JP4953405B2 - FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM - Google Patents

FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM Download PDF

Info

Publication number
JP4953405B2
JP4953405B2 JP2001176231A JP2001176231A JP4953405B2 JP 4953405 B2 JP4953405 B2 JP 4953405B2 JP 2001176231 A JP2001176231 A JP 2001176231A JP 2001176231 A JP2001176231 A JP 2001176231A JP 4953405 B2 JP4953405 B2 JP 4953405B2
Authority
JP
Japan
Prior art keywords
fuel cell
heat medium
heat
polymer electrolyte
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001176231A
Other languages
Japanese (ja)
Other versions
JP2002367646A (en
JP2002367646A5 (en
Inventor
正高 尾関
伸二 宮内
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001176231A priority Critical patent/JP4953405B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to PCT/JP2002/004933 priority patent/WO2002095854A1/en
Priority to KR10-2003-7000985A priority patent/KR100519130B1/en
Priority to US10/333,849 priority patent/US20030162065A1/en
Priority to CNB028018125A priority patent/CN1238921C/en
Priority to EP10000814A priority patent/EP2178149B1/en
Priority to EP02730684A priority patent/EP1396897B1/en
Publication of JP2002367646A publication Critical patent/JP2002367646A/en
Priority to US11/474,766 priority patent/US7691512B2/en
Publication of JP2002367646A5 publication Critical patent/JP2002367646A5/ja
Priority to US12/400,850 priority patent/US7816048B2/en
Application granted granted Critical
Publication of JP4953405B2 publication Critical patent/JP4953405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池を用いて発電を行う燃料電池システム関する。
【0002】
【従来の技術】
以下に、従来の燃料電池システムについて説明する。
【0003】
図3に示すように、従来の燃料電池システムは、燃料ガスと酸化剤を用いて発電を行う燃料電池1と、天然ガスなどの発電原料に水を添加して改質し水素に富んだ燃料ガスを生成する燃料生成器2と、酸化剤としての空気を燃料電池1に供給するブロア3と、燃料電池1が発生する熱を外部へ取り出す第1の熱媒体として冷却水を燃料電池1へ流通せしめる冷却配管4と、冷却配管4に位置し冷却水を搬送する冷却水ポンプ5と、第1の熱媒体としての冷却水の熱を第2の熱媒体としての市水に伝達する熱交換器6と、市水を貯蔵する貯湯漕7と、熱交換器6と貯湯漕7を接続する市水配管8と、市水を搬送する市水ポンプ9からなる。
【0004】
燃料電池1は燃料生成器2により生成された水素に富んだ燃料ガスとブロア3が供給する空気から電力と熱を発生させる。燃料生成器2は天然ガスなどの発電原料に水を添加して水素に富んだ燃料ガスを生成するため、天然ガスなどを燃焼させるバーナ(図示せず)により高温(約700℃)に維持されている。
【0005】
燃料電池1にて発生した熱は、冷却配管4の中を流れる冷却水によって外部へ搬送される。冷却水の流量は冷却水が燃料電池1から流出するところに設置された燃料電池温度検知器10が検知する冷却水の温度Tfが目標温度Tr1(約70℃)と一致するように冷却水ポンプ5の搬送能力を調節する。ここで、温度を燃料電池1の温度は燃料電池1から流出する温度とほぼ等しいと考えられるので、燃料電池温度検知器10が検知する温度を燃料電池1の温度と見なす。
【0006】
冷却水が得た熱は熱交換器6を介して市水配管8の中を流れる市水へ伝達される。市水の流量は市水が熱交換器6から流出するところに設置された市水温度検知器11が検知する市水の温度Twが目標温度Tr2(約60℃)と一致するように市水ポンプ9の搬送能力を調節する。
【0007】
このような燃料電池システムにおいて、燃料電池1の発電を終了する際には、発電原料を燃料生成器2へ供給するのを停止するのと同時に、燃料生成器2と、燃料電池1の原料ガスおよび燃料ガスの流通経路とへ窒素などの不活性ガスを送り、可燃ガスを燃料電池システム内から廃棄することが一般的に行われる。また、発電停止と同時に燃料電池1は熱を発生しなくなるため、冷却水ポンプ5および市水ポンプ9も搬送動作を停止し、冷却水や市水の循環も停止する。
【0008】
【発明が解決しようとする課題】
上記従来例のような燃料電池システムにおいて、発電終了後、約700℃の燃料生成器2内から、燃料ガスの流通経路を経由してきた窒素などの不活性ガスは、燃料電池1を通過して、燃料電池1より外部へ排出される。
【0009】
しかしながらこの時、燃料生成器2および流通経路に残留している燃料ガスは、その温度をほぼ保ったまま、不活性ガスに後押しされる形で燃料電池1内を通過して外部へ排出されることになる。したがって、燃料電池1の内部は、この燃料ガスが通過する部分だけ高温になることが考えられる。
【0010】
燃料電池1に固体高分子型を用いている場合は、電解質に用いられる固体高分子膜は湿潤であることが必要であるが、高温かつ加湿されていない不活性ガスが固体高分子膜の近傍を流れると固体高分子膜が部分的に乾燥してしまう事態が発生し、燃料電池1の発電効率を著しく低下させる原因となる。
【0011】
次に、燃料電池1が発電を停止しても、燃料電池1自身は、しばらくの間は約70℃程度の温度を保っている。これは環境温度に比べると高い温度であるため、燃料電池1の保有している熱は、冷却水の循環を停止した後は外部へ放出されるのみであり、発電に際して発生した熱を有効に利用するためには発電後も燃料電池1が保有している熱を利用することが必要であった。
【0012】
本発明は、上記の課題に鑑みてなされたものであり、発電終了後に燃料電池の発電効率を低下させる事態を引き起こすことのない燃料電池システム得ることを目的とする。
【0013】
また、本発明は、発電終了後にも燃料電池の保持する熱を利用することができる燃料電池システム得ることを目的とする。
【0014】
【課題を解決するための手段】
上記の目的を達成するために、第1の本発明は、燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、
前記冷却循環系内にて前記第1の熱媒体を循環させる第1の熱媒体循環手段と、
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、コントローラとを備え、
前記固体高分子型燃料電池の発電が停止した後も、前記コントローラが、前記第1の熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システムである。
【0015】
第2の本発明は、燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、
前記冷却循環系内にて前記第1の熱媒体を循環させる第1の熱媒体循環手段と、
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、コントローラとを備え、
前記燃料と前記酸化剤の前記固体高分子型燃料電池への供給が停止した後も、前記コントローラが、前記第1の熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システムである。
