WO2023234212A1 - Method for producing hydrocarbon - Google Patents

Method for producing hydrocarbon Download PDF

Info

Publication number
WO2023234212A1
WO2023234212A1 PCT/JP2023/019727 JP2023019727W WO2023234212A1 WO 2023234212 A1 WO2023234212 A1 WO 2023234212A1 JP 2023019727 W JP2023019727 W JP 2023019727W WO 2023234212 A1 WO2023234212 A1 WO 2023234212A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
mass
fluid catalytic
synthetic
raw material
Prior art date
Application number
PCT/JP2023/019727
Other languages
French (fr)
Japanese (ja)
Inventor
悠一 柴田
佳介 藤本
裕貴 森
健 小畠
昂志 ▲高▼▲濱▼
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023234212A1 publication Critical patent/WO2023234212A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present disclosure relates to a method for producing hydrocarbons.
  • FCC fluid catalytic cracking
  • FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil.
  • conventional hydrocarbon production methods as shown in Fig. 1, for example, direct desulfurized atmospheric residual oil obtained by directly treating atmospheric distillation residual oil in a desulfurization equipment and desulfurized vacuum gas oil are used as feedstock oils through fluid contact. Hydrocarbons are produced by processing in crackers.
  • FT synthetic oil which has lower sulfur and nitrogen content than petroleum, is attracting attention.
  • FT synthetic oil is produced from synthesis gas, which is a mixed gas of hydrogen gas and carbon monoxide gas, by Fischer-Tropsch synthesis.
  • Patent Document 2 discloses a technique for producing hydrocarbons by treating FT synthetic oil as a feedstock oil in a fluid catalytic cracking apparatus.
  • a fluid catalytic cracker sends a catalyst with coke attached to it to a regeneration tower, and burns the coke within the regeneration tower to regenerate the catalyst and utilize the coke as its own heat source.
  • one aspect of the present disclosure provides a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation.
  • One aspect of the present disclosure relates to a method for producing hydrocarbons, comprising a step of treating feedstock oil with a fluid catalytic cracking apparatus, the feedstock oil contains FT synthetic oil, and the feedstock oil has a % CA of 6 to 23. .
  • the method for producing hydrocarbons includes a step of mixing FT synthetic oil and a hydrocarbon oil with a higher % CA than the FT synthetic oil to obtain a feedstock oil, and a step of mixing the feedstock oil into a reaction column of a fluid catalytic cracking unit.
  • the method may further include a step of supplying.
  • the hydrocarbon oil may include a directly desulfurized atmospheric residue.
  • the hydrocarbon oil may include clarified oil.
  • a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation is provided.
  • FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil.
  • FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in a method for producing hydrocarbons according to an embodiment.
  • FT synthetic oil the synthetic oil produced by Fischer-Tropsch synthesis
  • wax the wax component contained in FT synthetic oil
  • FT synthetic oil produced by Fischer-Tropsch synthesis and not subjected to distillation is referred to as "FT crude oil.”
  • “ton” refers to the metric system rather than the imperial/pound system. That is, 1 ton is 1000 kg.
  • % CA means ndM ring analysis value (aroma content).
  • % CA is calculated by the following procedure. That is, the specific gravity (d 4 70 ) and refractive index ( nd 70 ) of the raw material oil at 70° C. are measured.
  • x is calculated by substituting the measured value into the following formula (A1).
  • the value obtained by substituting x into the following formula (A2) when x exceeds 0, and the value obtained by substituting x into the following formula (A3) when x is less than 0, is the % of the feedstock oil. It is C.A.
  • the following formulas (A1) to (A3) are defined with reference to the standard "ASTM D3238".
  • M is the average molecular weight.
  • x 2.42(n d 70 -1.4600) - (d 4 70 -0.8280).
  • % CA 410x+3660/M...(A2)
  • %C A 720x+3660/M...(A3)
  • the method for producing hydrocarbons according to the present embodiment includes a step of treating feedstock oil with a fluid catalytic cracking apparatus.
  • the raw material oil contains FT synthetic oil, and the % CA of the raw material oil is 6 to 23.
  • FT synthetic oil is produced, for example, by Fischer-Tropsch synthesis using carbon monoxide and hydrogen gas as raw materials.
  • the method for producing FT synthetic oil is not particularly limited, and any known method can be employed.
  • the reaction apparatus for producing FT synthetic oil a fixed bed reaction apparatus or a slurry fluidized bed reaction apparatus is preferable. Further, the reaction is preferably carried out under conditions where the conversion rate of carbon monoxide, which is a raw material, is 50% or more, more preferably in the range of 70 to 90%.
  • a bubble column type fluidized bed reactor has a reaction column that performs Fischer-Tropsch synthesis.
  • the reaction column of the bubble column type fluidized bed reactor contains liquid hydrocarbons that are liquid at the reaction temperature.
  • a catalyst for FT synthesis is dispersed in the liquid hydrocarbon, and the liquid hydrocarbon is in the form of a slurry.
  • Synthesis gas which is a mixed gas of carbon monoxide gas and hydrogen gas, is introduced into the liquid hydrocarbons from the lower part of the reaction tower. The synthesis gas dissolves in the liquid hydrocarbon while rising in the liquid hydrocarbon in the form of bubbles, and comes into contact with the catalyst for FT synthesis.
  • FT synthetic oil is produced from synthetic gas by the action of a catalyst for FT synthesis.
  • the reaction temperature can be determined depending on the target carbon monoxide conversion rate, but is preferably 150 to 300°C, more preferably 170 to 250°C.
  • the reaction pressure is preferably 0.5 to 5.0 MPa, more preferably 2.0 to 4.0 MPa.
  • the reaction pressure is 0.5 MPa or more, the carbon monoxide conversion rate tends to be 50% or more, and when it is 5.0 MPa or less, local generation of heat tends to be suppressed.
  • Synthesis gas is obtained, for example, by reforming hydrocarbons such as natural gas.
  • the synthesis gas only needs to contain carbon monoxide gas and hydrogen gas, and may be a gas other than that obtained from reforming natural gas or the like.
  • the hydrogen/carbon monoxide ratio (molar ratio) in the synthesis gas is preferably 0.5 to 4.0, more preferably 1.0 to 2.5.
  • this molar ratio is 0.5 or more, the reaction temperature does not become too high and deactivation of the catalyst tends to be suppressed, and when it is 4.0 or less, the production of methane, which is an undesirable by-product, tends to be suppressed. It is in.
  • the gas space velocity of the synthesis gas is preferably 500 to 5000 h -1 , more preferably 1000 to 2500 h -1 .
  • productivity for the same amount of catalyst is high, and when it is 5000 h -1 or less, the conversion rate of carbon monoxide tends to be 50% or more.
  • a catalyst in which an active metal is supported on an inorganic carrier is used.
  • the inorganic carrier include porous oxides such as silica, alumina, titania, magnesia, and zirconia.
  • active metals include cobalt, ruthenium, iron, and nickel.
  • a compound containing a metal element such as zirconium, titanium, hafnium, sodium, lithium, or magnesium may be supported on the catalyst.
  • FT synthetic oil is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 5 to 100 carbon atoms.
  • the FT synthetic oil may be any synthetic oil produced by Fischer-Tropsch synthesis, and may contain linear hydrocarbons having more than 100 carbon atoms.
  • FT synthetic oil contains almost no aromatic hydrocarbons, naphthenes and isoparaffins.
  • FT synthetic oil has a % CA of 0.
  • FT synthetic oil can have a % CA of more than 0, for example, when it contains aromatic hydrocarbons.
  • the FT synthetic oil may contain FT wax whose boiling point exceeds 330°C.
  • the FT wax is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 17 or more carbon atoms.
  • the content of FT wax in the FT synthetic oil may be 30% by mass or more, 50% by mass or more, 70% by mass or more, 90% by mass or more, or 95% by mass or more, or even 100% by mass. good.
  • the content of FT wax in the FT synthetic oil can be easily controlled by appropriately adjusting the above reaction conditions.
  • Hydrocarbons can be produced by processing feedstock oil containing FT synthetic oil in a fluid catalytic cracker.
  • the % CA of the feedstock oil is 6 or more, preferably 7 or more, and more preferably 8 or more from the viewpoint of the amount of coke produced.
  • the % CA of the raw material oil is 23 or less, may be 22 or less, or may be 21 or less.
  • the FT synthetic oil contained in the raw material oil is not particularly limited as long as it is an oil produced by Fischer-Tropsch synthesis.
  • the FT synthetic oil contained in the raw material oil may be, for example, FT crude oil, oil obtained by distilling FT crude oil, FT wax, or a mixture thereof. There may be.
  • the feedstock oil may further include a hydrocarbon oil having a higher % CA than the FT synthetic oil.
  • the above hydrocarbon oil is obtained, for example, from petroleum refining.
  • the hydrocarbon oil include RDS-BTM, DS-VGO, and CLO.
  • RDS-BTM is, for example, a direct desulfurized atmospheric residual oil obtained by treating an atmospheric distillation residual oil in a direct desulfurization apparatus.
  • Atmospheric distillation residual oil is obtained by processing crude oil in an atmospheric distillation apparatus.
  • DS-VGO is, for example, desulfurized vacuum gas oil obtained by treating atmospheric distillation residual oil in a vacuum gas oil desulfurization apparatus.
  • RDS-BTM may or may not contain solvent deasphalted vacuum residue as its raw material.
  • CLO Cosmetic Oil
  • RDS-BTM or DS-VGO Fluid catalytic cracking apparatus
  • the catalyst is removed from the slurry oil, which is the residual oil obtained after processing.
  • CLO may or may not contain FT synthetic oil as its raw material.
  • the method for producing hydrocarbons includes a step of mixing the FT synthetic oil and the hydrocarbon oil to obtain the feedstock oil, and a step of reacting the feedstock oil in a fluid catalytic cracking apparatus.
  • the method may further include a step of supplying the fuel to the column.
  • the method for producing hydrocarbons supplies the FT synthetic oil to the reaction tower of the fluid catalytic cracker, and the hydrocarbon oil to the reaction tower of the fluid catalytic cracker.
  • the method may further include a step of supplying the raw material to a reactor and obtaining a feedstock oil in a reaction tower of the fluid catalytic cracker.
  • the proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of RDS-BTM and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
  • the proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass based on the total mass of RDS-BTM and FT synthetic oil. It may be the following.
  • the % CA of RDS-BTM is 5 or more, may be 10 or more, or may be 20 or more.
  • the % CA of RDS-BTM is 99 or less, may be 80 or less, or may be 60 or less.
  • the proportion of DS-VGO in DS-VGO and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of DS-VGO and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
