WO2023234211A1 - Method for producing hydrocarbons - Google Patents

Method for producing hydrocarbons Download PDF

Info

Publication number
WO2023234211A1
WO2023234211A1 PCT/JP2023/019726 JP2023019726W WO2023234211A1 WO 2023234211 A1 WO2023234211 A1 WO 2023234211A1 JP 2023019726 W JP2023019726 W JP 2023019726W WO 2023234211 A1 WO2023234211 A1 WO 2023234211A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
feedstock
fluid catalytic
mass
reaction
Prior art date
Application number
PCT/JP2023/019726
Other languages
French (fr)
Japanese (ja)
Inventor
悠一 柴田
佳介 藤本
裕貴 森
健 小畠
昂志 ▲高濱▼
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023234211A1 publication Critical patent/WO2023234211A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present disclosure relates to a method for producing hydrocarbons.
  • FCC fluid catalytic cracking
  • FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil.
  • conventional hydrocarbon production methods as shown in Fig. 1, for example, direct desulfurized atmospheric residual oil obtained by directly treating atmospheric distillation residual oil in a desulfurization equipment and desulfurized vacuum gas oil are used as feedstock oils through fluid contact. Hydrocarbons are produced by processing in crackers.
  • FT synthetic oil which has lower sulfur and nitrogen content than petroleum, is attracting attention.
  • FT synthetic oil is produced from synthesis gas, which is a mixed gas of hydrogen gas and carbon monoxide gas, by Fischer-Tropsch synthesis.
  • Patent Document 2 discloses a technique for producing hydrocarbons by treating FT synthetic oil as a feedstock oil in a fluid catalytic cracking apparatus.
  • Fluid catalytic cracking equipment regenerates the catalyst and uses the coke as its own heat source by sending the coke-covered catalyst to a regeneration tower and burning the coke within the regeneration tower.
  • one aspect of the present disclosure provides a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation.
  • One aspect of the present disclosure includes a step of fluid catalytic cracking a feedstock using a fluid catalytic cracking apparatus including a reaction tower and a regeneration tower, the feedstock includes FT synthetic oil, and the feedstock oil supply temperature x (unit: : °C), the feed rate y1 (unit: ton/h) of the feedstock, the supply rate y2 (unit: ton/h) of the fuel oil supplied to the regeneration tower, and the rate of the catalyst circulating between the reaction tower and the regeneration tower.
  • the present invention relates to a method for producing hydrocarbons in which the circulation rate z1 (unit: ton/h) satisfies the following inequality (1).
  • y (y2/y1) ⁇ 100
  • z (z1/y1)
  • the feedstock may further include a hydrocarbon oil with a higher % CA than the FT synthetic oil.
  • the hydrocarbon oil may include a directly desulfurized atmospheric residue.
  • the method for producing hydrocarbons includes a step of mixing FT synthetic oil and a hydrocarbon oil with a higher % CA than the FT synthetic oil to obtain a feedstock oil, and a step of mixing the feedstock oil into a reaction column of a fluid catalytic cracking unit.
  • the method may further include a step of supplying.
  • the hydrocarbon oil may include clarified oil.
  • a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation is provided.
  • FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil.
  • FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in a method for producing hydrocarbons according to an embodiment.
  • FIG. 3A is a graph plotting the set values of x and y with x as the horizontal axis and y as the vertical axis for the example and comparative example in which z is 4.
  • FIG. 3(b) is a graph plotting the set values of x and y for the example and comparative example in which z is 8, with x as the horizontal axis and y as the vertical axis.
  • FIG. 3(c) is a graph plotting the setting values of x and y for the example and comparative example in which z is 12, with x as the horizontal axis and y as the vertical axis.
  • FT synthetic oil the synthetic oil produced by Fischer-Tropsch synthesis
  • wax the wax component contained in FT synthetic oil
  • FT synthetic oil produced by Fischer-Tropsch synthesis and not subjected to distillation is referred to as "FT crude oil.”
  • “ton” refers to the metric system rather than the imperial/pound system. That is, 1 ton is 1000 kg.
  • % CA means ndM ring analysis value (aroma content).
  • % CA is calculated by the following procedure. That is, the specific gravity (d 4 70 ) and refractive index ( nd 70 ) of the raw material oil at 70° C. are measured.
  • is calculated by substituting the measured value into the following formula (a1).
  • the value obtained by substituting ⁇ into the following formula (a2) when ⁇ exceeds 0, and the value obtained by substituting ⁇ into the following formula (a3) when ⁇ is less than 0, is the percentage of the feedstock oil. It is C.A.
  • the following formulas (a1) to (a3) are defined with reference to the standard "ASTM D3238".
  • the method for producing hydrocarbons according to the present embodiment includes a step of fluid catalytic cracking of feedstock oil using a fluid catalytic cracking apparatus including a reaction tower and a regeneration tower.
  • the raw material oil includes FT synthetic oil.
  • Feedstock temperature x (unit: °C), feedstock supply rate y1 (unit: ton/h), fuel oil supply rate y2 (unit: ton/h) supplied to the regeneration tower, and the reaction tower.
  • the circulation rate z1 (unit: ton/h) of the catalyst circulating through the regeneration tower satisfies the following inequality (1).
  • the following inequality (1) is derived based on the simulation results of Examples described later. A specific derivation method will be described later. Studies by the present inventors have revealed that factors other than y1, y2, and z1 in the following inequality (1) do not affect the stable operation of the hydrocarbon production method according to the present embodiment.
  • FT synthetic oil is produced, for example, by Fischer-Tropsch synthesis using carbon monoxide and hydrogen gas as raw materials.
  • the method for producing FT synthetic oil is not particularly limited, and any known method can be employed.
  • the reaction apparatus for producing FT synthetic oil a fixed bed reaction apparatus or a slurry fluidized bed reaction apparatus is preferable. Further, the reaction is preferably carried out under conditions where the conversion rate of carbon monoxide, which is a raw material, is 50% or more, more preferably in the range of 70 to 90%.
  • a bubble column type fluidized bed reactor has a reaction column that performs Fischer-Tropsch synthesis.
  • the reaction column of the bubble column type fluidized bed reactor contains liquid hydrocarbons that are liquid at the reaction temperature.
  • a catalyst for FT synthesis is dispersed in the liquid hydrocarbon, and the liquid hydrocarbon is in the form of a slurry.
  • Synthesis gas which is a mixed gas of carbon monoxide gas and hydrogen gas, is introduced into the liquid hydrocarbons from the lower part of the reaction tower. The synthesis gas dissolves in the liquid hydrocarbon while rising in the liquid hydrocarbon in the form of bubbles, and comes into contact with the catalyst for FT synthesis.
  • FT synthetic oil is produced from synthetic gas by the action of a catalyst for FT synthesis.
  • the reaction temperature can be determined depending on the target carbon monoxide conversion rate, but is preferably 150 to 300°C, more preferably 170 to 250°C.
  • the reaction pressure is preferably 0.5 to 5.0 MPa, more preferably 2.0 to 4.0 MPa.
  • the reaction pressure is 0.5 MPa or more, the carbon monoxide conversion rate tends to be 50% or more, and when it is 5.0 MPa or less, local generation of heat tends to be suppressed.
  • Synthesis gas is obtained, for example, by reforming hydrocarbons such as natural gas.
  • the synthesis gas only needs to contain carbon monoxide gas and hydrogen gas, and may be a gas other than that obtained from reforming natural gas or the like.
  • the hydrogen/carbon monoxide ratio (molar ratio) in the synthesis gas is preferably 0.5 to 4.0, more preferably 1.0 to 2.5.
  • this molar ratio is 0.5 or more, the reaction temperature does not become too high and deactivation of the catalyst tends to be suppressed, and when it is 4.0 or less, the production of methane, which is an undesirable by-product, tends to be suppressed. It is in.
  • the gas space velocity of the synthesis gas is preferably 500 to 5000 h -1 , more preferably 1000 to 2500 h -1 .
  • productivity for the same amount of catalyst is high, and when it is 5000 h -1 or less, the conversion rate of carbon monoxide tends to be 50% or more.
  • a catalyst in which an active metal is supported on an inorganic carrier is used.
  • the inorganic carrier include porous oxides such as silica, alumina, titania, magnesia, and zirconia.
  • active metals include cobalt, ruthenium, iron, and nickel.
  • a compound containing a metal element such as zirconium, titanium, hafnium, sodium, lithium, or magnesium may be supported on the catalyst.
  • FT synthetic oil is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 5 to 100 carbon atoms.
  • the FT synthetic oil may be any synthetic oil produced by Fischer-Tropsch synthesis, and may contain linear hydrocarbons having more than 100 carbon atoms.
  • FT synthetic oil contains almost no aromatic hydrocarbons, naphthenes and isoparaffins.
  • FT synthetic oil has a % CA of 0.
  • the FT synthetic oil can have a % CA of more than 0, for example, when it contains aromatic hydrocarbon water.
  • the FT synthetic oil may contain FT wax whose boiling point exceeds 330°C.
  • the FT wax is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 17 or more carbon atoms.
  • the content of FT wax in the FT synthetic oil may be 30% by mass or more, 50% by mass or more, 70% by mass or more, 90% by mass or more, or 95% by mass or more, or even 100% by mass. good.
  • the content of FT wax in the FT synthetic oil can be easily controlled by appropriately adjusting the above reaction conditions.
  • Hydrocarbons can be produced by processing feedstock oil containing FT synthetic oil in a fluid catalytic cracker.
  • the % CA of the raw material oil may be, for example, 0, 1 or more, 5 or more, 6 or more, or 7 or more.
  • the % CA of the feedstock oil may be 23 or less, 22 or less, or 21 or less.
  • the FT synthetic oil contained in the raw material oil is not particularly limited as long as it is an oil produced by Fischer-Tropsch synthesis.
  • the FT synthetic oil contained in the raw material oil may be, for example, FT crude oil, oil obtained by distilling FT crude oil, FT wax, or any of these. It may be a mixture of.
  • the feedstock oil may further include a hydrocarbon oil having a higher % CA than the FT synthetic oil.
  • FT synthetic oil and hydrocarbon oil with a higher % CA than the FT synthetic oil are processed.
  • a raw material oil may be obtained by mixing these.
  • the FT synthetic oil and the hydrocarbon oil are mixed, so that the FT synthetic oil and the hydrocarbon oil are mixed in the reaction tower.
  • the oil that makes up the raw material oil is more uniform. Therefore, the fluidized catalytic cracking reaction within the reaction tower tends to be more stable.
  • the above hydrocarbon oil is obtained, for example, from petroleum refining.
  • the hydrocarbon oil include RDS-BTM, DS-VGO, and CLO.
  • RDS-BTM is, for example, a direct desulfurized atmospheric residual oil obtained by treating an atmospheric distillation residual oil in a direct desulfurization apparatus.
  • Atmospheric distillation residual oil is obtained by processing crude oil in an atmospheric distillation apparatus.
  • DS-VGO is, for example, desulfurized vacuum gas oil obtained by treating atmospheric distillation residual oil in a vacuum gas oil desulfurization apparatus.
  • RDS-BTM may or may not contain solvent deasphalted vacuum residue as its raw material.
  • CLO Cosmetic Oil
  • RDS-BTM or DS-VGO Fluid catalytic cracking apparatus
  • the catalyst is removed from the slurry oil, which is the residual oil obtained after processing.
  • CLO may or may not contain FT synthetic oil as its raw material.
  • the proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of RDS-BTM and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
  • the proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass based on the total mass of RDS-BTM and FT synthetic oil. It may be the following.
  • the % CA of RDS-BTM is 5 or more, may be 10 or more, or may be 20 or more.
  • the % CA of RDS-BTM is 99 or less, may be 80 or less, or may be 60 or less.
  • the proportion of DS-VGO in DS-VGO and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of DS-VGO and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
  • the proportion of DS-VGO in DS-VGO and FT synthetic oil is 98% by mass or less, and may be 75% by mass or less, and 50% by mass based on the total mass of DS-VGO and FT synthetic oil. It may be the following.
  • the % CA of the DS-VGO is, for example, 1 or more, may be 5 or more, or may be 10 or more.
  • the % CA of the DS-VGO is 99 or less, may be 80 or less, or may be 60 or less.
  • the proportion of CLO in CLO and FT synthetic oil is 1% by mass or more, and may be 15% by mass or more, 30% by mass or more, based on the total mass of CLO and FT synthetic oil. It may be at least 45% by mass, or at least 45% by mass.
  • the proportion of CLO in CLO and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass or less, based on the total mass of CLO and FT synthetic oil. .
  • the % CA of CLO is, for example, 1 or more, may be 5 or more, may be 10 or more, or may be 20 or more.
  • the % CA of CLO is 99 or less, may be 80 or less, or may be 60 or less.
  • Two or more of RDS-BTM, DS-VGO, and CLO may be used in combination so that the %CA of the feedstock oil falls within the above-mentioned upper and lower limits.
  • FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in the method for producing hydrocarbons according to the present embodiment.
  • the fluid catalytic cracking apparatus A includes a reaction tower 1, a regeneration tower 3, a line 15 connecting to the reaction tower 1, a line 17 connecting the regeneration tower, and a line 11 connecting the reaction tower 1 and the regeneration tower 3.
  • a heating facility (not shown) for heating the reaction tower is provided.
  • the reaction tower 1 is a riser type.
  • the reaction tower 1 includes a reaction zone 5 and a separation zone 7.
  • the reaction tower 1 is supplied with raw material oil and countless catalyst particles (decomposition catalyst).
