for making the catalyst renewable is either a fluidized bed reactor or a riser reactor. When the process is carried out in a riser reactor, the preferred contact time is in the range 1-10 seconds, more preferably 2-7 seconds. The catalyst to oil ratio is preferably in the range of 2-20 kg / kg. It has been found that good results are obtained with a low catalyst to oil ratio of less than 15 kg / kg and even less than 10 kg / kg.

これは、例えば小さい設備でも、触媒の在庫が少なくても、エネルギーが少なくても、及び/又は生産性が高くても、触媒量当たりの生産性が高いことを意味するので、有利である。   This is advantageous, for example, because it means high productivity per catalyst amount, even with small equipment, low catalyst inventory, low energy, and / or high productivity.

この触媒系は、中間細孔サイズのモレキュラーシーブも含有すると、ガソリンフラクションに次いでプロピレン及びその他の低級オレフィンも高収量で得られるので、有利かも知れない。好ましい中間細孔サイズのモレキュラーシーブは、ゼオライトβ、エリオナイト(Erionite)、フェリエライト、ZSM−5、ZSM−11、ZSM−12、ZSM−22、ZSM−23又はZSM−57である。本方法に存在するモレキュラーシーブ全量に対する中間細孔結晶の重量分率は、好ましくは2〜20重量%の範囲である。中間細孔モレキュラーシーブ及び大細孔モレキュラーシーブは、1つの触媒粒子中に配合してもよいし、或いは異なる触媒粒子中に存在してもよい。中間細孔モレキュラーシーブ及び大細孔モレキュラーシーブは、実用上の理由から、異なる触媒粒子中に存在することが好ましい。したがって、例えば操作者は、触媒系のこれら2種の触媒成分を、異なる添加割合で本方法に添加できる。これは、2種の触媒成分が異なる失活速度を有するからである。好適な母材はアルミナである。モレキュラーシーブは、例えば蒸煮又はその他、公知の方法で脱アルミ化してよい。   This catalyst system may also be advantageous if it also contains intermediate pore size molecular sieves, since propylene and other lower olefins are then obtained in high yields following the gasoline fraction. Preferred intermediate pore size molecular sieves are zeolite β, Erionite, ferrierite, ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23 or ZSM-57. The weight fraction of mesoporous crystals relative to the total amount of molecular sieve present in the process is preferably in the range of 2-20% by weight. The intermediate pore molecular sieve and the large pore molecular sieve may be incorporated in one catalyst particle or may be present in different catalyst particles. The medium pore molecular sieve and the large pore molecular sieve are preferably present in different catalyst particles for practical reasons. Thus, for example, an operator can add these two catalyst components of the catalyst system to the process at different addition rates. This is because the two catalyst components have different deactivation rates. A preferred matrix is alumina. For example, the molecular sieve may be dealuminated by steaming or other known methods.

大細孔モレキュラーシーブ、更に好ましくはFAU型モレキュラーシーブを中間細孔サイズのモレキュラーシーブと組合せると、低級オレフィンに対し高い選択率が得られることが見い出された。出願人は、前述のように大細孔モレキュラーシーブ、更に好ましくはFAU型モレキュラーシーブを中間細孔サイズのモレキュラーシーブと組合せて本発明方法を行うと、低級オレフィンの収量が向上するばかりでなく、イソ−及びn−ペンテン及びヘキセンの収量も増大することを見い出した。このような実施態様では、これらペンテン及びヘキセンは、ガス油の沸点範囲にある化合物にオリゴマー化することが好ましい。このように好ましいのは、少なくとも2つの理由によるもので、ガス油の究極収量が増大すると共に、低オクタン価の原因化合物がガソリンから除去されるからである。オリゴマー化は周知の方法で、例えばUS−A−20020111521に例示されている。   It has been found that when a large pore molecular sieve, more preferably a FAU type molecular sieve, is combined with a medium pore size molecular sieve, a high selectivity to lower olefins is obtained. Applicants have not only improved the yield of lower olefins when the method of the present invention is carried out in combination with large pore molecular sieves, more preferably FAU type molecular sieves, as described above, with intermediate pore size molecular sieves, It has been found that the yield of iso- and n-pentene and hexene is also increased. In such embodiments, the pentene and hexene are preferably oligomerized into compounds in the boiling range of the gas oil. This preference is due to at least two reasons because the ultimate yield of gas oil is increased and the low octane number causative compound is removed from the gasoline. Oligomerization is a well-known method, for example illustrated in US-A-200201111521.

