WO2007097235A1 - Process for production of fuel base - Google Patents
Process for production of fuel base Download PDFInfo
- Publication number
- WO2007097235A1 WO2007097235A1 PCT/JP2007/052638 JP2007052638W WO2007097235A1 WO 2007097235 A1 WO2007097235 A1 WO 2007097235A1 JP 2007052638 W JP2007052638 W JP 2007052638W WO 2007097235 A1 WO2007097235 A1 WO 2007097235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrocracking
- mass
- fraction
- heavy fraction
- boiling point
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
Definitions
- the present invention relates to a method for producing a fuel substrate, and more particularly to a method for producing a fuel substrate from a heavy fraction.
- FT synthetic oil By fractional distillation of FT synthetic oil, a middle fraction containing saturated hydrocarbons having a boiling point in the range of 150 to 360 ° C is obtained.
- the middle distillate of FT synthetic oil is expected to be used as a fuel base material for light oil and jet fuel.
- the fuel base material mainly composed of the middle distillate of FT synthetic oil has different characteristics such as combustion characteristics and low-temperature fluidity from conventional light oil and jet fuel. It has been pointed out that it is necessary to improve these characteristics in order to use this product in Japan.
- Patent Document 1 describes a method for producing a middle distillate by using a heavy fraction of FT synthetic oil as a raw material and having a high isoparaffin content by hydrocracking.
- Patent Document 1 International Publication No. 00/20535 Pamphlet
- the heavy fraction of FT synthetic oil is hydrocracked to contain isoparaffin.
- the fraction of FT synthetic oil increases in the content of isoparaffin contained in the distillate from light to heavy. For this reason, when a fuel base material is produced by fractionating a middle distillate from a cracked product obtained by hydrocracking a heavy fraction, the fuel produced from the middle distillate force of FT synthetic oil is simply used. Compared with the base material, the content of isoparaffin is high and a fuel base material is obtained.
- the fuel base material with a high content of isoparaffin and the low temperature fluidity is superior to the fuel base material with a low content of isoparaffin.
- the present inventors examined a method for producing middle distillate from a heavy fraction with sufficiently high yield by hydrocracking. As a result, it was found that the middle distillate is produced with high selectivity as the reaction pressure for hydrocracking heavy fractions is lowered.
- the main reason for the formation of middle distillate with high selectivity by lowering the pressure is that heavy fraction, which is mainly liquid under the hydrocracking reaction conditions, maintains the contact efficiency with the hydrocracking catalyst, and hydrocracking.
- the decomposition products that have been hydrocracked and lightened are more likely to vaporize as the pressure decreases, and the contact efficiency of the cracked products with the hydrocracking catalyst decreases. This is thought to be due to the suppression of decomposition.
- the present invention has been made in view of such a situation, and in the process of hydrocracking a heavy fraction, the degradation of the hydrocracking catalyst can be sufficiently suppressed, and the middle fraction can be sufficiently reduced. It is an object of the present invention to provide a method for producing a fuel base material that can be produced with high selectivity.
- the present inventors have produced a mixture by mixing a heavy fraction and a light fraction at a specific ratio, and the boiling point power contained in the mixture.
- the present inventors have found that the above problems can be solved by hydrocracking hydrocarbons exceeding 3 ⁇ 460 ° C under the condition that they are cracked at a specific cracking rate, and have completed the present invention.
- the method for producing a fuel base material of the present invention comprises a heavy fraction containing 90% by mass or more of hydrocarbon having a boiling point of more than 360 ° C and 95% of hydrocarbon having a boiling point of less than 150 ° C.
- a mixture in which a heavy fraction and a light fraction are mixed is hydrocracked.
- a heavy fraction can be decomposed into a middle fraction with sufficiently high selectivity.
- the middle fraction can be obtained from the heavy fraction with a high yield.
- the main reason why the middle distillate selectivity is sufficiently high is considered to be that the partial pressure of the cracked product is lowered, and the same effect as that obtained when the reaction pressure of hydrocracking is reduced is produced. Further, when the reaction pressure is lowered, there is a problem that deterioration of the hydrocracking catalyst is promoted mainly by carbon deposition on the surface of the hydrocracking catalyst.
- the hydrocracking catalyst is sufficiently deteriorated.
- the main reason for sufficiently suppressing the degradation of the hydrocracking catalyst is that the reaction pressure is not lowered, so that a sufficiently high reaction rate is maintained, and the carbon deposited on the hydrocracking catalyst surface can be sufficiently burned and removed. It is done.
- the decomposition rate of hydrocarbons having a boiling point exceeding 360 ° C means a decomposition rate defined by the following formula (1).
- “mass of hydrocarbons with boiling point over 360 ° C (before decomposition)” means hydrocarbons with boiling point over 360 ° C contained in the mixture subjected to hydrocracking process
- the mass of hydrocarbons whose boiling point exceeds 360 ° C (after decomposition) is the hydrocarbon whose boiling point contained in the decomposition product obtained by hydrocracking exceeds 360 ° C.
- a material containing a wax obtained by Fischer-Tropsch synthesis (hereinafter referred to as "FT synthesis") can be used as the heavy fraction of the raw material.
- the wax obtained by FT synthesis is essentially free of environmentally hazardous substances such as sulfur and aromatic hydrocarbons. For this reason, when the heavy fraction of the raw material contains wax obtained by FT synthesis, a fuel base material in which the content of environmentally hazardous substances is sufficiently reduced can be produced.
- the FT synthetic oil wax has a high isoparaffin content. When hydrocracked, the middle distillate with a high isoparaffin content is compared to the middle distillate that is simply fractionated from the FT synthetic oil. can get.
- a middle distillate having a high isoparaffin content is a fuel base material having excellent low-temperature fluidity compared to a middle distillate having a low content.
- the wax refers to a fraction containing 90% by mass or more of hydrocarbons having a boiling point exceeding 360 ° C.
- naphtha obtained by FT synthesis is substantially free of environmentally hazardous substances such as sulfur and aromatic hydrocarbons. For this reason, if the light fraction used in the mixing step contains naphtha obtained by FT synthesis, a fuel base material with a sufficiently reduced content of environmentally hazardous substances can be produced.
- naphtha means a fraction containing 95% by mass or more of hydrocarbons having boiling point S ⁇ 150 ° C.
- the liquid space velocity is 0.3 to 3.51T 1 based on the temperature 200 to 370 ° C., the pressure 1.0 to 5. OMPa, and the feed rate of the heavy fraction. It is preferable to hydrocrack the mixture under the following conditions.
- the hydrocracking catalyst contains 0.1 to 80.0% by mass of crystalline zeolite and amorphous metal oxide having heat resistance of 0.:! To 60.0% by mass based on the total amount of the support. And at least one metal selected from Group VIII metals of the Periodic Table of Elements of the carrier supported on this carrier in an amount of 0.:! To 3.0% by mass. Is preferred.
- FIG. 1 is a diagram showing a configuration of a plant capable of implementing a method for producing a fuel base material according to the present invention.
- the heavy fraction of the raw material contains 90% by mass or more of hydrocarbons having a boiling point exceeding 360 ° C.
- Examples of power and heavy fractions include heavy fractions obtained by distillation of FT synthetic oil and heavy fractions derived from petroleum.
- the heavy fraction obtained by distillation of the FT synthetic oil is particularly suitable from the viewpoint of reducing the environmental load because it contains substantially no sulfur.
- a heavy, heavy fraction can be obtained by fractionating FT synthetic oil at atmospheric pressure and temperatures exceeding 360 ° C.
- FT synthetic oil contains various hydrocarbon compounds, but generally the paraffin component is the main component.
- the heavy fraction used in the present invention is not limited to those synthesized under specific FT synthesis conditions, but was fractionated from FT synthetic oil synthesized under synthesis conditions in which the content of isobaraffin component is high. It is preferable to use one.
- the use of a heavy fraction having an isoparaffin component content has the advantage that a fuel substrate with improved low-temperature fluidity can be produced.
- Examples of heavy fractions derived from petroleum include heavy fractions obtained by refining and distilling petroleum. When using a heavy fraction derived from petroleum, it is preferable that the sulfur content of the heavy fraction is reduced to less than 1 mass ppm.
- the light fraction is mixed with the heavy fraction of the raw material.
- the light fraction used in the mixing process contains 95% by mass or more of hydrocarbons having a boiling point of less than 150 ° C.
- Examples of strong light fractions include light fractions derived from FT synthetic oil, light fractions derived from petroleum, and saturated hydrocarbons with 9 or less carbon atoms. Among these, the light fraction derived from FT synthetic oil is particularly suitable from the viewpoint of reducing environmental impact because it contains substantially no sulfur.
- Light fractions derived from FT synthetic oil include light fractions fractionated from FT synthetic oil under normal pressure and temperature conditions of less than 150 ° C, middle fraction or heavy fraction of FT synthetic oil. And refined oils containing hydrocarbons with a boiling point of less than 150 ° C obtained by hydrorefining and / or hydrocracking.
- Light fractions derived from petroleum include light fractions obtained by refining and distilling petroleum. When using a light fraction derived from petroleum, it is preferable that the sulfur content of the light fraction is reduced to less than 1 ppm by mass.
- saturated hydrocarbons having 9 or less carbon atoms include methane, ethane, propane, butane, pentane, hexane, heptane, octane and nonane. Among these, one kind can be used alone, or two or more kinds can be mixed and used.
- the above saturated hydrocarbons preferably have 5 to 9 carbon atoms and are preferably liquid at normal temperature and pressure.
- the fuel substrate production plant 100 shown in Fig. 1 includes a first distillation apparatus 10 for fractionating a heavy fraction from FT synthetic oil, and a heavy fraction and a light fraction fractionated by the first distillation apparatus 10. Are mixed with each other to obtain a mixture and hydrogen is added thereto, hydrocracking device 30 for hydrocracking the mixture, and cracked product transferred from the hydrocracking device 30.
- a gas-liquid separation device 40 that separates the separated liquid phase into a liquid phase and a second distillation device 50 that fractionates the separated liquid phase to obtain an intermediate fraction.
- the first distillation apparatus 10 is an atmospheric distillation apparatus, and can fractionate FT synthetic oil into three fractions separated by boiling temperatures of 150 ° C and 360 ° C.
- the first distillation apparatus 10 is connected to a line 1 for introducing FT synthetic oil, and a line 12, a line 13 and a line 14 for transferring each fractioned fraction.
- Line 12, 13 and 14 are each , Light fractions fractionated at temperatures below 150 ° C, middle fractions fractionated at temperatures between 150 ° C and 360 ° C, and fractions at temperatures above 360 ° C It is a line for transferring heavy fractions.
- the mixing device 20 is disposed downstream of the first distillation device 10.
- the mixing device 20 is a device for mixing each fluid supplied to the hydrogenation decomposition device 30.
- Various fluids introduced in the space inside the mixing device 20 are sufficiently mixed. That is, the mixing device 20 mixes a heavy fraction and a light fraction of FT synthetic oil at a predetermined mixing ratio to produce a mixture, and adds hydrogen at a predetermined mixing ratio to the heavy fraction. It can be configured.
- the mixing device 20 is connected to a line 14 for transferring a heavy fraction, a line 12a branched from a line 12 for transferring a light fraction, and a line 15 for introducing hydrogen.
- a line 21 connected to the mixing device 20 is a line for transferring the fluid to be treated containing the mixture and hydrogen to the hydrocracking device 30.
- the hydrocracking apparatus 30 is a fixed-bed hydrocracking apparatus, in which a hydrocracking catalyst is arranged.
- the hydrocracking apparatus 30 is configured such that the fluid to be treated introduced from a line 21 connected to the top of the hydrocracking apparatus 30 flows from the upper side to the lower side of the catalyst layer in the hydrocracking apparatus 30.
- the hydrocracking apparatus 30 includes a heating means (not shown) that adjusts the temperature conditions of hydrocracking. Further, the hydrocracking apparatus 30 is provided with a back pressure valve 30a for adjusting the hydrocracking pressure condition at the downstream portion thereof.
- a line 32 connected to the hydrocracking apparatus 30 is a line for transferring the cracked product generated by the apparatus to the gas-liquid separator 40.
- hydrocracking catalyst disposed in the hydrocracking apparatus 30 0.1 to 80.0% by weight of crystalline zeolite and amorphous metal oxide having heat resistance 0.:! To 60.0% by weight Containing at least one metal selected from VIA metal and Group VIII metal of the Periodic Table of Elements carried on the carrier, and containing 0.:! To 3.0% by mass.
- crystalline zeolite and amorphous metal oxide having heat resistance 0.:!
- Conta metal selected from VIA metal and Group VIII metal of the Periodic Table of Elements carried on the carrier and containing 0.:! To 3.0% by mass.