  • the proportion of DS-VGO in DS-VGO and FT synthetic oil is 98% by mass or less, and may be 75% by mass or less, and 50% by mass based on the total mass of DS-VGO and FT synthetic oil. It may be the following.
  • the % CA of the DS-VGO is, for example, 1 or more, may be 5 or more, or may be 10 or more.
  • the % CA of the DS-VGO is 99 or less, may be 80 or less, or may be 60 or less.
  • the proportion of CLO in CLO and FT synthetic oil is 1% by mass or more, and may be 15% by mass or more, 30% by mass or more, based on the total mass of CLO and FT synthetic oil. It may be at least 45% by mass, or at least 45% by mass.
  • the proportion of CLO in CLO and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass or less, based on the total mass of CLO and FT synthetic oil. .
  • the % CA of CLO is, for example, 1 or more, may be 5 or more, may be 10 or more, or may be 20 or more.
  • the % CA of CLO is 99 or less, may be 80 or less, or may be 60 or less.
  • Two or more of RDS-BTM, DS-VGO, and CLO may be used in combination so that the %CA of the feedstock oil falls within the above-mentioned upper and lower limits.
  • FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in the method for producing hydrocarbons according to the present embodiment.
  • the fluid catalytic cracker A includes a reaction tower 1, a regeneration tower 3, a line 15 connecting the reaction tower 1, a line 11 connecting the reaction tower 1 and the regeneration tower 3, and a reaction tower 1 and the regeneration tower 3.
  • a connecting line 23, a line 27 connecting the regeneration tower 3 and a boiler (not shown), and a line 29 connecting the reaction tower 1 and recovery equipment (not shown) are provided.
  • the reaction tower 1 is a riser type.
  • the reaction tower 1 includes a reaction zone 5 and a separation zone 7.
  • the reaction tower 1 is supplied with raw material oil and countless catalyst particles (decomposition catalyst).
  • Feedstock oil is fed to reaction zone 5 through line 15. If the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil, even if the feedstock oil is obtained by mixing the FT synthetic oil and the hydrocarbon oil in line 15. good.
  • the line 15 may branch off from the middle.
  • the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil
  • a mixture of the FT synthetic oil and the hydrocarbon oil in advance is added to the reaction zone 5 as the feedstock oil. It may also be supplied through line 15.
  • Catalyst particles are fed to the reaction zone 5 through line 11.
  • fluidizing gas 13 which is water vapor, is blown into the bed of catalyst particles from below.
  • the catalyst particles are fluidized by fluidizing gas 13.
  • the feed oil and the fluidized catalyst particles move up through the reaction zone 5 together with the fluidizing gas 13 .
  • Catalytic cracking occurs when the feedstock oil comes into contact with catalyst particles within the reaction zone 5, and hydrocarbons are generated from the feedstock oil. Hydrocarbons obtained by cracking feedstock oil and catalyst particles used for catalytic cracking are separated in a separation zone 7.
  • the separated hydrocarbons are fed through line 29 to a recovery facility.
  • Hydrocarbons are separated into multiple components and recovered in a recovery facility.
  • the recovery equipment may include, for example, a plurality of distillation columns, absorption columns, compressors, strippers, fractionators, splitters and heat exchangers.
  • Hydrocarbons are fractionated into gas components and hydrocarbon oils, for example, in a distillation column (atmospheric distillation column).
  • Gas components include dry gas and LP gas (LPG).
  • hydrocarbon oils include gasoline fraction (CCG), light oil fraction (LCO), kerosene fraction, clarified oil (CLO), and coke.
  • the recovered clarified oil (CLO) may be supplied to the reaction tower 1 as a raw material oil.
  • the separated catalyst particles are supplied to the regeneration tower 3 through the line 23. Coke produced during fluidized catalytic cracking is attached to the surface of the catalyst particles supplied to the regeneration tower 3, and the catalyst particles have reduced catalytic activity. In the regeneration tower 3, catalyst particles used for catalytic cracking are regenerated. Air 25 is supplied to the regeneration tower 3 for regeneration processing. The regeneration tower 3 burns the coke adhering to the surface of the catalyst particles, thereby reducing the amount of coke adhering to the surfaces of the catalyst particles and increasing the temperature of the catalyst particles. The regenerated catalyst particles are again supplied to the reaction zone 5 through the line 11. That is, the catalyst particles circulate between the regeneration tower 3 and the reaction tower 1.
  • High-temperature carbon monoxide gas and carbon dioxide gas generated during the regeneration process are supplied to a boiler (not shown) and a heat exchanger (not shown) through line 27, and are used as one of the heat sources of fluid catalytic cracker A. Become. When carbon monoxide gas and carbon dioxide gas generated during the regeneration process are supplied to the heat exchanger, they are used to raise the temperature of the feedstock oil.
  • the catalyst/oil ratio is the value obtained by dividing the circulation rate (ton/h) of the catalyst circulating between the reaction tower 1 and the regeneration tower 3 by the feed rate (ton/h) of the feedstock oil.
  • the catalyst/oil ratio is 3 [mass/mass] or more, may be 4 [mass/mass] or more, may be 5 [mass/mass] or more, and is 7.5 [mass/mass]. It may be more than that.
  • the catalyst/oil ratio is 50 [mass/mass] or less, may be 13 [mass/mass] or less, may be 12 [mass/mass] or less, and may be 11 [mass/mass] or less. The ratio may be 9 [mass/mass] or less.
  • the cracking catalyst used in fluid catalytic cracking may include, for example, an inorganic oxide (matrix component) and zeolite.
  • the inorganic oxide may be, for example, at least one selected from the group consisting of kaolin, montmolinite, halloysite, bentonite, alumina, silica, boria, chromia, magnesia, zirconia, titania, and silica alumina.
  • the zeolite may be, for example, natural zeolite and/or synthetic zeolite.
  • Natural zeolites include gmelinite, chabasite, dakiardofluorite, clinoptilolite, faujasite, kyphite, borofluorite, repinite, erionite, sodalite, cankrinite, ferrierite, brewster fluorite, offretite, and soda fluorite. It may be at least one selected from the group consisting of stone and mordenite.
  • Synthetic zeolites include X-type zeolite, Y-type zeolite, USY-type zeolite, A-type zeolite, L-type zeolite, ZK-4-type zeolite, B-type zeolite, E-type zeolite, F-type zeolite, H-type zeolite, J-type zeolite, M-type zeolite, Q-type zeolite, T-type zeolite, W-type zeolite, Z-type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ZSM-5 type zeolite, SAPO-5 type zeolite, SAPO-11 type zeolite, and It may be at least one selected from the group consisting of SAPO-34 type zeolites.
  • the reaction temperature for fluid catalytic cracking of feedstock oil may be 500 to 700°C.
  • the reaction temperature is 500° C. or higher, the decomposition rate tends to increase and the yield of gasoline fraction tends to increase.
  • the reaction temperature is 700° C. or lower, excessive decomposition reaction can be suppressed, and the yield of gasoline fraction tends to improve.
  • the reaction time (contact time) of fluid catalytic cracking may be 0.5 to 10 seconds.
  • the reaction time of fluid catalytic cracking is 0.5 seconds or more, the cracking rate tends to increase, and the yield of gasoline fraction tends to increase.
  • the reaction time (contact time) of fluid catalytic cracking is 10 seconds or less, excessive cracking reaction can be suppressed, and the yield of gasoline fraction tends to improve.
  • the mass of the steam supplied as the fluidizing gas 13 to the fluid catalytic cracking apparatus A may be 2 to 50 parts by mass based on 100 parts by mass of the feedstock oil.
  • the mass of steam is 2 parts by mass or more, the raw material oil is sufficiently dispersed, and coking tends to be suppressed.
  • the mass of water vapor is 50 mass or less, the contact time can be prevented from becoming too short, and the yield of the gasoline fraction tends to improve.
  • the pressure within the reaction tower 1 where fluid catalytic cracking is performed may be 101,325 to 3 ⁇ 10 5 Pa.
  • the pressure is 101,325 Pa (standard pressure) or higher, the pressure of the gas after decomposition does not drop too much, and the operation of the recovery equipment tends to be stable.
  • the pressure is 3 ⁇ 10 5 Pa or less, it is possible to prevent the hydrocarbon partial pressure within the reaction tower 1 from becoming too high, and it is possible to prevent the decomposition rate from becoming too high. Therefore, excessive decomposition reactions can be suppressed, and the yield of gasoline fraction tends to be improved.
  • Table 1 shows the aromatic content in the raw oil.
  • the density at 15° C., sulfur content, residual carbon content, distillation properties, aromatic content, naphthene content, and paraffin content of the raw material were assumed to be the values shown in Table 2.
  • the distillation properties of the raw material are 1 volume % distillation temperature (T1), 5 volume % distillation temperature (T5), 10 volume % distillation temperature (T10), 30 volume % distillation temperature (T30), 50 volume % distillation temperature (T10), Volume % distillation temperature (T50), 70 volume % distillation temperature (T70), 90 volume % distillation temperature (T90), 95 volume % distillation temperature (T95) and 99 volume % distillation temperature (T99) are shown. Shown in 2.
  • the residual carbon content of raw material oil is a value measured according to JIS K 2270-2 method.
  • the sulfur content of the raw material oil is a value measured according to JIS K 2541-4.
  • the distillation properties of the raw material oil are values measured according to ASTM D2887.
  • the aromatic content, naphthene content, and paraffin content of the raw material oil are values measured by ndM ring analysis.
  • y is calculated by substituting the measured values of the specific gravity and refractive index of the raw material oil at 70° C. into the following formula (B1).
  • % CR is calculated by substituting y into the following formula (B2) when y exceeds 0, and substituting y into the following formula (B3) when y is less than 0.
  • %C P is calculated by substituting %C R into the following formula (B4).
  • %C N is calculated by substituting %C R and %C A in the material of the feedstock oil measured by ndM ring analysis (method based on ASTM D3228) into the following formula (B5).
  • the following formulas (B1) to (B5) are defined with reference to the standard "ASTM D3238".
  • M is the average molecular weight.
  • ROT Riviere Outlet Temperature
  • ROT is the temperature of hydrocarbons at the exit of the reaction tower 1 through which the hydrocarbons heading from the reaction tower 1 to the recovery equipment pass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The method for producing a hydrocarbon according to the present disclosure includes a step for treating a raw material oil using a fluid catalytic cracking apparatus, in which the raw material oil comprises an FT synthetic oil, and the %CA of the raw material oil is 6 to 23.