  • Feedstock oil is fed to reaction zone 5 through line 15. If the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil, even if the feedstock oil is obtained by mixing the FT synthetic oil and the hydrocarbon oil in line 15. good.
  • the line 15 may branch off from the middle.
  • the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil
  • a mixture of the FT synthetic oil and the hydrocarbon oil in advance is added to the reaction zone 5 as the feedstock oil. It may also be supplied through line 15.
  • Catalyst particles are fed to the reaction zone 5 through line 11.
  • fluidizing gas 13 which is water vapor, is blown into the bed of catalyst particles from below.
  • the catalyst particles are fluidized by fluidizing gas 13.
  • the feed oil and the fluidized catalyst particles move up through the reaction zone 5 together with the fluidizing gas 13 .
  • Catalytic cracking occurs when the feedstock oil comes into contact with catalyst particles within the reaction zone 5, and hydrocarbons are generated from the feedstock oil. Hydrocarbons obtained by cracking feedstock oil and catalyst particles used for catalytic cracking are separated in a separation zone 7.
  • the separated hydrocarbons are fed through line 29 to a recovery facility.
  • Hydrocarbons are separated into multiple components and recovered in a recovery facility.
  • the recovery equipment may include, for example, a plurality of distillation columns, absorption columns, compressors, strippers, fractionators, splitters and heat exchangers.
  • Hydrocarbons are fractionated into gas components and hydrocarbon oils, for example, in a distillation column (atmospheric distillation column).
  • Gas components include dry gas and LP gas (LPG).
  • hydrocarbon oils include gasoline fraction (CCG), light oil fraction (LCO), kerosene fraction, clarified oil (CLO), and coke.
  • the recovered clarified oil (CLO) may be supplied to the reaction tower 1 as a raw material oil.
  • the separated catalyst particles are supplied to the regeneration tower 3 through the line 23. Coke generated during catalytic cracking is attached to the surface of the catalyst particles supplied to the regeneration tower 3, and the catalyst particles have reduced catalytic activity. In the regeneration tower 3, catalyst particles used for catalytic cracking are regenerated. Air 25 is supplied to the regeneration tower 3 for regeneration processing. The regeneration tower 3 burns the coke adhering to the surface of the catalyst particles, thereby reducing the amount of coke adhering to the surfaces of the catalyst particles and increasing the temperature of the catalyst particles. The regenerated catalyst particles are again supplied to the reaction zone 5 through the line 11. That is, the catalyst particles circulate between the regeneration tower 3 and the reaction tower 1.
  • High-temperature carbon monoxide gas and carbon dioxide gas generated during the regeneration process are supplied to a boiler (not shown) and a heat exchanger (not shown) through a line 27, for example.
  • a heat exchanger When carbon monoxide gas or carbon dioxide gas generated during the regeneration process is supplied to a heat exchanger, it is used, for example, to raise the temperature of raw oil.
  • the fuel oil is supplied to the regeneration tower 3 through the line 17.
  • the fuel oil supplied to the regeneration tower 3 is combusted within the regeneration tower 3 to generate heat.
  • the heat generated by the combustion of fuel oil is used to raise the temperature of catalyst particles in the regeneration tower 3.
  • the catalyst particles heated by the fuel oil can suppress the temperature of the feedstock oil from lowering when they are supplied to the reaction zone 5 again, compared to the case where the catalyst particles are not heated by the fuel oil.
  • the fuel oil supplied to the regeneration tower 3 is combusted within the regeneration tower 3, thereby generating high-temperature carbon monoxide gas, carbon dioxide gas, etc.
  • High-temperature carbon monoxide gas, carbon dioxide gas, etc. generated by the combustion of fuel oil are supplied to a boiler (not shown) or a heat exchanger (not shown) through line 27, for example, and are used as the heat source of the fluid catalytic cracker. It becomes one.
  • carbon monoxide gas or carbon dioxide gas generated during the regeneration process is supplied to a heat exchanger, it is used, for example, to raise the temperature of raw oil.
  • the feed rate y1 of the feedstock oil is the rate of the feedstock oil supplied to the reaction zone 5 through the line 15.
  • the feed rate y1 of the raw material oil is, for example, 0.1 [ton/h] or more, may be 1 [ton/h] or more, or may be 10 [ton/h] or more.
  • the feed rate y1 of the raw material oil is, for example, 3000 [ton/h] or less, may be 2000 [ton/h] or less, or may be 1000 [ton/h] or less.
  • the feedstock oil supply temperature x is the temperature of the feedstock oil at the time it is supplied to the reaction tower 1.
  • the supply temperature x of the raw material oil is, for example, 150°C or higher, may be 200°C or higher, or may be 250°C or higher.
  • the supply temperature x of the raw material oil is, for example, 450°C or lower, may be 400°C or lower, or may be 350°C or lower.
  • the fuel oil supplied to the regeneration tower 3 is not particularly limited as long as it is combustible within the regeneration tower 3.
  • Examples of the fuel oil supplied to the regeneration tower 3 include FT synthetic oil, RDS-BTM, DS-VGO, and CLO.
  • the value y which is obtained by dividing the fuel oil supply rate y2 supplied to the regeneration tower 3 by the feedstock oil supply rate y1 and multiplying it by 100, is, for example, 0.1 or more, and 1.5 or more.
  • the number may be 3 or more.
  • y is 10 or less, may be 8 or less, or may be 6 or less.
  • the value obtained by dividing the circulation speed z1 of the catalyst circulating between the reaction tower 1 and the regeneration tower 3 by the supply speed y1 of the feedstock oil is the catalyst/oil ratio (z).
  • the catalyst/oil ratio is 3 [mass/mass] or more, may be 4 [mass/mass] or more, may be 5 [mass/mass] or more, and is 7.5 [mass/mass]. It may be more than that.
  • the catalyst/oil ratio is 50 [mass/mass] or less, may be 13 [mass/mass] or less, may be 12 [mass/mass] or less, and may be 11 [mass/mass] or less.
  • the ratio may be 9 [mass/mass] or less.
  • the left side of the above inequality (1) may be, for example, 1 or more, or 2 or more.
  • the cracking catalyst used in fluid catalytic cracking may include, for example, an inorganic oxide (matrix component) and zeolite.
  • the inorganic oxide may be, for example, at least one selected from the group consisting of kaolin, montmolinite, halloysite, bentonite, alumina, silica, boria, chromia, magnesia, zirconia, titania, and silica alumina.
  • the zeolite may be, for example, natural zeolite and/or synthetic zeolite.
  • Natural zeolites include gmelinite, chabasite, dakiardofluorite, clinoptilolite, faujasite, kyphite, borofluorite, repinite, erionite, sodalite, cankrinite, ferrierite, brewster fluorite, offretite, and soda fluorite. It may be at least one selected from the group consisting of stone and mordenite.
  • Synthetic zeolites include X-type zeolite, Y-type zeolite, USY-type zeolite, A-type zeolite, L-type zeolite, ZK-4-type zeolite, B-type zeolite, E-type zeolite, F-type zeolite, H-type zeolite, J-type zeolite, M-type zeolite, Q-type zeolite, T-type zeolite, W-type zeolite, Z-type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ZSM-5 type zeolite, SAPO-5 type zeolite, SAPO-11 type zeolite, and It may be at least one selected from the group consisting of SAPO-34 type zeolites.
  • the reaction temperature for fluid catalytic cracking of feedstock oil may be 500 to 700°C.
  • the reaction temperature is 500° C. or higher, the decomposition rate tends to increase and the yield of gasoline fraction tends to increase.
  • the reaction temperature is 700° C. or lower, excessive decomposition reaction can be suppressed, and the yield of gasoline fraction tends to improve.
  • the reaction time (contact time) of fluid catalytic cracking may be 0.5 to 10 seconds.
  • the reaction time of fluid catalytic cracking is 0.5 seconds or more, the cracking rate tends to increase, and the yield of gasoline fraction tends to increase.
  • the reaction time (contact time) of fluid catalytic cracking is 10 seconds or less, excessive cracking reaction can be suppressed, and the yield of gasoline fraction tends to improve.
  • the mass of the steam supplied as the fluidizing gas 13 to the fluid catalytic cracking apparatus A may be 2 to 50 parts by mass based on 100 parts by mass of the feedstock oil.
  • the mass of steam is 2 parts by mass or more, the raw material oil is sufficiently dispersed, and coking tends to be suppressed.
  • the mass of water vapor is 50 mass or less, the contact time can be prevented from becoming too short, and the yield of the gasoline fraction tends to improve.
  • the pressure within the reaction tower 1 where fluid catalytic cracking is performed may be 101,325 to 3 ⁇ 10 5 Pa.
  • the pressure is 101,325 Pa (standard pressure) or higher, the pressure of the gas after decomposition does not drop too much, and the operation of the recovery equipment tends to be stable.
  • the pressure is 3 ⁇ 10 5 Pa or less, it is possible to prevent the hydrocarbon partial pressure within the reaction tower 1 from becoming too high, and it is possible to prevent the decomposition rate from becoming too high. Therefore, excessive decomposition reactions can be suppressed, and the yield of gasoline fraction tends to be improved.
  • the residual carbon content of raw material oil is a value measured according to JIS K 2270-2 method.
  • the sulfur content of the raw material oil is a value measured according to JIS K 2541-4.
  • the distillation properties of the raw material oil are values measured according to ASTM D2887.
  • the aromatic content, naphthene content, and paraffin content of the raw material oil are values measured by ndM ring analysis.
  • is calculated by substituting the measured values of the specific gravity and refractive index of the raw material oil at 70° C. into the following formula (b1).
  • % CR is calculated by substituting ⁇ into the following formula (b2) when ⁇ exceeds 0, and substituting ⁇ into the following formula (b3) when ⁇ is less than 0.
  • %C P is calculated by substituting %C R into the following formula (b4).
  • %C N is calculated by substituting %C R and %C A in the material of the feedstock oil measured by ndM ring analysis (according to ASTM D3228) into the following formula (b5).
  • the following formulas (b1) to (b5) are defined with reference to the standard "ASTM D3238".
  • M is the average molecular weight.
  • ROT Riviere Outlet Temperature
  • ROT is the temperature of hydrocarbons at the exit of the reaction tower 1 through which the hydrocarbons heading from the reaction tower 1 to the recovery equipment pass.
  • the above inequality (1) was derived as follows. In other words, in Examples and Comparative Examples where the catalyst/oil ratio is 4, there is a boundary that distinguishes Examples 1 to 8, in which the stable operation evaluation was A, and Comparative Examples 1 to 4, in which the same evaluation was B.
  • a first straight line was derived as the line.
  • the first straight line is a straight line passing through x (feeding temperature of feedstock oil) and y (the value obtained by dividing the supply rate y2 by the supply rate y1 multiplied by 100) in Examples 1, 3, 5, and 7. .
  • the first straight line is represented by the following formula (A1).
  • the third boundary line was used to distinguish between Examples 17 to 21 where the stable operation evaluation was A and Comparative Example 8 where the same evaluation was B.
  • a straight line was derived.
  • the third straight line is a straight line passing through x and y in Examples 17 and 19.
  • the third straight line is represented by the following formula (A3).
  • the first to third straight lines are shown in FIGS. 3(a) to 3(c), respectively.
  • X1 is the supply temperature of the feedstock oil at a catalyst/oil ratio of 4
  • Y1 is the feed rate of the fuel oil supplied to the regeneration tower at the catalyst/oil ratio of 4. It is the value obtained by multiplying the value divided by the supply rate by 100.
  • X2 is the feedstock temperature at a catalyst/oil ratio of 8
  • Y2 is the feeding rate of fuel oil supplied to the regeneration tower at a catalyst/oil ratio of 8. It is the value obtained by multiplying the value divided by the supply rate by 100.
  • X3 is the supply temperature of the feedstock oil at a catalyst/oil ratio of 12
  • Y3 is the feed rate of the fuel oil supplied to the regeneration tower at the catalyst/oil ratio of 12. It is the value obtained by multiplying the value divided by the supply rate by 100.
  • the feedstock oil supply temperature at any point on the straight line shown by the above formula (A1) is set as X11, and the value obtained by dividing the feedstock supply rate by the feedstock supply rate supplied to the regeneration tower is multiplied by 100. Let the value be Y11.
  • the feedstock oil supply temperature at any point on the straight line shown by the above formula (A2) is set as X12, and the value obtained by dividing the fuel oil supply rate supplied to the regeneration tower by the feedstock supply rate is multiplied by 100. Let the value be Y12.
  • the feedstock oil supply temperature at any point on the straight line shown by the above formula (A3) is set to X13, and the value obtained by dividing the fuel oil supply rate supplied to the regeneration tower by the feedstock supply rate is multiplied by 100.
  • the value is set to Y13.
  • Examples 1 to 21 satisfy the above inequality (1) (the left side is 0 or more). On the other hand, Comparative Examples 1 to 8 do not satisfy the above inequality (1) (the left side is less than 0). From this, it was confirmed that the apparatus could be operated stably when the above inequality (1) was satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The method for producing hydrocarbons according to the present disclosure includes a step in which a feed oil is cracked by fluid catalytic cracking with a fluid catalytic cracker comprising a reaction column and a regeneration column, wherein the feed oil includes an FT synthesis oil and wherein the feed temperature x (unit: °C) of the feed oil, the feed rate y1 (unit: ton/h) of the feed oil, the feed rate y2 (unit: ton/h) of a fuel oil to be supplied to the regeneration column, and the circulation rate z1 (unit: ton/h) of a catalyst to be circulated through the reaction column and the regeneration column satisfy a specific inequality.