- USY zeolite can be used as the crystalline zeolite.
- USY zeolite (ultra-stable Y-type zeolite, UltraStable Y_Zeolite)” means a product prepared by dealumination of Y-type zeolite by acid treatment or steam treatment.
- the molar ratio of silica / alumina in USY zeolite is not particularly limited, but is preferably 10 to 200, more preferably 15 to 100, and most preferably 20 to 60. If the molar ratio of silica / anolemina is less than 10, lightening of the heavy fraction tends to occur, and if it exceeds 200, the catalytic activity tends to be insufficient.
- the average particle size of USY zeolite is preferably 1.0 ⁇ m or less, more preferably 0.
- the ratio of USY zeolite in the hydrocracking catalyst support is not particularly limited. From the viewpoint of suppressing lightening of the heavy fraction, the ratio of USY zeolite is 15% by mass based on the total amount of the support. 5% by mass or less is more preferable.
- an amorphous metal oxide having heat resistance is used.
- Such an intangible metal oxide is a solid acid, and one or more selected from silica alumina, anoremina polya, silica zircoure, silica magnesia and silica titania are used.
- silica alumina, anoremina polya, silica zircoure, silica magnesia and silica titania are used.
- an alumina polya which preferably uses silica alumina, silica zirconia and alumina polya.
- the hydrocracking catalyst used in the present invention may further contain a binder for molding a carrier.
- the binder is not particularly limited, but preferred binders include anoremina and silica.
- the shape of the carrier is not particularly limited, and may be a granular shape or a cylindrical shape (pellet).
- one or more metals selected from Group VI A metals and Group VIII metals of the periodic table are supported.
- Specific examples of Group VI A metals include chromium, molybdenum, and tungsten.
- Specific examples of the Group VIII metal include cobalt, nickelo, rhodium, palladium, iridium, and platinum. Among these metals, it is more preferable to use one or more selected from nickel, palladium and platinum, preferably one or more selected from Group VIII metals of the Periodic Table.
- Examples of a method for supporting these metals on a carrier include a method in which an aqueous solution containing the above metal is impregnated in a carrier, followed by drying and firing.
- the supported amount of the metal in the hydrocracking catalyst is not particularly limited, but is usually 0.:! To 3.0% by mass with respect to the support.
- the gas-liquid separator 40 is provided downstream of the back pressure valve 30a, and is a device for separating the decomposition product into a gas phase and a liquid phase.
- the gas-liquid separator 40 is connected to a line 41 and a line 42 for transferring the separated gas phase and liquid phase, respectively.
- the second distillation apparatus 50 is connected to a line 42 through which the liquid phase separated by the gas-liquid separation apparatus 40 is transferred.
- the second distillation apparatus 50 is an atmospheric distillation apparatus and can fractionate the liquid phase into three fractions separated by boiling temperatures of 150 ° C and 360 ° C.
- the second distillation apparatus 50 is provided with a line 52, a line 53, and a line 54 for transferring each fractionated fraction.
- Lines 52, 53, and 54 are a light fraction that is fractionated at temperatures below 150 ° C, an intermediate fraction that is fractionated at temperatures of 150 ° C to 360 ° C, and 360, respectively. It is a line for transporting heavy fractions that are fractionated at temperatures exceeding ° C.
- the line 52a for returning all or part of the light fraction transferred from the second distillation apparatus 50 to the upstream of the hydrocracking apparatus 30 may be branched from the line 52.
- the line 52a is preferably connected to the mixing device 20.
- a line 54 a for returning all or a part of the heavy fraction to be transferred to the second distillation apparatus 50 force upstream of the hydrocracking apparatus 30 may be branched from the line 54.
- the line 54a is preferably connected to the mixing device 20.
- a method for producing a fuel substrate using the plant 100 shown in Fig. 1 will be described.
- a heavy fraction (wax) fractionated from the FT synthetic oil is used as the heavy fraction of the raw material, and a light fraction that is mixed with the heavy fraction in the mixing process is fractionated from the FT synthetic oil.
- the FT synthetic oil is fractionated by the first distillation apparatus 10 into three fractions separated at a temperature of 150 ° C and a temperature of 360 ° C: a light fraction, a middle fraction and a heavy fraction. .
- the fractionated light fraction, middle fraction and heavy fraction are transferred from the first distillation apparatus 10 via line 12, line 14 and line 13, respectively.
- the heavy fraction is introduced into the mixing device 20 via line 14.
- the light fraction is introduced into the mixing device 20 via the line 12a.
- a heavy fraction and a light fraction are mixed at a specific ratio to obtain a mixture (mixing step).
- the mixing ratio of heavy fraction to light fraction is The light fraction is 2 to 50 parts by mass with respect to 100 parts by mass. If the light fraction is less than 2 parts by mass with respect to 100 parts by mass of the heavy fraction, the effect of mixing the light fraction will be insufficient. descend.
- the mixing ratio is more preferably 10-35 parts by mass, preferably 5-40 parts by mass of light fractions with respect to 100 parts by mass of heavy fractions.
- Hydrogen necessary for the hydrocracking reaction is introduced into the mixing apparatus 20 via the line 15 and added to the mixture. It is preferable that the amount of hydrogen added to 1 part by volume of the heavy fraction supplied to the hydrocracking unit 30 is 50 to 1000 parts by volume (standard state). 70 to 800 parts by volume (standard state) ) Is more preferable.
- a fluid to be treated containing the mixture and hydrogen is introduced into the hydrocracking apparatus 30 via the line 21.
- the fluid to be treated flows through the hydrocracking catalyst layer in the hydrocracking apparatus 30 from the upper side to the lower side and is hydrocracked (hydrocracking step).
- the hydrocracking reaction conditions are adjusted so that the cracking rate of hydrocarbons whose boiling point in the fluid to be treated exceeds 360 ° C is maintained at a specific value.
- the reaction conditions to be adjusted it is preferable to adjust the reaction temperature from the viewpoint of easy adjustment.
- the cracking rate of hydrocarbons having a boiling point exceeding 360 ° C in the hydrocracking process is 40 to 85% by mass, preferably 45 to 80% by mass, and 50 to 70% by mass. More preferably. If the decomposition rate is less than 40% by mass, the amount of decomposition products produced is small and the yield of middle distillate becomes insufficient. On the other hand, if it exceeds 85% by mass, the light fractions contained in the decomposition products are contained. The rate is high and the yield of middle distillate is insufficient.
- the reaction conditions are adjusted so that the decomposition rate of hydrocarbons with boiling points exceeding 360 ° C is maintained at a specific value.
- the reaction conditions can be adjusted by monitoring the composition of the treatment composition. Specifically, the decomposition products transferred in line 32 are collected periodically, and the composition of the decomposition products is analyzed by composition analysis, such as by distillation gas chromatography. From this analysis result, the decomposition rate of hydrocarbons with boiling points over 360 ° C is calculated, and based on this result, the hydrocracking reaction conditions are adjusted.
- the reaction temperature during the hydrocracking is generally a force of 180 to 400 ° C, preferably 200 to 370 ° C, more preferably 250 to 350 ° C. If the reaction temperature is less than 200 ° C, The decomposition reaction tends not to proceed sufficiently. On the other hand, when it exceeds 370 ° C, the yield of middle distillate tends to decrease or the decomposition products tend to be colored.
- the initial temperature at the start of operation of the hydrocracking device 30 should be, for example, about 315 ° C. Good.
- the liquid hourly space velocity (LHSV) based on the amount of heavy fraction supplied to the hydrocracking unit 30 is generally a force of 0.1 to 10.01T 1 , preferably 0.3 to 3. 51T is 1 .
- the reaction pressure is usually 0.5 to: 12. OMPa, preferably 1.0 to 5. OMPa.
- the decomposition product hydrocracked in the hydrocracking apparatus 30 is introduced into the gas-liquid separator 40 via the line 32.
- the gas-liquid separator 40 separates the decomposition products into a gas phase containing unreacted hydrogen gas or a hydrocarbon having a carbon number of 4 or less, and a liquid phase containing middle distillate and heavy distillate ( Separation step).
- the separated liquid phase is introduced into the second distillation apparatus 50 via the line 42.
- the liquid phase is fractionated by the second distillation apparatus 50 into three fractions separated by boiling temperatures of 150 ° C and 360 ° C, namely a light fraction, a middle fraction and a heavy fraction ( Separation step).
- the middle distillate obtained here contains 90% by mass or more of hydrocarbons having a boiling point of 150 ° C or higher and 360 ° C or lower. Part or all of this middle distillate is used as a fuel substrate.
- the light fraction transferred in the line 52 is returned to the mixing apparatus 20 via the line 52a, and can be used as a light fraction to be mixed with the heavy fraction in the mixing step.
- the heavy fraction transferred through the line 54 can be returned to the mixing device 20 via the line 54a and used as a heavy fraction of the raw material for hydrocracking.
- the mixing of the heavy fraction and the light fraction is not necessarily performed by the mixing device 20, but is performed by injecting the light fraction into the line 14 where the heavy fraction is transferred.
- the hydrogen necessary for the hydrocracking process only needs to coexist with the mixture in the hydrocracking process. Therefore, the addition of hydrogen can be performed at the same time as or before or after the mixing step as long as it is before the hydrocracking decomposition step.
- hydrocracking apparatus used in the hydrocracking process a fixed bed type is exemplified, but There is no particular limitation as long as it can contact the physical fluid with the hydrocracking catalyst.
- a fluidized bed hydrocracking apparatus may be used.
- the hydrocracked treatment composition is separated into a gas phase and a liquid phase by a gas-liquid separator, and these separations are performed using two or more gas-liquid separators having different temperature and pressure conditions. You may go.
- the distillation pressure of the first and second distillation apparatuses is not necessarily normal pressure. The distillation pressure can be set so that the obtained fraction has desired distillation characteristics.
- the middle distillate may be fractionated into two or more types.
- the light distillate may be the fuel base for kerosene
- the heavy distillate may be the fuel base for light oil. it can.
- USY zeolite with an average particle size of 0.4 ⁇ (silica / alumina molar ratio 37.0), silica alumina (silica / alumina molar ratio 14.0), and an alumina binder.
- a carrier having a mass ratio of 40 (a cylindrical molded product having a diameter of about 1.6 mm and a length of 3 to 6 mm (average of about 4 mm)) was prepared. This carrier was impregnated with an aqueous solution of chloroplatinic acid, and 0.8% by mass of platinum was supported on the carrier mass. This was dried and calcined to obtain a hydrocracking catalyst.
- Hydrocracking of a mixture containing wax and naphtha fractionated from FT synthetic oil was performed using a fixed bed hydrocracking apparatus.
- the reactor was filled with 150 ml of the above hydrocracking catalyst.
- the mixing ratio was 20 parts by mass of naphtha per 100 parts by mass of wax.
- the mixture was supplied from the top of the hydrocracking apparatus so that the supply rate of the wax contained in the mixture was 300 ml / h.
- hydrogen was supplied from the top of the hydrocracking apparatus so that the hydrogen oil ratio based on the supply amount of wax contained in the mixture was 680 NL / L.
- the pressure conditions for hydrocracking were such that the inlet pressure of the hydrocracker was constant at 4. OMPa. The pressure was adjusted with a back pressure valve.
- the initial temperature at the start of operation of the hydrocracking apparatus was 315 ° C.
- the temperature conditions of the hydrocracking unit were gradually increased to compensate for the decrease in activity due to degradation of the hydrocracking catalyst and to keep the wax cracking rate constant.
- the hydrocracking power was analyzed by distillation gas chromatography for the distillation properties of the resulting decomposition products. Based on the analysis results, the temperature of the hydrocracking unit was adjusted so that the cracking rate of wax was 70% by mass.
- the middle distillate used as the fuel base material was separated from the decomposition product, and the distillation properties thereof were evaluated.
- the distillation properties of a light fraction with a boiling point of less than 150 ° C and a heavy fraction with a boiling point of more than 360 ° C contained in the treatment composition were also evaluated.
- Table 1 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction measured by distillation gas chromatography. The mass fraction of light fractions shown in Table 1 is based on the value obtained by removing naphtha mixed with wax from the light fractions measured by distillation gas chromatography.
- a fuel base material was obtained under the same conditions as in Example 1 except that the mixing ratio of wax and naphtha was 3 parts by mass of naphtha with respect to 100 parts by mass of wax.
- Table 1 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
- a fuel base material was obtained under the same conditions as in Example 1 except that the mixing ratio of wax and naphtha was 38 parts by mass of naphtha with respect to 100 parts by mass of wax.
- Table 1 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
- the wax of FT synthetic oil is A fuel base material was obtained under the same conditions as in Example 1 except that naphtha (isoparaffin content: 80% by mass or more) produced by thawing was used.