Description

炭化水素の製造方法Hydrocarbon production method
 本開示は、炭化水素の製造方法に関する。 The present disclosure relates to a method for producing hydrocarbons.
 日本国内の製油所においては、炭化水素の製造において、流動接触分解(Fluid Catalytic Cracking:FCC)装置が中心的な役割を担っている(例えば、特許文献1)。 In refineries in Japan, fluid catalytic cracking (FCC) equipment plays a central role in the production of hydrocarbons (for example, Patent Document 1).
 図1は、従来の原油から炭化水素を製造する方法の一例を示すフロー図である。従来の炭化水素の製造方法では、図1に示すように、例えば、常圧蒸留残油を直接脱硫装置で処理して得られる直接脱硫常圧残油、及び脱硫減圧軽油を原料油として流動接触分解装置で処理することで炭化水素を製造している。 FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil. In conventional hydrocarbon production methods, as shown in Fig. 1, for example, direct desulfurized atmospheric residual oil obtained by directly treating atmospheric distillation residual oil in a desulfurization equipment and desulfurized vacuum gas oil are used as feedstock oils through fluid contact. Hydrocarbons are produced by processing in crackers.
 また、環境意識が高まってきたことに伴い、石油と比べて硫黄分や窒素分の含有量が少ないFT合成油が注目されている。FT合成油は、水素ガスと一酸化炭素ガスの混合ガスである合成ガスから、フィッシャートロプシュ合成により生成される。例えば、特許文献2には、FT合成油を原料油として流動接触分解装置で処理することで炭化水素を製造する技術が開示されている。 Additionally, as environmental awareness has increased, FT synthetic oil, which has lower sulfur and nitrogen content than petroleum, is attracting attention. FT synthetic oil is produced from synthesis gas, which is a mixed gas of hydrogen gas and carbon monoxide gas, by Fischer-Tropsch synthesis. For example, Patent Document 2 discloses a technique for producing hydrocarbons by treating FT synthetic oil as a feedstock oil in a fluid catalytic cracking apparatus.
特開2020-186384号公報Japanese Patent Application Publication No. 2020-186384 特表2007-503503号公報Special Publication No. 2007-503503
 流動接触分解の過程で原料油から生成されるコークは、触媒表面に付着する。流動接触分解装置は、コークが付着した触媒を再生塔へ送り、コークを再生塔内で燃焼させることで、触媒を再生させるとともにコークを自身の熱源として利用する。 Coke generated from feedstock oil during the fluid catalytic cracking process adheres to the catalyst surface. A fluid catalytic cracker sends a catalyst with coke attached to it to a regeneration tower, and burns the coke within the regeneration tower to regenerate the catalyst and utilize the coke as its own heat source.
 しかし、本発明者ら検討により、FT合成油を流動接触分解装置で処理すると、流動接触分解中に生成されるコークの量が少なく、石油由来の油を処理する場合と比べて、流動接触分解装置の熱源が不足する可能性があることが判明した。すなわち、流動接触分解装置の熱バランスが取り辛く、流動接触分解装置の安定運転の観点で改善の余地がある。流動接触分解装置が安定運転できないと、流動接触分解装置の稼働率が低下し、炭化水素の製造コストの上昇につながる。 However, the inventors have found that when FT synthetic oil is treated with a fluid catalytic cracker, the amount of coke produced during fluid catalytic cracking is small, and compared to the case of processing oil derived from petroleum, fluid catalytic cracking It was discovered that the heat source of the equipment may be insufficient. That is, it is difficult to maintain the heat balance of the fluid catalytic cracker, and there is room for improvement in terms of stable operation of the fluid catalytic cracker. If the fluid catalytic cracker cannot operate stably, the operating rate of the fluid catalytic cracker will decrease, leading to an increase in the cost of producing hydrocarbons.
 そこで本開示の一側面は、FT合成油を原料油として用い、安定運転が可能な炭化水素の製造方法を提供する。 Therefore, one aspect of the present disclosure provides a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation.
 本開示の一側面は、原料油を流動接触分解装置により処理する工程を備え、原料油は、FT合成油を含み、原料油の%Cが6~23である、炭化水素の製造方法に関する。 One aspect of the present disclosure relates to a method for producing hydrocarbons, comprising a step of treating feedstock oil with a fluid catalytic cracking apparatus, the feedstock oil contains FT synthetic oil, and the feedstock oil has a % CA of 6 to 23. .
 一態様において、上記炭化水素の製造方法は、FT合成油及びFT合成油よりも%Cが高い炭化水素油を混合して原料油を得る工程と、原料油を流動接触分解装置の反応塔に供給する工程と、を更に備えていてよい。一態様において、炭化水素油は、直接脱硫常圧残油を含んでいてよい。一態様において、炭化水素油は、クラリファイドオイルを含んでいてよい。 In one aspect, the method for producing hydrocarbons includes a step of mixing FT synthetic oil and a hydrocarbon oil with a higher % CA than the FT synthetic oil to obtain a feedstock oil, and a step of mixing the feedstock oil into a reaction column of a fluid catalytic cracking unit. The method may further include a step of supplying. In one embodiment, the hydrocarbon oil may include a directly desulfurized atmospheric residue. In one embodiment, the hydrocarbon oil may include clarified oil.
 本開示の一側面によれば、FT合成油を原料油として用い、安定運転が可能な炭化水素の製造方法が提供される。 According to one aspect of the present disclosure, a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation is provided.
図1は、従来の原油から炭化水素を製造する方法の一例を示すフロー図である。FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil. 図2は、一実施形態に係る炭化水素の製造方法に用いられる流動接触分解装置の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in a method for producing hydrocarbons according to an embodiment.
 以下、本開示の実施形態について図面を参照しながら説明する。ただし、本開示は以下の実施形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。各図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合がある。また、各部分の寸法比率については各図面で異なる場合がある。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付す場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. However, the present disclosure is not limited to the following embodiments, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims. In each drawing, a part of the configuration may be exaggerated or simplified for convenience of explanation. Further, the dimensional ratio of each part may differ in each drawing. In addition, in the description of the following drawings, the same or similar parts may be given the same or similar symbols.
 本明細書中、フィッシャートロプシュ合成により生成される合成油を「FT合成油」という。本明細書中、FT合成油が含むワックス成分を「FTワックス」という。本明細書中、フィッシャートロプシュ合成により生成され蒸留を行っていないFT合成油を「FT粗油」という。本明細書中、「ton」は、ヤード・ポンド法ではなく、メートル法を採用する。すなわち、1tonは、1000kgである。 In this specification, the synthetic oil produced by Fischer-Tropsch synthesis is referred to as "FT synthetic oil." In this specification, the wax component contained in FT synthetic oil is referred to as "FT wax." In this specification, FT synthetic oil produced by Fischer-Tropsch synthesis and not subjected to distillation is referred to as "FT crude oil." In this specification, "ton" refers to the metric system rather than the imperial/pound system. That is, 1 ton is 1000 kg.
 本明細書において、%Cは、n-d-M環分析値(アロマ分)を意味する。具体的には、%Cは、以下の手順で算出される。すなわち、70℃における原料油の比重(d 70)及び屈折率(n 70)を測定する。測定値を下記式(A1)に代入してxを算出する。算出されたxについて、xが0を超える場合には下記式(A2)に、xが0未満である場合には下記式(A3)にxを代入して求められる値が、原料油の%Cである。下記式(A1)~(A3)は、規格「ASTM D3238」を参考に規定したものである。式(A2)及び(A3)中、Mは、平均分子量である。
x=2.42(n 70-1.4600)-(d 70-0.8280)・・・(A1)
%C=410x+3660/M・・・(A2)
%C=720x+3660/M・・・(A3)
In this specification, % CA means ndM ring analysis value (aroma content). Specifically, % CA is calculated by the following procedure. That is, the specific gravity (d 4 70 ) and refractive index ( nd 70 ) of the raw material oil at 70° C. are measured. x is calculated by substituting the measured value into the following formula (A1). Regarding the calculated x, the value obtained by substituting x into the following formula (A2) when x exceeds 0, and the value obtained by substituting x into the following formula (A3) when x is less than 0, is the % of the feedstock oil. It is C.A. The following formulas (A1) to (A3) are defined with reference to the standard "ASTM D3238". In formulas (A2) and (A3), M is the average molecular weight.
x=2.42(n d 70 -1.4600) - (d 4 70 -0.8280)...(A1)
% CA =410x+3660/M...(A2)
%C A =720x+3660/M...(A3)
 以下、一実施形態に係る炭化水素の製造方法について説明する。本実施形態の炭化水素の製造方法は、原料油を流動接触分解装置により処理する工程を備える。原料油は、FT合成油を含み、原料油の%Cが6~23である。 Hereinafter, a method for producing hydrocarbons according to one embodiment will be described. The method for producing hydrocarbons according to the present embodiment includes a step of treating feedstock oil with a fluid catalytic cracking apparatus. The raw material oil contains FT synthetic oil, and the % CA of the raw material oil is 6 to 23.
<FT合成油の製造方法>