Description

炭化水素の製造方法Hydrocarbon production method
 本開示は、炭化水素の製造方法に関する。 The present disclosure relates to a method for producing hydrocarbons.
 日本国内の製油所においては、炭化水素の製造において、流動接触分解(Fluid Catalytic Cracking:FCC)装置が中心的な役割を担っている(例えば、特許文献1)。 In refineries in Japan, fluid catalytic cracking (FCC) equipment plays a central role in the production of hydrocarbons (for example, Patent Document 1).
 図1は、従来の原油から炭化水素を製造する方法の一例を示すフロー図である。従来の炭化水素の製造方法では、図1に示すように、例えば、常圧蒸留残油を直接脱硫装置で処理して得られる直接脱硫常圧残油、及び脱硫減圧軽油を原料油として流動接触分解装置で処理することで炭化水素を製造している。 FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil. In conventional hydrocarbon production methods, as shown in Fig. 1, for example, direct desulfurized atmospheric residual oil obtained by directly treating atmospheric distillation residual oil in a desulfurization equipment and desulfurized vacuum gas oil are used as feedstock oils through fluid contact. Hydrocarbons are produced by processing in crackers.
 また、環境意識が高まってきたことに伴い、石油と比べて硫黄分や窒素分の含有量が少ないFT合成油が注目されている。FT合成油は、水素ガスと一酸化炭素ガスの混合ガスである合成ガスから、フィッシャートロプシュ合成により生成される。例えば、特許文献2には、FT合成油を原料油として流動接触分解装置で処理することで炭化水素を製造する技術が開示されている。 Additionally, as environmental awareness has increased, FT synthetic oil, which has lower sulfur and nitrogen content than petroleum, is attracting attention. FT synthetic oil is produced from synthesis gas, which is a mixed gas of hydrogen gas and carbon monoxide gas, by Fischer-Tropsch synthesis. For example, Patent Document 2 discloses a technique for producing hydrocarbons by treating FT synthetic oil as a feedstock oil in a fluid catalytic cracking apparatus.
特開2020-186384号公報Japanese Patent Application Publication No. 2020-186384 特表2007-503503号公報Special Publication No. 2007-503503
 流動接触分解の過程で原料から生成されるコークは、触媒表面に付着する。流動接触分解装置は、コークが付着した触媒と再生塔へ送り、コークを再生塔内で燃焼させることで、触媒を再生させるとともにコークを自身の熱源として利用する。 Coke produced from raw materials during the fluid catalytic cracking process adheres to the catalyst surface. Fluid catalytic cracking equipment regenerates the catalyst and uses the coke as its own heat source by sending the coke-covered catalyst to a regeneration tower and burning the coke within the regeneration tower.
 しかし、本発明者ら検討により、FT合成油を流動接触分解装置で処理すると、流動接触分解中に生成されるコークの量が少なく、石油由来の油を処理する場合と比べて、流動接触分解装置の熱源が不足する可能性があることが判明した。すなわち、流動接触分解装置の熱バランスが取り辛く、流動接触分解装置の安定運転の観点で改善の余地がある。流動接触分解装置が安定運転できないと、流動接触分解装置の稼働率が低下し、炭化水素の製造コストの上昇につながる。 However, the inventors have found that when FT synthetic oil is treated with a fluid catalytic cracker, the amount of coke produced during fluid catalytic cracking is small, and compared to the case of processing oil derived from petroleum, fluid catalytic cracking It was discovered that the heat source of the equipment may be insufficient. That is, it is difficult to maintain the heat balance of the fluid catalytic cracker, and there is room for improvement in terms of stable operation of the fluid catalytic cracker. If the fluid catalytic cracker cannot operate stably, the operating rate of the fluid catalytic cracker will decrease, leading to an increase in the cost of producing hydrocarbons.
 そこで本開示の一側面は、FT合成油を原料油として用い、安定運転が可能な炭化水素の製造方法を提供する。 Therefore, one aspect of the present disclosure provides a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation.
 本開示の一側面は、反応塔及び再生塔を備える流動接触分解装置を用いて原料油を流動接触分解する工程を備え、原料油は、FT合成油を含み、原料油の供給温度x(単位:℃)、原料油の供給速度y1(単位:ton/h)、再生塔に供給される燃料油の供給速度y2(単位:ton/h)、及び反応塔と再生塔とを循環する触媒の循環速度z1(単位:ton/h)が下記不等式(1)を満たす、炭化水素の製造方法に関する。
Figure JPOXMLDOC01-appb-M000002
y=(y2/y1)×100
z=(z1/y1)
One aspect of the present disclosure includes a step of fluid catalytic cracking a feedstock using a fluid catalytic cracking apparatus including a reaction tower and a regeneration tower, the feedstock includes FT synthetic oil, and the feedstock oil supply temperature x (unit: : °C), the feed rate y1 (unit: ton/h) of the feedstock, the supply rate y2 (unit: ton/h) of the fuel oil supplied to the regeneration tower, and the rate of the catalyst circulating between the reaction tower and the regeneration tower. The present invention relates to a method for producing hydrocarbons in which the circulation rate z1 (unit: ton/h) satisfies the following inequality (1).
Figure JPOXMLDOC01-appb-M000002
y=(y2/y1)×100
z=(z1/y1)
 一態様において、原料油は、FT合成油よりも%Cが高い炭化水素油を更に含んでいてよい。一態様において、炭化水素油は、直接脱硫常圧残油を含んでいてよい。 In one embodiment, the feedstock may further include a hydrocarbon oil with a higher % CA than the FT synthetic oil. In one embodiment, the hydrocarbon oil may include a directly desulfurized atmospheric residue.
 一態様において、上記炭化水素の製造方法は、FT合成油及びFT合成油よりも%Cが高い炭化水素油を混合して原料油を得る工程と、原料油を流動接触分解装置の反応塔に供給する工程と、を更に備えていてよい。一態様において、炭化水素油は、クラリファイドオイルを含んでいてよい。 In one aspect, the method for producing hydrocarbons includes a step of mixing FT synthetic oil and a hydrocarbon oil with a higher % CA than the FT synthetic oil to obtain a feedstock oil, and a step of mixing the feedstock oil into a reaction column of a fluid catalytic cracking unit. The method may further include a step of supplying. In one embodiment, the hydrocarbon oil may include clarified oil.
 本開示の一側面によれば、FT合成油を原料油として用い、安定運転が可能な炭化水素の製造方法が提供される。 According to one aspect of the present disclosure, a method for producing hydrocarbons that uses FT synthetic oil as a raw material oil and allows stable operation is provided.
図1は、従来の原油から炭化水素を製造する方法の一例を示すフロー図である。FIG. 1 is a flow diagram illustrating an example of a conventional method for producing hydrocarbons from crude oil. 図2は、一実施形態に係る炭化水素の製造方法に用いられる流動接触分解装置の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in a method for producing hydrocarbons according to an embodiment. 図3(a)は、zが4である実施例及び比較例について、xを横軸としyを縦軸としてxとyの設定値をプロットしたグラフである。図3(b)は、zが8である実施例及び比較例について、xを横軸としyを縦軸としてxとyの設定値をプロットしたグラフである。図3(c)は、zが12である実施例及び比較例について、xを横軸としyを縦軸としてxとyの設定値をプロットしたグラフである。FIG. 3A is a graph plotting the set values of x and y with x as the horizontal axis and y as the vertical axis for the example and comparative example in which z is 4. FIG. 3(b) is a graph plotting the set values of x and y for the example and comparative example in which z is 8, with x as the horizontal axis and y as the vertical axis. FIG. 3(c) is a graph plotting the setting values of x and y for the example and comparative example in which z is 12, with x as the horizontal axis and y as the vertical axis.
 以下、本開示の実施形態について図面を参照しながら説明する。ただし、本開示は以下の実施形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。各図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合がある。また、各部分の寸法比率については各図面で異なる場合がある。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付す場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. However, the present disclosure is not limited to the following embodiments, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims. In each drawing, a part of the configuration may be exaggerated or simplified for convenience of explanation. Further, the dimensional ratio of each part may differ in each drawing. In addition, in the description of the following drawings, the same or similar parts may be given the same or similar symbols.
 本明細書中、フィッシャートロプシュ合成により生成される合成油を「FT合成油」という。本明細書中、FT合成油が含むワックス成分を「FTワックス」という。本明細書中、フィッシャートロプシュ合成により生成され蒸留を行っていないFT合成油を「FT粗油」という。本明細書中、「ton」は、ヤード・ポンド法ではなく、メートル法を採用する。すなわち、1tonは、1000kgである。 In this specification, the synthetic oil produced by Fischer-Tropsch synthesis is referred to as "FT synthetic oil." In this specification, the wax component contained in FT synthetic oil is referred to as "FT wax." In this specification, FT synthetic oil produced by Fischer-Tropsch synthesis and not subjected to distillation is referred to as "FT crude oil." In this specification, "ton" refers to the metric system rather than the imperial/pound system. That is, 1 ton is 1000 kg.
 本明細書において、%Cは、n-d-M環分析値(アロマ分)を意味する。具体的には、%Cは、以下の手順で算出される。すなわち、70℃における原料油の比重(d 70)及び屈折率(n 70)を測定する。測定値を下記式(a1)に代入してαを算出する。算出されたαについて、αが0を超える場合には下記式(a2)に、αが0未満である場合には下記式(a3)にαを代入して求められる値が、原料油の%Cである。下記式(a1)~(a3)は、規格「ASTM D3238」を参考に規定したものである。式(a2)及び(a3)中、Mは、平均分子量である。
α=2.42(n 70-1.4600)-(d 70-0.8280)・・・(a1)
%C=410α+3660/M・・・(a2)
%C=720α+3660/M・・・(a3)
In this specification, % CA means ndM ring analysis value (aroma content). Specifically, % CA is calculated by the following procedure. That is, the specific gravity (d 4 70 ) and refractive index ( nd 70 ) of the raw material oil at 70° C. are measured. α is calculated by substituting the measured value into the following formula (a1). Regarding the calculated α, the value obtained by substituting α into the following formula (a2) when α exceeds 0, and the value obtained by substituting α into the following formula (a3) when α is less than 0, is the percentage of the feedstock oil. It is C.A. The following formulas (a1) to (a3) are defined with reference to the standard "ASTM D3238". In formulas (a2) and (a3), M is the average molecular weight.
α=2.42(n d 70 -1.4600) - (d 4 70 -0.8280)...(a1)
%C A =410α+3660/M...(a2)
%C A =720α+3660/M...(a3)
 以下、一実施形態に係る炭化水素の製造方法について説明する。本実施形態の炭化水素の製造方法は、反応塔及び再生塔を備える流動接触分解装置を用いて原料油を流動接触分解する工程を備える。原料油は、FT合成油を含む。原料油の供給温度x(単位:℃)、原料油の供給速度y1(単位:ton/h)、再生塔に供給される燃料油の供給速度y2(単位:ton/h)、及び反応塔と再生塔とを循環する触媒の循環速度z1(単位:ton/h)が下記不等式(1)を満たす。下記不等式(1)は、後述する実施例のシミュレーション結果に基づき導出される。具体的な導出方法は後述する。下記不等式(1)中、y1、y2及びz1以外の要因は、本実施形態に係る炭化水素の製造方法の安定運転に影響しないことが本発明者らの検討により明らかとなっている。 Hereinafter, a method for producing hydrocarbons according to one embodiment will be described. The method for producing hydrocarbons according to the present embodiment includes a step of fluid catalytic cracking of feedstock oil using a fluid catalytic cracking apparatus including a reaction tower and a regeneration tower. The raw material oil includes FT synthetic oil. Feedstock temperature x (unit: °C), feedstock supply rate y1 (unit: ton/h), fuel oil supply rate y2 (unit: ton/h) supplied to the regeneration tower, and the reaction tower. The circulation rate z1 (unit: ton/h) of the catalyst circulating through the regeneration tower satisfies the following inequality (1). The following inequality (1) is derived based on the simulation results of Examples described later. A specific derivation method will be described later. Studies by the present inventors have revealed that factors other than y1, y2, and z1 in the following inequality (1) do not affect the stable operation of the hydrocarbon production method according to the present embodiment.
Figure JPOXMLDOC01-appb-M000003
y=(y2/y1)×100
z=(z1/y1)
Figure JPOXMLDOC01-appb-M000003
y=(y2/y1)×100
z=(z1/y1)
<FT合成油の製造方法>