- Table 2 shows the catalyst deterioration rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
- a fuel base material was obtained under the same conditions as in Example 1 except that normal heptane was used instead of naphtha produced by fractional distillation of FT synthetic oil.
- Table 2 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
- Example 2 The same conditions as in Example 1 except that desulfurized naphtha obtained from crude oil (sulfur yellow content: 0.8 mass ppm) was used instead of naphtha produced by fractionating FT synthetic oil. A fuel substrate was obtained. Table 2 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
- a fuel base material was obtained under the same conditions as in Example 1 except that the FT synthetic oil wax was not mixed with naphtha and only the wax was supplied to the hydrocracking apparatus.
- Table 3 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
- a fuel base material was obtained under the same conditions as in Comparative Example 1 except that the pressure condition of the hydrocracking apparatus was 3. OMPa.
- Table 3 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction, and heavy fraction.
- a fuel base material was obtained under the same conditions as in Comparative Example 1 except that the pressure condition of the hydrocracking apparatus was 2. OMPa.
- Table 3 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction, and heavy fraction.
- Mass fraction of heavy fraction Mass 3 ⁇ 4 30 30 30 30 30
- the method for hydrocracking a wax and the method for producing a fuel substrate according to the present invention comprises: When bottom recycling is performed, it is possible to simultaneously improve the yield of middle distillate, which is the target of hydrocracking, and reduce the content of normal paraffin in the middle distillate. It is useful in producing a gentle clean liquid fuel.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
A process for hydrocracking wax which comprises hydrocracking a raw material wax and subjecting an uncracked wax fraction formed by the hydrocracking to hydrocracking again, characterized in that a mixture of the raw material wax and the uncracked wax fraction is hydrocracked in the presence of a hydrocracking catalyst in such a way that the conversion of the wax fraction having a boiling point of 360°C or above into a light oil fraction having a boiling point lower than 360°C falls within the range of 50 to 85% by mass. In hydrocracking uncracked wax by a bottom recycling method, the process simultaneously attains enhancement in the yield of objective middle cuts and reduction in the content of n-paraffins in middle cuts.
Description
明 細 書 Specification
燃料基材の製造方法 Manufacturing method of fuel substrate
技術分野 Technical field
[0001] 本発明は、燃料基材の製造方法に関し、より詳しくは、重質留分から燃料基材を製 造する方法に関する。 [0001] The present invention relates to a method for producing a fuel substrate, and more particularly to a method for producing a fuel substrate from a heavy fraction.
背景技術 Background art
[0002] 近年、環境負荷低減の観点から、硫黄分及び芳香族炭化水素の含有量が低ぐ環 境にやさしいクリーンな液体燃料が求められている。石油業界においては、クリーン な液体燃料として、水素と一酸化炭素とを含有する合成ガスから合成されるフイツシャ 一'トロプシュ合成油(以下、「FT合成油」という。)の利用が検討されている。 FT合成 油は、実質的に硫黄分や芳香族炭化水素などの環境負荷物質を含有しないため、 その期待は非常に大きい。 [0002] In recent years, from the viewpoint of reducing the environmental burden, there has been a demand for an environmentally friendly clean liquid fuel with a low content of sulfur and aromatic hydrocarbons. In the oil industry, the use of Fitzia Tropsch synthetic oil (hereinafter referred to as “FT synthetic oil”) synthesized from synthesis gas containing hydrogen and carbon monoxide as a clean liquid fuel is being considered. . Since FT synthetic oil does not substantially contain environmentally hazardous substances such as sulfur and aromatic hydrocarbons, its expectations are very high.
[0003] FT合成油を分留することによって、沸点が 150〜360°Cの範囲の飽和炭化水素を 含む中間留分が得られる。 FT合成油の中間留分は軽油やジェット燃料などの燃料 基材としての利用が期待されている。し力、しながら、 FT合成油の中間留分を主成分 とする燃料基材は、燃焼特性や低温流動性などの特性が従来の軽油やジェット燃料 と相違するため、これを既存の内燃機関で使用するためにはこれらの特性を改善す る必要があることが指摘されてレ、る。 [0003] By fractional distillation of FT synthetic oil, a middle fraction containing saturated hydrocarbons having a boiling point in the range of 150 to 360 ° C is obtained. The middle distillate of FT synthetic oil is expected to be used as a fuel base material for light oil and jet fuel. However, the fuel base material mainly composed of the middle distillate of FT synthetic oil has different characteristics such as combustion characteristics and low-temperature fluidity from conventional light oil and jet fuel. It has been pointed out that it is necessary to improve these characteristics in order to use this product in Japan.
[0004] ところで、燃料基材として使用可能な中間留分を FT合成油から製造する方法とし ては、 FT合成油を分留する上記の方法の他に、 FT合成油の重質留分を水素化分 解し、分解生成物から中間留分を分留する方法が知られている。例えば、特許文献 1には、 FT合成油の重質留分を原料とし、水素化分解によってイソパラフィンの含有 率が高レ、中間留出物を製造する方法が記載されてレ、る。 [0004] By the way, as a method for producing a middle distillate usable as a fuel base material from FT synthetic oil, in addition to the above-described method for fractionating FT synthetic oil, a heavy fraction of FT synthetic oil is used. A method of hydrocracking and fractionating middle distillates from cracked products is known. For example, Patent Document 1 describes a method for producing a middle distillate by using a heavy fraction of FT synthetic oil as a raw material and having a high isoparaffin content by hydrocracking.
特許文献 1:国際公開第 00/20535号パンフレット Patent Document 1: International Publication No. 00/20535 Pamphlet
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 特許文献 1の方法は、 FT合成油の重質留分を水素化分解してイソパラフィンの含
有率が高い中間留出物を得る工程と、得られた中間留出物と FT合成油の軽質留分 とを混合する工程とを備えている。 FT合成油の留分は、一般に、軽い留分から重い 留分になるに従い、留分に含まれるイソパラフィンの含有率が高くなる。このため、重 質留分を水素化分解して得られた分解生成物から中間留分を分留して燃料基材を 製造すると、単に FT合成油の中間留分力、ら製造される燃料基材と比較し、イソパラフ インの含有率が高レ、燃料基材が得られる。イソパラフィンの含有率が高レ、燃料基材 は、イソパラフィンの含有率が低い燃料基材と比較し、低温流動性が優れたものとな る。 [0005] In the method of Patent Document 1, the heavy fraction of FT synthetic oil is hydrocracked to contain isoparaffin. A step of obtaining a middle distillate having a high proportion, and a step of mixing the obtained middle distillate and a light fraction of FT synthetic oil. In general, the fraction of FT synthetic oil increases in the content of isoparaffin contained in the distillate from light to heavy. For this reason, when a fuel base material is produced by fractionating a middle distillate from a cracked product obtained by hydrocracking a heavy fraction, the fuel produced from the middle distillate force of FT synthetic oil is simply used. Compared with the base material, the content of isoparaffin is high and a fuel base material is obtained. The fuel base material with a high content of isoparaffin and the low temperature fluidity is superior to the fuel base material with a low content of isoparaffin.
[0006] FT合成油の重質留分を水素化分解する工程において、イソパラフィンの含有率が 高い燃料基材を高い収率で得るためには、重質留分が選択的に中間留分に水素化 分解されることが求められる。重質留分が過度に水素化分解され、軽質留分が多く 生成するなど、重質留分力 中間留分への分解の選択性が不十分であると、燃料基 材として使用可能な中間留分の収率が低下してしまう。本発明者らは、特許文献 1に 記載された重質留分を水素化分解する方法では、重質留分から十分に高い収率で 中間留分を得ることができないことを見出した。 [0006] In the process of hydrocracking a heavy fraction of FT synthetic oil, in order to obtain a fuel substrate with a high isoparaffin content in a high yield, the heavy fraction is selectively converted into a middle fraction. It must be hydrocracked. Heavy distillate is excessively hydrocracked and a large amount of light distillates are produced.For example, if the selectivity for heavy distillate power is insufficient, it can be used as a fuel base. The yield of a fraction will fall. The present inventors have found that the middle fraction cannot be obtained from the heavy fraction in a sufficiently high yield by the method of hydrocracking the heavy fraction described in Patent Document 1.
[0007] そこで、本発明者らは、水素化分解によって十分に高い収率で重質留分から中間 留分を製造する方法について検討した。その結果、重質留分を水素化分解する反 応圧力を低圧にするに従い、高い選択性をもって中間留分が生成するとの知見を得 た。低圧化することによって高い選択性をもって中間留分が生成する主因は、水素 化分解の反応条件において主として液状である重質留分は、水素化分解触媒との 接触効率が維持され、水素化分解が効率よく進行する一方、水素化分解されて軽質 化した分解生成物成は、低圧化に伴って気化しやすくなり、気化した分解生成物は 水素化分解触媒との接触効率が低下し、更なる分解が抑制されるためと考えられる。 [0007] Therefore, the present inventors examined a method for producing middle distillate from a heavy fraction with sufficiently high yield by hydrocracking. As a result, it was found that the middle distillate is produced with high selectivity as the reaction pressure for hydrocracking heavy fractions is lowered. The main reason for the formation of middle distillate with high selectivity by lowering the pressure is that heavy fraction, which is mainly liquid under the hydrocracking reaction conditions, maintains the contact efficiency with the hydrocracking catalyst, and hydrocracking. On the other hand, the decomposition products that have been hydrocracked and lightened are more likely to vaporize as the pressure decreases, and the contact efficiency of the cracked products with the hydrocracking catalyst decreases. This is thought to be due to the suppression of decomposition.
[0008] し力、しながら、上記の知見に基づき、低い反応圧力で重質留分の水素化分解を行 つたところ、水素化分解触媒の劣化が促進され、長期間にわたって高い転化率を持 続させることが困難であった。 However, based on the above findings, hydrocracking of a heavy fraction at a low reaction pressure promotes deterioration of the hydrocracking catalyst and has a high conversion rate over a long period of time. It was difficult to continue.
[0009] 本発明は、このような実情に鑑みてなされたものであり、重質留分を水素化分解す る工程において水素化分解触媒の劣化を十分に抑制できるとともに、中間留分を十
分に高い選択性をもって生成させることが可能な燃料基材の製造方法を提供するこ とを目的とする。 [0009] The present invention has been made in view of such a situation, and in the process of hydrocracking a heavy fraction, the degradation of the hydrocracking catalyst can be sufficiently suppressed, and the middle fraction can be sufficiently reduced. It is an object of the present invention to provide a method for producing a fuel base material that can be produced with high selectivity.
課題を解決するための手段 Means for solving the problem
[0010] 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、重質留分と軽質留 分とを特定の比率で混合して混合物を製造し、これに含まれる沸点力 ¾60°Cを超え る炭化水素が、特定の分解率で分解される条件で水素化分解すると上記課題が解 決されることを見出し、本発明を完成するに至った。 [0010] As a result of intensive studies to achieve the above object, the present inventors have produced a mixture by mixing a heavy fraction and a light fraction at a specific ratio, and the boiling point power contained in the mixture. The present inventors have found that the above problems can be solved by hydrocracking hydrocarbons exceeding ¾60 ° C under the condition that they are cracked at a specific cracking rate, and have completed the present invention.
[0011] すなわち、本発明の燃料基材の製造方法は、沸点が 360°Cを超える炭化水素を 9 0質量%以上含有する重質留分と沸点が 150°C未満の炭化水素を 95質量%以上 含有する軽質留分とを、重質留分 100質量部に対して軽質留分が 2〜50質量部とな るように混合する混合工程と、水素及び水素化分解触媒の存在下、混合工程で得ら れる混合物を、沸点が 360°Cを超える炭化水素の分解率が 40〜85質量%となるよう に水素化分解する水素化分解工程と、水素化分解工程で得られる分解生成物から 、沸点 150°C以上 360°C以下の炭化水素を 90質量%以上含有する中間留分を分 離する分離工程と、を備えることを特徴とする。 [0011] That is, the method for producing a fuel base material of the present invention comprises a heavy fraction containing 90% by mass or more of hydrocarbon having a boiling point of more than 360 ° C and 95% of hydrocarbon having a boiling point of less than 150 ° C. % Of a light fraction containing at least 50% of the heavy fraction and 100 parts by weight of the heavy fraction so that the light fraction is 2 to 50 parts by weight, and in the presence of hydrogen and a hydrocracking catalyst, Hydrocracking process for hydrocracking the mixture obtained in the mixing process so that the cracking rate of hydrocarbons whose boiling point exceeds 360 ° C is 40 to 85% by mass, and cracking product obtained in the hydrocracking process And a separation step of separating a middle distillate containing 90% by mass or more of hydrocarbons having a boiling point of 150 ° C. or higher and 360 ° C. or lower from the product.