工程(c)では、工程(b)の生成物から、主生成物のガソリンから第二ガス油フラクションが単離される。これらフラクションの単離は、好適には蒸留により行われる。本発明では、ガソリン又はガソリンフラクションは、90重量%を超えるもの、好ましくは95重量%を超えるものが25〜215℃の沸点範囲にあるフラクションである。ガス油又はガス油フラクションは、90重量%を超えるものが200〜370℃、好ましくは215〜350℃の沸点範囲にあるフラクションである。   In step (c), a second gas oil fraction is isolated from the product of step (b) from the main product gasoline. These fractions are preferably isolated by distillation. In the present invention, gasoline or a gasoline fraction is a fraction having a boiling point range of 25 to 215 ° C., more than 90% by weight, preferably more than 95% by weight. The gas oil or gas oil fraction is a fraction having a boiling point of 200 to 370 ° C., preferably 215 to 350 ° C., more than 90% by weight.

第一及び第二ガス油フラクションに対しては、必要ならば流動点を受容可能なレベルに降下させるため、更に接触脱蝋工程を別個に又は混合物として行ってよい。このような処理は、流動点降下に有利であるばかりでなく、工程(a)で生成したいかなる芳香族化合物の含有量も減少させる。流動点は、好ましくは−10℃未満、更に好ましくは−15℃未満である。ガス油の接触脱蝋は、好適にはバインダー、モレキュラーシーブ及び水素化金属成分を含む触媒を用いて行ってよい。バインダーは、いかなるバインダーでもよく、好適にはアルミナ、シリカ−アルミナ又はシリカであってよい。モレキュラーシーブは、好ましくはゼオライト又はシリカ−アルミノホスフェート(SAPO)材料である。ゼオライトの細孔径は、好ましくは0.35〜0.8nmの範囲である。好適な中間細孔サイズゼオライトは、モルデナイト、ゼオライトβ、ZSM−5、ZSM−12、ZSM−22、ZSM−23、MCM−68、SSZ−32、ZSM−35及びZSM−48である。好ましくは、シリカ−アルミナホスフェート(SAPO)材料は、SAPO−11である。水素化成分は、好ましくは第VIII族金属であり、更に好ましくはニッケル、コバルト、白金及びパラジウムである。最も好ましくは第VIII族の貴金属が使用される。接触的脱蝋条件は当該技術分野で公知であり、通常、200〜500℃、好適には250〜400℃の範囲の操作温度、10〜200バール、好ましくは15〜100バールの範囲の水素圧、1時間当り触媒1リットル当りオイル0.1〜10kg(kg/l/hr)、好適には0.2〜5kg/l/hr、更に好適には0.5〜3kg/l/hrの範囲の重量の時間当り空間速度(WHSV)、及びオイル1リットル当り水素100〜2,000リットルの範囲の水素対オイル比である。好適な脱蝋方法及び触媒はWO−A−200029511及びEP−B−832171に記載されている。   For the first and second gas oil fractions, a further catalytic dewaxing step may be performed separately or as a mixture to lower the pour point to an acceptable level if necessary. Such treatment is not only advantageous for pour point depression, but also reduces the content of any aromatic compounds produced in step (a). The pour point is preferably less than −10 ° C., more preferably less than −15 ° C. The catalytic dewaxing of the gas oil may be carried out using a catalyst preferably comprising a binder, molecular sieve and a metal hydride component. The binder can be any binder, preferably alumina, silica-alumina or silica. The molecular sieve is preferably a zeolite or silica-aluminophosphate (SAPO) material. The pore diameter of zeolite is preferably in the range of 0.35 to 0.8 nm. Suitable intermediate pore size zeolites are mordenite, zeolite beta, ZSM-5, ZSM-12, ZSM-22, ZSM-23, MCM-68, SSZ-32, ZSM-35 and ZSM-48. Preferably, the silica-alumina phosphate (SAPO) material is SAPO-11. The hydrogenation component is preferably a Group VIII metal, more preferably nickel, cobalt, platinum and palladium. Most preferably a Group VIII noble metal is used. Catalytic dewaxing conditions are known in the art and are usually 200-500 ° C, preferably an operating temperature in the range of 250-400 ° C, a hydrogen pressure in the range of 10-200 bar, preferably 15-100 bar. 0.1 to 10 kg of oil per liter of catalyst per hour (kg / l / hr), preferably 0.2 to 5 kg / l / hr, more preferably 0.5 to 3 kg / l / hr Weight hourly space velocity (WHSV) and hydrogen to oil ratio in the range of 100 to 2,000 liters of hydrogen per liter of oil. Suitable dewaxing processes and catalysts are described in WO-A-200029511 and EP-B-832171.