 はじめに、本実施形態に係る炭化水素の製造方法に用いられるFT合成油の製造方法の概略について説明する。FT合成油は、例えば、一酸化炭素と水素ガスを原料としてフィッシャートロプシュ合成により生成される。FT合成油を生成する方法は、特に限定されず、公知の方法を採用することができる。FT合成油を生成する反応装置としては、固定床反応装置又はスラリー流動床反応装置が好ましい。また、原料である一酸化炭素の転化率を50%以上とする条件下に反応が行われることが好ましく、70~90%の範囲で行われることが更に好ましい。
<Method for producing FT synthetic oil>
First, an outline of the method for producing FT synthetic oil used in the method for producing hydrocarbons according to the present embodiment will be described. FT synthetic oil is produced, for example, by Fischer-Tropsch synthesis using carbon monoxide and hydrogen gas as raw materials. The method for producing FT synthetic oil is not particularly limited, and any known method can be employed. As the reaction apparatus for producing FT synthetic oil, a fixed bed reaction apparatus or a slurry fluidized bed reaction apparatus is preferable. Further, the reaction is preferably carried out under conditions where the conversion rate of carbon monoxide, which is a raw material, is 50% or more, more preferably in the range of 70 to 90%.
 スラリー流動床反応装置としては、例えば、気泡塔型流動床反応装置が使用できる。気泡塔型流動床反応装置は、フィッシャートロプシュ合成を行う反応塔を有する。気泡塔型流動床反応装置の反応塔内には、反応温度において液状である液状炭化水素が収容されている。液状炭化水素中にはFT合成用の触媒が分散されており、液状炭化水素は、スラリー状になっている。一酸化炭素ガス及び水素ガスの混合ガスである合成ガスは、反応塔下部より、液状炭化水素中へ導入される。合成ガスは、気泡となって液状炭化水素中を上昇する間に液状炭化水素中に溶解し、FT合成用の触媒と接触する。FT合成用の触媒の働きにより、FT合成油が、合成ガスから生成される。 As the slurry fluidized bed reactor, for example, a bubble column type fluidized bed reactor can be used. A bubble column type fluidized bed reactor has a reaction column that performs Fischer-Tropsch synthesis. The reaction column of the bubble column type fluidized bed reactor contains liquid hydrocarbons that are liquid at the reaction temperature. A catalyst for FT synthesis is dispersed in the liquid hydrocarbon, and the liquid hydrocarbon is in the form of a slurry. Synthesis gas, which is a mixed gas of carbon monoxide gas and hydrogen gas, is introduced into the liquid hydrocarbons from the lower part of the reaction tower. The synthesis gas dissolves in the liquid hydrocarbon while rising in the liquid hydrocarbon in the form of bubbles, and comes into contact with the catalyst for FT synthesis. FT synthetic oil is produced from synthetic gas by the action of a catalyst for FT synthesis.
 反応温度は、目標とする一酸化炭素転化率により定めることができるが、150~300℃であることが好ましく、170~250℃であることがさらに好ましい。 The reaction temperature can be determined depending on the target carbon monoxide conversion rate, but is preferably 150 to 300°C, more preferably 170 to 250°C.
 反応圧力は0.5~5.0MPaであることが好ましく、2.0~4.0MPaであることがさらに好ましい。反応圧力が0.5MPa以上である場合は、一酸化炭素転化率が50%以上となりやすい傾向があり、5.0MPa以下であると、局所的な発熱の発生を抑制できる傾向にある。 The reaction pressure is preferably 0.5 to 5.0 MPa, more preferably 2.0 to 4.0 MPa. When the reaction pressure is 0.5 MPa or more, the carbon monoxide conversion rate tends to be 50% or more, and when it is 5.0 MPa or less, local generation of heat tends to be suppressed.
 合成ガスは、例えば、天然ガス等の炭化水素のリフォーミングにより得られる。合成ガスは、一酸化炭素ガスと水素ガスとが含まれていればよく、天然ガス等のリフォーミングから得られるガス以外であってもよい。 Synthesis gas is obtained, for example, by reforming hydrocarbons such as natural gas. The synthesis gas only needs to contain carbon monoxide gas and hydrogen gas, and may be a gas other than that obtained from reforming natural gas or the like.
 合成ガス中の水素/一酸化炭素比率(モル比)は0.5~4.0であることが好ましく、1.0~2.5であることがさらに好ましい。このモル比が0.5以上であると反応温度が高くなりすぎず触媒の失活を抑えられる傾向にあり、4.0以下であると望ましくない副生成物であるメタンの生成が抑制できる傾向にある。 The hydrogen/carbon monoxide ratio (molar ratio) in the synthesis gas is preferably 0.5 to 4.0, more preferably 1.0 to 2.5. When this molar ratio is 0.5 or more, the reaction temperature does not become too high and deactivation of the catalyst tends to be suppressed, and when it is 4.0 or less, the production of methane, which is an undesirable by-product, tends to be suppressed. It is in.
 合成ガスのガス空間速度は500~5000h-1であることが好ましく、1000~2500h-1であることがさらに好ましい。このガス空間速度が500h-1以上であると同一触媒量に対する生産性が高く、5000h-1以下である場合は、一酸化炭素の転化率が50%以上となりやすい傾向にある。 The gas space velocity of the synthesis gas is preferably 500 to 5000 h -1 , more preferably 1000 to 2500 h -1 . When the gas hourly space velocity is 500 h -1 or more, productivity for the same amount of catalyst is high, and when it is 5000 h -1 or less, the conversion rate of carbon monoxide tends to be 50% or more.
 FT合成用の触媒としては、活性金属が無機担体に担持された触媒が用いられる。無機担体としては、シリカ、アルミナ、チタニア、マグネシア、ジルコニア等の多孔性酸化物が例示される。活性金属としては、コバルト、ルテニウム、鉄、ニッケル等が例示される。また、触媒には、上記活性金属以外に、ジルコニウム、チタニウム、ハフニウム、ナトリウム、リチウム、マグネシウム等の金属元素を含む化合物が担持されていてもよい。これらの成分は、触媒活性を向上させ、FT合成油の炭素数及びその分布の制御に寄与する。 As a catalyst for FT synthesis, a catalyst in which an active metal is supported on an inorganic carrier is used. Examples of the inorganic carrier include porous oxides such as silica, alumina, titania, magnesia, and zirconia. Examples of active metals include cobalt, ruthenium, iron, and nickel. Further, in addition to the above active metals, a compound containing a metal element such as zirconium, titanium, hafnium, sodium, lithium, or magnesium may be supported on the catalyst. These components improve the catalytic activity and contribute to controlling the carbon number and its distribution in the FT synthetic oil.
 FT合成油は、例えば、炭素数が5~100である直鎖炭化水素(ノルマルパラフィン)の混合物である。FT合成油は、フィッシャートロプシュ合成により生成される合成油であればよく、炭素数が100を超える直鎖炭化水素を含んでいてもよい。FT合成油は、芳香族炭化水素、ナフテン及びイソパラフィンをほとんど含まない。FT合成油は、例えば、%Cが0である。なお、FT合成油は、例えば、芳香族炭化水を含む場合、0を超える%Cを取り得る。 FT synthetic oil is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 5 to 100 carbon atoms. The FT synthetic oil may be any synthetic oil produced by Fischer-Tropsch synthesis, and may contain linear hydrocarbons having more than 100 carbon atoms. FT synthetic oil contains almost no aromatic hydrocarbons, naphthenes and isoparaffins. For example, FT synthetic oil has a % CA of 0. Note that the FT synthetic oil can have a % CA of more than 0, for example, when it contains aromatic hydrocarbon water.
 FT合成油には、沸点が330℃を超えるFTワックスが含まれていてもよい。FTワックスは、例えば、炭素数が17以上の直鎖炭化水素(ノルマルパラフィン)の混合物である。FT合成油中のFTワックスの含有率は、30質量%以上、50質量%以上、70質量%以上、90質量%以上、又は95質量%以上であってもよく、100質量%であってもよい。FT合成油中のFTワックスの含有率は、上記の反応条件を適宜調整することにより、容易に制御することができる。 The FT synthetic oil may contain FT wax whose boiling point exceeds 330°C. The FT wax is, for example, a mixture of straight chain hydrocarbons (normal paraffins) having 17 or more carbon atoms. The content of FT wax in the FT synthetic oil may be 30% by mass or more, 50% by mass or more, 70% by mass or more, 90% by mass or more, or 95% by mass or more, or even 100% by mass. good. The content of FT wax in the FT synthetic oil can be easily controlled by appropriately adjusting the above reaction conditions.
<炭化水素の製造方法>
 次に本実施形態に係る炭化水素の製造方法の概略について説明する。炭化水素は、FT合成油を含む原料油を流動接触分解装置で処理することで製造できる。
<Hydrocarbon production method>
Next, the outline of the method for producing hydrocarbons according to this embodiment will be explained. Hydrocarbons can be produced by processing feedstock oil containing FT synthetic oil in a fluid catalytic cracker.
 原料油の%Cは、例えば、0であってよく、1以上であってもよく、5以上であってもよく、6以上であってもよく、7以上であってもよい。原料油の%Cは、23以下であってよく、22以下であってもよく、21以下であってもよい。 The % CA of the raw material oil may be, for example, 0, 1 or more, 5 or more, 6 or more, or 7 or more. The % CA of the feedstock oil may be 23 or less, 22 or less, or 21 or less.
 原料油に含まれるFT合成油は、フィッシャートロプシュ合成によって生成された油であればよく、特に限定されない。原料油に含まれるFT合成油は、例えば、FT粗油であってもよいし、FT粗油を蒸留して得られた油であってもよいし、FTワックスであってもよいし、これらの混合物であってもよい。 The FT synthetic oil contained in the raw material oil is not particularly limited as long as it is an oil produced by Fischer-Tropsch synthesis. The FT synthetic oil contained in the raw material oil may be, for example, FT crude oil, oil obtained by distilling FT crude oil, FT wax, or any of these. It may be a mixture of.
 原料油は、FT合成油よりも%Cが高い炭化水素油を更に含んでいてもよい。この場合、原料油を流動接触分解装置により処理する工程において、流動接触分解装置の反応塔に原料油が供給される前に、FT合成油とFT合成油よりも%Cが高い炭化水素油とが混合されることで原料油を得てよい。流動接触分解装置の反応塔に原料油が供給される前に、FT合成油と当該炭化水素油とが混合されることで、反応塔内でFT合成油と当該炭化水素油とが混合される場合と比較して、原料油を構成する油が均一化されている。よって、反応塔内における流動接触分解反応がより安定する傾向がある。 The feedstock oil may further include a hydrocarbon oil having a higher % CA than the FT synthetic oil. In this case, in the process of treating feedstock oil with a fluid catalytic cracker, before the feedstock oil is supplied to the reaction tower of the fluid catalytic cracker, FT synthetic oil and hydrocarbon oil with a higher % CA than the FT synthetic oil are processed. A raw material oil may be obtained by mixing these. Before the feedstock oil is supplied to the reaction tower of the fluid catalytic cracker, the FT synthetic oil and the hydrocarbon oil are mixed, so that the FT synthetic oil and the hydrocarbon oil are mixed in the reaction tower. Compared to the conventional case, the oil that makes up the raw material oil is more uniform. Therefore, the fluidized catalytic cracking reaction within the reaction tower tends to be more stable.
 上記炭化水素油は、例えば、石油精製から得られる。上記炭化水素油としては、例えば、RDS-BTM、DS-VGO、及びCLOが挙げられる。RDS-BTMは、図1に示すように、例えば、常圧蒸留残油を直接脱硫装置で処理して得られる直接脱硫常圧残油である。常圧蒸留残油は、原油を常圧蒸留装置で処理して得られる。DS-VGOは、図1に示すように、例えば、常圧蒸留残油を減圧軽油脱硫装置で処理して得られる脱硫減圧軽油である。RDS-BTMは、その原料として溶剤脱瀝された減圧残油を含んでいてもよく、含んでいなくてもよい。図1に示すように、CLO(CLarified Oil:クラリファイドオイル)は、例えば、RDS-BTMやDS-VGOを流動接触分解装置で処理して得られた油に対して、更に常圧蒸留装置で処理して得られた残油であるスラリー油から触媒を除去したものである。CLOは、その原料として、FT合成油を含んでいてもよく、含んでいなくでもよい。 The above hydrocarbon oil is obtained, for example, from petroleum refining. Examples of the hydrocarbon oil include RDS-BTM, DS-VGO, and CLO. As shown in FIG. 1, RDS-BTM is, for example, a direct desulfurized atmospheric residual oil obtained by treating an atmospheric distillation residual oil in a direct desulfurization apparatus. Atmospheric distillation residual oil is obtained by processing crude oil in an atmospheric distillation apparatus. As shown in FIG. 1, DS-VGO is, for example, desulfurized vacuum gas oil obtained by treating atmospheric distillation residual oil in a vacuum gas oil desulfurization apparatus. RDS-BTM may or may not contain solvent deasphalted vacuum residue as its raw material. As shown in Figure 1, CLO (Clarified Oil) is produced by, for example, treating RDS-BTM or DS-VGO in a fluid catalytic cracking apparatus, and then processing the oil in an atmospheric distillation apparatus. The catalyst is removed from the slurry oil, which is the residual oil obtained after processing. CLO may or may not contain FT synthetic oil as its raw material.
 原料油がRDS-BTMを含む場合、RDS-BTM及びFT合成油に占めるRDS-BTMの割合は、RDS-BTM及びFT合成油の合計質量を基準として、1質量%以上であり、15質量%以上であってもよく、30質量%以上であってもよく、45質量%以上であってもよい。 When the feedstock oil contains RDS-BTM, the proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of RDS-BTM and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