[0012] 本発明によれば、重質留分と軽質留分とが混合された混合物が水素化分解される 。これにより、重質留分を十分に高い選択性をもって中間留分に分解できる。このた め、重質留分から高い収率で中間留分を得ることができる。中間留分の選択性が十 分に高くなる主因は、分解生成物の分圧が低下するため、水素化分解の反応圧力を 低圧化した場合と同様の効果が奏されるためと考えられる。また、反応圧力を低圧化 した場合には主として水素化分解触媒表面における炭素析出によって水素化分解 触媒の劣化が促進されるという問題が生じるが、本発明によれば水素化分解触媒の 劣化が十分に抑制される。水素化分解触媒の劣化が十分に抑制される主因は、反 応圧力を低圧化しないため十分に高い反応速度が維持され、水素化分解触媒表面 に析出した炭素を十分に燃焼除去できるためと考えられる。 [0012] According to the present invention, a mixture in which a heavy fraction and a light fraction are mixed is hydrocracked. Thereby, a heavy fraction can be decomposed into a middle fraction with sufficiently high selectivity. For this reason, the middle fraction can be obtained from the heavy fraction with a high yield. The main reason why the middle distillate selectivity is sufficiently high is considered to be that the partial pressure of the cracked product is lowered, and the same effect as that obtained when the reaction pressure of hydrocracking is reduced is produced. Further, when the reaction pressure is lowered, there is a problem that deterioration of the hydrocracking catalyst is promoted mainly by carbon deposition on the surface of the hydrocracking catalyst. However, according to the present invention, the hydrocracking catalyst is sufficiently deteriorated. To be suppressed. The main reason for sufficiently suppressing the degradation of the hydrocracking catalyst is that the reaction pressure is not lowered, so that a sufficiently high reaction rate is maintained, and the carbon deposited on the hydrocracking catalyst surface can be sufficiently burned and removed. It is done.
[0013] ここで、沸点が 360°Cを超える炭化水素の分解率とは、下記式(1)で定義される分 解率を意味する。下記式(1)中、「沸点が 360°Cを超える炭化水素の質量 (分解前)」 とは、水素化分解工程に供される混合物中に含まれる沸点が 360°Cを超える炭化水
素の質量であり、また、「沸点が 360°Cを超える炭化水素の質量 (分解後)」とは、水 素化分解により得られる分解生成物に含まれる沸点が 360°Cを超える炭化水素の質 量である。 [0013] Here, the decomposition rate of hydrocarbons having a boiling point exceeding 360 ° C means a decomposition rate defined by the following formula (1). In the following formula (1), “mass of hydrocarbons with boiling point over 360 ° C (before decomposition)” means hydrocarbons with boiling point over 360 ° C contained in the mixture subjected to hydrocracking process The mass of hydrocarbons whose boiling point exceeds 360 ° C (after decomposition) is the hydrocarbon whose boiling point contained in the decomposition product obtained by hydrocracking exceeds 360 ° C The quality of
[数 1] [Number 1]
m v ) 沸点が 3 6 o °cを超える炭化水素の質量 前) 沸点が 3 6 trcを超える炭化水素の質量 (分解後) (1 ) τ ' 沸点が 3 6 を超える炭化水素の質量 前) mv) Mass of hydrocarbons with boiling point over 36 ° C (before) Mass of hydrocarbons with boiling point over 3 6 trc (after decomposition) ( 1) τ 'Mass of hydrocarbons with boiling point over 3 6 (before)
[0014] 本発明では、原料の重質留分として、フィッシャー 'トロプシュ合成(以下、「FT合成 」という。)により得られるワックスを含有するものを用いることができる。 FT合成により 得られるワックスは実質的に硫黄分や芳香族炭化水素などの環境負荷物質を含有し なレ、。このため、原料の重質留分が FT合成により得られるワックスを含むものであると 、環境負荷物質の含有量が十分に低減化された燃料基材が製造可能となる。これに 加え、 FT合成油のワックスはイソパラフィンの含有率が高ぐこれを水素化分解すると FT合成油から単に分留される中間留分と比較し、イソパラフィンの含有率が高い中 間留分が得られる。イソパラフィンの含有率が高い中間留分は、該含有率が低い中 間留分と比較し、低温流動性が優れた燃料基材となる。ここで、ワックスとは沸点が 3 60°Cを超える炭化水素を 90質量%以上含有する留分をいう。 [0014] In the present invention, a material containing a wax obtained by Fischer-Tropsch synthesis (hereinafter referred to as "FT synthesis") can be used as the heavy fraction of the raw material. The wax obtained by FT synthesis is essentially free of environmentally hazardous substances such as sulfur and aromatic hydrocarbons. For this reason, when the heavy fraction of the raw material contains wax obtained by FT synthesis, a fuel base material in which the content of environmentally hazardous substances is sufficiently reduced can be produced. In addition, the FT synthetic oil wax has a high isoparaffin content. When hydrocracked, the middle distillate with a high isoparaffin content is compared to the middle distillate that is simply fractionated from the FT synthetic oil. can get. A middle distillate having a high isoparaffin content is a fuel base material having excellent low-temperature fluidity compared to a middle distillate having a low content. Here, the wax refers to a fraction containing 90% by mass or more of hydrocarbons having a boiling point exceeding 360 ° C.
[0015] 本発明では、混合工程で使用する軽質留分として、 FT合成により得られるナフサを 含有するものを用いることができる。 FT合成により得られるナフサは実質的に硫黄分 や芳香族炭化水素などの環境負荷物質を含有しない。このため、混合工程で使用 する軽質留分が FT合成により得られるナフサを含むものであると、環境負荷物質の 含有量が十分に低減化された燃料基材が製造可能となる。ここで、ナフサとは沸点 力 S150°C未満の炭化水素を 95質量%以上含有する留分をいう。 [0015] In the present invention, as the light fraction used in the mixing step, those containing naphtha obtained by FT synthesis can be used. Naphtha obtained by FT synthesis is substantially free of environmentally hazardous substances such as sulfur and aromatic hydrocarbons. For this reason, if the light fraction used in the mixing step contains naphtha obtained by FT synthesis, a fuel base material with a sufficiently reduced content of environmentally hazardous substances can be produced. Here, naphtha means a fraction containing 95% by mass or more of hydrocarbons having boiling point S <150 ° C.
[0016] 本発明の水素化分解工程において、温度 200〜370°C、圧力 1. 0〜5. OMPa、 重質留分の供給量を基準とした液空間速度 0. 3〜3. 51T1の条件下で混合物を水 素化分解することが好ましい。また、水素化分解触媒は、担体全量を基準として 0. 1 〜80. 0質量%の結晶性ゼオライト及び 0. :!〜 60. 0質量%の耐熱性を有する無定 形金属酸化物を含有する担体と、この担体に担持された、担体に対して 0. :!〜 3. 0 質量%の元素周期律表第 VIII族金属から選ばれる 1種以上の金属と、を含有するも
のが好ましい。 In the hydrocracking process of the present invention, the liquid space velocity is 0.3 to 3.51T 1 based on the temperature 200 to 370 ° C., the pressure 1.0 to 5. OMPa, and the feed rate of the heavy fraction. It is preferable to hydrocrack the mixture under the following conditions. The hydrocracking catalyst contains 0.1 to 80.0% by mass of crystalline zeolite and amorphous metal oxide having heat resistance of 0.:! To 60.0% by mass based on the total amount of the support. And at least one metal selected from Group VIII metals of the Periodic Table of Elements of the carrier supported on this carrier in an amount of 0.:! To 3.0% by mass. Is preferred.
発明の効果 The invention's effect
[0017] 本発明によれば、重質留分を水素化分解する工程において水素化分解触媒の劣 化を十分に抑制できるとともに、中間留分を十分に高い選択性をもって生成させるこ とが可能な燃料基材の製造方法が提供される。 [0017] According to the present invention, it is possible to sufficiently suppress degradation of the hydrocracking catalyst in the step of hydrocracking a heavy fraction, and to produce a middle fraction with sufficiently high selectivity. A method for producing a fuel substrate is provided.
図面の簡単な説明 Brief Description of Drawings
[0018] [図 1]本発明に係る燃料基材の製造方法を実施可能なプラントの構成を示す図であ る。 [0018] FIG. 1 is a diagram showing a configuration of a plant capable of implementing a method for producing a fuel base material according to the present invention.
符号の説明 Explanation of symbols
[0019] 10· · ·第 1蒸留装置、 20· · ·混合装置、 30· · ·水素化分解装置、 40· · ·気液分離装置、 5 [0019] 10 · · · First distillation device, 20 · · Mixing device, 30 · · Hydrocracking device, 40 · · · Gas-liquid separation device, 5
0…第 2蒸留装置。 0 ... Second distillation device.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の好適な実施形態について説明する。 [0020] Hereinafter, preferred embodiments of the present invention will be described.
[0021] 原料の重質留分は、沸点が 360°Cを超える炭化水素を 90質量%以上含有する。 [0021] The heavy fraction of the raw material contains 90% by mass or more of hydrocarbons having a boiling point exceeding 360 ° C.
力、かる重質留分としては、 FT合成油を蒸留して得られる重質留分、石油に由来する 重質留分などが挙げられる。 Examples of power and heavy fractions include heavy fractions obtained by distillation of FT synthetic oil and heavy fractions derived from petroleum.
[0022] FT合成油を蒸留して得られる重質留分は、硫黄分を実質的に含有しないため、環 境負荷低減の観点から特に好適である。力、かる重質留分は FT合成油を常圧、 360 °Cを超える温度条件で分留することで得ることができる。 FT合成油は多種の炭化水 素化合物を含有するが、一般に、パラフィン成分が主成分である。本発明で使用する 重質留分は、特定の FT合成の条件で合成されたものに限定されないが、イソバラフ イン成分の含有率が高くなる合成条件で合成された FT合成油から分留されたものを 用いることが好ましい。イソパラフィン成分の含有率が重質留分を用いると、低温流動 性が向上した燃料基材を製造することができるという利点がある。 [0022] The heavy fraction obtained by distillation of the FT synthetic oil is particularly suitable from the viewpoint of reducing the environmental load because it contains substantially no sulfur. A heavy, heavy fraction can be obtained by fractionating FT synthetic oil at atmospheric pressure and temperatures exceeding 360 ° C. FT synthetic oil contains various hydrocarbon compounds, but generally the paraffin component is the main component. The heavy fraction used in the present invention is not limited to those synthesized under specific FT synthesis conditions, but was fractionated from FT synthetic oil synthesized under synthesis conditions in which the content of isobaraffin component is high. It is preferable to use one. The use of a heavy fraction having an isoparaffin component content has the advantage that a fuel substrate with improved low-temperature fluidity can be produced.
[0023] 石油に由来する重質留分としては、石油を精製、蒸留して得られる重質留分が挙 げられる。石油に由来する重質留分を用いる場合、当該重質留分の硫黄分の含有 量は 1質量 ppm未満にまで低減化されていることが好ましい。
[0024] 混合工程にぉレ、ては、原料の重質留分に対して軽質留分が混合される。混合工程 で用いられる軽質留分は、沸点が 150°C未満の炭化水素を 95質量%以上含有する 。力かる軽質留分としては、 FT合成油に由来する軽質留分、石油に由来する軽質留 分、炭素数 9以下の飽和炭化水素などが挙げられる。これらのうち、 FT合成油に由 来する軽質留分は、硫黄分を実質的に含有しないため、環境負荷低減の観点から 特に好適である。 [0023] Examples of heavy fractions derived from petroleum include heavy fractions obtained by refining and distilling petroleum. When using a heavy fraction derived from petroleum, it is preferable that the sulfur content of the heavy fraction is reduced to less than 1 mass ppm. [0024] In the mixing step, the light fraction is mixed with the heavy fraction of the raw material. The light fraction used in the mixing process contains 95% by mass or more of hydrocarbons having a boiling point of less than 150 ° C. Examples of strong light fractions include light fractions derived from FT synthetic oil, light fractions derived from petroleum, and saturated hydrocarbons with 9 or less carbon atoms. Among these, the light fraction derived from FT synthetic oil is particularly suitable from the viewpoint of reducing environmental impact because it contains substantially no sulfur.