例A〜D
第1表に示す特性を有するフィッシャー・トロプシュ生成物を熱再生触媒と触媒対油比4kg/kgで異なる温度及び接触時間、接触させた。この触媒は、工業運転用FCCユニットで得られた、アルミナ母材及び超安定ゼオライトYを含む工業用FCC触媒である。このゼオライトYの含有量は10重量%である。操作条件は第3表に示す。
Examples A to D
Fischer-Tropsch products having the characteristics shown in Table 1 were contacted with the heat regenerated catalyst at a catalyst to oil ratio of 4 kg / kg at different temperatures and contact times. This catalyst is an industrial FCC catalyst containing an alumina base material and ultrastable zeolite Y obtained by an FCC unit for industrial operation. The content of zeolite Y is 10% by weight. The operating conditions are shown in Table 3.

例1〜4
第2表に示す特性を有するフィッシャー・トロプシュ生成物を例A〜Dと同様、熱再生触媒と、異なる温度及び接触時間、接触させた。フィッシャー・トロプシュ生成物は、WO−A−9934917の実施例IIIの触媒を用い、同実施例VIIに従って得られた。操作条件は第3表に示す。
Examples 1-4
A Fischer-Tropsch product having the properties shown in Table 2 was contacted with the heat regenerated catalyst at different temperatures and contact times as in Examples AD. The Fischer-Tropsch product was obtained according to Example VII using the catalyst of Example III of WO-A-9934917. The operating conditions are shown in Table 3.

第4表から、本発明方法によれば、ガソリン及び中間蒸留物、又はガス油が高収量で得られることが判る。例1〜4では、ガス油の収量は、例B〜Dよりも低いが、実験B〜Dの原料中のガス油含有量は、42.2重量%(第1表参照)であり、これは実験B〜Dのいずれのガス油収量よりも高い。更に、実験1〜4で得られたガソリンフラクションは、相当量のn−及びイソ−ペンテンを含有している。これらのペンテンは、ガス油にオリゴマー化できる。
また第4表から、高いガソリン収量は、長い(high)接触時間及び比較的マイルドな温度で得られることも判る(例B及び2参照)。
From Table 4, it can be seen that according to the method of the present invention, gasoline and middle distillate or gas oil can be obtained in high yield. In Examples 1 to 4, the yield of gas oil is lower than in Examples B to D, but the gas oil content in the raw materials of Experiments B to D is 42.2% by weight (see Table 1). Is higher than the gas oil yield of any of Experiments B-D. Furthermore, the gasoline fractions obtained in experiments 1 to 4 contain a considerable amount of n- and iso-pentene. These pentenes can be oligomerized into gas oils.
Table 4 also shows that high gasoline yields can be obtained with long contact times and relatively mild temperatures (see Examples B and 2).

例5〜7
第5表に示す特性を有するフィッシャー・トロプシュ生成物及び第3表の条件で例2〜4を繰り返した。第5表の原料は、第2表の原料から第1表のガス油及びこれより軽質のフラクション22重量%を除去して得られる。収量を第6表に示す。
Examples 5-7
Examples 2-4 were repeated with a Fischer-Tropsch product having the properties shown in Table 5 and the conditions in Table 3. The raw material of Table 5 is obtained by removing the gas oil of Table 1 and 22% by weight of a lighter fraction from the raw material of Table 2. It shows the yield in Table 6.

例8
触媒の一部を、25重量%のZSM−5を含有する触媒に取り替えた他は例6を繰り返した。全触媒充填量に対するZSM−5ベース触媒の含有量は、20重量%である(全触媒重量に対して計算)。ガソリンの収量は47.99重量%で、中間蒸留物の収量は全生成物に対し9.27重量%であった。n−及びイソ−ペンテンの含有量は、ガソリンフラクション中、54.61重量%であった。
Example 8
Example 6 was repeated except that a portion of the catalyst was replaced with a catalyst containing 25 wt% ZSM-5. The content of ZSM-5 base catalyst relative to the total catalyst loading is 20% by weight (calculated with respect to the total catalyst weight). The gasoline yield was 47.9 wt% and the middle distillate yield was 9.27 wt% based on the total product. The content of n- and iso-pentene was 54.61% by weight in the gasoline fraction.