 RDS-BTM及びFT合成油に占めるRDS-BTMの割合は、RDS-BTM及びFT合成油の合計質量を基準として、98質量%以下であり、75質量%以下であってもよく、50質量%以下であってもよい。 The proportion of RDS-BTM in RDS-BTM and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass based on the total mass of RDS-BTM and FT synthetic oil. It may be the following.
 RDS-BTMの%Cは、5以上であり、10以上であってもよく、20以上であってもよい。RDS-BTMの%Cは、99以下であり、80以下であってもよく、60以下であってもよい。 The % CA of RDS-BTM is 5 or more, may be 10 or more, or may be 20 or more. The % CA of RDS-BTM is 99 or less, may be 80 or less, or may be 60 or less.
 原料油がDS-VGOを含む場合、DS-VGO及びFT合成油に占めるDS-VGOの割合は、DS-VGO及びFT合成油の合計質量を基準として、1質量%以上であり、15質量%以上であってもよく、30質量%以上であってもよく、45質量%以上であってもよい。 When the feedstock oil contains DS-VGO, the proportion of DS-VGO in DS-VGO and FT synthetic oil is 1% by mass or more, and 15% by mass, based on the total mass of DS-VGO and FT synthetic oil. or more, may be 30% by mass or more, or may be 45% by mass or more.
 DS-VGO及びFT合成油に占めるDS-VGOの割合は、DS-VGO及びFT合成油の合計質量を基準として、98質量%以下であり、75質量%以下であってもよく、50質量%以下であってもよい。 The proportion of DS-VGO in DS-VGO and FT synthetic oil is 98% by mass or less, and may be 75% by mass or less, and 50% by mass based on the total mass of DS-VGO and FT synthetic oil. It may be the following.
 DS-VGOの%Cは、例えば、1以上であり、5以上であってもよく、10以上であってもよい。DS-VGOの%Cは、99以下であり、80以下であってもよく、60以下であってもよい。 The % CA of the DS-VGO is, for example, 1 or more, may be 5 or more, or may be 10 or more. The % CA of the DS-VGO is 99 or less, may be 80 or less, or may be 60 or less.
 原料油がCLOを含む場合、CLO及びFT合成油に占めるCLOの割合は、CLO及びFT合成油の合計質量を基準として、1質量%以上であり、15質量%以上であってもよく、30質量%以上であってもよく、45質量%以上であってもよい。 When the feedstock oil contains CLO, the proportion of CLO in CLO and FT synthetic oil is 1% by mass or more, and may be 15% by mass or more, 30% by mass or more, based on the total mass of CLO and FT synthetic oil. It may be at least 45% by mass, or at least 45% by mass.
 CLO及びFT合成油に占めるCLOの割合は、CLO及びFT合成油の合計質量を基準として、98質量%以下であり、75質量%以下であってもよく、50質量%以下であってもよい。 The proportion of CLO in CLO and FT synthetic oil is 98% by mass or less, may be 75% by mass or less, and may be 50% by mass or less, based on the total mass of CLO and FT synthetic oil. .
 CLOの%Cは、例えば、1以上であり、5以上であってもよく、10以上であってもよく、20以上であってもよい。CLOの%Cは、99以下であり、80以下であってもよく、60以下であってもよい。 The % CA of CLO is, for example, 1 or more, may be 5 or more, may be 10 or more, or may be 20 or more. The % CA of CLO is 99 or less, may be 80 or less, or may be 60 or less.
 RDS-BTM、DS-VGO、及びCLOは、原料油の%CAが前述の上限値及び下限値の範囲内となるように、2種以上を組み合わせて用いてもよい。 Two or more of RDS-BTM, DS-VGO, and CLO may be used in combination so that the %CA of the feedstock oil falls within the above-mentioned upper and lower limits.
 原料油の流動接触分解に用いられる流動接触分解装置は、特に限定されない。流動接触分解装置は、公知の流動接触分解装置を用いることができる。図2は、本実施形態に係る炭化水素の製造方法に用いられる流動接触分解装置の一例を示す模式図である。流動接触分解装置Aは、反応塔1と、再生塔3と、反応塔1に連結するライン15と、再生塔に連結するライン17と、反応塔1と再生塔3とを連結するライン11と、反応塔1と再生塔3と連結するライン23と、再生塔3とボイラー(不図示)とを連結するライン27と、反応塔1と回収設備(不図示)とを連結するライン29と、反応塔を加熱するための加熱設備(不図示)と、を備える。 The fluid catalytic cracking equipment used for fluid catalytic cracking of feedstock oil is not particularly limited. A known fluid catalytic cracker can be used as the fluid catalytic cracker. FIG. 2 is a schematic diagram showing an example of a fluid catalytic cracking apparatus used in the method for producing hydrocarbons according to the present embodiment. The fluid catalytic cracking apparatus A includes a reaction tower 1, a regeneration tower 3, a line 15 connecting to the reaction tower 1, a line 17 connecting the regeneration tower, and a line 11 connecting the reaction tower 1 and the regeneration tower 3. , a line 23 connecting the reaction tower 1 and the regeneration tower 3, a line 27 connecting the regeneration tower 3 and a boiler (not shown), and a line 29 connecting the reaction tower 1 and recovery equipment (not shown), A heating facility (not shown) for heating the reaction tower is provided.
 反応塔1は、ライザー型である。反応塔1は、反応帯域5と、分離帯域7と、を備える。反応塔1には、原料油と無数の触媒粒子(分解触媒)とが供給される。原料油は、ライン15を通って、反応帯域5に供給される。原料油がFT合成油よりも%Cが高い炭化水素油を更に含む場合、原料油は、FT合成油と当該炭化水素油とをライン15にて混合して得られたものであってもよい。この場合、ライン15は、その中途から分岐していてよい。ライン15の分岐した一方のラインからFT合成油を供給し、もう一方のラインから当該炭化水素油を供給することで分岐したラインの合流部でFT合成油と当該炭化水素油とが混合され原料油が得られる。また、原料油がFT合成油よりも%Cが高い炭化水素油を更に含む場合、原料油として、FT合成油と当該炭化水素油とを事前に混合しておいたものを反応帯域5にライン15を通して供給してもよい。 The reaction tower 1 is a riser type. The reaction tower 1 includes a reaction zone 5 and a separation zone 7. The reaction tower 1 is supplied with raw material oil and countless catalyst particles (decomposition catalyst). Feedstock oil is fed to reaction zone 5 through line 15. If the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil, even if the feedstock oil is obtained by mixing the FT synthetic oil and the hydrocarbon oil in line 15. good. In this case, the line 15 may branch off from the middle. By supplying FT synthetic oil from one branched line of line 15 and supplying the hydrocarbon oil from the other line, the FT synthetic oil and the hydrocarbon oil are mixed at the confluence of the branched lines and the raw material is mixed. oil is obtained. In addition, when the feedstock oil further contains a hydrocarbon oil with a higher % CA than the FT synthetic oil, a mixture of the FT synthetic oil and the hydrocarbon oil in advance is added to the reaction zone 5 as the feedstock oil. It may also be supplied through line 15.
 触媒粒子は、ライン11を通って反応帯域5に供給される。反応帯域5では、水蒸気である流動化ガス13が、触媒粒子からなる層の下部から吹き込まれる。触媒粒子は、流動化ガス13によって流動化される。原料油と流動化した触媒粒子とは、流動化ガス13とともに反応帯域5を上昇する。反応帯域5内で原料油が触媒粒子に接触することで接触分解が起こり、原料油から炭化水素が生成される。原料油を分解して得られた炭化水素と接触分解に用いた触媒粒子とは、分離帯域7で分離される。 Catalyst particles are fed to the reaction zone 5 through line 11. In the reaction zone 5, fluidizing gas 13, which is water vapor, is blown into the bed of catalyst particles from below. The catalyst particles are fluidized by fluidizing gas 13. The feed oil and the fluidized catalyst particles move up through the reaction zone 5 together with the fluidizing gas 13 . Catalytic cracking occurs when the feedstock oil comes into contact with catalyst particles within the reaction zone 5, and hydrocarbons are generated from the feedstock oil. Hydrocarbons obtained by cracking feedstock oil and catalyst particles used for catalytic cracking are separated in a separation zone 7.
 分離された炭化水素は、ライン29を通って、回収設備に供給される。炭化水素は、回収設備おいて複数の成分に分離され、回収される。回収設備は、例えば、複数の蒸留塔、吸収塔、コンプレッサー、ストリッパー、フラクショネーター、スプリッター及び熱交換器を備えていてよい。炭化水素は、例えば、蒸留塔(常圧蒸留塔)においてガス成分及び炭化水素油に分留される。ガス成分としては、ドライガス及びLPガス(LPG)が挙げられる。炭化水素油としては、例えば、ガソリン留分(CCG)、軽油留分(LCO)、灯油留分、クラリファイドオイル(CLO)及びコークが挙げられる。回収されたクラリファイドオイル(CLO)は、原料油として反応塔1に供給されてもよい。 The separated hydrocarbons are fed through line 29 to a recovery facility. Hydrocarbons are separated into multiple components and recovered in a recovery facility. The recovery equipment may include, for example, a plurality of distillation columns, absorption columns, compressors, strippers, fractionators, splitters and heat exchangers. Hydrocarbons are fractionated into gas components and hydrocarbon oils, for example, in a distillation column (atmospheric distillation column). Gas components include dry gas and LP gas (LPG). Examples of hydrocarbon oils include gasoline fraction (CCG), light oil fraction (LCO), kerosene fraction, clarified oil (CLO), and coke. The recovered clarified oil (CLO) may be supplied to the reaction tower 1 as a raw material oil.
 分離された触媒粒子は、ライン23を通って再生塔3に供給される。再生塔3に供給される触媒粒子の表面には接触分解時に生じたコークが付着しており、触媒粒子は触媒活性が低下している。再生塔3では、接触分解に用いた触媒粒子を再生処理する。再生塔3には、再生処理のためにエアー25が供給される。再生塔3は、触媒粒子の表面に付着しているコークを燃焼させることで、触媒粒子の表面に付着するコークを減少させるとともに触媒粒子の温度を上昇させる。再生後の触媒粒子は、ライン11を通って反応帯域5に再度供給される。つまり、触媒粒子は、再生塔3と反応塔1との間で循環する。再生処理過程で発生した高温の一酸化炭素ガスや二酸化炭素ガスは、例えば、ライン27よりボイラー(不図示)や熱交換器(不図示)に供給される。再生処理過程で発生した一酸化炭素ガスや二酸化炭素ガスが熱交換器に供給される場合は、例えば、原料油の温度を上げることに利用される。 The separated catalyst particles are supplied to the regeneration tower 3 through the line 23. Coke generated during catalytic cracking is attached to the surface of the catalyst particles supplied to the regeneration tower 3, and the catalyst particles have reduced catalytic activity. In the regeneration tower 3, catalyst particles used for catalytic cracking are regenerated. Air 25 is supplied to the regeneration tower 3 for regeneration processing. The regeneration tower 3 burns the coke adhering to the surface of the catalyst particles, thereby reducing the amount of coke adhering to the surfaces of the catalyst particles and increasing the temperature of the catalyst particles. The regenerated catalyst particles are again supplied to the reaction zone 5 through the line 11. That is, the catalyst particles circulate between the regeneration tower 3 and the reaction tower 1. High-temperature carbon monoxide gas and carbon dioxide gas generated during the regeneration process are supplied to a boiler (not shown) and a heat exchanger (not shown) through a line 27, for example. When carbon monoxide gas or carbon dioxide gas generated during the regeneration process is supplied to a heat exchanger, it is used, for example, to raise the temperature of raw oil.
 燃料油は、ライン17を通って、再生塔3に供給される。再生塔3に供給された燃料油は、再生塔3内で燃焼することで熱が生じる。燃料油の燃焼によって生じた熱は、再生塔3内の触媒粒子の温度上昇に利用される。燃料油によって加熱された触媒粒子は、燃料油によって加熱されない場合と比べて、反応帯域5に再度供給されたときに原料油の温度を低下させることを抑制できる。 The fuel oil is supplied to the regeneration tower 3 through the line 17. The fuel oil supplied to the regeneration tower 3 is combusted within the regeneration tower 3 to generate heat. The heat generated by the combustion of fuel oil is used to raise the temperature of catalyst particles in the regeneration tower 3. The catalyst particles heated by the fuel oil can suppress the temperature of the feedstock oil from lowering when they are supplied to the reaction zone 5 again, compared to the case where the catalyst particles are not heated by the fuel oil.
 再生塔3に供給された燃料油は、再生塔3内で燃焼することで、高温の一酸化炭素ガスや二酸化炭素ガスなども発生する。燃料油の燃焼により発生した高温の一酸化炭素ガスや二酸化炭素ガスなどは、例えば、ライン27よりボイラー(不図示)や熱交換器(不図示)に供給されて、流動接触分解装置の熱源の1つとなる。再生処理過程で発生した一酸化炭素ガスや二酸化炭素ガスが熱交換器に供給される場合は、例えば、原料油の温度を上げることに利用される。 The fuel oil supplied to the regeneration tower 3 is combusted within the regeneration tower 3, thereby generating high-temperature carbon monoxide gas, carbon dioxide gas, etc. High-temperature carbon monoxide gas, carbon dioxide gas, etc. generated by the combustion of fuel oil are supplied to a boiler (not shown) or a heat exchanger (not shown) through line 27, for example, and are used as the heat source of the fluid catalytic cracker. It becomes one. When carbon monoxide gas or carbon dioxide gas generated during the regeneration process is supplied to a heat exchanger, it is used, for example, to raise the temperature of raw oil.