[0025] FT合成油に由来する軽質留分としては、常圧、 150°C未満の温度条件として FT 合成油から分留される軽質留分、 FT合成油の中間留分又は重質留分を水素化精 製及び/又は水素化分解して得られる沸点 150°C未満の炭化水素を含む精製油な どが挙げられる。石油に由来する軽質留分としては、石油を精製、蒸留して得られる 軽質留分が挙げられる。石油に由来する軽質留分を用いる場合、当該軽質留分の 硫黄分の含有量は 1質量 ppm未満にまで低減化されていることが好ましい。炭素数 9 以下の飽和炭化水素としては、メタン、ェタン、プロパン、ブタン、ペンタン、へキサン 、ヘプタン、オクタン、ノナンが挙げられる。これらのうち一種を単独で又は二種以上 を混合して用いることができる。上記の飽和炭化水素は常温常圧において液体であ ることが好ましぐ炭素数 5〜9のものが [0025] Light fractions derived from FT synthetic oil include light fractions fractionated from FT synthetic oil under normal pressure and temperature conditions of less than 150 ° C, middle fraction or heavy fraction of FT synthetic oil. And refined oils containing hydrocarbons with a boiling point of less than 150 ° C obtained by hydrorefining and / or hydrocracking. Light fractions derived from petroleum include light fractions obtained by refining and distilling petroleum. When using a light fraction derived from petroleum, it is preferable that the sulfur content of the light fraction is reduced to less than 1 ppm by mass. Examples of saturated hydrocarbons having 9 or less carbon atoms include methane, ethane, propane, butane, pentane, hexane, heptane, octane and nonane. Among these, one kind can be used alone, or two or more kinds can be mixed and used. The above saturated hydrocarbons preferably have 5 to 9 carbon atoms and are preferably liquid at normal temperature and pressure.
好ましレ、。常温常圧にぉレ、て液体であると取り扱レ、が容易なためである。 I like it. This is because it is easy to handle when it is liquid at room temperature and normal pressure.
[0026] 本発明の燃料基材の製造方法に使用されるプラントの好適な態様について図 1を 参照しながら説明する。図 1に示す燃料基材の製造プラント 100は、 FT合成油から 重質留分を分留する第 1蒸留装置 10と、第 1蒸留装置 10で分留された重質留分と 軽質留分とを混合して混合物を得るとともにこれに水素を添加する混合装置 20と、混 合物を水素化分解する水素化分解装置 30と、水素化分解装置 30から移送される分 解生成物を気相及び液相に分離する気液分離装置 40と、分離された液相を分留し て中間留分を得る第 2蒸留装置 50とを備える。 A preferred embodiment of the plant used in the method for producing a fuel base material of the present invention will be described with reference to FIG. The fuel substrate production plant 100 shown in Fig. 1 includes a first distillation apparatus 10 for fractionating a heavy fraction from FT synthetic oil, and a heavy fraction and a light fraction fractionated by the first distillation apparatus 10. Are mixed with each other to obtain a mixture and hydrogen is added thereto, hydrocracking device 30 for hydrocracking the mixture, and cracked product transferred from the hydrocracking device 30. A gas-liquid separation device 40 that separates the separated liquid phase into a liquid phase and a second distillation device 50 that fractionates the separated liquid phase to obtain an intermediate fraction.
[0027] 第 1蒸留装置 10は常圧の蒸留装置であり、 FT合成油を沸点温度 150°C及び 360 °Cで区切られる三つの留分に分留することができる。第 1蒸留装置 10は、 FT合成油 を導入するためのライン 1、並びに、分留された各留分を移送するためのライン 12、ラ イン 13及びライン 14が連結されている。ライン 12、ライン 13及びライン 14はそれぞれ
、 150°C未満の温度条件で分留される軽質留分、 150°C以上 360°C以下の温度条 件で分留される中間留分及び 360°Cを超える温度条件で分留される重質留分を移 送するためのラインである。 [0027] The first distillation apparatus 10 is an atmospheric distillation apparatus, and can fractionate FT synthetic oil into three fractions separated by boiling temperatures of 150 ° C and 360 ° C. The first distillation apparatus 10 is connected to a line 1 for introducing FT synthetic oil, and a line 12, a line 13 and a line 14 for transferring each fractioned fraction. Line 12, 13 and 14 are each , Light fractions fractionated at temperatures below 150 ° C, middle fractions fractionated at temperatures between 150 ° C and 360 ° C, and fractions at temperatures above 360 ° C It is a line for transferring heavy fractions.
[0028] 混合装置 20は第 1蒸留装置 10の下流に配置されている。混合装置 20は水素化分 解装置 30に供給する各流体を混合するための装置である。混合装置 20の内部の空 間において導入された種々の流体が十分に混合される構成となっている。すなわち 、混合装置 20は FT合成油の重質留分と軽質留分とが所定の混合比率で混合され て混合物が製造されるとともに、重質留分に対して所定の配合比率の水素を添加す ることができる構成となっている。混合装置 20は重質留分が移送されるライン 14、軽 質留分が移送されるライン 12から分岐したライン 12a及び水素を導入するためのライ ン 15と連結されている。混合装置 20に連結されたライン 21は混合物と水素とを含む 被処理流体を水素化分解装置 30に移送するためのラインである。 [0028] The mixing device 20 is disposed downstream of the first distillation device 10. The mixing device 20 is a device for mixing each fluid supplied to the hydrogenation decomposition device 30. Various fluids introduced in the space inside the mixing device 20 are sufficiently mixed. That is, the mixing device 20 mixes a heavy fraction and a light fraction of FT synthetic oil at a predetermined mixing ratio to produce a mixture, and adds hydrogen at a predetermined mixing ratio to the heavy fraction. It can be configured. The mixing device 20 is connected to a line 14 for transferring a heavy fraction, a line 12a branched from a line 12 for transferring a light fraction, and a line 15 for introducing hydrogen. A line 21 connected to the mixing device 20 is a line for transferring the fluid to be treated containing the mixture and hydrogen to the hydrocracking device 30.
[0029] 水素化分解装置 30は固定床型の水素化分解装置であり、その内部には水素化分 解触媒が配置されている。水素化分解装置 30は、その頭頂部に連結されたライン 2 1から導入される被処理流体が水素化分解装置 30内の触媒層の上方から下方へと 流れる構成となっている。水素化分解装置 30は水素化分解の温度条件を調整する 加熱手段(図示せず)を備えている。また、水素化分解装置 30はその下流部に水素 化分解の圧力条件を調整する背圧弁 30aを備えている。水素化分解装置 30に連結 されたライン 32は当該装置で生成した分解生成物を気液分離装置 40に移送するた めのラインである。 [0029] The hydrocracking apparatus 30 is a fixed-bed hydrocracking apparatus, in which a hydrocracking catalyst is arranged. The hydrocracking apparatus 30 is configured such that the fluid to be treated introduced from a line 21 connected to the top of the hydrocracking apparatus 30 flows from the upper side to the lower side of the catalyst layer in the hydrocracking apparatus 30. The hydrocracking apparatus 30 includes a heating means (not shown) that adjusts the temperature conditions of hydrocracking. Further, the hydrocracking apparatus 30 is provided with a back pressure valve 30a for adjusting the hydrocracking pressure condition at the downstream portion thereof. A line 32 connected to the hydrocracking apparatus 30 is a line for transferring the cracked product generated by the apparatus to the gas-liquid separator 40.
[0030] 水素化分解装置 30内に配置される水素化分解触媒として、結晶性ゼオライト 0. 1 〜80. 0質量%及び耐熱性を有する無定形金属酸化物 0.:!〜 60. 0質量%を含有 する担体と、この担体に担持された元素周期律表第 VIA金属及び第 VIII族金属から 選ばれる 1種以上の金属 0. :!〜 3. 0質量%と、を含有するものを用いることができる [0030] As the hydrocracking catalyst disposed in the hydrocracking apparatus 30, 0.1 to 80.0% by weight of crystalline zeolite and amorphous metal oxide having heat resistance 0.:! To 60.0% by weight Containing at least one metal selected from VIA metal and Group VIII metal of the Periodic Table of Elements carried on the carrier, and containing 0.:! To 3.0% by mass. Can be used
[0031] 結晶性ゼオライトとしては、 USYゼォライトを用いることができる。ここで、「USYゼ オライト(超安定性 Y型ゼオライト、 UltraStable Y_Zeolite)とは、 Y型ゼオライトを酸処 理又は水蒸気処理などにより脱アルミニウムすることにより調製されたものをいう。
[0032] USYゼォライトにおけるシリカ/アルミナのモル比は特に制限されなレ、が、好ましく ίま 10〜200、より好ましく ίま 15〜: 100、最も好ましく ίま 20〜60である。シリカ/ァノレミ ナのモル比が 10未満であると重質留分の軽質化が起こりやすくなる傾向にあり、また 、 200を超えると触媒活性が不十分となる傾向にある。 [0031] USY zeolite can be used as the crystalline zeolite. Here, “USY zeolite (ultra-stable Y-type zeolite, UltraStable Y_Zeolite)” means a product prepared by dealumination of Y-type zeolite by acid treatment or steam treatment. [0032] The molar ratio of silica / alumina in USY zeolite is not particularly limited, but is preferably 10 to 200, more preferably 15 to 100, and most preferably 20 to 60. If the molar ratio of silica / anolemina is less than 10, lightening of the heavy fraction tends to occur, and if it exceeds 200, the catalytic activity tends to be insufficient.
[0033] また、 USYゼォライトの平均粒子径は、好ましくは 1. 0 μ m以下、より好ましくは 0. [0033] The average particle size of USY zeolite is preferably 1.0 μm or less, more preferably 0.
以下である。 USYゼォライトの平均粒子径が 1. O z mを超えると重質留分の 軽質化が起こりやすくなる傾向にある。 It is as follows. When the average particle size of USY zeolite exceeds 1. O zm, the heavy fraction tends to be lightened.
[0034] また、水素化分解触媒の担体に占める USYゼォライトの割合は特に制限されない 、重質留分の軽質化の抑制の点から、 USYゼォライトの割合は、担体全量を基準 として、 15質量%以下が好ましぐ 5質量%以下がより好ましい。 [0034] Further, the ratio of USY zeolite in the hydrocracking catalyst support is not particularly limited. From the viewpoint of suppressing lightening of the heavy fraction, the ratio of USY zeolite is 15% by mass based on the total amount of the support. 5% by mass or less is more preferable.
[0035] また、水素化分解触媒の担体を構成する成分のうち、耐熱性を有する無定形金属 酸化物が用いられる。かかる無形形金属酸化物は固体酸であり、シリカアルミナ、ァ ノレミナポリア、シリカジルコユア、シリカマグネシア及びシリカチタニアから選ばれる 1 種以上が用いられる。かかる固体酸の中でも、シリカアルミナ、シリカジルコニァ及び アルミナポリアを用いることが好ましぐアルミナポリアを用いることが特に好ましい。 [0035] Among the components constituting the carrier of the hydrocracking catalyst, an amorphous metal oxide having heat resistance is used. Such an intangible metal oxide is a solid acid, and one or more selected from silica alumina, anoremina polya, silica zircoure, silica magnesia and silica titania are used. Among these solid acids, it is particularly preferable to use an alumina polya which preferably uses silica alumina, silica zirconia and alumina polya.
[0036] また、本発明で用いられる水素化分解触媒は、担体成型のためのバインダーを更 に含有してもよい。バインダーは特に制限されないが、好ましいバインダーとしてはァ ノレミナまたはシリカが挙げられる。担体の形状は特に制限されず、粒状、円柱状 (ぺ レット)などの形状とすることができる。 [0036] The hydrocracking catalyst used in the present invention may further contain a binder for molding a carrier. The binder is not particularly limited, but preferred binders include anoremina and silica. The shape of the carrier is not particularly limited, and may be a granular shape or a cylindrical shape (pellet).
[0037] 上記の担体上には、周期律表第 VI族 A金属及び第 VIII族金属から選ばれる 1種 以上の金属が担持される。第 VI族 A金属としては、具体的には、クロム、モリブデン、 タングステンなどが挙げられる。また、第 VIII族金属としては、具体的には、コバルト、 ニッケノレ、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらの金属の 中でも、周期律表第 VIII族金属から選ばれる 1種以上を用いることが好ましぐニッケ ノレ、パラジウム及び白金から選ばれる 1種以上を用いることがより好ましい。これらの 金属を担体に担持させる方法としては、例えば上記金属を含む水溶液を担体に含浸 させ、乾燥、焼成を行う方法が挙げられる。水素化分解触媒における上記金属の担 持量は特に制限されないが、通常、担体に対して 0.:!〜 3. 0質量%である。
[0038] 気液分離装置 40は、背圧弁 30aの下流に設けられており、分解生成物を気相と液 相とに分離するための装置である。気液分離装置 40には分離された気相及び液相 をそれぞれ移送するためのライン 41及びライン 42が連結されている。 [0037] On the carrier, one or more metals selected from Group VI A metals and Group VIII metals of the periodic table are supported. Specific examples of Group VI A metals include chromium, molybdenum, and tungsten. Specific examples of the Group VIII metal include cobalt, nickelo, rhodium, palladium, iridium, and platinum. Among these metals, it is more preferable to use one or more selected from nickel, palladium and platinum, preferably one or more selected from Group VIII metals of the Periodic Table. Examples of a method for supporting these metals on a carrier include a method in which an aqueous solution containing the above metal is impregnated in a carrier, followed by drying and firing. The supported amount of the metal in the hydrocracking catalyst is not particularly limited, but is usually 0.:! To 3.0% by mass with respect to the support. [0038] The gas-liquid separator 40 is provided downstream of the back pressure valve 30a, and is a device for separating the decomposition product into a gas phase and a liquid phase. The gas-liquid separator 40 is connected to a line 41 and a line 42 for transferring the separated gas phase and liquid phase, respectively.
[0039] 第 2蒸留装置 50は、気液分離装置 40で分離された液相が移送されるライン 42と連 結されている。第 2蒸留装置 50は常圧の蒸留装置であり、液相を沸点温度 150°C及 び 360°Cで区切られる三つの留分に分留することができる。第 2蒸留装置 50は分留 された各留分を移送するためのライン 52、ライン 53、ライン 54を備えている。ライン 5 2、ライン 53及びライン 54はそれぞれ、 150°C未満の温度条件で分留される軽質留 分、 150°C以上 360°C以下の温度条件で分留される中間留分、及び 360°Cを超える 温度条件で分留される重質留分を移送するためのラインである。なお、ライン 52から は第 2蒸留装置 50から移送される軽質留分の全部もしくは一部を水素化分解装置 3 0の上流に返送するためのライン 52aが分岐されていてもよレ、。この場合、ライン 52a は混合装置 20と連結されることが好ましい。同様に、ライン 54からは第 2蒸留装置 50 力 移送される重質留分の全部もしくは一部を水素化分解装置 30の上流に返送す るためのライン 54aが分岐されていてもよい。この場合、ライン 54aは混合装置 20と連 結されることが好ましい。 [0039] The second distillation apparatus 50 is connected to a line 42 through which the liquid phase separated by the gas-liquid separation apparatus 40 is transferred. The second distillation apparatus 50 is an atmospheric distillation apparatus and can fractionate the liquid phase into three fractions separated by boiling temperatures of 150 ° C and 360 ° C. The second distillation apparatus 50 is provided with a line 52, a line 53, and a line 54 for transferring each fractionated fraction. Lines 52, 53, and 54 are a light fraction that is fractionated at temperatures below 150 ° C, an intermediate fraction that is fractionated at temperatures of 150 ° C to 360 ° C, and 360, respectively. It is a line for transporting heavy fractions that are fractionated at temperatures exceeding ° C. The line 52a for returning all or part of the light fraction transferred from the second distillation apparatus 50 to the upstream of the hydrocracking apparatus 30 may be branched from the line 52. In this case, the line 52a is preferably connected to the mixing device 20. Similarly, a line 54 a for returning all or a part of the heavy fraction to be transferred to the second distillation apparatus 50 force upstream of the hydrocracking apparatus 30 may be branched from the line 54. In this case, the line 54a is preferably connected to the mixing device 20.
[0040] 以下、本発明に係る燃料基材の製造方法の好適な実施形態として、図 1に示すプ ラント 100を用いて燃料基材を製造する方法を説明する。プラント 100では、原料の 重質留分として、 FT合成油から分留される重質留分 (ワックス)、混合工程において 重質留分と混合する軽質留分として、 FT合成油から分留される軽質留分 (ナフサ)を 使用する。 [0040] Hereinafter, as a preferred embodiment of the method for producing a fuel substrate according to the present invention, a method for producing a fuel substrate using the plant 100 shown in Fig. 1 will be described. In Plant 100, a heavy fraction (wax) fractionated from the FT synthetic oil is used as the heavy fraction of the raw material, and a light fraction that is mixed with the heavy fraction in the mixing process is fractionated from the FT synthetic oil. Use light fractions (naphtha).
[0041] FT合成油は第 1蒸留装置 10によって、温度 150°C及び温度 360°Cで区切られる 三つの留分、すなわち、軽質留分、中間留分及び重質留分に分留される。分留され た軽質留分、中間留分及び重質留分はそれぞれ、ライン 12、ライン 14及びライン 13 によって第 1蒸留装置 10から移送される。 [0041] The FT synthetic oil is fractionated by the first distillation apparatus 10 into three fractions separated at a temperature of 150 ° C and a temperature of 360 ° C: a light fraction, a middle fraction and a heavy fraction. . The fractionated light fraction, middle fraction and heavy fraction are transferred from the first distillation apparatus 10 via line 12, line 14 and line 13, respectively.
[0042] 重質留分はライン 14を介して混合装置 20に導入される。また、軽質留分はライン 1 2aを介して混合装置 20に導入される。重質留分と軽質留分とが特定の比率で混合 され、混合物が得られる(混合工程)。重質留分と軽質留分との混合比率は、重質留
分 100質量部に対して軽質留分 2〜50質量部である。重質留分 100質量部に対し て軽質留分が 2質量部未満であると軽質留分を混合する効果が不十分となり、他方、 50質量部を超えると水素化分解装置 30の処理効率が低下する。当該混合比率は、 重質留分 100質量部に対して軽質留分 5〜40質量部であることが好ましぐ 10-35 質量部であることがより好ましい。 [0042] The heavy fraction is introduced into the mixing device 20 via line 14. The light fraction is introduced into the mixing device 20 via the line 12a. A heavy fraction and a light fraction are mixed at a specific ratio to obtain a mixture (mixing step). The mixing ratio of heavy fraction to light fraction is The light fraction is 2 to 50 parts by mass with respect to 100 parts by mass. If the light fraction is less than 2 parts by mass with respect to 100 parts by mass of the heavy fraction, the effect of mixing the light fraction will be insufficient. descend. The mixing ratio is more preferably 10-35 parts by mass, preferably 5-40 parts by mass of light fractions with respect to 100 parts by mass of heavy fractions.
[0043] 水素化分解反応に必要な水素はライン 15を介して混合装置 20内に導入され、上 記混合物に添加される。水素化分解装置 30に供給される重質留分 1体積部に対す る水素の添加量は、 50〜: 1000体積部(基準状態)であることが好ましぐ 70-800 体積部(基準状態)であることがより好ましい。 [0043] Hydrogen necessary for the hydrocracking reaction is introduced into the mixing apparatus 20 via the line 15 and added to the mixture. It is preferable that the amount of hydrogen added to 1 part by volume of the heavy fraction supplied to the hydrocracking unit 30 is 50 to 1000 parts by volume (standard state). 70 to 800 parts by volume (standard state) ) Is more preferable.
[0044] 混合物及び水素を含有する被処理流体がライン 21を介して水素化分解装置 30内 に導入される。被処理流体は水素化分解装置 30内の水素化分解触媒層を上方から 下方へと流れ、水素化分解される (水素化分解工程)。このとき、被処理流体に含ま れる沸点が 360°Cを超える炭化水素の分解率が特定の値に維持されるように水素化 分解の反応条件が調節される。調節する反応条件としては、調節の容易性の観点か ら反応温度を調節することが好ましい。 A fluid to be treated containing the mixture and hydrogen is introduced into the hydrocracking apparatus 30 via the line 21. The fluid to be treated flows through the hydrocracking catalyst layer in the hydrocracking apparatus 30 from the upper side to the lower side and is hydrocracked (hydrocracking step). At this time, the hydrocracking reaction conditions are adjusted so that the cracking rate of hydrocarbons whose boiling point in the fluid to be treated exceeds 360 ° C is maintained at a specific value. As the reaction conditions to be adjusted, it is preferable to adjust the reaction temperature from the viewpoint of easy adjustment.
[0045] 水素化分解工程における沸点が 360°Cを超える炭化水素の分解率は、 40〜85質 量%であるが、 45〜80質量%であることが好ましぐ 50〜70質量%であることがより 好ましい。当該分解率が 40質量%未満であると、分解生成物の生成量が少なく中間 留分の収率が不十分となり、他方、 85質量%を越えると分解生成物に含まれる軽質 留分の含有率が高く中間留分の収率が不十分となる。 [0045] The cracking rate of hydrocarbons having a boiling point exceeding 360 ° C in the hydrocracking process is 40 to 85% by mass, preferably 45 to 80% by mass, and 50 to 70% by mass. More preferably. If the decomposition rate is less than 40% by mass, the amount of decomposition products produced is small and the yield of middle distillate becomes insufficient. On the other hand, if it exceeds 85% by mass, the light fractions contained in the decomposition products are contained. The rate is high and the yield of middle distillate is insufficient.
[0046] 上述した通り、水素化分解工程においては、沸点が 360°Cを超える炭化水素の分 解率が特定の値に維持されるように反応条件が調節される。反応条件の調節は、処 理組成物の組成を監視することで行うことができる。具体的には、ライン 32で移送さ れる分解生成物を定期的に採取し、蒸留ガスクロマトグラフ法などによる組成分析に よって分解生成物の組成を分析する。この分析結果から沸点が 360°Cを超える炭化 水素の分解率を算出し、この結果に基づき、水素化分解の反応条件を調節する。 [0046] As described above, in the hydrocracking step, the reaction conditions are adjusted so that the decomposition rate of hydrocarbons with boiling points exceeding 360 ° C is maintained at a specific value. The reaction conditions can be adjusted by monitoring the composition of the treatment composition. Specifically, the decomposition products transferred in line 32 are collected periodically, and the composition of the decomposition products is analyzed by composition analysis, such as by distillation gas chromatography. From this analysis result, the decomposition rate of hydrocarbons with boiling points over 360 ° C is calculated, and based on this result, the hydrocracking reaction conditions are adjusted.
[0047] 水素化分解の際の反応温度は、一般に 180〜400°Cである力 好ましくは 200〜3 70°C、より好ましくは 250〜350°Cである。反応温度が 200°C未満であると水素化分
解反応が十分に進行しない傾向があり、他方、 370°Cを超えると中間留分の収率が 低下したり分解生成物が着色したりする傾向がある。沸点が 360°Cを超える炭化水 素の分解率を維持するために反応温度を調節する場合には、水素化分解装置 30の 運転開始時の初期温度は、例えば、 315°C程度とすればよい。 [0047] The reaction temperature during the hydrocracking is generally a force of 180 to 400 ° C, preferably 200 to 370 ° C, more preferably 250 to 350 ° C. If the reaction temperature is less than 200 ° C, The decomposition reaction tends not to proceed sufficiently. On the other hand, when it exceeds 370 ° C, the yield of middle distillate tends to decrease or the decomposition products tend to be colored. When adjusting the reaction temperature in order to maintain the decomposition rate of hydrocarbons whose boiling point exceeds 360 ° C, the initial temperature at the start of operation of the hydrocracking device 30 should be, for example, about 315 ° C. Good.
[0048] 水素化分解装置 30への重質留分の供給量を基準とする液空間速度 (LHSV)は、 一般に 0. 1〜: 10. 01T1である力 好ましくは 0. 3〜3. 51T1である。また、反応圧力 は通常 0. 5〜: 12. OMPaである力 好ましくは 1. 0〜5. OMPaである。 [0048] The liquid hourly space velocity (LHSV) based on the amount of heavy fraction supplied to the hydrocracking unit 30 is generally a force of 0.1 to 10.01T 1 , preferably 0.3 to 3. 51T is 1 . The reaction pressure is usually 0.5 to: 12. OMPa, preferably 1.0 to 5. OMPa.
[0049] 水素化分解装置 30で水素化分解された分解生成物は、ライン 32を介して気液分 離装置 40内に導入される。気液分離装置 40では未反応水素ガスや炭素数が 4以下 の気体の炭化水素を含有する気相と、中間留分及び重質留分を含有する液相とに 分解生成物を分離する(分離工程)。分離された液相はライン 42を介して第 2蒸留装 置 50に導入される。 [0049] The decomposition product hydrocracked in the hydrocracking apparatus 30 is introduced into the gas-liquid separator 40 via the line 32. The gas-liquid separator 40 separates the decomposition products into a gas phase containing unreacted hydrogen gas or a hydrocarbon having a carbon number of 4 or less, and a liquid phase containing middle distillate and heavy distillate ( Separation step). The separated liquid phase is introduced into the second distillation apparatus 50 via the line 42.
[0050] 液相は第 2蒸留装置 50によって、沸点温度 150°C及び 360°Cで区切られる三つの 留分、すなわち、軽質留分、中間留分及び重質留分に分留される (分離工程)。ここ で得られる中間留分は沸点 150°C以上 360°C以下の炭化水素を 90質量%以上含 有する。この中間留分の一部又は全量は燃料基材として使用される。 [0050] The liquid phase is fractionated by the second distillation apparatus 50 into three fractions separated by boiling temperatures of 150 ° C and 360 ° C, namely a light fraction, a middle fraction and a heavy fraction ( Separation step). The middle distillate obtained here contains 90% by mass or more of hydrocarbons having a boiling point of 150 ° C or higher and 360 ° C or lower. Part or all of this middle distillate is used as a fuel substrate.
[0051] ライン 52で移送される軽質留分はライン 52aを介して混合装置 20に返送し、混合 工程において重質留分に混合する軽質留分として使用することができる。また、ライ ン 54で移送される重質留分はライン 54aを介して混合装置 20に返送し、水素化分解 の原料の重質留分として使用することができる。 [0051] The light fraction transferred in the line 52 is returned to the mixing apparatus 20 via the line 52a, and can be used as a light fraction to be mixed with the heavy fraction in the mixing step. In addition, the heavy fraction transferred through the line 54 can be returned to the mixing device 20 via the line 54a and used as a heavy fraction of the raw material for hydrocracking.
[0052] 以上、本発明の実施形態について詳細に説明したが、上記実施形態に限られるも のではなぐ様々な変形が可能である。例えば、重質留分と軽質留分との混合は必 ずしも混合装置 20で行わなくてもよぐ重質留分が移送されるライン 14内に軽質留 分を注入することによって行ってもよレ、。また、水素化分解工程に必要な水素は、水 素化分解工程において混合物と共存していればよい。このため、当該水素の添加は 水素化分解分解工程の前であれば、混合工程と同時もしくは前後に行うことができる As described above, the embodiments of the present invention have been described in detail, but various modifications are possible, not limited to the above embodiments. For example, the mixing of the heavy fraction and the light fraction is not necessarily performed by the mixing device 20, but is performed by injecting the light fraction into the line 14 where the heavy fraction is transferred. Moyore. In addition, the hydrogen necessary for the hydrocracking process only needs to coexist with the mixture in the hydrocracking process. Therefore, the addition of hydrogen can be performed at the same time as or before or after the mixing step as long as it is before the hydrocracking decomposition step.
[0053] 水素化分解工程に使用する水素化分解装置として、固定床型を例示したが、被処
理流体と水素化分解触媒とを接触させることが可能なものであれば特に制限されな レ、。例えば、流動床型の水素化分解装置であってもよい。 [0053] As the hydrocracking apparatus used in the hydrocracking process, a fixed bed type is exemplified, but There is no particular limitation as long as it can contact the physical fluid with the hydrocracking catalyst. For example, a fluidized bed hydrocracking apparatus may be used.
[0054] 水素化分解処理された処理組成物は気液分離装置で気相と液相とに分離される が、温度圧力条件が異なる二つ以上の気液分離装置を用いてこれらの分離を行つ てもよい。また、第 1及び第 2の蒸留装置の蒸留圧力は必ずしも常圧でなくてもよぐ 得られる留分が所望の蒸留特性となるように蒸留圧力を設定することができる。また、 第 2蒸留装置では、中間留分を 2種以上に分留してもよぐこの場合、軽い留分を灯 油用燃料基材、重い留分を軽油用燃料基材とすることができる。 [0054] The hydrocracked treatment composition is separated into a gas phase and a liquid phase by a gas-liquid separator, and these separations are performed using two or more gas-liquid separators having different temperature and pressure conditions. You may go. Further, the distillation pressure of the first and second distillation apparatuses is not necessarily normal pressure. The distillation pressure can be set so that the obtained fraction has desired distillation characteristics. In the second distillation apparatus, the middle distillate may be fractionated into two or more types. In this case, the light distillate may be the fuel base for kerosene, and the heavy distillate may be the fuel base for light oil. it can.
実施例 Example
[0055] 以下に実施例及び比較例に基づき、本発明を具体的に説明するが、本発明は以 下の実施例に何ら限定されるものではない。 [0055] Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0056] (実施例 1) [Example 1]
平均粒子径 0. 4 μ ΐηの USYゼォライト(シリカ/アルミナのモル比 37. 0)、シリカァ ルミナ(シリカ/アルミナのモル比 14. 0)及びアルミナバインダーからなり、これらの 質量比が 3 : 57 : 40質量比である担体(直径約 1. 6mm、長さ 3〜6mm (平均約 4m m)の円柱状成型品)を準備した。この担体に塩化白金酸の水溶液を含浸し、担体質 量に対して 0. 8質量%の白金を担持した。これを乾燥、焼成することで水素化分解 触媒を得た。 It consists of USY zeolite with an average particle size of 0.4 μΐη (silica / alumina molar ratio 37.0), silica alumina (silica / alumina molar ratio 14.0), and an alumina binder. : A carrier having a mass ratio of 40 (a cylindrical molded product having a diameter of about 1.6 mm and a length of 3 to 6 mm (average of about 4 mm)) was prepared. This carrier was impregnated with an aqueous solution of chloroplatinic acid, and 0.8% by mass of platinum was supported on the carrier mass. This was dried and calcined to obtain a hydrocracking catalyst.
[0057] FT合成油から分留したワックス及びナフサを含有する混合物の水素化分解は、固 定床型水素化分解装置を用いて行った。当該反応装置内には上記の水素化分解 触媒を 150ml充填した。 [0057] Hydrocracking of a mixture containing wax and naphtha fractionated from FT synthetic oil was performed using a fixed bed hydrocracking apparatus. The reactor was filled with 150 ml of the above hydrocracking catalyst.
[0058] FT合成油を分留して得た沸点が 360°Cを超えるワックスと、 FT合成油を分留して 得た沸点が 150°C未満のナフサ (イソパラフィン含有率: 5質量%未満)とを混合し、 固定床型水素化分解装置に供給する混合物を調製した。混合比率は、ワックス 100 質量部に対してナフサ 20質量部とした。 [0058] Wax obtained by fractionating FT synthetic oil with a boiling point exceeding 360 ° C, and naphtha obtained by fractionating FT synthetic oil with a boiling point of less than 150 ° C (isoparaffin content: less than 5% by mass) And a mixture to be supplied to a fixed bed hydrocracking apparatus was prepared. The mixing ratio was 20 parts by mass of naphtha per 100 parts by mass of wax.
[0059] 混合物に含まれるワックスの供給速度が 300ml/hとなるように水素化分解装置の 塔頂から混合物を供給した。また、混合物に含まれるワックスの供給量を基準とした 水素油比が 680NL/Lとなるように水素を水素化分解装置の塔頂から供給した。水
素化分解の圧力条件としては、水素化分解装置の入口圧力が 4. OMPaで一定にな るようした。圧力の調整は背圧弁で行った。 [0059] The mixture was supplied from the top of the hydrocracking apparatus so that the supply rate of the wax contained in the mixture was 300 ml / h. In addition, hydrogen was supplied from the top of the hydrocracking apparatus so that the hydrogen oil ratio based on the supply amount of wax contained in the mixture was 680 NL / L. water The pressure conditions for hydrocracking were such that the inlet pressure of the hydrocracker was constant at 4. OMPa. The pressure was adjusted with a back pressure valve.
[0060] 水素化分解装置の運転開始時の初期温度を 315°Cとした。水素化分解装置の温 度条件は、水素化分解触媒の劣化による活性の低下を補い、ワックスの分解率が一 定に保たれるように徐々に上昇させた。温度条件の調節の際には、水素化分解装置 力 得られる分解生成物の蒸留性状を蒸留ガスクロマトグラフ法によって分析した。 分析結果に基づき、ワックスの分解率が 70質量%となるように水素化分解装置の温 度を調節した。 [0060] The initial temperature at the start of operation of the hydrocracking apparatus was 315 ° C. The temperature conditions of the hydrocracking unit were gradually increased to compensate for the decrease in activity due to degradation of the hydrocracking catalyst and to keep the wax cracking rate constant. When adjusting the temperature conditions, the hydrocracking power was analyzed by distillation gas chromatography for the distillation properties of the resulting decomposition products. Based on the analysis results, the temperature of the hydrocracking unit was adjusted so that the cracking rate of wax was 70% by mass.
[0061] 水素化分解装置の運転開始から 10日目以降 20日目までの 10日間で上昇させた 温度を 10で割ることで算出される 1日あたりに平均化された反応温度上昇を触媒劣 化速度と定義した。 [0061] Calculated by dividing the temperature increased over 10 days from the 10th day to the 20th day from the start of operation of the hydrocracking unit by 10, the reaction temperature increase averaged per day was reduced by the catalyst. It was defined as the conversion rate.
[0062] 上記の蒸留ガスクロマトグラフ法においては分解生成物から燃料基材として用いる 中間留分を分離し、その蒸留性状を評価した。同時に処理組成物に含まれる沸点が 150°C未満の軽質留分及び沸点が 360°Cを超える重質留分の蒸留性状も評価した 。触媒劣化速度、並びに蒸留ガスクロマトグラフ法に測定された軽質留分、中間留分 及び重質留分の質量比率を表 1に示す。なお、表 1に示す軽質留分の質量比率は 蒸留ガスクロマトグラフ法で測定された軽質留分からワックスに混合したナフサを除い た値に基づくものである。 [0062] In the distillation gas chromatographic method described above, the middle distillate used as the fuel base material was separated from the decomposition product, and the distillation properties thereof were evaluated. At the same time, the distillation properties of a light fraction with a boiling point of less than 150 ° C and a heavy fraction with a boiling point of more than 360 ° C contained in the treatment composition were also evaluated. Table 1 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction measured by distillation gas chromatography. The mass fraction of light fractions shown in Table 1 is based on the value obtained by removing naphtha mixed with wax from the light fractions measured by distillation gas chromatography.
[0063] (実施例 2) [0063] (Example 2)
ワックスとナフサの混合比率をワックス 100質量部に対してナフサ 3質量部としたこと の他は、実施例 1と同様の条件にて燃料基材を得た。触媒劣化速度、並びに、軽質 留分、中間留分及び重質留分の質量比率を表 1に示す。 A fuel base material was obtained under the same conditions as in Example 1 except that the mixing ratio of wax and naphtha was 3 parts by mass of naphtha with respect to 100 parts by mass of wax. Table 1 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
[0064] (実施例 3) [0064] (Example 3)
ワックスとナフサの混合比率をワックス 100質量部に対してナフサ 38質量部としたこ との他は、実施例 1と同様の条件にて燃料基材を得た。触媒劣化速度、並びに、軽 質留分、中間留分及び重質留分の質量比率を表 1に示す。 A fuel base material was obtained under the same conditions as in Example 1 except that the mixing ratio of wax and naphtha was 38 parts by mass of naphtha with respect to 100 parts by mass of wax. Table 1 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
[0065] (実施例 4) [Example 4]
FT合成油を分留して製造したナフサの代わりに、 FT合成油のワックスを水素化分
解して製造したナフサ (イソパラフィン含有率: 80質量%以上)を用いたことの他は、 実施例 1と同様の条件にて燃料基材を得た。触媒劣化速度、並びに、軽質留分、中 間留分及び重質留分の質量比率を表 2に示す。 Instead of naphtha produced by fractionating FT synthetic oil, the wax of FT synthetic oil is A fuel base material was obtained under the same conditions as in Example 1 except that naphtha (isoparaffin content: 80% by mass or more) produced by thawing was used. Table 2 shows the catalyst deterioration rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
[0066] (実施例 5) [0066] (Example 5)
FT合成油を分留して製造したナフサの代わりに、ノルマルヘプタンを用いたことの 他は、実施例 1と同様の条件にて燃料基材を得た。触媒劣化速度、並びに、軽質留 分、中間留分及び重質留分の質量比率を表 2に示す。 A fuel base material was obtained under the same conditions as in Example 1 except that normal heptane was used instead of naphtha produced by fractional distillation of FT synthetic oil. Table 2 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
[0067] (実施例 6) [0067] (Example 6)
FT合成油を分留して製造したナフサの代わりに、原油から得られた脱硫ナフサ(硫 黄分含有量: 0. 8質量 ppm)を用いたことの他は、実施例 1と同様の条件にて燃料基 材を得た。触媒劣化速度、並びに、軽質留分、中間留分及び重質留分の質量比率 を表 2に示す。 The same conditions as in Example 1 except that desulfurized naphtha obtained from crude oil (sulfur yellow content: 0.8 mass ppm) was used instead of naphtha produced by fractionating FT synthetic oil. A fuel substrate was obtained. Table 2 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
[0068] (比較例 1) [0068] (Comparative Example 1)
FT合成油のワックスにナフサを混合せず、ワックスのみを水素化分解装置に供給 したことの他は、実施例 1と同様の条件にて燃料基材を得た。触媒劣化速度、並びに 、軽質留分、中間留分及び重質留分の質量比率を表 3に示す。 A fuel base material was obtained under the same conditions as in Example 1 except that the FT synthetic oil wax was not mixed with naphtha and only the wax was supplied to the hydrocracking apparatus. Table 3 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction and heavy fraction.
[0069] (比較例 2) [0069] (Comparative Example 2)
水素化分解装置の圧力条件を 3. OMPaとしたことの他は、比較例 1と同様の条件 にて燃料基材を得た。触媒劣化速度、並びに、軽質留分、中間留分及び重質留分 の質量比率を表 3に示す。 A fuel base material was obtained under the same conditions as in Comparative Example 1 except that the pressure condition of the hydrocracking apparatus was 3. OMPa. Table 3 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction, and heavy fraction.
[0070] (比較例 3) [0070] (Comparative Example 3)
水素化分解装置の圧力条件を 2. OMPaとしたことの他は、比較例 1と同様の条件 にて燃料基材を得た。触媒劣化速度、並びに、軽質留分、中間留分及び重質留分 の質量比率を表 3に示す。 A fuel base material was obtained under the same conditions as in Comparative Example 1 except that the pressure condition of the hydrocracking apparatus was 2. OMPa. Table 3 shows the catalyst degradation rate and the mass ratio of the light fraction, middle fraction, and heavy fraction.
[0071] [表 1]
実施例 実施例 実施例 [0071] [Table 1] Examples Examples Examples Examples
1 2 3 one two Three
ヮックス 1 00質量部に対する AX
20 3 38 20 3 38
ナフサの混合量, 質量部 Mixing amount of naphtha, part by mass
FT合成油の FT合成油の FT合成油の 混合工程で使用したナフサ Naphtha used in the process of mixing FT synthetic oil with FT synthetic oil
軽質留分 軽質留分 軽質留分 水素化分解の圧力条件, M P a 4. 0 4. 0 4. 0 Light fraction Light fraction Light fraction Light fraction Hydrocracking pressure conditions, M P a 4.0 0 4.0 0 4.0
ワックスの分解率, 質量% 70 70 70 Decomposition rate of wax, mass% 70 70 70
軽質留分の質量比率, 質量% 9 1 4 7 Mass ratio of light fraction, mass% 9 1 4 7
中間留分の質量比率, 質量 ¾ 61 56 63 Middle fraction mass ratio, mass ¾ 61 56 63
重質留分の質量比率. 質量 ¾ 30 30 30 Mass fraction of heavy fraction. Mass ¾ 30 30 30
触媒劣化速度, ¾ /日 0. 042 0. 043 0. 041 Catalyst degradation rate, ¾ / day 0. 042 0. 043 0. 041
[0072] [表 2] [0072] [Table 2]
[0073] [表 3] [0073] [Table 3]
本発明のワックスの水素化分解方法及び燃料基材の製造方法は、未分解ワックス
のボトムリサイクルを行う際に、水素化分解の目的物である中間留分の収率の向上と 中間留分中のノルマルパラフィンの含有量の低減とを同時に達成することができるた め、環境にやさしいクリーンな液体燃料を製造する上で有用である。
The method for hydrocracking a wax and the method for producing a fuel substrate according to the present invention comprises: When bottom recycling is performed, it is possible to simultaneously improve the yield of middle distillate, which is the target of hydrocracking, and reduce the content of normal paraffin in the middle distillate. It is useful in producing a gentle clean liquid fuel.
Claims
[1] 沸点が 360°Cを超える炭化水素を 90質量%以上含有する重質留分と沸点が 150 [1] Heavy fraction containing 90% by mass or more of hydrocarbons with boiling point over 360 ° C and boiling point of 150
°C未満の炭化水素を 95質量%以上含有する軽質留分とを、前記重質留分 100質量 部に対して前記軽質留分が 2〜50質量部となるように混合する混合工程と、 A mixing step of mixing a light fraction containing 95% by mass or more of a hydrocarbon having a temperature of less than ° C such that the light fraction is 2 to 50 parts by mass with respect to 100 parts by mass of the heavy fraction;
水素及び水素化分解触媒の存在下、前記混合工程で得られる混合物を、前記沸 点が 360°Cを超える炭化水素の分解率が 40〜85質量%となるように水素化分解す る水素化分解工程と、 Hydrogenation which hydrocracks the mixture obtained in the mixing step in the presence of hydrogen and a hydrocracking catalyst so that the cracking rate of hydrocarbons whose boiling point exceeds 360 ° C is 40 to 85% by mass Decomposition process,
前記水素化分解工程で得られる分解生成物から、沸点 150°C以上 360°C以下の 炭化水素を 90質量%以上含有する中間留分を分離する分離工程と、 A separation step of separating a middle distillate containing 90% by mass or more of a hydrocarbon having a boiling point of 150 ° C or higher and 360 ° C or lower from the decomposition product obtained in the hydrocracking step;
を備えることを特徴とする燃料基材の製造方法。 A method for producing a fuel substrate, comprising:
[2] 前記重質留分は、フィッシャー ·トロプシュ合成により得られるワックスを含有すること を特徴とする、請求項 1記載の燃料基材の製造方法。 [2] The method for producing a fuel substrate according to claim 1, wherein the heavy fraction contains a wax obtained by Fischer-Tropsch synthesis.
[3] 前記軽質留分は、フィッシャー ·トロプシュ合成により得られるナフサを含有すること を特徴とする、請求項 1又は 2に記載の燃料基材の製造方法。 [3] The method for producing a fuel substrate according to claim 1 or 2, wherein the light fraction contains naphtha obtained by Fischer-Tropsch synthesis.
[4] 前記水素化分解工程において、温度 200〜370°C、圧力 1. 0〜5. 0MPa、前記 重質留分の供給量を基準とした液空間速度 0. 3〜3. 51T1の条件下で前記混合物 を水素化分解することを特徴とする、請求項 1〜3のいずれか一項に記載の燃料基 材の製造方法。 [4] In the hydrocracking step, a temperature of 200 to 370 ° C, a pressure of 1.0 to 5.0 MPa, and a liquid space velocity of 0.3 to 3.51T 1 based on the supply amount of the heavy fraction. The method for producing a fuel base according to any one of claims 1 to 3, wherein the mixture is hydrocracked under conditions.
[5] 前記水素化分解触媒が、担体全量を基準として 0.:!〜 80. 0質量%の結晶性ゼォ ライト及び 0.:!〜 60. 0質量%の耐熱性を有する無定形金属酸化物を含有する担体 と、前記担体に担持された、担体に対して 0.:!〜 3. 0質量%の元素周期律表第 VIII 族金属から選ばれる 1種以上の金属と、を含有するものであることを特徴とする、請求 項 1〜4のいずれか一項に記載の燃料基材の製造方法。
[5] The hydrocracking catalyst contains 0.:! To 80.0% by mass of crystalline zeolite and 0.:! To 60.0% by mass of amorphous metal based on the total amount of the support. A carrier containing an oxide, and one or more metals selected from Group VIII metals of element periodic table of 0.:! To 3.0% by mass with respect to the carrier, supported on the carrier. The method for producing a fuel base material according to any one of claims 1 to 4, wherein the fuel base material is produced.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-044371 | 2006-02-21 | ||
JP2006044371A JP4711849B2 (en) | 2006-02-21 | 2006-02-21 | Manufacturing method of fuel substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007097235A1 true WO2007097235A1 (en) | 2007-08-30 |
Family
ID=38437273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/052638 WO2007097235A1 (en) | 2006-02-21 | 2007-02-14 | Process for production of fuel base |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4711849B2 (en) |
MY (1) | MY144185A (en) |
WO (1) | WO2007097235A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101970615A (en) * | 2008-03-14 | 2011-02-09 | 日本石油天然气·金属矿物资源机构 | Treatment method for producing diesel fuel base material and method for calculating cracking rate of wax fraction |
WO2012105559A1 (en) * | 2011-02-04 | 2012-08-09 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Method for producing hydrocarbon oil |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01308492A (en) * | 1987-12-18 | 1989-12-13 | Exxon Res & Eng Co | Hydroisomerization of wax to form intermediate distillate product |
JPH05302088A (en) * | 1991-09-12 | 1993-11-16 | Shell Internatl Res Maatschappij Bv | Production of hydrocarbon fuel |
US6204426B1 (en) * | 1999-12-29 | 2001-03-20 | Chevron U.S.A. Inc. | Process for producing a highly paraffinic diesel fuel having a high iso-paraffin to normal paraffin mole ratio |
US6544407B1 (en) * | 1999-11-19 | 2003-04-08 | Agip Petroli S.P.A. | Process for the preparation of middle distillates starting from linear paraffins |
WO2004028688A1 (en) * | 2002-09-24 | 2004-04-08 | Nippon Oil Corporation | Hydrocracking catalyst and process for production of liquid hydrocarbons |
GB2396160A (en) * | 2002-10-04 | 2004-06-16 | Chevron Usa Inc | Fischer-Tropsch fuels having good ignition and low-temperature flow properties |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU644166B2 (en) * | 1990-06-21 | 1993-12-02 | Mobil Oil Corporation | Resid desulfurization and demetalation |
-
2006
- 2006-02-21 JP JP2006044371A patent/JP4711849B2/en not_active Expired - Fee Related
-
2007
- 2007-02-14 WO PCT/JP2007/052638 patent/WO2007097235A1/en active Application Filing
-
2008
- 2008-08-21 MY MYPI20083202 patent/MY144185A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01308492A (en) * | 1987-12-18 | 1989-12-13 | Exxon Res & Eng Co | Hydroisomerization of wax to form intermediate distillate product |
JPH05302088A (en) * | 1991-09-12 | 1993-11-16 | Shell Internatl Res Maatschappij Bv | Production of hydrocarbon fuel |
US6544407B1 (en) * | 1999-11-19 | 2003-04-08 | Agip Petroli S.P.A. | Process for the preparation of middle distillates starting from linear paraffins |
US6204426B1 (en) * | 1999-12-29 | 2001-03-20 | Chevron U.S.A. Inc. | Process for producing a highly paraffinic diesel fuel having a high iso-paraffin to normal paraffin mole ratio |
WO2004028688A1 (en) * | 2002-09-24 | 2004-04-08 | Nippon Oil Corporation | Hydrocracking catalyst and process for production of liquid hydrocarbons |
GB2396160A (en) * | 2002-10-04 | 2004-06-16 | Chevron Usa Inc | Fischer-Tropsch fuels having good ignition and low-temperature flow properties |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101970615A (en) * | 2008-03-14 | 2011-02-09 | 日本石油天然气·金属矿物资源机构 | Treatment method for producing diesel fuel base material and method for calculating cracking rate of wax fraction |
CN101970615B (en) * | 2008-03-14 | 2015-08-12 | 日本石油天然气·金属矿物资源机构 | Treatment method for producing diesel fuel base material and method for calculating cracking rate of wax fraction |
WO2012105559A1 (en) * | 2011-02-04 | 2012-08-09 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Method for producing hydrocarbon oil |
JP2012162618A (en) * | 2011-02-04 | 2012-08-30 | Japan Oil Gas & Metals National Corp | Method of manufacturing hydrocarbon oil |
CN103339231A (en) * | 2011-02-04 | 2013-10-02 | 日本石油天然气·金属矿物资源机构 | Process for producing hydrocarbon oil |
AU2012211757B2 (en) * | 2011-02-04 | 2015-09-03 | Cosmo Oil Co., Ltd. | Method for producing hydrocarbon oil |
EA023847B1 (en) * | 2011-02-04 | 2016-07-29 | Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн | Method for producing hydrocarbon oil |
US9487713B2 (en) | 2011-02-04 | 2016-11-08 | Japan Oil, Gas And Metals National Corporation | Method for producing hydrocarbon oil |
Also Published As
Publication number | Publication date |
---|---|
MY144185A (en) | 2011-08-15 |
JP2007224091A (en) | 2007-09-06 |
JP4711849B2 (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568619B2 (en) | Method for producing synthetic naphtha | |
AU2007226057B2 (en) | Process for production of hydrocarbon oil and hydrocarbon oil | |
JP5159785B2 (en) | Method for producing diesel fuel substrate and resulting diesel fuel substrate | |
AU2007208855B2 (en) | Method of hydrogenolysis of wax and process for producing fuel base | |
AU2007216008B9 (en) | Process for hydrogenation of synthetic oil and process for production of fuel base | |
EP2692835B1 (en) | Kerosene base material production method | |
JP4711849B2 (en) | Manufacturing method of fuel substrate | |
JP4783645B2 (en) | Method for hydrotreating wax | |
JP2006520820A (en) | Method for treating organic compounds and treated organic compounds | |
JP5443206B2 (en) | Hydrocracking method | |
RU2425093C2 (en) | Paraffin hydrocracking method and method for obtaining material of fuel base | |
AU2007232010B2 (en) | Method of hydrotreating wax and process for producing fuel base | |
AU2005335184A1 (en) | Method for producing hydrocarbon fuel oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07714191 Country of ref document: EP Kind code of ref document: A1 |