例9
触媒の一部を、25重量%のZSM−5を含有する触媒に取り替えた他は例2を繰り返した。全触媒充填量に対するZSM−5ベース触媒の含有量は、20重量%である(全触媒重量に対して計算)。その結果を第7表に示す。
Example 9
Example 2 was repeated except that a portion of the catalyst was replaced with a catalyst containing 25 wt% ZSM-5. The content of ZSM-5 base catalyst relative to the total catalyst loading is 20% by weight (calculated with respect to the total catalyst weight). The results are shown in Table 7.

例10
触媒の一部を、25重量%のZSM−5を含有する触媒に取り替えた他は例3を繰り返した。全触媒充填量に対するZSM−5ベース触媒の含有量は、20重量%である(全触媒重量に対して計算)。その結果を第7表に示す。
Example 10
Example 3 was repeated except that a portion of the catalyst was replaced with a catalyst containing 25 wt% ZSM-5. The content of ZSM-5 base catalyst relative to the total catalyst loading is 20% by weight (calculated with respect to the total catalyst weight). The results are shown in Table 7.


例8〜10からZSM−5の添加により、ガス油の収量が増大することが判る。

Examples 8-10 show that the addition of ZSM-5 increases the yield of gas oil.

Claims (11)

(a)フィッシャー・トロプシュ合成生成物から第一ガス油フラクション及び該ガス油フラクションより高い沸点を有するフラクションを単離する工程、
(b)該ガス油フラクションより高い沸点を有するフラクションを、酸性母材及び大細孔モレキュラーシーブを含有する触媒を含む触媒系と、立上がり管反応器中、温度450〜650℃、接触時間1〜10秒及び触媒対油比2〜20kg/kgで接触させる工程、
(c)工程(b)の生成物から第二ガス油フラクションを単離する工程、及び
(d)第一ガス油フラクションを第二ガス油と配合する工程、
によるガス油の製造方法。
(A) isolating the first gas oil fraction and the fraction having a boiling point higher than the gas oil fraction from the Fischer-Tropsch synthesis product;
(B) a fraction having a higher boiling point than the gas oil fraction , a catalyst system comprising a catalyst containing an acidic matrix and a large pore molecular sieve, and a riser reactor, temperature 450-650 ° C., contact time 1 Contacting for 10 seconds and a catalyst to oil ratio of 2 to 20 kg / kg,
(C) isolating the second gas oil fraction from the product of step (b), and (d) combining the first gas oil fraction with the second gas oil,
A method for producing gas oil.
工程()で使用した原料は、炭素原子数60以上の化合物と炭素原子数30以上の化合物との重量比が少なくとも0.2であり、かつこれら化合物の30重量%以上が炭素原子数30以上のものである請求項1に記載の方法。In the raw material used in the step ( b ), the weight ratio of the compound having 60 or more carbon atoms and the compound having 30 or more carbon atoms is at least 0.2, and 30% by weight or more of these compounds has 30 carbon atoms. The method according to claim 1, which is as described above. 工程()の原料中の化合物の50重量%以上が炭素原子数30以上のものである請求項2に記載の方法。The method according to claim 2, wherein 50% by weight or more of the compound in the raw material in the step ( b ) has 30 or more carbon atoms. 前記フィッシャー・トロプシュ生成物中の炭素原子数60以上の化合物と炭素原子数30以上の化合物との重量比が工程()の原料中で少なくとも0.4である請求項3に記載の方法。The method according to claim 3, wherein the weight ratio of the compound having 60 or more carbon atoms and the compound having 30 or more carbon atoms in the Fischer-Tropsch product is at least 0.4 in the raw material of the step ( b ). 工程(b)での温度が600℃未満である請求項1〜4のいずれか1項に記載の方法。  The method according to any one of claims 1 to 4, wherein the temperature in step (b) is less than 600C. 前記酸性母材がアルミナである請求項1〜5のいずれか1項に記載の方法。  The method according to claim 1, wherein the acidic base material is alumina. 前記大細孔モレキュラーシーブがホウジャサイト(FAU)型である請求項1〜6のいずれか1項に記載の方法。  The method according to claim 1, wherein the large pore molecular sieve is of a faujasite (FAU) type. 工程(b)の触媒系が、ゼオライトβ、エリオナイト、フェリエライト、ZSM−5、ZSM−11、ZSM−12、ZSM−22、ZSM−23又はZSM−57も含む請求項1〜7のいずれか1項に記載の方法。  The catalyst system of step (b) also comprises zeolite beta, erionite, ferrierite, ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23 or ZSM-57. The method according to claim 1. イソ−及びノーマル−ペンテン及び/又はイソ及びノーマル−ヘキセンに対し、オリゴマー化を行って、ガス油範囲の沸点を有する化合物を製造すると共に、該化合物を工程(d)で得られたガス油生成物と配合する請求項8に記載の方法。Iso - and normal - pentene and / or iso - and normal - to hexene, performs oligomerization, thereby producing a compound having a boiling point of the gas oil range, gas oil obtained in the compound step (d) 9. A method according to claim 8, which is blended with the product. 工程(a)の原料として使用したフィッシャー・トロプシュ合成生成物が、コバルトで触媒したフィッシャー・トロプシュ合成法で得られる請求項1〜9のいずれか1項に記載の方法。  The method according to any one of claims 1 to 9, wherein the Fischer-Tropsch synthesis product used as a raw material in the step (a) is obtained by a cobalt-catalyzed Fischer-Tropsch synthesis method. 前記コバルト触媒が、(aa)(1)チタニア又はチタニア前駆体と、(2)液体と、(3)使用した前記液体の量では少なくとも部分的に不溶であるコバルト化合物とを混合して混合物を形成し、(bb)こうして得られた混合物を造形し乾燥し、次いで(cc)こうして得られた組成物を仮焼して、得られる請求項10に記載の方法。  The cobalt catalyst is a mixture of (aa) (1) titania or titania precursor, (2) liquid, and (3) a cobalt compound that is at least partially insoluble in the amount of liquid used. 11. The method according to claim 10, obtained by forming, (bb) shaping and drying the mixture thus obtained, and then (cc) calcining the composition thus obtained.
JP2007513930A 2004-05-26 2005-05-25 Method for producing gas oil by catalytic cracking of Fischer-Tropsch products Expired - Fee Related JP4955541B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/EP2004/050931 WO2004106462A1 (en) 2003-05-27 2004-05-26 Process to prepare a gasoline
EPPCT/EP2004/050931 2004-05-26
EP04106189 2004-11-30
EP04106189.6 2004-11-30
PCT/EP2005/052391 WO2005118747A1 (en) 2004-05-26 2005-05-25 Process to produce a gas oil by catalytic cracking of a fisher-tropsch product