【0016】
第3の本発明は、固体高分子型燃料電池の温度を検出する温度検出手段を備え、
前記コントローラが、前記温度検出手段が検出する温度が前記固体高分子型燃料電池の発電中よりも低い所定のしきい値以下になるまで前記第1の熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する第1または第2の本発明の燃料電池システムである。
【0018】
の本発明は、燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、
前記冷却循環系内にて前記第1の熱媒体を循環させる熱媒体循環手段と、
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、を備え、
前記固体高分子型燃料電池の発電が停止した後も、前記熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システムの運転方法である。
の本発明は、燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、
前記冷却循環系内にて前記第1の熱媒体を循環させる熱媒体循環手段と、
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、を備え、
前記料と前記酸化剤の前記固体高分子型燃料電池への供給が停止した後も、前記熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システムの運転方法である。
【0019】
【発明の実施の形態】
以下に、本発明の実施の形態を図面を参照して説明する。
【0020】
(第1の実施の形態)
本発明の第1の実施の形態による燃料電池システムの構成要素は従来例と同じ図3で示され、同じ構成要素については同じ番号を付与している。
【0021】
図3に示すように、本実施の形態の燃料電池システムは、燃料ガスと酸化剤を用いて発電を行う燃料電池1と、天然ガスなどの発電原料に水を添加して改質し水素に富んだ燃料ガスを生成する燃料生成器2と、酸化剤としての空気を燃料電池1に供給するブロア3と、燃料電池1が発生する熱を外部へ取り出す第1の熱媒体として冷却水を燃料電池1へ流通せしめる冷却配管4と、冷却配管4に位置し冷却水を搬送する冷却水ポンプ5と、第1の熱媒体としての冷却水の熱を第2の熱媒体としての市水に伝達する熱交換器6と、市水を貯蔵する貯湯漕7と、熱交換器6と貯湯漕7を接続する市水配管8と、市水を搬送する市水ポンプ9とを備えている。
【0022】
また、図1は、本発明の第1の実施の形態における燃料電池システムの発電中および発電停止後の冷却水ポンプ5と市水ポンプ9の運転形態を示すフローチャートである。
【0023】
以上のような構成を有する本実施の形態による燃料電池システムの動作を、以下に説明する。
【0024】
燃料電池1は、燃料生成器2により生成された水素に富んだ燃料ガスとブロア3が供給する空気とから、電力および熱を発生させる。
【0025】
燃料生成器2は、天然ガスなどの発電原料に水を添加して水素に富んだ燃料ガスを生成するため、天然ガスなどを燃焼させるバーナ(図示せず)により高温(約700℃)に維持されている。
【0026】
燃料電池1にて発生した熱は、冷却配管4の中を流れる冷却水によって外部へ搬送される。冷却水の流量は、冷却水が燃料電池1から流出するところに設置された燃料電池温度検知器10が検知する冷却水の温度Tfが目標温度Tr1(約70℃)と一致する冷却水ポンプ5の搬送能力を調節する。ここで、温度を燃料電池1の温度は燃料電池1から流出する温度とほぼ等しいと考えられるので、燃料電池温度検知器10が検知する温度を燃料電池1の温度と見なしてもよい。
【0027】
冷却水が得た熱は、熱交換器6を介して市水配管8の中を流れる市水へ伝達される。市水の流量は、市水が熱交換器6から流出するところに設置された市水温度検知器11が検知する市水の温度Twが、目標温度Tr2(約60℃)と一致するように市水ポンプ9の搬送能力を調節する。
【0028】
次に、燃料電池1の発電を終了する際には、原料ガスおよび水を燃料生成器2へ供給するのを停止するのと同時に、燃料生成器2から燃料電池1への原料ガスおよび燃料ガスの流通経路と、燃料電池1内における原料ガスおよび燃料ガスの流通経路との両方に窒素などの不活性ガスを送り、燃料生成器、流通経路および燃料電池1内に残留する可燃ガスを燃料電池システム内から排出する。
【0029】
以上までの動作は従来例の燃料電池システムと同様であるが、以後の動作については、図1のフローチャートを参照して説明を行う。
【0030】
まず、燃料電池温度検知器10は、燃料電池1の温度に相当する、燃料電池1から流出する冷却水の温度Tfを検知する(001)。
【0031】
検知した温度Tfが、予め定めた目標温度Tr1より高い場合には、冷却水ポンプ5の冷却水搬送能力を大きくし、逆に、検知した温度Tfが目標温度Tr1より低い場合には冷却水ポンプ5の冷却水搬送能力を小さくする(002)。ここで、冷却水ポンプ5の冷却水搬送能力を決定するためには、一般的に用いられるPIDコントローラを用いて、冷却水の温度Tfが目標温度Tr1に一致するように冷却水ポンプ5の冷却水搬送動力を演算して、冷却水ポンプ5を運転すればよい。
【0032】
続いて、市水温度検知器11は、熱交換器6から流出する市水の温度Twを検知する(003)。
【0033】
検知した温度Twが、予め定めた目標温度Tr2より高い場合には、市水ポンプ9の市水搬送能力を大きくし、逆に、検知した温度Twが目標温度Tr2より低い場合には、市水ポンプ9の市水搬送能力を小さくする(004)。ここで、市水ポンプ9の市水搬送能力を決定するためには、一般的に用いられるPIDコントローラを用いて、市水の温度Twが目標温度Tr2に一致するように市水ポンプ9の市水搬送動力を演算して、市水ポンプ9を運転すればよい。
【0034】
次に、燃料電池システムが発電停止されているかどうかを、図示しないシステムのコントローラが判断し(005)、発電継続中であれば再び処理002へ戻り、上記フローに基づく運転を繰り返す。
【0035】
一方、燃料電池1の発電が停止される場合は、燃料発生器2からの燃料ガスの供給およびブロア3からの空気の供給は停止し、燃料生成器2および燃料電池1への不活性ガスの導入が開始されるが、燃料電池温度検知器10は、冷却水の温度Tfと、予め定めたしきい温度Te1(約60℃)とを比較して(006)、冷却水の温度Tfがしきい温度Te1(約60℃)よりも高い場合には処理002へ戻り、上記フローに基づく運転を繰り返す。
【0036】
冷却水の温度Tfがしきい温度Te1(約60℃)よりも低くなった場合には、冷却水ポンプ5と市水ポンプ9の運転を停止する。
【0037】
以上のように、本実施の形態においては、燃料電池1が発する熱を外部へ搬送するための冷却水ポンプ5と市水ポンプ9は、燃料電池1が発電停止しても運転しつづけるため、燃料生成器2と燃料電池1の原料ガスおよび燃料ガスの流通経路へ窒素などの不活性ガスを燃料電池1へ送っても、不活性ガスおよび不活性ガスにより搬送される高熱の残留燃料ガスが保持している熱は、冷却水を通して外部へ排出されるため、燃料電池1が部分的にも高温になることはない。そのため、燃料電池1に固体高分子型を用いていても固体高分子膜が部分的に乾燥してしまう事態が発生せず、燃料電池1の発電効率を著しく低下させる事態は発生しない。
【0038】
また、燃料電池システムの発電を停止する時点において、冷却水ポンプ5と市水ポンプ9は燃料電池1が発電停止しても運転しつづけ、冷却水の温度Tfがしきい温度Te1より低くなった時点で停止するようにすることにより、燃料電池1の発電時に発生していた熱を効率よく回収することが可能になる。
【0039】
また、冷却水の温度Tfがしきい温度Te1より低い場合には冷却水ポンプ5と市水ポンプ9を停止するため、貯湯している市水の温度を必要以上に低下させることがなく、利用価値の高い温度で市水の貯湯を維持させることが可能である。
【0040】
(第2の実施の形態)
次に、本発明の第2の実施の形態を図面を参照して説明する。
【0041】
本実施の形態も、第1の実施の形態と同じく、従来例の燃料電池システムと同様の構成を有するため、説明には図3を用い、この詳細な説明は本発明の第1の実施の形態における燃料電池システムのものに準ずるものとする。
【0042】
また、図2は、本発明の第2の実施の形態における燃料電池システムの発電中および発電停止後の冷却水ポンプ5と市水ポンプ9の運転形態を示すフローチャートである。
【0043】
以上のような構成を有する本実施の形態による燃料電池システムの動作を、以下に説明する。
【0044】
まず、燃料電池温度検知器10は、燃料電池1の温度に相当する燃料電池1から流出する冷却水の温度Tfを検知する(001)。
【0045】
検知した温度Tfが、予め定めた目標温度Tr1より高い場合には、冷却水ポンプ5の冷却水搬送能力を大きくし、逆に、検知した温度Tfが目標温度Tr1より低い場合には冷却水ポンプ5の冷却水搬送能力を小さくする(002)。ここで、冷却水ポンプ5の冷却水搬送能力を決定するためには、一般的に用いられるPIDコントローラを用いて、冷却水の温度Tfが目標温度Tr1に一致するように冷却水ポンプ5の冷却水搬送動力を演算して冷却水ポンプ5を運転すればよい。
【0046】
続いて、市水温度検知器11は、熱交換器6から流出する市水の温度Twを検知する(003)。検知した温度Twが、予め定めた目標温度Tr2より高い場合には、市水ポンプ9の市水搬送能力を大きくし、逆に、検知した温度Twが目標温度Tr2より低い場合には、市水ポンプ9の市水搬送能力を小さくする(004)。ここで、市水ポンプ9の市水搬送能力を決定するためには、一般的に用いられるPIDコントローラを用いて、市水の温度Twが目標温度Tr2に一致するように市水ポンプ9の市水搬送動力を演算して市水ポンプ9を運転すればよい。
【0047】
そして、燃料電池システムが発電停止されているかどうかを、図示しないシステムのコントローラが判断し(005)、発電継続中であれば再び処理002へ戻り、上記フローに基づく運転を繰り返す。
【0048】
一方、燃料電池1の発電が停止された場合には、市水の温度Twと、予め定めたしきい温度Te2(約55℃)とを比較して(006)、市水の温度Twがしきい温度Te2(約55℃)よりも高い場合には処理002へ戻り、上記フローに基づく運転を繰り返す。
【0049】
市水の温度Twがしきい温度Te2(約55℃)よりも低くなった場合には、冷却水ポンプ5と市水ポンプ9の運転を停止する。
【0050】
以上のように、本実施の形態においては、燃料電池システムの発電を停止する時点において、燃料電池1が発する熱を外部へ搬送するための冷却水ポンプ5と市水ポンプ9は燃料電池1が発電停止しても運転しつづけ、市水の温度Twがしきい温度Te2より低くなった時点で停止するようにすることにより、燃料電池1の発電時に発生し、発電の停止後に燃料電池1内に保たれていた熱も効率よく回収することが可能になる。
【0051】
また、市水の温度Twがしきい温度Te2より低い場合には、冷却水ポンプ5と市水ポンプ9を停止するため、貯湯している市水の温度を必要以上に低下させることがなく、利用価値の高い温度で市水の貯湯を維持させることが可能である。
【0052】
また、冷却水ポンプ5と市水ポンプ9を停止するタイミングを、熱を実際に利用する市水の温度で決めるため、正確な貯湯温度の管理が可能となる。
【0053】
さらに、第1の実施の形態と同様、発電停止に際して燃料生成器2と燃料電池1の原料ガスおよび燃料ガスの流通経路へ窒素などの不活性ガスを燃料電池1へ送っても、不活性ガスおよび不活性ガスにより搬送される高熱の残留燃料ガスが保持している熱は冷却水を通して外部へ排出されるため、燃料電池1が部分的にも高温になることはない。そのため、燃料電池1に固体高分子型を用いていても固体高分子膜が部分的に乾燥してしまう事態が発生せず、燃料電池1の発電効率を著しく低下させる事態は発生しない。
【0054】
なお、本発明の第1の実施の形態、第2の実施の形態において、燃料電池1の目標温度Tr1を70℃、市水の目標温度Tr2を60℃としているが目標温度Tr1は燃料電池1の発電が効率良く行われる温度に設定されるべきで70℃に限るものではなく、目標温度Tr2も市水を貯湯7へ貯める温度として望まれる温度に設定されるべきで60℃に限るものではない。
【0055】
また、本発明の第1の実施の形態で、冷却水ポンプ5と市水ポンプ9の運転を停止するしきい温度Te1を60℃としたが、市水を貯湯7へ貯める温度として望まれる温度に熱交換器6でのロスを考えて数度上に設定されるべきで60℃に限るものではない。
【0056】
さらに、本発明の第2の実施の形態で、冷却水ポンプ5と市水ポンプ9の運転を停止するしきい温度Te2を55℃としたが、市水を貯湯7へ貯める温度として望まれる温度に設定されるべきで55℃に限るものではない。
【0057】
また、上記の各実施の形態において、燃料電池1は本発明の燃料電池の一例であり、冷却配管4は本発明の冷却循環系の一例である。また冷却水ポンプ5は本発明の第1の熱媒体循環手段の一例であり、熱交換器6および市水ポンプ9は本発明の放熱手段または熱交換器一例であり、燃料電池温度検知器10および市水温度検知11は本発明の温度検出手段の一例である。また冷却配管4内を搬送される冷却水は本発明の第1の熱媒体の一例であり、水配管8内を搬送される市水は第2の熱媒体の一例である
【0058】
しかしながら、本発明は上記の実施の形態の構成に限定されるものではなく、本発明の温度検出手段は、燃料電池1の温度を直接測定して、その温度を得るようにしても良い。また熱交換器の温度を測定するようにしてもよい。市水配管8の温度を測定するようにしてもよい。要するに、本発明の温度検出手段は、燃料電池の温度を直接的または間接的に検出することができる、または本発明の第2の熱媒体の温度を検出できればよく、その測定部位によって限定されることはない。
【0059】
また、本発明の第1の熱媒体は、冷却水(H20)に限定する必要はなく、他に不凍液など、絶縁性で、燃料電池の熱を充分に担持可能な媒体であればよい。
【0060】
また、本発明の放熱手段は、貯湯7および市水配管8を省略して、熱交換器6が空気中に熱を放出するような構成であってもよい。この場合、第1の熱媒体循環手段に対応する冷却水ポンプ5だけが、所定のしきい値になるまで動作することになる。また、放熱手段が、熱媒体の循環など、放熱のための動作を行うような構成であっても、第1の熱媒体循環手段だけが、燃料電池への燃料および酸化剤の供給停止後も、動作するものであってもよい。
【0061】
以上のような本発明は、燃料電池1の発電停止後、冷却水の温度Trがしきい温度Te1(約60℃)より低くなる、もしくは、市水の温度Twがしきい温度Te2(約55℃)より低くなるまで、冷却水ポンプ5と市水ポンプ9の運転を継続することにより、発電中に燃料電池1が発生した熱を効率よく回収することが可能となる。冷却水もしくは市水の温度がしきい温度より低くなった時に冷却水ポンプ5と市水ポンプ9を停止するため、貯湯している市水の温度を必要以上に低下させることがなく、利用価値の高い温度で市水の貯湯を維持させることが可能である。
【0062】
また、発電停止後に原料ガス、燃料ガス経路を通過してきた不活性ガスによる燃料電池1の温度上昇を招かないため、燃料電池1に固体高分子型を用いていても固体高分子膜が部分的に乾燥してしまう事態が発生せず、燃料電池1の発電効率を著しく低下させる事態は発生せず、信頼性の高い燃料電池システムの提供が可能となる。
【0063】
【発明の効果】
以上説明したところから明らかなように、本発明は、発電終了後に燃料電池の発電効率を低下させる事態を引き起こすことのない燃料電池システム提供することができる。
【0064】
また、燃料電池で発生した熱を効率よく外部へ取り出し、有効な形態で熱を利用する燃料電池システム提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における燃料電池システムの発電中および発電停止後の運転形態を示すフローチャートを示す図である。
【図2】本発明の第2の実施の形態における燃料電池システムの発電中および発電停止後の運転形態を示すフローチャートを示す図である。
【図3】従来のおよび本発明の実施の形態における燃料電池システムを示す構成図である。
【符号の説明】
1 燃料電池
2 燃料生成器
3 ブロア
4 冷却配管
5 冷却水ポンプ
6 熱交換器
7 貯湯漕
8 市水配管
9 市水ポンプ
10 燃料電池温度検知器
11 市水温度検知器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell system for generating electric power using a fuel cell.
[0002]
[Prior art]
A conventional fuel cell system will be described below.
[0003]
As shown in FIG. 3, the conventional fuel cell system includes a fuel cell 1 that generates power using fuel gas and an oxidant, and a fuel rich in hydrogen by reforming by adding water to a power generation material such as natural gas. A fuel generator 2 that generates gas, a blower 3 that supplies air as an oxidant to the fuel cell 1, and cooling water to the fuel cell 1 as a first heat medium that extracts heat generated by the fuel cell 1 to the outside. Cooling pipe 4 to be circulated, cooling water pump 5 located in the cooling pipe 4 for conveying the cooling water, and heat exchange for transferring the heat of the cooling water as the first heat medium to the city water as the second heat medium It comprises a vessel 6, a hot water tank 7 for storing city water, a city water pipe 8 for connecting the heat exchanger 6 and the hot water tank 7, and a city water pump 9 for conveying city water.
[0004]
The fuel cell 1 generates electric power and heat from the hydrogen-rich fuel gas generated by the fuel generator 2 and the air supplied by the blower 3. Since the fuel generator 2 generates water-rich fuel gas by adding water to a power generation raw material such as natural gas, the fuel generator 2 is maintained at a high temperature (about 700 ° C.) by a burner (not shown) that burns natural gas or the like. ing.
[0005]
Heat generated in the fuel cell 1 is conveyed to the outside by cooling water flowing through the cooling pipe 4. The coolant flow rate is such that the coolant temperature Tf detected by the fuel cell temperature detector 10 installed where the coolant flows out of the fuel cell 1 coincides with the target temperature Tr1 (about 70 ° C.). Adjust the conveyance capacity of 5. Here, since the temperature of the fuel cell 1 is considered to be substantially equal to the temperature flowing out of the fuel cell 1, the temperature detected by the fuel cell temperature detector 10 is regarded as the temperature of the fuel cell 1.
[0006]
The heat obtained by the cooling water is transmitted to the city water flowing through the city water pipe 8 through the heat exchanger 6. The city water flow rate is such that the city water temperature Tw detected by the city water temperature detector 11 installed where the city water flows out of the heat exchanger 6 coincides with the target temperature Tr2 (about 60 ° C.). The conveyance capacity of the pump 9 is adjusted.
[0007]
In such a fuel cell system, when the power generation of the fuel cell 1 is terminated, the supply of the power generation raw material to the fuel generator 2 is stopped, and at the same time, the fuel generator 2 and the raw material gas of the fuel cell 1 are stopped. In general, an inert gas such as nitrogen is sent to the fuel gas flow path and the combustible gas is discarded from the fuel cell system. In addition, since the fuel cell 1 does not generate heat at the same time as power generation is stopped, the cooling water pump 5 and the city water pump 9 also stop the conveying operation, and the circulation of the cooling water and city water also stops.
[0008]
[Problems to be solved by the invention]
In the fuel cell system as in the conventional example described above, after the power generation is completed, the inert gas such as nitrogen that has passed through the fuel gas distribution path from the fuel generator 2 at about 700 ° C. passes through the fuel cell 1. The fuel cell 1 is discharged to the outside.
[0009]
However, at this time, the fuel gas remaining in the fuel generator 2 and the flow path passes through the fuel cell 1 and is discharged to the outside while being pushed by the inert gas while maintaining its temperature substantially. It will be. Therefore, it is conceivable that the inside of the fuel cell 1 is heated only in the portion through which the fuel gas passes.
[0010]
When the solid polymer type is used for the fuel cell 1, the solid polymer membrane used for the electrolyte needs to be wet, but an inert gas that is not humidified at high temperature is near the solid polymer membrane. When the gas flows through the solid polymer film, the solid polymer film is partially dried, which significantly reduces the power generation efficiency of the fuel cell 1.
[0011]
Next, even if the fuel cell 1 stops power generation, the fuel cell 1 itself maintains a temperature of about 70 ° C. for a while. Since this is a higher temperature than the environmental temperature, the heat held by the fuel cell 1 is only released to the outside after the circulation of the cooling water is stopped, and the heat generated during power generation is effectively utilized. In order to use it, it is necessary to use the heat held by the fuel cell 1 even after power generation.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to obtain a fuel cell system that does not cause a situation in which the power generation efficiency of the fuel cell is lowered after the end of power generation.
[0013]
Another object of the present invention is to provide a fuel cell system that can utilize the heat retained by the fuel cell even after the end of power generation.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention includes a polymer electrolyte fuel cell that generates electric power upon receiving supply of a fuel and an oxidant;
A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
First heat medium circulating means for circulating the first heat medium in the cooling circulation system;
A heat dissipating means provided in the cooling circulation system for dissipating heat of the first heat medium, and a controller;
Even after the power generation of the polymer electrolyte fuel cell is stopped, the controller circulates the first heat medium by the first heat medium circulation means and continues cooling the polymer electrolyte fuel cell. It is a fuel cell system.
[0015]
A second aspect of the present invention relates to a polymer electrolyte fuel cell that generates electric power by receiving supply of fuel and an oxidant;
A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
First heat medium circulating means for circulating the first heat medium in the cooling circulation system;
A heat dissipating means provided in the cooling circulation system for dissipating heat of the first heat medium, and a controller;
Even after the supply of the fuel and the oxidant to the polymer electrolyte fuel cell is stopped, the controller circulates the first heat medium by the first heat medium circulation means, and the solid polymer This is a fuel cell system for continuing cooling of the fuel cell.
[0016]
The third of the present invention includes a temperature detecting means for detecting the temperature of the pre-Symbol polymer electrolyte fuel cell,
The first heat medium is circulated by the first heat medium circulation means until the temperature detected by the temperature detection means becomes lower than a predetermined threshold lower than that during the power generation of the polymer electrolyte fuel cell. The fuel cell system according to the first or second aspect of the present invention continues the cooling of the polymer electrolyte fuel cell.
[0018]
A fourth aspect of the present invention relates to a polymer electrolyte fuel cell that generates electric power upon receiving supply of fuel and an oxidant;
A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
A heat medium circulating means for circulating the first heat medium in the cooling circulation system;
A heat dissipating means provided in the cooling circulation system for dissipating the heat of the first heat medium, and
Even after power generation of the polymer electrolyte fuel cell is stopped, the fuel cell system operating method of continuing the cooling of the polymer electrolyte fuel cell by circulating the first heat medium by the heat medium circulation means. is there.
A fifth aspect of the present invention relates to a polymer electrolyte fuel cell that generates electric power by receiving supply of a fuel and an oxidant;
A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
A heat medium circulating means for circulating the first heat medium in the cooling circulation system;
A heat dissipating means provided in the cooling circulation system for dissipating the heat of the first heat medium, and
Even after the supply to the polymer electrolyte fuel cell of the fuel and the oxidizing agent is stopped, to circulate the first heat medium by the heat medium circulation means, the cooling of the polymer electrolyte fuel cell It is the operation method of the fuel cell system to continue.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
(First embodiment)
The components of the fuel cell system according to the first embodiment of the present invention are shown in FIG. 3 which is the same as the conventional example, and the same components are given the same numbers.
[0021]
As shown in FIG. 3, the fuel cell system of the present embodiment includes a fuel cell 1 that generates power using fuel gas and an oxidant, and reforms by adding water to a power generation raw material such as natural gas to form hydrogen. Fuel generator 2 for generating rich fuel gas, blower 3 for supplying air as oxidant to fuel cell 1, and cooling water as fuel for the first heat medium for extracting heat generated by fuel cell 1 to the outside Cooling pipe 4 that circulates to battery 1, cooling water pump 5 that is located in cooling pipe 4 and conveys cooling water, and heat of cooling water as the first heat medium is transferred to city water as the second heat medium. A heat exchanger 6 that stores the city water, a city water pipe 8 that connects the heat exchanger 6 and the water reservoir 7, and a city water pump 9 that conveys the city water.
[0022]
FIG. 1 is a flowchart showing an operation mode of the cooling water pump 5 and the city water pump 9 during and after power generation of the fuel cell system according to the first embodiment of the present invention.
[0023]
The operation of the fuel cell system according to the present embodiment having the above configuration will be described below.
[0024]
The fuel cell 1 generates electric power and heat from the fuel gas rich in hydrogen generated by the fuel generator 2 and the air supplied by the blower 3.
[0025]
The fuel generator 2 is maintained at a high temperature (about 700 ° C.) by a burner (not shown) for burning natural gas or the like in order to generate hydrogen-rich fuel gas by adding water to a power generation raw material such as natural gas. Has been.
[0026]
Heat generated in the fuel cell 1 is conveyed to the outside by cooling water flowing through the cooling pipe 4. The cooling water flow rate of the cooling water pump 5 is such that the cooling water temperature Tf detected by the fuel cell temperature detector 10 installed where the cooling water flows out of the fuel cell 1 coincides with the target temperature Tr1 (about 70 ° C.). Adjust the transport capacity. Here, since the temperature of the fuel cell 1 is considered to be substantially equal to the temperature flowing out of the fuel cell 1, the temperature detected by the fuel cell temperature detector 10 may be regarded as the temperature of the fuel cell 1.
[0027]
The heat obtained by the cooling water is transmitted to the city water flowing through the city water pipe 8 through the heat exchanger 6. The flow rate of the city water is such that the city water temperature Tw detected by the city water temperature detector 11 installed where the city water flows out of the heat exchanger 6 coincides with the target temperature Tr2 (about 60 ° C.). The conveyance capacity of the city water pump 9 is adjusted.
[0028]
Next, when the power generation of the fuel cell 1 is terminated, the supply of the raw material gas and water to the fuel generator 2 is stopped, and at the same time, the raw material gas and the fuel gas from the fuel generator 2 to the fuel cell 1 are stopped. An inert gas such as nitrogen is sent to both the distribution path of the fuel cell 1 and the distribution path of the raw material gas and the fuel gas in the fuel cell 1, and the combustible gas remaining in the fuel generator, the distribution path and the fuel cell 1 is supplied to the fuel cell. Drain from the system.
[0029]
The operation so far is the same as that of the conventional fuel cell system, but the subsequent operation will be described with reference to the flowchart of FIG.
[0030]
First, the fuel cell temperature detector 10 detects the temperature Tf of the cooling water flowing out from the fuel cell 1 corresponding to the temperature of the fuel cell 1 (001).
[0031]
When the detected temperature Tf is higher than the predetermined target temperature Tr1, the cooling water transfer capacity of the cooling water pump 5 is increased. Conversely, when the detected temperature Tf is lower than the target temperature Tr1, the cooling water pump 5 is reduced (002). Here, in order to determine the cooling water conveyance capacity of the cooling water pump 5, the cooling water pump 5 is cooled so that the temperature Tf of the cooling water coincides with the target temperature Tr1 using a commonly used PID controller. The cooling water pump 5 may be operated by calculating the water conveyance power.
[0032]
Subsequently, the city water temperature detector 11 detects the temperature Tw of city water flowing out from the heat exchanger 6 (003).
[0033]
When the detected temperature Tw is higher than a predetermined target temperature Tr2, the city water pump 9 is increased in the city water transport capacity. Conversely, when the detected temperature Tw is lower than the target temperature Tr2, The city water carrying capacity of the pump 9 is reduced (004). Here, in order to determine the city water transport capacity of the city water pump 9, the city water pump 9 city is set so that the city water temperature Tw matches the target temperature Tr2 using a commonly used PID controller. The city water pump 9 may be operated by calculating the water conveyance power.
[0034]
Next, a controller of a system (not shown) determines whether or not the fuel cell system has stopped generating power (005). If power generation is continuing, the process returns to step 002 to repeat the operation based on the above flow.
[0035]
On the other hand, when the power generation of the fuel cell 1 is stopped, the supply of fuel gas from the fuel generator 2 and the supply of air from the blower 3 are stopped, and the inert gas to the fuel generator 2 and the fuel cell 1 is stopped. Although the introduction is started, the fuel cell temperature detector 10 compares the temperature Tf of the cooling water with a predetermined threshold temperature Te1 (about 60 ° C.) (006) to determine the temperature Tf of the cooling water. When it is higher than the threshold temperature Te1 (about 60 ° C.), the process returns to the process 002 and the operation based on the above flow is repeated.
[0036]
When the temperature Tf of the cooling water is lower than the threshold temperature Te1 (about 60 ° C.), the operation of the cooling water pump 5 and the city water pump 9 is stopped.
[0037]
As described above, in the present embodiment, the cooling water pump 5 and the city water pump 9 for conveying the heat generated by the fuel cell 1 to the outside continue to operate even when the fuel cell 1 stops generating power. Even when an inert gas such as nitrogen is sent to the fuel cell 1 through the fuel gas generator 2 and the fuel gas 1 and the fuel gas flow path, the high-temperature residual fuel gas transported by the inert gas and the inert gas remains. Since the retained heat is discharged to the outside through the cooling water, the fuel cell 1 does not partially become hot. Therefore, even if the solid polymer type is used for the fuel cell 1, the situation where the solid polymer membrane is partially dried does not occur, and the situation where the power generation efficiency of the fuel cell 1 is significantly reduced does not occur.
[0038]
Further, at the time when the power generation of the fuel cell system is stopped, the cooling water pump 5 and the city water pump 9 continue to operate even when the fuel cell 1 stops generating power, and the cooling water temperature Tf becomes lower than the threshold temperature Te1. By stopping at the time, it becomes possible to efficiently recover the heat generated during the power generation of the fuel cell 1.
[0039]
Further, when the temperature Tf of the cooling water is lower than the threshold temperature Te1, the cooling water pump 5 and the city water pump 9 are stopped, so that the temperature of the city water stored in the hot water is not lowered more than necessary. It is possible to maintain city water hot water at a high temperature.
[0040]
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings.
[0041]
Since this embodiment also has the same configuration as that of the conventional fuel cell system as in the first embodiment, FIG. 3 is used for the description, and this detailed description is based on the first embodiment of the present invention. It shall conform to that of the fuel cell system in the embodiment.
[0042]
FIG. 2 is a flowchart showing an operation mode of the cooling water pump 5 and the city water pump 9 during and after power generation of the fuel cell system according to the second embodiment of the present invention.
[0043]
The operation of the fuel cell system according to the present embodiment having the above configuration will be described below.
[0044]
First, the fuel cell temperature detector 10 detects the temperature Tf of the cooling water flowing out from the fuel cell 1 corresponding to the temperature of the fuel cell 1 (001).
[0045]
When the detected temperature Tf is higher than the predetermined target temperature Tr1, the cooling water transfer capacity of the cooling water pump 5 is increased. Conversely, when the detected temperature Tf is lower than the target temperature Tr1, the cooling water pump 5 is reduced (002). Here, in order to determine the cooling water conveyance capacity of the cooling water pump 5, the cooling water pump 5 is cooled so that the temperature Tf of the cooling water coincides with the target temperature Tr1 using a commonly used PID controller. The cooling water pump 5 may be operated by calculating the water conveyance power.
[0046]
Subsequently, the city water temperature detector 11 detects the temperature Tw of city water flowing out from the heat exchanger 6 (003). When the detected temperature Tw is higher than a predetermined target temperature Tr2, the city water pump 9 is increased in the city water transport capacity. Conversely, when the detected temperature Tw is lower than the target temperature Tr2, The city water carrying capacity of the pump 9 is reduced (004). Here, in order to determine the city water transport capacity of the city water pump 9, the city water pump 9 city is set so that the city water temperature Tw matches the target temperature Tr2 using a commonly used PID controller. The city water pump 9 may be operated by calculating the water conveyance power.
[0047]
Then, the controller of the system (not shown) determines whether or not the fuel cell system has stopped generating power (005). If power generation is continuing, the process returns to step 002 to repeat the operation based on the above flow.
[0048]
On the other hand, when the power generation of the fuel cell 1 is stopped, the temperature Tw of the city water is compared with a predetermined threshold temperature Te2 (about 55 ° C.) (006) to obtain the temperature Tw of the city water. When the temperature is higher than the threshold temperature Te2 (about 55 ° C.), the process returns to the process 002 and the operation based on the above flow is repeated.
[0049]
When the city water temperature Tw becomes lower than the threshold temperature Te2 (about 55 ° C.), the cooling water pump 5 and the city water pump 9 are stopped.
[0050]
As described above, in the present embodiment, when the power generation of the fuel cell system is stopped, the cooling water pump 5 and the city water pump 9 for conveying the heat generated by the fuel cell 1 to the outside are the fuel cell 1 Even if power generation is stopped, the system continues to operate and stops when the temperature Tw of the city water becomes lower than the threshold temperature Te2, so that it occurs when the fuel cell 1 generates power. Thus, it is possible to efficiently recover the heat kept in the heat.
[0051]
When the city water temperature Tw is lower than the threshold temperature Te2, the cooling water pump 5 and the city water pump 9 are stopped, so that the temperature of the city water stored in the hot water is not lowered more than necessary. It is possible to maintain city water hot water at a temperature with high utility value.
[0052]
In addition, since the timing of stopping the cooling water pump 5 and the city water pump 9 is determined by the temperature of the city water that actually uses heat, the hot water storage temperature can be managed accurately.
[0053]
Further, as in the first embodiment, when power generation is stopped, the inert gas such as nitrogen is sent to the fuel cell 1 through the fuel gas generator 2 and the fuel gas 1 raw material gas and fuel gas flow paths. In addition, since the heat retained by the high-temperature residual fuel gas conveyed by the inert gas is discharged to the outside through the cooling water, the fuel cell 1 is not partially heated. Therefore, even if the solid polymer type is used for the fuel cell 1, the situation where the solid polymer membrane is partially dried does not occur, and the situation where the power generation efficiency of the fuel cell 1 is significantly reduced does not occur.
[0054]
In the first and second embodiments of the present invention, the target temperature Tr1 of the fuel cell 1 is 70 ° C. and the target temperature Tr2 of city water is 60 ° C., but the target temperature Tr1 is the fuel cell 1. It should be set to a temperature at which the power generation is efficiently performed and should not be limited to 70 ° C. The target temperature Tr2 should also be set to a desired temperature for storing city water in the hot water tank 7 and limited to 60 ° C. is not.
[0055]
In the first embodiment of the present invention, the threshold temperature Te1 for stopping the operation of the cooling water pump 5 and the city water pump 9 is set to 60 ° C., but this is desired as a temperature at which the city water is stored in the hot water tank 7. Considering the loss in the heat exchanger 6 to the temperature, it should be set several degrees above and is not limited to 60 ° C.
[0056]
Further, in the second embodiment of the present invention, the threshold temperature Te2 for stopping the operation of the cooling water pump 5 and the city water pump 9 is set to 55 ° C., but this is desired as a temperature for storing city water in the hot water tank 7. The temperature should be set and is not limited to 55 ° C.
[0057]
In each of the above embodiments, the fuel cell 1 is an example of the fuel cell of the present invention, and the cooling pipe 4 is an example of the cooling circulation system of the present invention. The cooling water pump 5 is an example of the first heat medium circulation means of the present invention, the heat exchanger 6 and city water pump 9 is an example of a heat dissipating means or heat exchanger of the present invention, a fuel cell temperature detector 10 and city water temperature detector 11 is an example of a temperature detecting means of the present invention. Moreover, the cooling water conveyed in the cooling pipe 4 is an example of the first heat medium of the present invention, and the city water conveyed in the city water pipe 8 is an example of the second heat medium .
[0058]
However, the present invention is not limited to the configuration of the above embodiment, and the temperature detecting means of the present invention may directly measure the temperature of the fuel cell 1 to obtain the temperature. Further, the temperature of the heat exchanger 6 may be measured. The temperature of the city water pipe 8 may be measured. In short, the temperature detection means of the present invention only needs to be able to detect the temperature of the fuel cell directly or indirectly, or to detect the temperature of the second heat medium of the present invention, and is limited by the measurement site. There is nothing.
[0059]
The first heat medium of the present invention need not be limited to cooling water (H 2 0), but may be any other medium that is insulative and can sufficiently carry the heat of the fuel cell, such as antifreeze. .
[0060]
Further, the heat dissipating means of the present invention may be configured such that the hot water tank 7 and the city water pipe 8 are omitted and the heat exchanger 6 releases heat into the air. In this case, only the cooling water pump 5 corresponding to the first heat medium circulating means operates until a predetermined threshold value is reached. Further, even if the heat dissipating means performs a heat dissipating operation such as circulation of the heat medium, only the first heat medium recirculating means is provided after the supply of fuel and oxidant to the fuel cell is stopped. , May operate.
[0061]
In the present invention as described above, after the power generation of the fuel cell 1 is stopped, the temperature Tr of the cooling water becomes lower than the threshold temperature Te1 (about 60 ° C.), or the temperature Tw of city water is the threshold temperature Te2 (about 55). By continuing the operation of the cooling water pump 5 and the city water pump 9 until the temperature becomes lower than (° C.), the heat generated by the fuel cell 1 during power generation can be efficiently recovered. Since the cooling water pump 5 and the city water pump 9 are stopped when the temperature of the cooling water or city water becomes lower than the threshold temperature, the temperature of the stored city water is not lowered more than necessary, and the utility value is reduced. It is possible to maintain city water hot water at a high temperature.
[0062]
In addition, since the temperature of the fuel cell 1 is not increased by the inert gas that has passed through the raw material gas and the fuel gas path after the power generation is stopped, the solid polymer film is partially formed even if the solid polymer type is used for the fuel cell 1. Therefore, it is possible to provide a highly reliable fuel cell system without causing a situation in which the power generation efficiency of the fuel cell 1 is significantly reduced.
[0063]
【Effect of the invention】
As is apparent from the above description, the present invention can provide a fuel cell system that does not cause a situation in which the power generation efficiency of the fuel cell is lowered after the end of power generation.
[0064]
Further, it is possible to provide a fuel cell system that efficiently extracts heat generated in the fuel cell to the outside and uses the heat in an effective form.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an operation mode during and after power generation of a fuel cell system according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing an operation mode during and after power generation of a fuel cell system according to a second embodiment of the present invention.
FIG. 3 is a block diagram showing a conventional fuel cell system and in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Fuel generator 3 Blower 4 Cooling piping 5 Cooling water pump 6 Heat exchanger 7 Hot water tank 8 City water piping 9 City water pump 10 Fuel cell temperature detector 11 City water temperature detector

Claims (5)

燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、
前記冷却循環系内にて前記第1の熱媒体を循環させる第1の熱媒体循環手段と、
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、コントローラとを備え、
前記固体高分子型燃料電池の発電が停止した後も、前記コントローラが、前記第1の熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システム。
A polymer electrolyte fuel cell that generates electric power upon receipt of fuel and an oxidant;
A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
First heat medium circulating means for circulating the first heat medium in the cooling circulation system;
A heat dissipating means provided in the cooling circulation system for dissipating heat of the first heat medium, and a controller;
Even after the power generation of the polymer electrolyte fuel cell is stopped, the controller circulates the first heat medium by the first heat medium circulation means and continues cooling the polymer electrolyte fuel cell. Fuel cell system.
燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、
前記冷却循環系内にて前記第1の熱媒体を循環させる第1の熱媒体循環手段と、
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、コントローラとを備え、
前記燃料と前記酸化剤の前記固体高分子型燃料電池への供給が停止した後も、前記コントローラが、前記第1の熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システム。
A polymer electrolyte fuel cell that generates electric power upon receipt of fuel and an oxidant;
A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
First heat medium circulating means for circulating the first heat medium in the cooling circulation system;
A heat dissipating means provided in the cooling circulation system for dissipating heat of the first heat medium, and a controller;
Even after the supply of the fuel and the oxidant to the polymer electrolyte fuel cell is stopped, the controller circulates the first heat medium by the first heat medium circulation means, and the solid polymer Type fuel cell system that continues cooling the fuel cell.
前記固体高分子型燃料電池の温度を検出する温度検出手段を備え、
前記コントローラが、前記温度検出手段が検出する温度が前記固体高分子型燃料電池の発電中よりも低い所定のしきい値以下になるまで前記第1の熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する請求項1または2記載の燃料電池システム。
Comprising temperature detecting means for detecting the temperature of the polymer electrolyte fuel cell;
The first heat medium is circulated by the first heat medium circulation means until the temperature detected by the temperature detection means becomes lower than a predetermined threshold lower than that during the power generation of the polymer electrolyte fuel cell. The fuel cell system according to claim 1, wherein cooling of the solid polymer fuel cell is continued.
燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、A polymer electrolyte fuel cell that generates electric power upon receipt of fuel and an oxidant;
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、  A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
前記冷却循環系内にて前記第1の熱媒体を循環させる熱媒体循環手段と、  A heat medium circulating means for circulating the first heat medium in the cooling circulation system;
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、を備え、  A heat dissipating means provided in the cooling circulation system for dissipating the heat of the first heat medium, and
前記固体高分子型燃料電池の発電が停止した後も、前記熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システムの運転方法。  An operation method of a fuel cell system in which the first heat medium is circulated by the heat medium circulation means and cooling of the polymer electrolyte fuel cell is continued even after power generation of the polymer electrolyte fuel cell is stopped.
燃料と酸化剤との供給を受けて電力を発生する固体高分子型燃料電池と、A polymer electrolyte fuel cell that generates electric power upon receipt of fuel and an oxidant;
前記固体高分子型燃料電池内を通過するように設けられた、前記固体高分子型燃料電池の有する熱を担持する第1の熱媒体が内部を循環する冷却循環系と、  A cooling circulation system in which a first heat medium supporting the heat of the polymer electrolyte fuel cell, which is provided so as to pass through the polymer electrolyte fuel cell, circulates inside,
前記冷却循環系内にて前記第1の熱媒体を循環させる熱媒体循環手段と、  A heat medium circulating means for circulating the first heat medium in the cooling circulation system;
前記冷却循環系に設けられ、前記第1の熱媒体が有する熱を放熱させるための放熱手段と、を備え、  A heat dissipating means provided in the cooling circulation system for dissipating the heat of the first heat medium, and
前記燃料と前記酸化剤の前記固体高分子型燃料電池への供給が停止した後も、前記熱媒体循環手段により前記第1の熱媒体を循環させ、前記固体高分子型燃料電池の冷却を続行する燃料電池システムの運転方法。  Even after the supply of the fuel and the oxidant to the polymer electrolyte fuel cell is stopped, the first heat medium is circulated by the heat medium circulation means, and the cooling of the polymer electrolyte fuel cell is continued. To operate the fuel cell system.
JP2001176231A 2001-05-23 2001-06-11 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM Expired - Lifetime JP4953405B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001176231A JP4953405B2 (en) 2001-06-11 2001-06-11 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
KR10-2003-7000985A KR100519130B1 (en) 2001-05-23 2002-05-22 Fuel cell power generating device
US10/333,849 US20030162065A1 (en) 2001-05-23 2002-05-22 Fuel cell power generating device
CNB028018125A CN1238921C (en) 2001-05-23 2002-05-22 Fuel cell power generating device
EP10000814A EP2178149B1 (en) 2001-05-23 2002-05-22 Fuel cell power generating system
EP02730684A EP1396897B1 (en) 2001-05-23 2002-05-22 Fuel cell power generating device
PCT/JP2002/004933 WO2002095854A1 (en) 2001-05-23 2002-05-22 Fuel cell power generating device
US11/474,766 US7691512B2 (en) 2001-05-23 2006-06-26 Fuel-cell power-generation system and method
US12/400,850 US7816048B2 (en) 2001-05-23 2009-03-10 Fuel-cell power-generation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176231A JP4953405B2 (en) 2001-06-11 2001-06-11 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012024144A Division JP5465265B2 (en) 2012-02-07 2012-02-07 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM

Publications (3)

Publication Number Publication Date
JP2002367646A JP2002367646A (en) 2002-12-20
JP2002367646A5 JP2002367646A5 (en) 2007-07-26
JP4953405B2 true JP4953405B2 (en) 2012-06-13

Family

ID=19017253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176231A Expired - Lifetime JP4953405B2 (en) 2001-05-23 2001-06-11 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM

Country Status (1)

Country Link
JP (1) JP4953405B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951861B2 (en) * 2002-08-27 2007-08-01 日産自動車株式会社 Fuel cell device
JP5194446B2 (en) * 2006-12-15 2013-05-08 パナソニック株式会社 Fuel cell power generation system and operation method thereof
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes
CN103972555A (en) 2008-11-20 2014-08-06 松下电器产业株式会社 Hydrogen generator and fuel cell system comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320626A (en) * 1996-05-31 1997-12-12 Toshiba Corp Phosphoric acid fuel cell generating system
JP3572147B2 (en) * 1996-07-18 2004-09-29 株式会社東芝 Fuel cell power generation system
JPH1167254A (en) * 1997-08-21 1999-03-09 Toshiba Corp Fuel cell power generating plant and its start/stop operation method
JPH11317236A (en) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk Fuel cell system

Also Published As

Publication number Publication date
JP2002367646A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
KR100519130B1 (en) Fuel cell power generating device
JP3849375B2 (en) Combined heat and power unit
JP2000340244A (en) Solid polymer fuel cell cogeneration system
JP4953405B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2889807B2 (en) Fuel cell system
JP2004103287A (en) Solid electrolyte type fuel cell system
JP2008210632A (en) Fuel cell device
JP2012221723A (en) Fuel cell system
JP4013609B2 (en) Fuel cell system
JP2003282108A (en) Fuel cell system
JP5584804B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP5750570B2 (en) Fuel cell system
JP5465265B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP3602357B2 (en) Polymer electrolyte fuel cell system
JP5564916B2 (en) Fuel cell system
JP4252779B2 (en) Fuel cell equipment
JP2001185167A (en) Fuel cell cogeneration system
JP2002289242A (en) Fuel cell exhaust heat recovery system
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JP2003187833A (en) Fuel cell system
JP2004296266A (en) Fuel cell system
JP2000113900A (en) Solid polymer fuel cell system
JP2014123523A (en) Fuel cell system
JP2006179345A (en) Fuel cell power generation system and its operation method
JP5083195B2 (en) Waste heat utilization method and apparatus for fuel cell power generator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4953405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

EXPY Cancellation because of completion of term