 よって、ライン23を通って再生塔3に供給される触媒に付着するコークだけでなく、ライン17を通って再生塔3に供給される燃料油も、流動接触分解装置Aの熱源となり得る。したがって、再生塔3に燃料油を供給することで、ライン23を通って再生塔3に供給される触媒に付着するコークのみを再生塔3の内部で燃焼させる場合と比べて、流動接触分解装置Aの熱源が増える。流動接触分解反応は吸熱反応であるため、流動接触分解装置Aの熱バランスが取り易くなり、流動接触分解装置Aの安定運転をより実現し易くなる。 Therefore, not only the coke adhering to the catalyst supplied to the regeneration tower 3 through the line 23, but also the fuel oil supplied to the regeneration tower 3 through the line 17 can serve as a heat source for the fluid catalytic cracker A. Therefore, by supplying fuel oil to the regeneration tower 3, compared to the case where only the coke attached to the catalyst supplied to the regeneration tower 3 through the line 23 is burned inside the regeneration tower 3, A's heat source increases. Since the fluid catalytic cracking reaction is an endothermic reaction, it becomes easier to maintain the heat balance of the fluid catalytic cracker A, and it becomes easier to realize stable operation of the fluid catalytic cracker A.
 原料油の供給速度y1は、ライン15を通って反応帯域5に供給される原料油の速度である。原料油の供給速度y1は、例えば、0.1[ton/h]以上であり、1[ton/h]以上であってもよく、10[ton/h]以上であってもよい。原料油の供給速度y1は、例えば、3000[ton/h]以下であり、2000[ton/h]以下であってもよく、1000[ton/h]以下であってもよい。 The feed rate y1 of the feedstock oil is the rate of the feedstock oil supplied to the reaction zone 5 through the line 15. The feed rate y1 of the raw material oil is, for example, 0.1 [ton/h] or more, may be 1 [ton/h] or more, or may be 10 [ton/h] or more. The feed rate y1 of the raw material oil is, for example, 3000 [ton/h] or less, may be 2000 [ton/h] or less, or may be 1000 [ton/h] or less.
 原料油の供給温度xは、反応塔1に供給される時点における原料油の温度である。原料油の供給温度xは、例えば、150℃以上であり、200℃以上であってもよく、250℃以上であってもよい。原料油の供給温度xは、例えば、450℃以下であり、400℃以下であってもよく、350℃以下であってもよい。 The feedstock oil supply temperature x is the temperature of the feedstock oil at the time it is supplied to the reaction tower 1. The supply temperature x of the raw material oil is, for example, 150°C or higher, may be 200°C or higher, or may be 250°C or higher. The supply temperature x of the raw material oil is, for example, 450°C or lower, may be 400°C or lower, or may be 350°C or lower.
 再生塔3に供給される燃料油は、再生塔3内で燃焼可能な油であれば、特に限定されない。再生塔3に供給される燃料油は、例えば、FT合成油、RDS-BTM、DS-VGO及びCLOが挙げられる。 The fuel oil supplied to the regeneration tower 3 is not particularly limited as long as it is combustible within the regeneration tower 3. Examples of the fuel oil supplied to the regeneration tower 3 include FT synthetic oil, RDS-BTM, DS-VGO, and CLO.
 再生塔3に供給される燃料油の供給速度y2を、原料油の供給速度y1で除した値に100を乗じた値yは、例えば、0.1以上であり、1.5以上であってもよく、3以上であってもよい。yは、例えば、10以下であり、8以下であってもよく、6以下であってもよい。 The value y, which is obtained by dividing the fuel oil supply rate y2 supplied to the regeneration tower 3 by the feedstock oil supply rate y1 and multiplying it by 100, is, for example, 0.1 or more, and 1.5 or more. The number may be 3 or more. For example, y is 10 or less, may be 8 or less, or may be 6 or less.
 反応塔1と再生塔3とを循環する触媒の循環速度z1を、原料油の供給速度y1で除した値が、触媒/油比(z)である。触媒/油比は、3[質量/質量]以上であり、4[質量/質量]以上であってもよく、5[質量/質量]以上であってもよく、7.5[質量/質量]以上であってもよい。触媒/油比は、50[質量/質量]以下であり、13[質量/質量]以下であってもよく、12[質量/質量]以下であってもよく、11[質量/質量]以下であってもよく、9[質量/質量]以下であってもよい。 The value obtained by dividing the circulation speed z1 of the catalyst circulating between the reaction tower 1 and the regeneration tower 3 by the supply speed y1 of the feedstock oil is the catalyst/oil ratio (z). The catalyst/oil ratio is 3 [mass/mass] or more, may be 4 [mass/mass] or more, may be 5 [mass/mass] or more, and is 7.5 [mass/mass]. It may be more than that. The catalyst/oil ratio is 50 [mass/mass] or less, may be 13 [mass/mass] or less, may be 12 [mass/mass] or less, and may be 11 [mass/mass] or less. The ratio may be 9 [mass/mass] or less.
 上記不等式(1)の左辺は、例えば、1以上であってもよく、2以上であってもよい。 The left side of the above inequality (1) may be, for example, 1 or more, or 2 or more.
 流動接触分解に用いる分解触媒は、例えば、無機酸化物(マトリックス成分)とゼオライトとを含んでよい。無機酸化物は、例えば、カオリン、モンモリナイト、ハロイサイト、ベントナイト、アルミナ、シリカ、ボリア、クロミア、マグネシア、ジルコニア、チタニア及びシリカアルミナからなる群より選ばれる少なくとも一種であってよい。ゼオライトは、例えば、天然ゼオライト及び合成ゼオライトのうち少なくともいずれかであってよい。天然ゼオライトは、グメリナイト、シャバサイト、ダキアルドフッ石、クリノプチロライト、ホージャサイト、キフッ石、ホウフッ石、レピナイト、エリオナイト、ソーダライト、カンクリナイト、フェリエライト、ブリゥースターフッ石、オフレタイト、ソーダフッ石、及びモルデナイトからなる群より選ばれる少なくとも一種であってよい。合成ゼオライトは、X型ゼオライト、Y型ゼオライト、USY型ゼオライト、A型ゼオライト、L型ゼオライト、ZK-4型ゼオライト、B型ゼオライト、E型ゼオライト、F型ゼオライト、H型ゼオライト、J型ゼオライト、M型ゼオライト、Q型ゼオライト、T型ゼオライト、W型ゼオライト、Z型ゼオライト、α型ゼオライト、β型ゼオライト、ω型ゼオライト、ZSM-5型ゼオライト、SAPO-5型ゼオライト、SAPO-11型ゼオライト及びSAPO-34型ゼオライトからなる群より選ばれる少なくとも一種であってよい。 The cracking catalyst used in fluid catalytic cracking may include, for example, an inorganic oxide (matrix component) and zeolite. The inorganic oxide may be, for example, at least one selected from the group consisting of kaolin, montmolinite, halloysite, bentonite, alumina, silica, boria, chromia, magnesia, zirconia, titania, and silica alumina. The zeolite may be, for example, natural zeolite and/or synthetic zeolite. Natural zeolites include gmelinite, chabasite, dakiardofluorite, clinoptilolite, faujasite, kyphite, borofluorite, repinite, erionite, sodalite, cankrinite, ferrierite, brewster fluorite, offretite, and soda fluorite. It may be at least one selected from the group consisting of stone and mordenite. Synthetic zeolites include X-type zeolite, Y-type zeolite, USY-type zeolite, A-type zeolite, L-type zeolite, ZK-4-type zeolite, B-type zeolite, E-type zeolite, F-type zeolite, H-type zeolite, J-type zeolite, M-type zeolite, Q-type zeolite, T-type zeolite, W-type zeolite, Z-type zeolite, α-type zeolite, β-type zeolite, ω-type zeolite, ZSM-5 type zeolite, SAPO-5 type zeolite, SAPO-11 type zeolite, and It may be at least one selected from the group consisting of SAPO-34 type zeolites.
 原料油の流動接触分解の反応温度は、500~700℃であってよい。反応温度が500℃以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。反応温度が700℃以下である場合、過剰な分解反応を抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The reaction temperature for fluid catalytic cracking of feedstock oil may be 500 to 700°C. When the reaction temperature is 500° C. or higher, the decomposition rate tends to increase and the yield of gasoline fraction tends to increase. When the reaction temperature is 700° C. or lower, excessive decomposition reaction can be suppressed, and the yield of gasoline fraction tends to improve.
 流動接触分解の反応時間(接触時間)は、0.5~10秒であってよい。流動接触分解の反応時間が0.5秒以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。流動接触分解の反応時間(接触時間)が10秒以下である場合、過剰な分解反応を抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The reaction time (contact time) of fluid catalytic cracking may be 0.5 to 10 seconds. When the reaction time of fluid catalytic cracking is 0.5 seconds or more, the cracking rate tends to increase, and the yield of gasoline fraction tends to increase. When the reaction time (contact time) of fluid catalytic cracking is 10 seconds or less, excessive cracking reaction can be suppressed, and the yield of gasoline fraction tends to improve.
 流動接触分解装置Aへ流動化ガス13として供給される水蒸気の質量は、原料油100質量部に対して、2~50質量部であってよい。水蒸気の質量が2質量部以上である場合、原料油が十分に分散し、コーキングが抑制される傾向がある。水蒸気の質量が50質量以下である場合、接触時間が短くなりすぎることを抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The mass of the steam supplied as the fluidizing gas 13 to the fluid catalytic cracking apparatus A may be 2 to 50 parts by mass based on 100 parts by mass of the feedstock oil. When the mass of steam is 2 parts by mass or more, the raw material oil is sufficiently dispersed, and coking tends to be suppressed. When the mass of water vapor is 50 mass or less, the contact time can be prevented from becoming too short, and the yield of the gasoline fraction tends to improve.
 流動接触分解が行われる反応塔1内の圧力は、101325~3×10Paであってよい。圧力が101325Pa(標準圧力)以上である場合、分解後のガスの圧力が下がりすぎず、回収設備の運転が安定する傾向がある。圧力が3×10Pa以下である場合、反応塔1内での炭化水素分圧が高くなりすぎることを抑制でき、分解率が高くなりすぎることを抑制できる。よって、過剰な分解反応を抑制でき、ガソリン留分の収率が向上し易い傾向がある。 The pressure within the reaction tower 1 where fluid catalytic cracking is performed may be 101,325 to 3×10 5 Pa. When the pressure is 101,325 Pa (standard pressure) or higher, the pressure of the gas after decomposition does not drop too much, and the operation of the recovery equipment tends to be stable. When the pressure is 3×10 5 Pa or less, it is possible to prevent the hydrocarbon partial pressure within the reaction tower 1 from becoming too high, and it is possible to prevent the decomposition rate from becoming too high. Therefore, excessive decomposition reactions can be suppressed, and the yield of gasoline fraction tends to be improved.
 以下、実施例によって本開示を更に詳細に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be explained in more detail with reference to Examples, but the present disclosure is not limited to these Examples.
<炭化水素の製造のシミュレーション>
(実施例1~21及び比較例1~8)
 流動接触分解装置Aによる炭化水素の製造の安定運転が可能か否かをシミュレーションにより検証した。具体的には、反応塔1へ原料油を供給し、原料油を流動接触分解して炭化水素を製造するシミュレーションを行った。シミュレーションは、KBC社製の「FCC-SIMTMver6.2」(商品名)を使用して実施した。上記不等式(1)中、x、y及びzは表1~3のとおり設定した。zが4である実施例及び比較例について、xを横軸としyを縦軸としてxとyの設定値をプロットしたグラフを図3(a)に示した。zが8である実施例及び比較例と、zが12である実施例及び比較例と、についてもzが4である場合と同様のグラフを図3(b)及び(c)にそれぞれ示した。
<Simulation of hydrocarbon production>
(Examples 1 to 21 and Comparative Examples 1 to 8)
A simulation was conducted to verify whether stable operation of hydrocarbon production using fluid catalytic cracking unit A is possible. Specifically, a simulation was performed in which feedstock oil was supplied to the reaction tower 1 and the feedstock oil was subjected to fluid catalytic cracking to produce hydrocarbons. The simulation was performed using "FCC-SIM TM ver6.2" (trade name) manufactured by KBC Corporation. In the above inequality (1), x, y, and z were set as shown in Tables 1 to 3. FIG. 3A shows a graph in which the set values of x and y are plotted with x as the horizontal axis and y as the vertical axis for the examples and comparative examples in which z is 4. Graphs similar to those for the example and comparative example where z is 8 and the example and comparative example where z is 12 are shown in FIGS. 3(b) and (c), respectively. .