Publications (2)

Publication Number Publication Date
JP2008500418A JP2008500418A (en) 2008-01-10
JP4955541B2 true JP4955541B2 (en) 2012-06-20

Family

ID=38557244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007513930A Expired - Fee Related JP4955541B2 (en) 2004-05-26 2005-05-25 Method for producing gas oil by catalytic cracking of Fischer-Tropsch products

Country Status (7)

Country Link
US (1) US20070227946A1 (en)
EP (1) EP1753841A1 (en)
JP (1) JP4955541B2 (en)
CN (1) CN1965059B (en)
BR (1) BRPI0510476A (en)
RU (1) RU2388791C2 (en)
WO (1) WO2005118747A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988875B2 (en) * 2009-10-22 2016-09-07 中国石油化工股▲ふん▼有限公司 Catalytic conversion method to increase cetane barrel of diesel fuel
EP2319900A1 (en) * 2009-11-02 2011-05-11 Shell Internationale Research Maatschappij B.V. Cracking process
WO2011051438A1 (en) * 2009-11-02 2011-05-05 Shell Internationale Research Maatschappij B.V. Cracking process
US20130030232A1 (en) * 2010-01-20 2013-01-31 Jx Nippon Oil & Energy Corporation Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons
US20120261310A1 (en) * 2010-10-11 2012-10-18 Shell Oil Company Process for catalytic cracking a fischer-tropsch derived feedstock with heat balanced operation of the catalytic cracking system
JP5671412B2 (en) * 2011-05-26 2015-02-18 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same
US20130158138A1 (en) * 2011-12-15 2013-06-20 Chevron U.S.A. Inc. Integral synthesis gas conversion catalyst extrudates and methods for preparing and using same
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
CN106010585B (en) * 2016-06-23 2018-09-28 张启泰 Carbonization integral furnace is dried in environment protection type rotary formula multilayer destructive distillation
WO2023203895A1 (en) * 2022-04-18 2023-10-26 Eneos株式会社 Fuel production apparatus and fuel production method
WO2023234211A1 (en) * 2022-05-31 2023-12-07 Eneos株式会社 Method for producing hydrocarbons
WO2023234212A1 (en) * 2022-05-31 2023-12-07 Eneos株式会社 Method for producing hydrocarbon