 はじめに、本実施形態に係る炭化水素の製造方法に用いられるFT合成油の製造方法の概略について説明する。FT合成油は、例えば、一酸化炭素と水素ガスを原料としてフィッシャートロプシュ合成により生成される。FT合成油を生成する方法は、特に限定されず、公知の方法を採用することができる。FT合成油を生成する反応装置としては、固定床反応装置又はスラリー流動床反応装置が好ましい。また、原料である一酸化炭素の転化率を50%以上とする条件下に反応が行われることが好ましく、70~90%の範囲で行われることが更に好ましい。
<Method for producing FT synthetic oil>
First, an outline of the method for producing FT synthetic oil used in the method for producing hydrocarbons according to the present embodiment will be described. FT synthetic oil is produced, for example, by Fischer-Tropsch synthesis using carbon monoxide and hydrogen gas as raw materials. The method for producing FT synthetic oil is not particularly limited, and any known method can be employed. As the reaction apparatus for producing FT synthetic oil, a fixed bed reaction apparatus or a slurry fluidized bed reaction apparatus is preferable. Further, the reaction is preferably carried out under conditions where the conversion rate of carbon monoxide, which is a raw material, is 50% or more, more preferably in the range of 70 to 90%.
 スラリー流動床反応装置としては、例えば、気泡塔型流動床反応装置が使用できる。気泡塔型流動床反応装置は、フィッシャートロプシュ合成を行う反応塔を有する。気泡塔型流動床反応装置の反応塔内には、反応温度において液状である液状炭化水素が収容されている。液状炭化水素中にはFT合成用の触媒が分散されており、液状炭化水素は、スラリー状になっている。一酸化炭素ガス及び水素ガスの混合ガスである合成ガスは、反応塔下部より、液状炭化水素中へ導入される。合成ガスは、気泡となって液状炭化水素中を上昇する間に液状炭化水素中に溶解し、FT合成用の触媒と接触する。FT合成用の触媒の働きにより、FT合成油が、合成ガスから生成される。 As the slurry fluidized bed reactor, for example, a bubble column type fluidized bed reactor can be used. A bubble column type fluidized bed reactor has a reaction column that performs Fischer-Tropsch synthesis. The reaction column of the bubble column type fluidized bed reactor contains liquid hydrocarbons that are liquid at the reaction temperature. A catalyst for FT synthesis is dispersed in the liquid hydrocarbon, and the liquid hydrocarbon is in the form of a slurry. Synthesis gas, which is a mixed gas of carbon monoxide gas and hydrogen gas, is introduced into the liquid hydrocarbons from the lower part of the reaction tower. The synthesis gas dissolves in the liquid hydrocarbon while rising in the liquid hydrocarbon in the form of bubbles, and comes into contact with the catalyst for FT synthesis. FT synthetic oil is produced from synthetic gas by the action of a catalyst for FT synthesis.
 反応温度は、目標とする一酸化炭素転化率により定めることができるが、150~300℃であることが好ましく、170~250℃であることがさらに好ましい。 The reaction temperature can be determined depending on the target carbon monoxide conversion rate, but is preferably 150 to 300°C, more preferably 170 to 250°C.
 反応圧力は0.5~5.0MPaであることが好ましく、2.0~4.0MPaであることがさらに好ましい。反応圧力が0.5MPa以上である場合は、一酸化炭素転化率が50%以上となりやすい傾向があり、5.0MPa以下であると、局所的な発熱の発生を抑制できる傾向にある。 The reaction pressure is preferably 0.5 to 5.0 MPa, more preferably 2.0 to 4.0 MPa. When the reaction pressure is 0.5 MPa or more, the carbon monoxide conversion rate tends to be 50% or more, and when it is 5.0 MPa or less, local generation of heat tends to be suppressed.
 合成ガスは、例えば、天然ガス等の炭化水素のリフォーミングにより得られる。合成ガスは、一酸化炭素ガスと水素ガスとが含まれていればよく、天然ガス等のリフォーミングから得られるガス以外であってもよい。 Synthesis gas is obtained, for example, by reforming hydrocarbons such as natural gas. The synthesis gas only needs to contain carbon monoxide gas and hydrogen gas, and may be a gas other than that obtained from reforming natural gas or the like.
 合成ガス中の水素/一酸化炭素比率(モル比)は0.5~4.0であることが好ましく、1.0~2.5であることがさらに好ましい。このモル比が0.5以上であると反応温度が高くなりすぎず触媒の失活を抑えられる傾向にあり、4.0以下であると望ましくない副生成物であるメタンの生成が抑制できる傾向にある。 The hydrogen/carbon monoxide ratio (molar ratio) in the synthesis gas is preferably 0.5 to 4.0, more preferably 1.0 to 2.5. When this molar ratio is 0.5 or more, the reaction temperature does not become too high and deactivation of the catalyst tends to be suppressed, and when it is 4.0 or less, the production of methane, which is an undesirable by-product, tends to be suppressed. It is in.
 合成ガスのガス空間速度は500~5000h-1であることが好ましく、1000~2500h-1であることがさらに好ましい。このガス空間速度が500h-1以上であると同一触媒量に対する生産性が高く、5000h-1以下である場合は、一酸化炭素の転化率が50%以上となりやすい傾向にある。 The gas space velocity of the synthesis gas is preferably 500 to 5000 h -1 , more preferably 1000 to 2500 h -1 . When the gas hourly space velocity is 500 h -1 or more, productivity for the same amount of catalyst is high, and when it is 5000 h -1 or less, the conversion rate of carbon monoxide tends to be 50% or more.
 FT合成用の触媒としては、活性金属が無機担体に担持された触媒が用いられる。無機担体としては、シリカ、アルミナ、チタニア、マグネシア、ジルコニア等の多孔性酸化物が例示される。活性金属としては、コバルト、ルテニウム、鉄、ニッケル等が例示される。また、触媒には、上記活性金属以外に、ジルコニウム、チタニウム、ハフニウム、ナトリウム、リチウム、マグネシウム等の金属元素を含む化合物が担持されていてもよい。これらの成分は、触媒活性を向上させ、FT合成油の炭素数及びその分布の制御に寄与する。 As a catalyst for FT synthesis, a catalyst in which an active metal is supported on an inorganic carrier is used. Examples of the inorganic carrier include porous oxides such as silica, alumina, titania, magnesia, and zirconia. Examples of active metals include cobalt, ruthenium, iron, and nickel. Further, in addition to the above active metals, a compound containing a metal element such as zirconium, titanium, hafnium, sodium, lithium, or magnesium may be supported on the catalyst. These components improve the catalytic activity and contribute to controlling the carbon number and its distribution in the FT synthetic oil.
 FT合成油は、例えば、炭素数が5~100である直鎖炭化水素(ノルマルパラフィン)の混合物である。FT合成油は、フィッシャートロプシュ合成により生成される合成油であればよく、炭素数が100を超える直鎖炭化水素を含んでいてもよい。FT合成油は、芳香族炭化水素、ナフテン及びイソパラフィンをほとんど含まない。FT合成油は、例えば、%Cが0である。なお、FT合成油は、例えば、芳香族炭化水素を含む場合、0を超える%Cを取り得る。 FT synthetic oil is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 5 to 100 carbon atoms. The FT synthetic oil may be any synthetic oil produced by Fischer-Tropsch synthesis, and may contain linear hydrocarbons having more than 100 carbon atoms. FT synthetic oil contains almost no aromatic hydrocarbons, naphthenes and isoparaffins. For example, FT synthetic oil has a % CA of 0. Note that FT synthetic oil can have a % CA of more than 0, for example, when it contains aromatic hydrocarbons.
 FT合成油には、沸点が330℃を超えるFTワックスが含まれていてもよい。FTワックスは、例えば、炭素数が17以上の直鎖炭化水素(ノルマルパラフィン)の混合物である。FT合成油中のFTワックスの含有率は、30質量%以上、50質量%以上、70質量%以上、90質量%以上、又は95質量%以上であってもよく、100質量%であってもよい。FT合成油中のFTワックスの含有率は、上記の反応条件を適宜調整することにより、容易に制御することができる。 The FT synthetic oil may contain FT wax whose boiling point exceeds 330°C. The FT wax is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 17 or more carbon atoms. The content of FT wax in the FT synthetic oil may be 30% by mass or more, 50% by mass or more, 70% by mass or more, 90% by mass or more, or 95% by mass or more, or even 100% by mass. good. The content of FT wax in the FT synthetic oil can be easily controlled by appropriately adjusting the above reaction conditions.
<炭化水素の製造方法>
 次に、本実施形態に係る炭化水素の製造方法の概略について説明する。炭化水素は、FT合成油を含む原料油を流動接触分解装置で処理することで製造できる。
<Hydrocarbon production method>
Next, an outline of the method for producing hydrocarbons according to the present embodiment will be explained. Hydrocarbons can be produced by processing feedstock oil containing FT synthetic oil in a fluid catalytic cracker.
 原料油の%Cは、6以上であり、コーク生成量の観点から、7以上であることが好ましく、8以上であることがより好ましい。原料油の%Cは、23以下であり、22以下であってもよく、21以下であってもよい。 The % CA of the feedstock oil is 6 or more, preferably 7 or more, and more preferably 8 or more from the viewpoint of the amount of coke produced. The % CA of the raw material oil is 23 or less, may be 22 or less, or may be 21 or less.
 原料油に含まれるFT合成油は、フィッシャートロプシュ合成によって生成された油であればよく、特に限定されない。原料油に含まれるFT合成油は、例えば、FT粗油であってもよく、FT粗油を蒸留して得られた油であってもよく、FTワックスであってもよく、これらの混合物であってもよい。 The FT synthetic oil contained in the raw material oil is not particularly limited as long as it is an oil produced by Fischer-Tropsch synthesis. The FT synthetic oil contained in the raw material oil may be, for example, FT crude oil, oil obtained by distilling FT crude oil, FT wax, or a mixture thereof. There may be.
 原料油は、FT合成油よりも%Cが高い炭化水素油を更に含んでいてもよい。 The feedstock oil may further include a hydrocarbon oil having a higher % CA than the FT synthetic oil.
 上記炭化水素油は、例えば、石油精製から得られる。上記炭化水素油としては、例えば、RDS-BTM、DS-VGO、及びCLOが挙げられる。RDS-BTMは、図1に示すように、例えば、常圧蒸留残油を直接脱硫装置で処理して得られる直接脱硫常圧残油である。常圧蒸留残油は、原油を常圧蒸留装置で処理して得られる。DS-VGOは、図1に示すように、例えば、常圧蒸留残油を減圧軽油脱硫装置で処理して得られる脱硫減圧軽油である。RDS-BTMは、その原料として溶剤脱瀝された減圧残油を含んでいてもよく、含んでいなくてもよい。図1に示すように、CLO(CLarified Oil:クラリファイドオイル)は、例えば、RDS-BTMやDS-VGOを流動接触分解装置で処理して得られた油に対して、更に常圧蒸留装置で処理して得られた残油であるスラリー油から触媒を除去したものである。CLOは、その原料として、FT合成油を含んでいてもよく、含んでいなくでもよい。 The above hydrocarbon oil is obtained, for example, from petroleum refining. Examples of the hydrocarbon oil include RDS-BTM, DS-VGO, and CLO. As shown in FIG. 1, RDS-BTM is, for example, a direct desulfurized atmospheric residual oil obtained by treating an atmospheric distillation residual oil in a direct desulfurization apparatus. Atmospheric distillation residual oil is obtained by processing crude oil in an atmospheric distillation apparatus. As shown in FIG. 1, DS-VGO is, for example, desulfurized vacuum gas oil obtained by treating atmospheric distillation residual oil in a vacuum gas oil desulfurization apparatus. RDS-BTM may or may not contain solvent deasphalted vacuum residue as its raw material. As shown in Figure 1, CLO (Clarified Oil) is produced by, for example, treating RDS-BTM or DS-VGO in a fluid catalytic cracking apparatus, and then processing the oil in an atmospheric distillation apparatus. The catalyst is removed from the slurry oil, which is the residual oil obtained after processing. CLO may or may not contain FT synthetic oil as its raw material.
 原料油が上記炭化水素油を含む場合、本実施形態に係る炭化水素の製造方法は、FT合成油及び炭化水素油を混合して原料油を得る工程と、原料油を流動接触分解装置の反応塔に供給する工程と、を更に備えていてよい。これにより、流動接触分解装置の反応塔内で原料油を得る場合と比較して、原料油を構成する油が均一化されている。よって、反応塔内における流動接触分解反応がより安定する傾向がある。 When the feedstock oil contains the above-mentioned hydrocarbon oil, the method for producing hydrocarbons according to the present embodiment includes a step of mixing the FT synthetic oil and the hydrocarbon oil to obtain the feedstock oil, and a step of reacting the feedstock oil in a fluid catalytic cracking apparatus. The method may further include a step of supplying the fuel to the column. As a result, the oil constituting the feedstock oil is homogenized compared to the case where the feedstock oil is obtained within the reaction tower of the fluid catalytic cracker. Therefore, the fluidized catalytic cracking reaction within the reaction tower tends to be more stable.
 原料油が上記炭化水素油を含む場合、本実施形態に係る炭化水素の製造方法は、FT合成油を流動接触分解装置の反応塔に供給するとともに、炭化水素油を流動接触分解装置の反応塔に供給し、流動接触分解装置の反応塔内で原料油を得る工程を更に備えていてよい。 When the feedstock oil contains the above-mentioned hydrocarbon oil, the method for producing hydrocarbons according to the present embodiment supplies the FT synthetic oil to the reaction tower of the fluid catalytic cracker, and the hydrocarbon oil to the reaction tower of the fluid catalytic cracker. The method may further include a step of supplying the raw material to a reactor and obtaining a feedstock oil in a reaction tower of the fluid catalytic cracker.
 原料油がRDS-BTMを含む場合、RDS-BTM及びFT合成油に占めるRDS-BTMの割合は、RDS-BTM及びFT合成油の合計質量を基準として、1質量%以上であり、15質量%以上であってもよく、30質量%以上であってもよく、45質量%以上であってもよい。 When the feedstock oil contains RDS-BTM, the proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of RDS-BTM and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
 RDS-BTM及びFT合成油に占めるRDS-BTMの割合は、RDS-BTM及びFT合成油の合計質量を基準として、98質量%以下であり、75質量%以下であってもよく、50質量%以下であってもよい。 The proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass based on the total mass of RDS-BTM and FT synthetic oil. It may be the following.
 RDS-BTMの%Cは、5以上であり、10以上であってもよく、20以上であってもよい。RDS-BTMの%Cは、99以下であり、80以下であってもよく、60以下であってもよい。 The % CA of RDS-BTM is 5 or more, may be 10 or more, or may be 20 or more. The % CA of RDS-BTM is 99 or less, may be 80 or less, or may be 60 or less.
 原料油がDS-VGOを含む場合、DS-VGO及びFT合成油に占めるDS-VGOの割合は、DS-VGO及びFT合成油の合計質量を基準として、1質量%以上であり、15質量%以上であってもよく、30質量%以上であってもよく、45質量%以上であってもよい。 When the feedstock oil contains DS-VGO, the proportion of DS-VGO in DS-VGO and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of DS-VGO and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
 DS-VGO及びFT合成油に占めるDS-VGOの割合は、DS-VGO及びFT合成油の合計質量を基準として、98質量%以下であり、75質量%以下であってもよく、50質量%以下であってもよい。 The proportion of DS-VGO in DS-VGO and FT synthetic oil is 98% by mass or less, and may be 75% by mass or less, and 50% by mass based on the total mass of DS-VGO and FT synthetic oil. It may be the following.
 DS-VGOの%Cは、例えば、1以上であり、5以上であってもよく、10以上であってもよい。DS-VGOの%Cは、99以下であり、80以下であってもよく、60以下であってもよい。 The % CA of the DS-VGO is, for example, 1 or more, may be 5 or more, or may be 10 or more. The % CA of the DS-VGO is 99 or less, may be 80 or less, or may be 60 or less.
 原料油がCLOを含む場合、CLO及びFT合成油に占めるCLOの割合は、CLO及びFT合成油の合計質量を基準として、1質量%以上であり、15質量%以上であってもよく、30質量%以上であってもよく、45質量%以上であってもよい。 When the feedstock oil contains CLO, the proportion of CLO in CLO and FT synthetic oil is 1% by mass or more, and may be 15% by mass or more, 30% by mass or more, based on the total mass of CLO and FT synthetic oil. It may be at least 45% by mass, or at least 45% by mass.
 CLO及びFT合成油に占めるCLOの割合は、CLO及びFT合成油の合計質量を基準として、98質量%以下であり、75質量%以下であってもよく、50質量%以下であってもよい。 The proportion of CLO in CLO and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass or less, based on the total mass of CLO and FT synthetic oil. .
 CLOの%Cは、例えば、1以上であり、5以上であってもよく、10以上であってもよく、20以上であってもよい。CLOの%Cは、99以下であり、80以下であってもよく、60以下であってもよい。 The % CA of CLO is, for example, 1 or more, may be 5 or more, may be 10 or more, or may be 20 or more. The % CA of CLO is 99 or less, may be 80 or less, or may be 60 or less.
 RDS-BTM、DS-VGO、及びCLOは、原料油の%CAが前述の上限値及び下限値の範囲内となるように、2種以上を組み合わせて用いてもよい。 Two or more of RDS-BTM, DS-VGO, and CLO may be used in combination so that the %CA of the feedstock oil falls within the above-mentioned upper and lower limits.
 原料油の流動接触分解に用いられる流動接触分解装置は、特に限定されない。流動接触分解装置は、公知の流動接触分解装置を用いることができる。図2は、本実施形態に係る炭化水素の製造方法に用いられる流動接触分解装置の一例を示す模式図である。流動接触分解装置Aは、反応塔1と、再生塔3と、反応塔1に連結するライン15と、反応塔1と再生塔3とを連結するライン11と、反応塔1と再生塔3と連結するライン23と、再生塔3とボイラー(不図示)とを連結するライン27と、反応塔1と回収設備(不図示)とを連結するライン29と、を備える。 The fluid catalytic cracking equipment used for fluid catalytic cracking of feedstock oil is not particularly limited. A known fluid catalytic cracker can be used as the fluid catalytic cracker. FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in the method for producing hydrocarbons according to the present embodiment. The fluid catalytic cracker A includes a reaction tower 1, a regeneration tower 3, a line 15 connecting the reaction tower 1, a line 11 connecting the reaction tower 1 and the regeneration tower 3, and a reaction tower 1 and the regeneration tower 3. A connecting line 23, a line 27 connecting the regeneration tower 3 and a boiler (not shown), and a line 29 connecting the reaction tower 1 and recovery equipment (not shown) are provided.
 反応塔1は、ライザー型である。反応塔1は、反応帯域5と、分離帯域7と、を備える。反応塔1には、原料油と無数の触媒粒子(分解触媒)とが供給される。原料油は、ライン15を通って、反応帯域5に供給される。原料油がFT合成油よりも%Cが高い炭化水素油を更に含む場合、原料油は、FT合成油と当該炭化水素油とをライン15にて混合して得られたものであってもよい。この場合、ライン15は、その中途から分岐していてよい。ライン15の分岐した一方のラインからFT合成油を供給し、もう一方のラインから当該炭化水素油を供給することで分岐したラインの合流部でFT合成油と当該炭化水素油とが混合され原料油が得られる。また、原料油がFT合成油よりも%Cが高い炭化水素油を更に含む場合、原料油として、FT合成油と当該炭化水素油とを事前に混合しておいたものを反応帯域5にライン15を通して供給してもよい。 The reaction tower 1 is a riser type. The reaction tower 1 includes a reaction zone 5 and a separation zone 7. The reaction tower 1 is supplied with raw material oil and countless catalyst particles (decomposition catalyst). Feedstock oil is fed to reaction zone 5 through line 15. If the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil, even if the feedstock oil is obtained by mixing the FT synthetic oil and the hydrocarbon oil in line 15. good. In this case, the line 15 may branch off from the middle. By supplying FT synthetic oil from one branched line of line 15 and supplying the hydrocarbon oil from the other line, the FT synthetic oil and the hydrocarbon oil are mixed at the confluence of the branched lines and the raw material is mixed. oil is obtained. In addition, when the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil, a mixture of the FT synthetic oil and the hydrocarbon oil in advance is added to the reaction zone 5 as the feedstock oil. It may also be supplied through line 15.
 触媒粒子は、ライン11を通って反応帯域5に供給される。反応帯域5では、水蒸気である流動化ガス13が、触媒粒子からなる層の下部から吹き込まれる。触媒粒子は、流動化ガス13によって流動化される。原料油と流動化した触媒粒子とは、流動化ガス13とともに反応帯域5を上昇する。反応帯域5内で原料油が触媒粒子に接触することで接触分解が起こり、原料油から炭化水素が生成される。原料油を分解して得られた炭化水素と接触分解に用いた触媒粒子とは、分離帯域7で分離される。 Catalyst particles are fed to the reaction zone 5 through line 11. In the reaction zone 5, fluidizing gas 13, which is water vapor, is blown into the bed of catalyst particles from below. The catalyst particles are fluidized by fluidizing gas 13. The feed oil and the fluidized catalyst particles move up through the reaction zone 5 together with the fluidizing gas 13 . Catalytic cracking occurs when the feedstock oil comes into contact with catalyst particles within the reaction zone 5, and hydrocarbons are generated from the feedstock oil. Hydrocarbons obtained by cracking feedstock oil and catalyst particles used for catalytic cracking are separated in a separation zone 7.
 分離された炭化水素は、ライン29を通って、回収設備に供給される。炭化水素は、回収設備おいて複数の成分に分離され、回収される。回収設備は、例えば、複数の蒸留塔、吸収塔、コンプレッサー、ストリッパー、フラクショネーター、スプリッター及び熱交換器を備えていてよい。炭化水素は、例えば、蒸留塔(常圧蒸留塔)においてガス成分及び炭化水素油に分留される。ガス成分としては、ドライガス及びLPガス(LPG)が挙げられる。炭化水素油としては、例えば、ガソリン留分(CCG)、軽油留分(LCO)、灯油留分、クラリファイドオイル(CLO)及びコークが挙げられる。回収されたクラリファイドオイル(CLO)は、原料油として反応塔1に供給されてもよい。 The separated hydrocarbons are fed through line 29 to a recovery facility. Hydrocarbons are separated into multiple components and recovered in a recovery facility. The recovery equipment may include, for example, a plurality of distillation columns, absorption columns, compressors, strippers, fractionators, splitters and heat exchangers. Hydrocarbons are fractionated into gas components and hydrocarbon oils, for example, in a distillation column (atmospheric distillation column). Gas components include dry gas and LP gas (LPG). Examples of hydrocarbon oils include gasoline fraction (CCG), light oil fraction (LCO), kerosene fraction, clarified oil (CLO), and coke. The recovered clarified oil (CLO) may be supplied to the reaction tower 1 as a raw material oil.
 分離された触媒粒子は、ライン23を通って再生塔3に供給される。再生塔3に供給される触媒粒子の表面には流動接触分解時に生じたコークが付着しており、触媒粒子は触媒活性が低下している。再生塔3では、接触分解に用いた触媒粒子を再生処理する。再生塔3には、再生処理のためにエアー25が供給される。再生塔3は、触媒粒子の表面に付着しているコークを燃焼させることで、触媒粒子の表面に付着するコークを減少させるとともに触媒粒子の温度を上昇させる。再生後の触媒粒子は、ライン11を通って反応帯域5に再度供給される。つまり、触媒粒子は、再生塔3と反応塔1との間で循環する。再生処理過程で発生した高温の一酸化炭素ガスや二酸化炭素ガスは、ライン27よりボイラー(不図示)や熱交換器(不図示)に供給されて、流動接触分解装置Aの熱源の1つになる。再生処理過程で発生した一酸化炭素ガスや二酸化炭素ガスが熱交換器に供給される場合は、原料油の温度を上げることに利用される。 The separated catalyst particles are supplied to the regeneration tower 3 through the line 23. Coke produced during fluidized catalytic cracking is attached to the surface of the catalyst particles supplied to the regeneration tower 3, and the catalyst particles have reduced catalytic activity. In the regeneration tower 3, catalyst particles used for catalytic cracking are regenerated. Air 25 is supplied to the regeneration tower 3 for regeneration processing. The regeneration tower 3 burns the coke adhering to the surface of the catalyst particles, thereby reducing the amount of coke adhering to the surfaces of the catalyst particles and increasing the temperature of the catalyst particles. The regenerated catalyst particles are again supplied to the reaction zone 5 through the line 11. That is, the catalyst particles circulate between the regeneration tower 3 and the reaction tower 1. High-temperature carbon monoxide gas and carbon dioxide gas generated during the regeneration process are supplied to a boiler (not shown) and a heat exchanger (not shown) through line 27, and are used as one of the heat sources of fluid catalytic cracker A. Become. When carbon monoxide gas and carbon dioxide gas generated during the regeneration process are supplied to the heat exchanger, they are used to raise the temperature of the feedstock oil.
 反応塔1と再生塔3との間を循環する触媒の循環速度(ton/h)を、原料油の供給速度(ton/h)で除した値が、触媒/油比である。触媒/油比は、3[質量/質量]以上であり、4[質量/質量]以上であってもよく、5[質量/質量]以上であってもよく、7.5[質量/質量]以上であってもよい。触媒/油比は、50[質量/質量]以下であり、13[質量/質量]以下であってもよく、12[質量/質量]以下であってもよく、11[質量/質量]以下であってもよく、9[質量/質量]以下であってもよい。 The catalyst/oil ratio is the value obtained by dividing the circulation rate (ton/h) of the catalyst circulating between the reaction tower 1 and the regeneration tower 3 by the feed rate (ton/h) of the feedstock oil. The catalyst/oil ratio is 3 [mass/mass] or more, may be 4 [mass/mass] or more, may be 5 [mass/mass] or more, and is 7.5 [mass/mass]. It may be more than that. The catalyst/oil ratio is 50 [mass/mass] or less, may be 13 [mass/mass] or less, may be 12 [mass/mass] or less, and may be 11 [mass/mass] or less. The ratio may be 9 [mass/mass] or less.
 流動接触分解に用いる分解触媒は、例えば、無機酸化物(マトリックス成分)とゼオライトとを含んでよい。無機酸化物は、例えば、カオリン、モンモリナイト、ハロイサイト、ベントナイト、アルミナ、シリカ、ボリア、クロミア、マグネシア、ジルコニア、チタニア及びシリカアルミナからなる群より選ばれる少なくとも一種であってよい。ゼオライトは、例えば、天然ゼオライト及び合成ゼオライトのうち少なくともいずれかであってよい。天然ゼオライトは、グメリナイト、シャバサイト、ダキアルドフッ石、クリノプチロライト、ホージャサイト、キフッ石、ホウフッ石、レピナイト、エリオナイト、ソーダライト、カンクリナイト、フェリエライト、ブリゥースターフッ石、オフレタイト、ソーダフッ石、及びモルデナイトからなる群より選ばれる少なくとも一種であってよい。合成ゼオライトは、X型ゼオライト、Y型ゼオライト、USY型ゼオライト、A型ゼオライト、L型ゼオライト、ZK-4型ゼオライト、B型ゼオライト、E型ゼオライト、F型ゼオライト、H型ゼオライト、J型ゼオライト、M型ゼオライト、Q型ゼオライト、T型ゼオライト、W型ゼオライト、Z型ゼオライト、α型ゼオライト、β型ゼオライト、ω型ゼオライト、ZSM-5型ゼオライト、SAPO-5型ゼオライト、SAPO-11型ゼオライト及びSAPO-34型ゼオライトからなる群より選ばれる少なくとも一種であってよい。 The cracking catalyst used in fluid catalytic cracking may include, for example, an inorganic oxide (matrix component) and zeolite. The inorganic oxide may be, for example, at least one selected from the group consisting of kaolin, montmolinite, halloysite, bentonite, alumina, silica, boria, chromia, magnesia, zirconia, titania, and silica alumina. The zeolite may be, for example, natural zeolite and/or synthetic zeolite. Natural zeolites include gmelinite, chabasite, dakiardofluorite, clinoptilolite, faujasite, kyphite, borofluorite, repinite, erionite, sodalite, cankrinite, ferrierite, brewster fluorite, offretite, and soda fluorite. It may be at least one selected from the group consisting of stone and mordenite. Synthetic zeolites include X-type zeolite, Y-type zeolite, USY-type zeolite, A-type zeolite, L-type zeolite, ZK-4-type zeolite, B-type zeolite, E-type zeolite, F-type zeolite, H-type zeolite, J-type zeolite, M-type zeolite, Q-type zeolite, T-type zeolite, W-type zeolite, Z-type zeolite, α-type zeolite, β-type zeolite, ω-type zeolite, ZSM-5 type zeolite, SAPO-5 type zeolite, SAPO-11 type zeolite, and It may be at least one selected from the group consisting of SAPO-34 type zeolites.
 原料油の流動接触分解の反応温度は、500~700℃であってよい。反応温度が500℃以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。反応温度が700℃以下である場合、過剰な分解反応を抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The reaction temperature for fluid catalytic cracking of feedstock oil may be 500 to 700°C. When the reaction temperature is 500° C. or higher, the decomposition rate tends to increase and the yield of gasoline fraction tends to increase. When the reaction temperature is 700° C. or lower, excessive decomposition reaction can be suppressed, and the yield of gasoline fraction tends to improve.
 流動接触分解の反応時間(接触時間)は、0.5~10秒であってよい。流動接触分解の反応時間が0.5秒以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。流動接触分解の反応時間(接触時間)が10秒以下である場合、過剰な分解反応を抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The reaction time (contact time) of fluid catalytic cracking may be 0.5 to 10 seconds. When the reaction time of fluid catalytic cracking is 0.5 seconds or more, the cracking rate tends to increase, and the yield of gasoline fraction tends to increase. When the reaction time (contact time) of fluid catalytic cracking is 10 seconds or less, excessive cracking reaction can be suppressed, and the yield of gasoline fraction tends to improve.
 流動接触分解装置Aへ流動化ガス13として供給される水蒸気の質量は、原料油100質量部に対して、2~50質量部であってよい。水蒸気の質量が2質量部以上である場合、原料油が十分に分散し、コーキングが抑制される傾向がある。水蒸気の質量が50質量以下である場合、接触時間が短くなりすぎることを抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The mass of the steam supplied as the fluidizing gas 13 to the fluid catalytic cracking apparatus A may be 2 to 50 parts by mass based on 100 parts by mass of the feedstock oil. When the mass of steam is 2 parts by mass or more, the raw material oil is sufficiently dispersed, and coking tends to be suppressed. When the mass of water vapor is 50 mass or less, the contact time can be prevented from becoming too short, and the yield of the gasoline fraction tends to improve.
 流動接触分解が行われる反応塔1内の圧力は、101325~3×10Paであってよい。圧力が101325Pa(標準圧力)以上である場合、分解後のガスの圧力が下がりすぎず、回収設備の運転が安定する傾向がある。圧力が3×10Pa以下である場合、反応塔1内での炭化水素分圧が高くなりすぎることを抑制でき、分解率が高くなりすぎることを抑制できる。よって、過剰な分解反応を抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The pressure within the reaction tower 1 where fluid catalytic cracking is performed may be 101,325 to 3×10 5 Pa. When the pressure is 101,325 Pa (standard pressure) or higher, the pressure of the gas after decomposition does not drop too much, and the operation of the recovery equipment tends to be stable. When the pressure is 3×10 5 Pa or less, it is possible to prevent the hydrocarbon partial pressure within the reaction tower 1 from becoming too high, and it is possible to prevent the decomposition rate from becoming too high. Therefore, excessive decomposition reactions can be suppressed, and the yield of gasoline fraction tends to be improved.
 以下、実施例によって本開示を更に詳細に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be explained in more detail with reference to Examples, but the present disclosure is not limited to these Examples.
<炭化水素の製造のシミュレーション>
(実施例1~9及び比較例1)
 流動接触分解装置Aによる炭化水素の製造の安定運転が可能か否かをシミュレーションにより検証した。具体的には、反応塔1へ原料油を供給し、原料油を流動接触分解して炭化水素を製造するシミュレーションを行った。シミュレーションは、KBC社製の「FCC-SIMTMver6.2」(商品名)を使用して実施した。触媒/油比、及び反応塔1へ原料油を供給する温度(FEED温度)は、表1の値に設定した。
<Simulation of hydrocarbon production>
(Examples 1 to 9 and Comparative Example 1)
A simulation was conducted to verify whether stable operation of hydrocarbon production using fluid catalytic cracking unit A is possible. Specifically, a simulation was performed in which feedstock oil was supplied to the reaction tower 1 and the feedstock oil was subjected to fluid catalytic cracking to produce hydrocarbons. The simulation was performed using "FCC-SIM TM ver6.2" (trade name) manufactured by KBC Corporation. The catalyst/oil ratio and the temperature at which feedstock oil is supplied to the reaction column 1 (FEED temperature) were set to the values shown in Table 1.
 原料油としては表1に示す組成のものについてシミュレーションした。原料油中の芳香族分の含有量を表1に示す。原料油の材料における15℃での密度、硫黄分、残留炭素分、蒸留性状、芳香族分、ナフテン分及びパラフィン分の含有量は、表2に示す値と仮定した。原料油の材料の蒸留性状として、1容量%留出温度(T1)、5容量%留出温度(T5)、10容量%留出温度(T10)、30容量%留出温度(T30)、50容量%留出温度(T50)、70容量%留出温度(T70)、90容量%留出温度(T90)、95容量%留出温度(T95)及び99容量%留出温度(T99)を表2に示した。 The simulation was conducted using raw oils with the compositions shown in Table 1. Table 1 shows the aromatic content in the raw oil. The density at 15° C., sulfur content, residual carbon content, distillation properties, aromatic content, naphthene content, and paraffin content of the raw material were assumed to be the values shown in Table 2. The distillation properties of the raw material are 1 volume % distillation temperature (T1), 5 volume % distillation temperature (T5), 10 volume % distillation temperature (T10), 30 volume % distillation temperature (T30), 50 volume % distillation temperature (T10), Volume % distillation temperature (T50), 70 volume % distillation temperature (T70), 90 volume % distillation temperature (T90), 95 volume % distillation temperature (T95) and 99 volume % distillation temperature (T99) are shown. Shown in 2.
 原料油の材料の残留炭素分は、JIS K 2270-2 法により測定される値である。原料油の材料の硫黄分は、JIS K 2541-4により測定される値である。原料油の材料の蒸留性状は、ASTM D2887により測定される値である。原料油の材料の芳香族分、ナフテン分及びパラフィン分の含有量は、n-d-M環分析により測定される値である。 The residual carbon content of raw material oil is a value measured according to JIS K 2270-2 method. The sulfur content of the raw material oil is a value measured according to JIS K 2541-4. The distillation properties of the raw material oil are values measured according to ASTM D2887. The aromatic content, naphthene content, and paraffin content of the raw material oil are values measured by ndM ring analysis.
 原料油の材料のナフテン分及びパラフィン分の含有量の測定方法について詳述する。まず、70℃における原料油の比重(d 70)、屈折率(n 70)及び硫黄分の含有量(SC)を測定する。70℃における原料油の比重及び屈折率の測定値を下記式(B1)に代入してyを算出する。算出されたyについて、yが0を超える場合には下記式(B2)に、yが0未満である場合には下記式(B3)にyを代入して%Cを算出する。%Cを下記式(B4)に代入して%Cを算出する。%Cは、%Cと、n-d-M環分析(ASTM D3228準拠法)により測定される原料油の材料における%Cとを下記式(B5)に代入して算出される。下記式(B1)~(B5)は、規格「ASTM D3238」を参考に規定したものである。式(B2)及び(B3)中、Mは、平均分子量である。
y=(n 70-0.8280)-1.11×(d 70-1.460)・・・(B1)
%C=775y-3×SC+11500/M・・・(B2)
%C=1400y-3×SC+12100/M・・・(B3)
%C=100-%C・・・(B4)
%C=%C-%C・・・(B5)
The method for measuring the naphthene and paraffin contents of raw oil materials will be described in detail. First, the specific gravity (d 4 70 ), refractive index ( nd 70 ), and sulfur content (SC) of the raw material oil at 70° C. are measured. y is calculated by substituting the measured values of the specific gravity and refractive index of the raw material oil at 70° C. into the following formula (B1). Regarding the calculated y, % CR is calculated by substituting y into the following formula (B2) when y exceeds 0, and substituting y into the following formula (B3) when y is less than 0. %C P is calculated by substituting %C R into the following formula (B4). %C N is calculated by substituting %C R and %C A in the material of the feedstock oil measured by ndM ring analysis (method based on ASTM D3228) into the following formula (B5). The following formulas (B1) to (B5) are defined with reference to the standard "ASTM D3238". In formulas (B2) and (B3), M is the average molecular weight.
y=(n d 70 -0.8280)-1.11×(d 4 70 -1.460)...(B1)
%C R =775y-3×SC+11500/M...(B2)
%C R =1400y-3×SC+12100/M...(B3)
%C P =100-%C R ...(B4)
%C N =%C R -%C A ...(B5)
 シミュレーションの可否を表1に示した。シミュレーションが可能であるとは、設定値に対してROTが算出される(シミュレーションを実行して解が得られる)ことを意味する。シミュレーションが不可能であるとは、設定値に対してROTが算出されない(シミュレーションを実行して解が得られない)ことを意味する。ROT(Riser Outlet Temperature)は、反応塔1から回収設備へ向かう炭化水素が通る反応塔1の出口における炭化水素の温度である。 The feasibility of simulation is shown in Table 1. The fact that simulation is possible means that ROT is calculated for the set value (a solution is obtained by executing simulation). The fact that simulation is not possible means that ROT cannot be calculated for the set value (a solution cannot be obtained by executing simulation). ROT (Riser Outlet Temperature) is the temperature of hydrocarbons at the exit of the reaction tower 1 through which the hydrocarbons heading from the reaction tower 1 to the recovery equipment pass.
<安定運転の評価>
(実施例1~9及び比較例1)
 シミュレーションの結果を下記の基準に基づき評価した。結果を表1に示した。ROTが480℃以上であると、生成油や触媒の固化(ボギング)を抑制して装置が安定して運転できると考えられる。
(基準)
A:シミュレーションが可能であり且つROTが480℃以上である。
B:シミュレーションが不可能、又はシミュレーションが可能であるがROTが480℃未満である。
<Evaluation of stable operation>
(Examples 1 to 9 and Comparative Example 1)
The simulation results were evaluated based on the following criteria. The results are shown in Table 1. It is thought that when the ROT is 480° C. or higher, solidification (bogging) of the produced oil and catalyst is suppressed, and the device can operate stably.
(standard)
A: Simulation is possible and ROT is 480°C or higher.
B: Simulation is not possible, or simulation is possible but ROT is less than 480°C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるとおり、原料油がFT合成油を含み、原料油の%CAが6~23の場合に、装置が安定して運転できることが確認された。 As shown in Table 1, it was confirmed that the equipment could be operated stably when the feedstock oil contained FT synthetic oil and the %CA of the feedstock oil was 6 to 23.
 1…反応塔、A…流動接触分解装置。

 
1... Reaction tower, A... Fluid catalytic cracking device.

Claims (4)

  1.  原料油を流動接触分解装置により処理する工程を備え、
     前記原料油は、FT合成油を含み、
     前記原料油の%Cが6~23である、
    炭化水素の製造方法。
    Equipped with a process for processing feedstock oil using a fluid catalytic cracker,
    The raw material oil includes FT synthetic oil,
    % CA of the raw material oil is 6 to 23;
    Method for producing hydrocarbons.
  2.  前記FT合成油及び前記FT合成油よりも%Cが高い炭化水素油を混合して前記原料油を得る工程と、
     前記原料油を前記流動接触分解装置の反応塔に供給する工程と、
    を更に備える、請求項1に記載の炭化水素の製造方法。
    mixing the FT synthetic oil and a hydrocarbon oil with a higher % CA than the FT synthetic oil to obtain the raw material oil;
    supplying the feedstock oil to a reaction tower of the fluid catalytic cracker;
    The method for producing hydrocarbons according to claim 1, further comprising:
  3.  前記炭化水素油が、直接脱硫常圧残油を含む、請求項2に記載の炭化水素の製造方法。 The method for producing hydrocarbons according to claim 2, wherein the hydrocarbon oil contains a direct desulfurized atmospheric residual oil.
  4.  前記炭化水素油が、クラリファイドオイルを含む、請求項2に記載の炭化水素の製造方法。

     
    The method for producing hydrocarbons according to claim 2, wherein the hydrocarbon oil includes clarified oil.

PCT/JP2023/019727 2022-05-31 2023-05-26 Method for producing hydrocarbon WO2023234212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022088984 2022-05-31
JP2022-088984 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234212A1 true WO2023234212A1 (en) 2023-12-07

Family

ID=89024979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019727 WO2023234212A1 (en) 2022-05-31 2023-05-26 Method for producing hydrocarbon

Country Status (1)

Country Link
WO (1) WO2023234212A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
JP2006528992A (en) * 2003-05-27 2006-12-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Production method of gasoline
JP2008500418A (en) * 2004-05-26 2008-01-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing gas oil by catalytic cracking of Fischer-Tropsch products
WO2008026681A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method
WO2008026635A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
JP2006528992A (en) * 2003-05-27 2006-12-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Production method of gasoline
JP2008500418A (en) * 2004-05-26 2008-01-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing gas oil by catalytic cracking of Fischer-Tropsch products
WO2008026681A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method
WO2008026635A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method

Similar Documents

Publication Publication Date Title
US8293961B2 (en) Catalytic cracking process using fast fluidization for the production of light olefins from hydrocarbon feedstock
TWI404794B (en) An integrated fluid catalytic cracking process
KR101954472B1 (en) Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor
JP6797983B2 (en) An integrated method of solvent cracking and cracking for the production of light olefins
CN101600782B (en) Process for the preparation of alkylate and middle distillate
JP6788006B2 (en) Methods and systems for fluid catalytic cracking
JP2010095574A (en) Fluid catalytic cracking method
CN101161786A (en) Conversion method for petroleum hydrocarbons
US8524961B2 (en) Integrated catalytic cracking and reforming processes to improve p-xylene production
AU2012233961A1 (en) Method for producing hydrocarbon oil, Fischer-Tropsch synthesis reaction device, and hydrocarbon oil production system
CN102690683B (en) Catalytic cracking method and catalytic cracking device for producing propylene
US4440629A (en) Hydrocarbon hydrocracking process
AU684215B2 (en) Catalytic cracking with MCM-49
US20150136647A1 (en) Reactor and main fractionator configuration for producing diesel
WO2023234212A1 (en) Method for producing hydrocarbon
WO2006067104A1 (en) Gasoline cracking
WO2023234211A1 (en) Method for producing hydrocarbons
JP5390857B2 (en) Fluid catalytic cracking method
US8124020B2 (en) Apparatus for preventing metal catalyzed coking
JP5399705B2 (en) Fluid catalytic cracking method
JP3724932B2 (en) Fluid catalytic cracking method of oil
RU2812317C1 (en) Method for converting hydrocarbon feeds into lighter olefins
Ihediwa Fluid catalytic cracking
JP2022166720A (en) Method of operating fluid catalytic cracking apparatus and fluid catalytic cracking apparatus
GHOSH FLUID CATALYTIC CRACKING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024524822

Country of ref document: JP

Kind code of ref document: A