 原料油として表1~3に示す組成のものについてシミュレーションした。原料油の材料における15℃での密度、硫黄分、残留炭素分、蒸留性状、芳香族分、ナフテン分及びパラフィン分の含有量は、表4に示す値と仮定した。原料油の材料の蒸留性状として、1容量%留出温度(T1)、10容量%留出温度(T10)、30容量%留出温度(T30)、50容量%留出温度(T50)及び70容量%留出温度(T70)を表4に示した。 Simulations were conducted using feedstock oils with the compositions shown in Tables 1 to 3. The density at 15° C., sulfur content, residual carbon content, distillation properties, aromatic content, naphthene content, and paraffin content of the raw material were assumed to be the values shown in Table 4. The distillation properties of the raw material are 1 volume % distillation temperature (T1), 10 volume % distillation temperature (T10), 30 volume % distillation temperature (T30), 50 volume % distillation temperature (T50), and 70 volume % distillation temperature (T30). Table 4 shows the volume % distillation temperature (T70).
 原料油の材料の残留炭素分は、JIS K 2270-2 法により測定される値である。原料油の材料の硫黄分は、JIS K 2541-4により測定される値である。原料油の材料の蒸留性状は、ASTM D2887により測定される値である。原料油の材料の芳香族分、ナフテン分及びパラフィン分の含有量は、n-d-M環分析により測定される値である。 The residual carbon content of raw material oil is a value measured according to JIS K 2270-2 method. The sulfur content of the raw material oil is a value measured according to JIS K 2541-4. The distillation properties of the raw material oil are values measured according to ASTM D2887. The aromatic content, naphthene content, and paraffin content of the raw material oil are values measured by ndM ring analysis.
 原料油の材料のナフテン分及びパラフィン分の含有量の測定方法について詳述する。まず、70℃における原料油の比重(d 70)、屈折率(n 70)及び硫黄分の含有量(SC)を測定する。70℃における原料油の比重及び屈折率の測定値を下記式(b1)に代入してβを算出する。算出されたβについて、βが0を超える場合には下記式(b2)に、βが0未満である場合には下記式(b3)にβを代入して%Cを算出する。%Cを下記式(b4)に代入して%Cを算出する。%Cは、%Cと、n-d-M環分析(ASTM D3228準拠法)により測定される原料油の材料における%Cとを下記式(b5)に代入して算出される。下記式(b1)~(b5)は、規格「ASTM D3238」を参考に規定したものである。式(b2)及び(b3)中、Mは、平均分子量である。
β=(n 70-0.8280)-1.11×(d 70-1.460)・・・(b1)
%C=775β-3×SC+11500/M・・・(b2)
%C=1400β-3×SC+12100/M・・・(b3)
%C=100-%C・・・(b4)
%C=%C-%C・・・(b5)
The method for measuring the naphthene and paraffin contents of raw oil materials will be described in detail. First, the specific gravity (d 4 70 ), refractive index ( nd 70 ), and sulfur content (SC) of the raw material oil at 70° C. are measured. β is calculated by substituting the measured values of the specific gravity and refractive index of the raw material oil at 70° C. into the following formula (b1). Regarding the calculated β, % CR is calculated by substituting β into the following formula (b2) when β exceeds 0, and substituting β into the following formula (b3) when β is less than 0. %C P is calculated by substituting %C R into the following formula (b4). %C N is calculated by substituting %C R and %C A in the material of the feedstock oil measured by ndM ring analysis (according to ASTM D3228) into the following formula (b5). The following formulas (b1) to (b5) are defined with reference to the standard "ASTM D3238". In formulas (b2) and (b3), M is the average molecular weight.
β=(n d 70 -0.8280)-1.11×(d 4 70 -1.460)...(b1)
%C R =775β-3×SC+11500/M...(b2)
%C R =1400β-3×SC+12100/M...(b3)
%C P =100-%C R ...(b4)
%C N =%C R -%C A ...(b5)
 シミュレーションの可否を表1~3に示した。シミュレーションが可能であるとは、設定値に対してROTが算出される(シミュレーションを実行して解が得られる)ことを意味する。シミュレーションが不可能であるとは、設定値に対してROTが算出されない(シミュレーションを実行して解が得られない)ことを意味する。ROT(Riser Outlet Temperature)は、反応塔1から回収設備へ向かう炭化水素が通る反応塔1の出口における炭化水素の温度である。 The feasibility of simulation is shown in Tables 1 to 3. The fact that simulation is possible means that ROT is calculated for the set value (a solution is obtained by executing simulation). The fact that simulation is not possible means that ROT cannot be calculated for the set value (a solution cannot be obtained by executing simulation). ROT (Riser Outlet Temperature) is the temperature of hydrocarbons at the exit of the reaction tower 1 through which the hydrocarbons heading from the reaction tower 1 to the recovery equipment pass.
<安定運転の評価>
(実施例1~21及び比較例1~8)
 シミュレーションの結果を下記の基準に基づき評価した。結果を表1~3に示した。ROTが480℃以上であると、生成油や触媒の固化(ボギング)を抑制して装置が安定して運転できると考えられる。
(基準)
A:シミュレーションが可能であり且つROTが480℃以上である。
B:シミュレーションが不可能、又はシミュレーションが可能であるがROTが480℃未満である。
<Evaluation of stable operation>
(Examples 1 to 21 and Comparative Examples 1 to 8)
The simulation results were evaluated based on the following criteria. The results are shown in Tables 1 to 3. It is thought that when the ROT is 480° C. or higher, solidification (bogging) of the produced oil and catalyst is suppressed and the device can operate stably.
(standard)
A: Simulation is possible and ROT is 480°C or higher.
B: Simulation is not possible, or simulation is possible but ROT is less than 480°C.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記不等式(1)は、以下のようにして導出された。すなわち、触媒/油比が4である実施例及び比較例において、安定運転の評価がAであった実施例1~8と、同評価がBであった比較例1~4とを区別する境界線として第1の直線を導出した。第1の直線は、実施例1、3、5及び7のx(原料油の供給温度)及びy(供給速度y2を供給速度y1で除した値に100を乗じた値)を通る直線である。第1の直線は、下記式(A1)で示される。 The above inequality (1) was derived as follows. In other words, in Examples and Comparative Examples where the catalyst/oil ratio is 4, there is a boundary that distinguishes Examples 1 to 8, in which the stable operation evaluation was A, and Comparative Examples 1 to 4, in which the same evaluation was B. A first straight line was derived as the line. The first straight line is a straight line passing through x (feeding temperature of feedstock oil) and y (the value obtained by dividing the supply rate y2 by the supply rate y1 multiplied by 100) in Examples 1, 3, 5, and 7. . The first straight line is represented by the following formula (A1).
 触媒/油比が8である実施例及び比較例において、安定運転の評価がAであった実施例9~16と、同評価がBであった比較例5~7とを区別する境界線として第2の直線を導出した。第2の直線は、実施例9、11、13及び15のx及びyを通る直線である。第2の直線は、下記式(A2)で示される。 In Examples and Comparative Examples where the catalyst/oil ratio is 8, as a dividing line between Examples 9 to 16 where the stable operation evaluation was A and Comparative Examples 5 to 7 where the same evaluation was B. A second straight line was derived. The second straight line is a straight line passing through x and y of Examples 9, 11, 13, and 15. The second straight line is represented by the following formula (A2).
 触媒/油比が12である実施例及び比較例において、安定運転の評価がAであった実施例17~21、同評価がBであった比較例8とを区別する境界線として第3の直線を導出した。第3の直線は、実施例17及び19のx及びyを通る直線である。第3の直線は、下記式(A3)で示される。第1~第3の直線をそれぞれ図3(a)~(c)に示した。 In the Examples and Comparative Examples where the catalyst/oil ratio was 12, the third boundary line was used to distinguish between Examples 17 to 21 where the stable operation evaluation was A and Comparative Example 8 where the same evaluation was B. A straight line was derived. The third straight line is a straight line passing through x and y in Examples 17 and 19. The third straight line is represented by the following formula (A3). The first to third straight lines are shown in FIGS. 3(a) to 3(c), respectively.
Figure JPOXMLDOC01-appb-M000008
[式(A1)中、X1は、触媒/油比4における、原料油の供給温度であり、Y1は、触媒/油比4における、再生塔に供給される燃料油の供給速度を原料油の供給速度で除した値に100を乗じた値である。]
Figure JPOXMLDOC01-appb-M000008
[In formula (A1), X1 is the supply temperature of the feedstock oil at a catalyst/oil ratio of 4, and Y1 is the feed rate of the fuel oil supplied to the regeneration tower at the catalyst/oil ratio of 4. It is the value obtained by multiplying the value divided by the supply rate by 100. ]
Figure JPOXMLDOC01-appb-M000009
[式(A2)中、X2は、触媒/油比8における、原料油の供給温度であり、Y2は、触媒/油比8における、再生塔に供給される燃料油の供給速度を原料油の供給速度で除した値に100を乗じた値である。]
Figure JPOXMLDOC01-appb-M000009
[In formula (A2), X2 is the feedstock temperature at a catalyst/oil ratio of 8, and Y2 is the feeding rate of fuel oil supplied to the regeneration tower at a catalyst/oil ratio of 8. It is the value obtained by multiplying the value divided by the supply rate by 100. ]
Figure JPOXMLDOC01-appb-M000010
[式(A3)中、X3は、触媒/油比12における、原料油の供給温度であり、Y3は、触媒/油比12における、再生塔に供給される燃料油の供給速度を原料油の供給速度で除した値に100を乗じた値である。]
Figure JPOXMLDOC01-appb-M000010
[In formula (A3), X3 is the supply temperature of the feedstock oil at a catalyst/oil ratio of 12, and Y3 is the feed rate of the fuel oil supplied to the regeneration tower at the catalyst/oil ratio of 12. It is the value obtained by multiplying the value divided by the supply rate by 100. ]
 上記式(A1)~(A3)で示される直線上の任意の4点は、同一平面上に存在することが確認できる。上記式(A1)で示される直線上の任意の点の原料油の供給温度をX11とし、再生塔に供給される燃料油の供給速度を原料油の供給速度で除した値に100を乗じた値をY11とする。上記式(A2)で示される直線上の任意の点の原料油の供給温度をX12とし、再生塔に供給される燃料油の供給速度を原料油の供給速度で除した値に100を乗じた値をY12とする。上記式(A3)で示される直線上の任意の点の原料油の供給温度をX13とし、再生塔に供給される燃料油の供給速度を原料油の供給速度で除した値に100を乗じた値をY13とする。X11~X13、Y11~Y13により示される下記式(A11)~(A13)を連立してa、b及びcについて解くことで、安定運転の評価がAであった実施例と、同評価がBであった比較例とを区別する境界線となる条件式(A21)が導出される。条件式(A21)に基づき、流動接触分解装置の安定運転が可能な原料油の供給温度、再生塔に供給される燃料油の供給速度、及び触媒/油比の範囲として上記不等式(1)が導出される。 It can be confirmed that any four points on the straight line represented by the above formulas (A1) to (A3) exist on the same plane. The feedstock oil supply temperature at any point on the straight line shown by the above formula (A1) is set as X11, and the value obtained by dividing the feedstock supply rate by the feedstock supply rate supplied to the regeneration tower is multiplied by 100. Let the value be Y11. The feedstock oil supply temperature at any point on the straight line shown by the above formula (A2) is set as X12, and the value obtained by dividing the fuel oil supply rate supplied to the regeneration tower by the feedstock supply rate is multiplied by 100. Let the value be Y12. The feedstock oil supply temperature at any point on the straight line shown by the above formula (A3) is set to X13, and the value obtained by dividing the fuel oil supply rate supplied to the regeneration tower by the feedstock supply rate is multiplied by 100. The value is set to Y13. By simultaneously solving the following equations (A11) to (A13) represented by X11 to X13 and Y11 to Y13 for a, b, and c, we can compare the example in which the evaluation of stable operation was A, and the example in which the same evaluation was B. A conditional expression (A21) is derived that serves as a boundary line that distinguishes the comparison example from the comparative example. Based on conditional expression (A21), the above inequality (1) is set as the range of feedstock oil supply temperature, fuel oil supply rate supplied to the regeneration tower, and catalyst/oil ratio that allows stable operation of the fluid catalytic cracker. derived.
X11a+Y11b+4c+d=0   (A11)
X12a+Y12b+8c+d=0   (A12)
X13a+Y13b+12c+d=0   (A13)
Figure JPOXMLDOC01-appb-M000011
X11a+Y11b+4c+d=0 (A11)
X12a+Y12b+8c+d=0 (A12)
X13a+Y13b+12c+d=0 (A13)
Figure JPOXMLDOC01-appb-M000011
 実施例1~21は、上記不等式(1)を満たす(左辺が0以上である)。一方、比較例1~8は、上記不等式(1)を満たさない(左辺が0未満である)。このことから、上記不等式(1)を満たす場合に、装置が安定して運転できることが確認できた。 Examples 1 to 21 satisfy the above inequality (1) (the left side is 0 or more). On the other hand, Comparative Examples 1 to 8 do not satisfy the above inequality (1) (the left side is less than 0). From this, it was confirmed that the apparatus could be operated stably when the above inequality (1) was satisfied.
 1…反応塔、3…再生塔、A…流動接触分解装置。

 
1... Reaction tower, 3... Regeneration tower, A... Fluid catalytic cracker.

Claims (5)

  1.  反応塔及び再生塔を備える流動接触分解装置を用いて原料油を流動接触分解する工程を備え、
     前記反応塔に供給される前記原料油は、FT合成油を含み、
     前記原料油の供給温度x(単位:℃)、前記原料油の供給速度y1(単位:ton/h)、前記再生塔に供給される燃料油の供給速度y2(単位:ton/h)、及び前記反応塔と前記再生塔とを循環する触媒の循環速度z1(単位:ton/h)が下記不等式(1)を満たす、炭化水素の製造方法。
    Figure JPOXMLDOC01-appb-M000001
    y=(y2/y1)×100
    z=(z1/y1)
    A step of fluid catalytic cracking of feedstock oil using a fluid catalytic cracking apparatus equipped with a reaction tower and a regeneration tower,
    The raw material oil supplied to the reaction tower contains FT synthetic oil,
    Supply temperature x (unit: °C) of the feedstock oil, supply rate y1 (unit: ton/h) of the feedstock oil, supply rate y2 (unit: ton/h) of the fuel oil supplied to the regeneration tower, and A method for producing hydrocarbons, wherein a circulation rate z1 (unit: ton/h) of the catalyst circulating through the reaction tower and the regeneration tower satisfies the following inequality (1).
    Figure JPOXMLDOC01-appb-M000001
    y=(y2/y1)×100
    z=(z1/y1)
  2.  前記原料油が、前記FT合成油よりも%Cが高い炭化水素油を更に含む、請求項1に記載の炭化水素の製造方法。 The method for producing hydrocarbons according to claim 1, wherein the feedstock oil further includes a hydrocarbon oil having a higher % CA than the FT synthetic oil.
  3.  前記炭化水素油が、直接脱硫常圧残油を含む、請求項2に記載の炭化水素の製造方法。 The method for producing hydrocarbons according to claim 2, wherein the hydrocarbon oil contains a direct desulfurized atmospheric residual oil.
  4.  前記工程において、前記流動接触分解装置の前記反応塔に前記原料油が供給される前に、前記FT合成油と前記FT合成油よりも%Cが高い炭化水素油とが混合されることで前記原料油を得る、請求項1に記載の炭化水素の製造方法。 In the step, before the feedstock oil is supplied to the reaction tower of the fluid catalytic cracker, the FT synthetic oil and a hydrocarbon oil having a higher % CA than the FT synthetic oil are mixed. The method for producing hydrocarbons according to claim 1, wherein the raw material oil is obtained.
  5.  前記炭化水素油が、クラリファイドオイルを含む、請求項4に記載の炭化水素の製造方法。

     
    The method for producing hydrocarbons according to claim 4, wherein the hydrocarbon oil includes clarified oil.

PCT/JP2023/019726 2022-05-31 2023-05-26 Method for producing hydrocarbons WO2023234211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022088967 2022-05-31
JP2022-088967 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234211A1 true WO2023234211A1 (en) 2023-12-07

Family

ID=89024991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019726 WO2023234211A1 (en) 2022-05-31 2023-05-26 Method for producing hydrocarbons

Country Status (1)

Country Link
WO (1) WO2023234211A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
JP2006528992A (en) * 2003-05-27 2006-12-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Production method of gasoline
JP2008500418A (en) * 2004-05-26 2008-01-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing gas oil by catalytic cracking of Fischer-Tropsch products
WO2008026681A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method
WO2008026635A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
JP2006528992A (en) * 2003-05-27 2006-12-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Production method of gasoline
JP2008500418A (en) * 2004-05-26 2008-01-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing gas oil by catalytic cracking of Fischer-Tropsch products
WO2008026681A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method
WO2008026635A1 (en) * 2006-08-31 2008-03-06 Nippon Oil Corporation Fluid catalytic cracking method

Similar Documents

Publication Publication Date Title
JP7281473B2 (en) High severity fluidized catalytic cracking system and process for producing olefins from petroleum feeds
KR101954472B1 (en) Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor
CN103732725B (en) Method for producing monocyclic aromatic hydrocarbon and plant for producing monocyclic aromatic hydrocarbon
JP6797983B2 (en) An integrated method of solvent cracking and cracking for the production of light olefins
WO2012161272A1 (en) Monocyclic aromatic hydrocarbon production method and monocyclic aromatic hydrocarbon production plant
CN101600782B (en) Process for the preparation of alkylate and middle distillate
EP2909289A1 (en) Process for high severity catalytic cracking of crude oil
EP2814913A1 (en) A process for catalytic conversion of low value hydrocarbon streams to light olefins
JP6788006B2 (en) Methods and systems for fluid catalytic cracking
WO2010023456A1 (en) Method of production of light olefins in catalytic cracking units with energy deficiency
JP2007523217A (en) NOx reduction in low-CO partial combustion operation using additive for complete combustion regenerator
US20150136647A1 (en) Reactor and main fractionator configuration for producing diesel
WO2023234211A1 (en) Method for producing hydrocarbons
WO2023234212A1 (en) Method for producing hydrocarbon
WO2006067104A1 (en) Gasoline cracking
US20090299119A1 (en) Heat Balanced FCC For Light Hydrocarbon Feeds
JP5390857B2 (en) Fluid catalytic cracking method
US9580664B2 (en) Catalytic conversion method for improving product distribution
JP5399705B2 (en) Fluid catalytic cracking method
JP3724932B2 (en) Fluid catalytic cracking method of oil
Ihediwa Fluid catalytic cracking
US11028328B2 (en) Systems and processes for catalytic reforming of a hydrocarbon feed stock
Agrawal Effect on naphtha yield, overall conversion and coke yield through different operating variables in fcc unit using aspen-hysys simulator
Dautzenberg Future Transportation Fuels—Part I
Shende et al. Stacked Configuration of Fluidized Catalytic Cracking Unit: A Review.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024524821

Country of ref document: JP

Kind code of ref document: A