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992474A (en) * 1975-12-15 1976-11-16 Uop Inc. Motor fuel production with fluid catalytic cracking of high-boiling alkylate
FR2362208A1 (en) * 1976-08-17 1978-03-17 Inst Francais Du Petrole PROCESS FOR VALUING EFFLUENTS OBTAINED IN FISCHER-TROPSCH TYPE SYNTHESES
US4471145A (en) * 1982-12-01 1984-09-11 Mobil Oil Corporation Process for syngas conversions to liquid hydrocarbon products utilizing zeolite Beta
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
GB9114390D0 (en) * 1991-07-03 1991-08-21 Shell Int Research Hydrocarbon conversion process and catalyst composition
US5481057A (en) * 1994-03-25 1996-01-02 Mobil Oil Corporation Alkylation with activated equilibrium FCC catalyst
US6296757B1 (en) * 1995-10-17 2001-10-02 Exxon Research And Engineering Company Synthetic diesel fuel and process for its production
FR2799202B1 (en) * 1999-09-30 2002-04-26 Inst Francais Du Petrole PROCESS FOR PRODUCING ESSENCES WITH IMPROVED OCTANE INDEX
BR0109793A (en) * 2000-04-03 2004-02-10 Chevron Usa Inc Integrated process for preparing isools from synthesis gas and distilled fuel composition
CN1123625C (en) * 2000-10-26 2003-10-08 中国石油化工股份有限公司 Process for treating and mixing residual oil
BR0207894A (en) * 2001-03-05 2004-06-22 Shell Int Research Process for the preparation of one or more hydrocarbon fuels, and hydrocarbon product
CN100587034C (en) * 2003-05-27 2010-02-03 国际壳牌研究有限公司 Process for preparing gasoline

Also Published As

Publication number Publication date
RU2388791C2 (en) 2010-05-10
RU2006146060A (en) 2008-07-10
CN1965059B (en) 2010-06-16
CN1965059A (en) 2007-05-16
WO2005118747A1 (en) 2005-12-15
BRPI0510476A (en) 2007-11-06
US20070227946A1 (en) 2007-10-04
EP1753841A1 (en) 2007-02-21
JP2008500418A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4955541B2 (en) Method for producing gas oil by catalytic cracking of Fischer-Tropsch products
JP5000488B2 (en) Aliphatic gasoline component and method for producing the gasoline component
US4684756A (en) Process for upgrading wax from Fischer-Tropsch synthesis
JP4542902B2 (en) Production of fuels and lubricants from Fischer-Tropsch wax
CA1140156A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
AU2003218008B2 (en) Process for upgrading fischer-tropsch syncrude using thermal cracking and oligomerization
US6864398B2 (en) Conversion of syngas to distillate fuels
CN101600782B (en) Process for the preparation of alkylate and middle distillate
JP4519406B2 (en) Method for producing fuel from Fischer-Tropsch process
JP2009513496A (en) Process for producing base oils from Fischer-Tropsch synthesis products
JP2010523807A (en) Fischer-Tropsch jet fuel method
US7678952B2 (en) Process to prepare a gasoline
WO2020150053A1 (en) Conversion of methanol to gasoline with integrated paraffin conversion
AU2007208855B2 (en) Method of hydrogenolysis of wax and process for producing fuel base
US6872752B2 (en) High purity olefinic naphthas for the production of ethylene and propylene
CA2103230C (en) Fluid catalytic cracking process for producing light olefins
JP4289887B2 (en) Optimization method for Fischer-Tropsch synthesis of hydrocarbons in distillate fuel range
JP2003522252A (en) Single stage multiple zone hydroisomerization method
US7150821B2 (en) High purity olefinic naphthas for the production of ethylene and propylene
CN100575460C (en) The method of aliphatic series gasoline component and the described gasoline component of preparation
AU2007232010B2 (en) Method of hydrotreating wax and process for producing fuel base
AU2008206002A1 (en) Processes for production of liquid fuel
WO2007097235A1 (en) Process for production of fuel base
EP1751261A1 (en) Aliphatic gasoline component and process to prepare said gasoline component
CA3224937A1 (en) Conversion of synthesis gas to liquid fuels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090715

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees