JP4953266B2 - Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer - Google Patents

Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer Download PDF

Info

Publication number
JP4953266B2
JP4953266B2 JP2001217870A JP2001217870A JP4953266B2 JP 4953266 B2 JP4953266 B2 JP 4953266B2 JP 2001217870 A JP2001217870 A JP 2001217870A JP 2001217870 A JP2001217870 A JP 2001217870A JP 4953266 B2 JP4953266 B2 JP 4953266B2
Authority
JP
Japan
Prior art keywords
ethylene
vinyl acetate
acetate copolymer
flame retardant
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001217870A
Other languages
Japanese (ja)
Other versions
JP2003026936A (en
Inventor
正貴 青山
徳茂 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP2001217870A priority Critical patent/JP4953266B2/en
Publication of JP2003026936A publication Critical patent/JP2003026936A/en
Application granted granted Critical
Publication of JP4953266B2 publication Critical patent/JP4953266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flame-retardant resin composition which is excellent in moldability, mechanical strengths, and shell-forming properties in combustion and has a high oxygen index. SOLUTION: This flame-retardant resin composition is prepared by compounding (A) 100 pts.wt. thermoplastic resin (e.g. an ethylene-vinyl acetate copolymer) with (B) 30-250 pts.wt. flame-retardant inorganic compound and (C) 0.05-30 pts.wt. organic oxygen-containing trivalent-metal compound (e.g. aluminum stearate).

Description

【0001】
【発明の属する技術分野】
本発明は、難燃性に優れた熱可塑性樹脂組成物に関する。とりわけ酸素指数が高く、燃焼時における殻形成性に優れた難燃性樹脂組成物に関する。
【0002】
【従来の技術】
オレフィン系重合体は、一般に電気的特性、機械的性質、加工性等が優れているところから、電気絶縁材料として広く使用されている。とくに電線、ケーブル等の用途には、強度、低温特性、耐擦傷性、硬度等のバランスが良好であるところから、エチレン・酢酸ビニル共重合体やエチレン・アクリル酸エチル共重合体などのエチレン・不飽和エステルランダム共重合体が広く使用されている。
【0003】
このようなエチレン共重合体は易燃性であるため、用途によっては難燃化する必要があり、そのため古くはハロゲン系難燃剤を配合することにより対処してきた。しかしながらこのような配合物は燃焼時に有害ガスを発生するという問題があり、近年では非ハロゲン系の水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物難燃剤を配合する処方が採用されるようになってきた。ところが金属水酸化物難燃剤は、かなり大量に配合しないと充分な難燃効果を発揮することができないため、往々にしてエチレン共重合体の加工性、耐擦傷性、その他機械的特性を犠牲にすることがあった。
【0004】
例えばエチレン・アクリル酸エチル共重合体で代表されるエチレン・不飽和カルボン酸エステル共重合体をベースとする難燃性樹脂組成物は、燃焼時の殻形成性に優れるという利点はあるが、難燃性やベースポリマーの強靭性が低く、多量の難燃剤を配合することが難しい。すなわち難燃剤の配合量が少ないと充分な難燃効果を発揮することができず、また難燃剤の配合量を増やしていくと、加工性が悪くなると共に機械強度の低下を招くため、適用範囲が制限された。
【0005】
エチレン・酢酸ビニル共重合体は、エチレン共重合体の中では最も優れた強靭性を示し、かつ多量の難燃剤を配合することができるフィラーローディング性や柔軟性を有しており、またエチレン・不飽和カルボン酸エステル共重合体に比較して安価であり魅力的な材料であるが、これをベースとする難燃性樹脂組成物も難燃性が充分でなく、とくに燃焼時に殻が生成し難くドリップするという大きな欠点があり、同様に適用範囲が制限されていた。
【0006】
【発明が解決しようとする課題】
そこで本発明者らは、エチレン・酢酸ビニル共重合体の優れた特性を生かすため、該共重合体の金属水酸化物難燃剤配合系における燃焼時の殻形成性の改善を図るべく検討を行った。その結果、エチレン・酢酸ビニル共重合体及び金属水酸化物難燃剤からなる配合系に3価金属の有機含酸素化合物を特定量配合することにより、エチレン・酢酸ビニル共重合体が有する優れた特性を保持しながら、難燃性及び燃焼時における殻形成性が改善できることを見出すに至った。したがって本発明の目的は、エチレン・酢酸ビニル共重合体の、難燃性、とくに酸素指数と燃焼時の殻形成性を改善することを提供することにある。
【0007】
尚、特開昭59−66008号公報によれば、エチレン系ポリマーと水酸化マグネシウムからなる難燃性電線・ケーブルにおいて、両者の相容性を改善するために、水酸化マグネシウムとして高級脂肪酸又は高級脂肪酸のIA、IIA、IIB、IIIA族金属塩で表面処理したものを使用することが提案されている。この公報には、高級脂肪酸の金属塩としてステアリン酸アルミニウムも例示されているが、その具体的な評価例はなく、また表面処理剤を多量に使用すべきとの記載もないので本願発明を示唆するものではない。
【0008】
課題を解決するための手段
本発明は、エチレン・酢酸ビニル共重合体(A)100重量部に対して、金属水酸化物難燃剤(B)30〜250重量部及び高級脂肪酸の3価金属塩(C)0.05〜30重量部を配合することを特徴とする、エチレン・酢酸ビニル共重合体の燃焼時の酸素指数と殻形成性の改善方法に関するものである。
【0009】
発明を実施するための形態
本発明で使用される熱可塑性樹脂(A)としては、オレフィン系樹脂、スチレン系樹脂、ポリアミド、ポリエステル、ポリカーボネート、ポリフェニレンオキサイド、あるいはこれら2種以上の混合物などを例示することができるが、とくにオレフィン系樹脂の使用が好ましい。オレフィン系樹脂は、オレフィンの単独重合体、オレフィン同士の共重合体、オレフィンと極性モノマーの共重合体あるいはこれらの混合物である。オレフィンの単独重合体及びオレフィン同士の共重合体の例としては、各種触媒系、例えばラジカル重合触媒、高活性チタン触媒成分と有機アルミニウム化合物触媒成分からなるマルチサイト触媒、ジルコニウム化合物を代表例とするメタロセン触媒成分とアルミノオキサン触媒成分とからなるシングルサイト触媒などを用い、各種方法で製造されるエチレンの単独重合体又はエチレンと炭素数3以上α−オレフィンの共重合体である高圧法ポリエチレン、中、高密度ポリエチレン、直鎖低密度ポリエチレン、超低密度直鎖ポリエチレンなどのポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、ポリオレフィンエラストマー、環状オレフィン重合体などを挙げることができる。
【0010】
またオレフィンと極性モノマーの共重合体としては、エチレンと、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸nブチル、メタクリル酸メチル、メタクリル酸グリシジル、マレイン酸ジメチルのような不飽和カルボン酸エステル、アクリル酸、メタクリル酸、マレイン酸モノエチル、無水マレイン酸のような不飽和カルボン酸及びそのNa、Li、Zn、Mgなどの塩、一酸化炭素などから選ばれる極性モノマーの1種又は2種以上との共重合体を挙げることができる。これらの共重合体は、例えば高温、高圧下のラジカル共重合や溶液重合やエマルジョン重合によって得ることができる。
【0011】
これらオレフィン系樹脂としては、ポリエチレン及びエチレンと極性モノマーの共重合体から選ばれるものであることが好ましく、とくにエチレンと酢酸ビニルの共重合体及びエチレンと不飽和カルボン酸エステルの共重合体から選ばれるものであることが好ましく、とりわけエチレン・酢酸ビニル共重合体又はエチレン・酢酸ビニル共重合体を主成分とし、ポリエチレンや他のエチレンと極性モノマーの共重合体を副成分とする混合物を使用するのが好ましい。好適なポリエチレンは密度が868〜968kg/mのものであり、好適なエチレンと酢酸ビニルの共重合体及びエチレンと不飽和カルボン酸エステルの共重合体における酢酸ビニル含量又は不飽和カルボン酸エステル含量は、5〜80重量%、とくに10〜60重量%の範囲である。
【0012】
上記ポリエチレン又はエチレン・極性モノマー共重合体としてはまた、加工性、機会強度などを考慮すると、190℃、2160g荷重におけるメルトフローレート(MFR)が0.1〜100g/10分、とくに0.2〜50g/10分程度のものを使用するのが好ましい。すなわちMFRが非常に小さい重合体を使用した場合には組成物の加工性が悪くなり、またあまりMFRが非常に大きい重合体を使用した場合には、高度な難燃性を有する組成物を得ることが難しくなる。
【0013】
本発明で使用される難燃性無機化合物(B)としては、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、ハイドロタルサイトのような金属水酸化物、珪酸金属塩、ホウ酸金属塩、シリカ、アルミナ、炭酸カルシウム、タルク、クレイ、ゼオライト、カーボンブラック、ガラス繊維などの充填剤や補強材を例示することができる。充分な難燃性を求める場合には、水酸化マグネシウムを使用するかあるいは水酸化マグネシウムを少なくとも50重量%以上占めるような混合無機化合物を使用するのがよい。
【0014】
無機化合物(B)の混和性、難燃樹脂組成物から得られる成形物外観などを考慮すると、無機化合物として、平均粒径が0.05〜20μm、とくに0.1〜5μm程度のものを使用するのが望ましい。また同様の理由で、無機化合物の表面が、脂肪酸、脂肪酸アミド、脂肪酸塩、脂肪酸エステル、脂肪族アルコール、シランカップリング剤、チタンカップリング剤、シリコンオイル、リン酸エステル等で表面処理されたものを使用するのが好ましい。
【0015】
本発明の難燃性樹脂組成物においては、上記難燃性無機化合物(B)と共に3価金属の含酸素有機化合物(C)が使用される。3価金属としては、アルミニウム、ガリウム、インジウムなどを例示することができるがとくにアルミニウムが好ましい。また含酸素有機化合物としては、カルボン酸塩、アセチルアセトナートのような錯塩、アルコキサイドなどを例示することができるが、カルボン酸塩、とくに炭素数8〜35、とくに12〜32程度の脂肪酸の塩の使用が好ましい。これらは、正塩であっても塩基性塩であっても良い。具体的には、ミリスチン酸アルミニウム、パルミチン酸アルミニウム、ステアリン酸アルミニウム、オレイン酸アルミニウム、ベヘン酸アルミニウム、モンタン酸アルミニウム、12−ヒドロキシステアリン酸アルミニウムなどを好適例として挙げることができる。もっとも好適なものはステアリン酸アルミニウムである。
【0016】
本発明においては、熱可塑性樹脂(A)100重量部に対し、難燃性無機化合物(B)を25〜250重量部、好ましくは50〜200重量部、一層好ましくは75〜150重量部、3価金属の含酸素有機化合物(C)を0.05〜30重量部、好ましくは0.1〜15重量部、一層好ましくは0.2〜10重量部の割合で使用する。難燃性無機化合物の配合量が過少であると充分な難燃性を付与することが難しく、またその配合量が過多となると、加工性、機械強度が良好な組成物を得ることが難しくなる。また3価金属の含酸素有機化合物の配合量が過少であると、酸素指数や殻形成に大きな改良を示さない。またその配合量が過多となると、樹脂組成物の機械強度が低下する傾向となる。
【0017】
本発明の難燃性樹脂組成物を調製するに際しては、熱可塑性樹脂(A)に難燃性無機化合物(B)と3価金属の含酸素有機化合物(C)を同時にあるいは逐次的に配合することができる。また3価金属の含酸素有機化合物(C)の少なくとも一部を難燃性無機化合物(B)の少なくとも一部と混合しておき、あるいは難燃性無機化合物(B)の少なくとも一部の表面処理剤として使用しておくことにより、これらの混合物として配合することもできる。
【0018】
本発明の難燃性樹脂組成物にはまた、本発明の目的を損なわない範囲において必要に応じ各種添加剤を配合することができる。このような添加剤の例として、酸化防止剤、光安定剤、紫外線吸収剤、難燃助剤、顔料、染料、滑剤、ブロッキング防止剤、発泡剤、発泡助剤、架橋剤、架橋助剤などを例示することができる。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、実施例及び比較例において用いた原料樹脂と得られた樹脂組成物の物性試験方法を以下に示す。
【0020】
1.原料
(1)原料樹脂として使用したエチレン・酢酸ビニル共重合体(EVA)及び直鎖低密度ポリエチレン(LLDPE)の組成(又は種類)及びMFRを表1に示す。
【0021】
【表1】

Figure 0004953266
【0022】
(2)難燃性無機化合物
MDH:合成水酸化マグネシウム 平均粒径0.7μm、脂肪酸処理品
ATH:合成水酸化アルミニウム 平均粒径1.0μm、脂肪酸処理品
【0023】
(3)金属の有機含酸素化合物
添加剤−1:ジステアリン酸アルミニウム(和光純薬(株)製試薬)
添加剤−2:ステアリン酸ナトリウム(和光純薬(株)製試薬)
添加剤−3:ステアリン酸カルシウム(和光純薬(株)製試薬)
【0024】
(4)その他添加剤
添加剤−4:ステアリン酸(和光純薬(株)製試薬)
カーボン:商品名:バルカン9A32(キャボット・スペシャルティ・ケミカルズ・インク)
酸化防止剤:商品名:イルガノックス1010(チバスペシャルティ・ケミカルズ(株)製)
【0025】
2.難燃性樹脂組成物の物性試験方法
(1)酸素指数:JIS K7201(1976)に準拠
難燃性の指標として評価
【0026】
(2)殻形成:酸素指数測定時のサンプルの燃焼状況を目視で観察し、下記の判定基準で評価を行った。
○:ポリマーの炭化による殻を形成し、殻自体が強固なもの
△:ポリマーの炭化による殻を形成する
×:溶融しながら流れ落ちるもの(ドリップするもの)
【0027】
(3)引張特性:JIS K6760(1981)に準拠
試験片:JIS K6301(1975) 3号ダンベル 1mm厚
(単位:破断点強度=MPa、破断点伸び=%)
【0028】
(4)メルトフローレート(MFR):JIS K6760(1981)に準拠
樹脂温度190℃、荷重2160g (単位:g/10分)
【0029】
[実施例1〜5]
エチレン・酢酸ビニル共重合体、水酸化マグネシウム、ステアリン酸アルミニウム及びその他添加剤を表1に示す割合で配合し、加圧ニーダー混練機にて混練を行うことにより樹脂組成物を調製した。プレス成形により厚さ1mm及び3mmのシートを作製し、引張特性、難燃性(酸素指数、殻形成)、成形性の評価を実施した。結果を表2に示す。
【0030】
表2の結果から明らかなように、実施例により得られた本発明の難燃性樹脂組成物は、従来のポリオレフィン系樹脂では到底達成できなかった難燃性(酸素指数、殻形成性)、機械強度、加工性の全てを兼ね備え、成形性が良好な極めて実用性の高い組成物であった。
【0031】
[実施例6]
実施例3において、さらにステアリン酸ナトリウムを添加して同様の操作を行った。結果を表2に示す。ステアリン酸アルミニウムと1価又は2価の脂肪酸塩を併用しても同様の効果が得られると共に、加工性がさらに向上した。
【0032】
[実施例7]
実施例3において、水酸化マグネシウムの代りに水酸化アルミニウムを用いて同様の操作を行った。結果を表2に示す。水酸化アルミニウムのような他の難燃性無機化合物を用いても、難燃性、機械強度、加工性に優れた実用性の高い樹脂組成物が得られた。
【0033】
[実施例8](参考例)
実施例3において、エチレン・酢酸ビニル共重合体の一部をLLDPEに置き換えて同様の操作を行った。結果を表2に示す。得られた樹脂組成物は、難燃性(酸素指数、殻形成性)、機械強度、加工性が全て優れており、成形性が良好な極めて実用性の高いものであった。
【0034】
【表2】
Figure 0004953266
【0035】
[比較例1]
ステアリン酸アルミニウムを使用しなかった以外は実施例3と同様の操作を行った。結果を表3に示す。得られた樹脂組成物においては、実施例3のような殻形成が見られなかった。また殻形成に乏しいことから、難燃性の指標である酸素指数も低かった。
【0036】
[比較例2〜4]
実施例3において、ステアリン酸アルミニウムの代りにステアリン酸やステアリン酸の1価又は2価の塩を使用した以外は、実施例3と同様の操作を行った。
結果を表3に示す。いずれの難燃性樹脂組成物も殻が形成されず、酸素指数も低かった。
【0037】
[比較例5]
実施例3において、ステアリン酸アルミニウムの代りに無機アルミニウム化合物である水酸化アルミニウムを用い、実施例3と同様の操作を行った。結果を表3に示す。無機アルミニウム化合物を併用しても殻の形成が見られず、難燃性は低かった。
【0038】
【表3】
Figure 0004953266
【0039】
【発明の効果】
本発明によれば、成形性、機械強度、燃焼時の殻形成性に優れ、酸素指数の高い難燃性樹脂組成物を提供することができる。このような難燃性樹脂組成物は、高度な難燃性が要求される分野、例えばホース、シート、テープ、壁紙、電線被覆材、建材などの用途に有効に利用される。
【0040】
このような成形品の具体例としては、例えば、人工芝、マット、止水シート、トンネルシート、ルーフィング等の土木分野、ホース、チューブ等のパイプ用途、パッキング、制振シート等の家電製品、カーペット等の裏打ち材、ドアパネル防水シート、泥よけ、モール等の自動車用途、壁紙、家具、床材、発泡シート等の建材用途、配線ケーブル、通信ケーブル、機器用ケーブル、電源コード、プラグ、耐火ケーブル、制御・計装ケーブル、収縮チューブ等のケーブル用途、粘着テープ等の接着用途等の分野で用いられるものが挙げられる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoplastic resin composition excellent in flame retardancy. In particular, the present invention relates to a flame retardant resin composition having a high oxygen index and excellent shell formation during combustion.
[0002]
[Prior art]
Olefin polymers are widely used as electrical insulating materials because they are generally excellent in electrical characteristics, mechanical properties, processability, and the like. Especially for applications such as electric wires and cables, the balance of strength, low-temperature properties, scratch resistance, hardness, etc. is good, so ethylene / vinyl acetate copolymers and ethylene / ethyl acrylate copolymers such as ethylene Unsaturated ester random copolymers are widely used.
[0003]
Since such an ethylene copolymer is flammable, it needs to be flame retardant depending on the application, and for that reason, it has been dealt with in the past by blending a halogen-based flame retardant. However, such a compound has a problem of generating a harmful gas during combustion, and in recent years, a formulation in which a metal hydroxide flame retardant such as non-halogenated magnesium hydroxide or aluminum hydroxide is blended has been adopted. It has become. However, metal hydroxide flame retardants cannot exert a sufficient flame retardant effect unless they are incorporated in a considerably large amount, and often sacrifice the processability, scratch resistance, and other mechanical properties of ethylene copolymers. There was something to do.
[0004]
For example, a flame retardant resin composition based on an ethylene / unsaturated carboxylic acid ester copolymer typified by an ethylene / ethyl acrylate copolymer has the advantage of excellent shell formation during combustion, The flame retardancy and toughness of the base polymer are low, making it difficult to blend a large amount of flame retardant. That is, if the blending amount of the flame retardant is small, a sufficient flame retardant effect cannot be exerted, and if the blending amount of the flame retardant is increased, the workability is deteriorated and the mechanical strength is reduced, so the applicable range. Was restricted.
[0005]
The ethylene / vinyl acetate copolymer has the most excellent toughness among the ethylene copolymers, and has a filler loading property and flexibility capable of blending a large amount of flame retardant. Although it is an inexpensive and attractive material compared to unsaturated carboxylic acid ester copolymers, the flame retardant resin composition based on it is not sufficiently flame retardant, and a shell is formed especially during combustion. There was a major drawback that it was difficult to drip and the range of application was similarly limited.
[0006]
[Problems to be solved by the invention]
Therefore, the present inventors have studied to improve the shell-forming property at the time of combustion in the system containing a metal hydroxide flame retardant of the copolymer in order to take advantage of the excellent properties of the ethylene / vinyl acetate copolymer. It was. As a result, the ethylene / vinyl acetate copolymer has excellent characteristics by blending a specific amount of an organic oxygenated compound of trivalent metal into a blended system comprising an ethylene / vinyl acetate copolymer and a metal hydroxide flame retardant. It has been found that the flame retardancy and the shell-forming property during combustion can be improved while maintaining the above . The purpose of the wanted by the invention, the ethylene-vinyl acetate copolymer, is to provide for improved shell-forming property during combustion and flame retardancy, especially oxygen index.
[0007]
According to Japanese Patent Application Laid-Open No. 59-66008, in order to improve compatibility between a flame retardant electric wire / cable composed of an ethylene-based polymer and magnesium hydroxide, higher fatty acid or higher It has been proposed to use those which have been surface treated with group IA, IIA, IIB and IIIA metal salts of fatty acids. This publication also exemplifies aluminum stearate as a metal salt of higher fatty acid, but there is no specific evaluation example, and there is no description that a large amount of a surface treatment agent should be used, suggesting the present invention. Not what you want.
[0008]
[ Means for Solving the Problems ]
In the present invention, 30 to 250 parts by weight of a metal hydroxide flame retardant (B) and a trivalent metal salt of a higher fatty acid (C) 0.05 to 100 parts by weight of the ethylene / vinyl acetate copolymer (A). The present invention relates to a method for improving the oxygen index and shell-forming property during combustion of an ethylene / vinyl acetate copolymer, characterized by containing 30 parts by weight.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the thermoplastic resin (A) used in the present invention include olefin resins, styrene resins, polyamides, polyesters, polycarbonates, polyphenylene oxides, and mixtures of two or more thereof. Use of a resin is preferable. The olefin resin is an olefin homopolymer, a copolymer of olefins, a copolymer of olefin and polar monomer, or a mixture thereof. Examples of olefin homopolymers and copolymers of olefins are representative of various catalyst systems such as radical polymerization catalysts, multi-site catalysts composed of highly active titanium catalyst components and organoaluminum compound catalyst components, and zirconium compounds. High-pressure polyethylene which is a homopolymer of ethylene or a copolymer of ethylene and an α-olefin having 3 or more carbon atoms, produced by various methods using a single site catalyst comprising a metallocene catalyst component and an aluminoxane catalyst component Medium, high density polyethylene, linear low density polyethylene, ultra low density linear polyethylene and other polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, polyolefin elastomer, cyclic olefin polymer, etc. Can be mentioned.
[0010]
Copolymers of olefin and polar monomer include ethylene and vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isobutyl acrylate, nbutyl acrylate, methyl methacrylate, and methacrylic acid. Glycidyl, unsaturated carboxylic acid ester such as dimethyl maleate, acrylic acid, methacrylic acid, monoethyl maleate, unsaturated carboxylic acid such as maleic anhydride and its salts such as Na, Li, Zn, Mg, carbon monoxide Examples thereof include copolymers with one or more polar monomers selected from the above. These copolymers can be obtained, for example, by radical copolymerization, solution polymerization or emulsion polymerization under high temperature and high pressure.
[0011]
These olefin resins are preferably selected from polyethylene and a copolymer of ethylene and a polar monomer, and in particular, selected from a copolymer of ethylene and vinyl acetate and a copolymer of ethylene and an unsaturated carboxylic acid ester. In particular, an ethylene / vinyl acetate copolymer or an ethylene / vinyl acetate copolymer as a main component and a mixture containing polyethylene or another copolymer of ethylene and a polar monomer as a secondary component are used. Is preferred. The preferred polyethylene has a density of 868-968 kg / m 3 and the vinyl acetate content or unsaturated carboxylic acid ester content in the preferred ethylene / vinyl acetate copolymer and ethylene / unsaturated carboxylic acid ester copolymer. Is in the range of 5 to 80% by weight, in particular 10 to 60% by weight.
[0012]
The polyethylene or ethylene / polar monomer copolymer also has a melt flow rate (MFR) at 190 ° C. under a load of 2160 g of 0.1 to 100 g / 10 min, particularly 0.2, in consideration of processability and opportunity strength. It is preferable to use a product of about ˜50 g / 10 minutes. That is, when a polymer having a very small MFR is used, the processability of the composition is deteriorated, and when a polymer having a very large MFR is used, a composition having a high flame retardancy is obtained. It becomes difficult.
[0013]
Examples of the flame retardant inorganic compound (B) used in the present invention include magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, metal hydroxide such as hydrotalcite, metal silicate, metal borate, Examples thereof include fillers and reinforcing materials such as silica, alumina, calcium carbonate, talc, clay, zeolite, carbon black, and glass fiber. When sufficient flame retardancy is required, it is preferable to use magnesium hydroxide or a mixed inorganic compound that occupies at least 50% by weight of magnesium hydroxide.
[0014]
Considering the miscibility of the inorganic compound (B) and the appearance of the molded product obtained from the flame retardant resin composition, an inorganic compound having an average particle size of 0.05 to 20 μm, particularly about 0.1 to 5 μm is used. It is desirable to do. For the same reason, the surface of the inorganic compound is surface-treated with fatty acid, fatty acid amide, fatty acid salt, fatty acid ester, aliphatic alcohol, silane coupling agent, titanium coupling agent, silicon oil, phosphate ester, etc. Is preferably used.
[0015]
In the flame-retardant resin composition of the present invention, a trivalent metal oxygen-containing organic compound (C) is used together with the flame-retardant inorganic compound (B). Examples of the trivalent metal include aluminum, gallium, and indium, but aluminum is particularly preferable. Examples of the oxygen-containing organic compound include carboxylates, complex salts such as acetylacetonate, alkoxides, etc., but carboxylates, particularly fatty acid salts having about 8 to 35 carbon atoms, especially about 12 to 32 carbon atoms. Is preferred. These may be normal salts or basic salts. Specific examples include aluminum myristate, aluminum palmitate, aluminum stearate, aluminum oleate, aluminum behenate, aluminum montanate, and aluminum 12-hydroxystearate. Most preferred is aluminum stearate.
[0016]
In the present invention, the flame retardant inorganic compound (B) is 25 to 250 parts by weight, preferably 50 to 200 parts by weight, more preferably 75 to 150 parts by weight, based on 100 parts by weight of the thermoplastic resin (A). The oxygen-containing organic compound (C) of the valent metal is used in a proportion of 0.05 to 30 parts by weight, preferably 0.1 to 15 parts by weight, more preferably 0.2 to 10 parts by weight. When the blending amount of the flame retardant inorganic compound is too small, it is difficult to impart sufficient flame retardancy, and when the blending amount is excessive, it is difficult to obtain a composition with good workability and mechanical strength. . Further, if the blending amount of the oxygen-containing organic compound of the trivalent metal is too small, the oxygen index and the shell formation are not greatly improved. Moreover, when the compounding quantity becomes excessive, it will become the tendency for the mechanical strength of a resin composition to fall.
[0017]
In preparing the flame-retardant resin composition of the present invention, the flame-retardant inorganic compound (B) and the trivalent metal oxygen-containing organic compound (C) are blended simultaneously or sequentially with the thermoplastic resin (A). be able to. Further, at least a part of the trivalent metal oxygen-containing organic compound (C) is mixed with at least a part of the flame retardant inorganic compound (B), or at least a part of the surface of the flame retardant inorganic compound (B). By using it as a treating agent, it can be blended as a mixture thereof.
[0018]
In the flame-retardant resin composition of the present invention, various additives may be blended as necessary within a range not impairing the object of the present invention. Examples of such additives include antioxidants, light stabilizers, UV absorbers, flame retardant aids, pigments, dyes, lubricants, antiblocking agents, foaming agents, foaming aids, crosslinking agents, crosslinking aids, etc. Can be illustrated.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In addition, the physical property test method of the raw material resin used in the Example and the comparative example and the obtained resin composition is shown below.
[0020]
1. Table 1 shows the composition (or type) and MFR of ethylene / vinyl acetate copolymer (EVA) and linear low density polyethylene (LLDPE) used as raw material (1) raw material resin.
[0021]
[Table 1]
Figure 0004953266
[0022]
(2) Flame-retardant inorganic compound MDH: Synthetic magnesium hydroxide average particle size 0.7 μm, fatty acid-treated product ATH: Synthetic aluminum hydroxide average particle size 1.0 μm, fatty acid-treated product
(3) Metal Organic Oxygen Compound Additive-1: Aluminum Distearate (Reagent manufactured by Wako Pure Chemical Industries, Ltd.)
Additive-2: Sodium stearate (Reagent manufactured by Wako Pure Chemical Industries, Ltd.)
Additive-3: Calcium stearate (Reagent manufactured by Wako Pure Chemical Industries, Ltd.)
[0024]
(4) Other additive additive-4: stearic acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.)
Carbon: Product Name: Vulcan 9A32 (Cabot Specialty Chemicals, Inc.)
Antioxidant: Product name: Irganox 1010 (Ciba Specialty Chemicals Co., Ltd.)
[0025]
2. Test method of physical properties of flame retardant resin composition (1) Oxygen index: evaluated as a flame retardant index according to JIS K7201 (1976)
(2) Shell formation: The combustion state of the sample at the time of measuring the oxygen index was visually observed and evaluated according to the following criteria.
○: A shell formed by carbonization of the polymer is formed, and the shell itself is strong. Δ: A shell formed by the carbonization of the polymer is formed. ×: Flowing down while being melted (drip)
[0027]
(3) Tensile properties: JIS K6760 (1981) compliant Test piece: JIS K6301 (1975) No. 3 dumbbell 1 mm thickness (unit: strength at break = MPa, elongation at break =%)
[0028]
(4) Melt flow rate (MFR): JIS K6760 (1981) compliant Resin temperature 190 ° C., load 2160 g (unit: g / 10 min)
[0029]
[Examples 1 to 5]
Ethylene / vinyl acetate copolymer, magnesium hydroxide, aluminum stearate and other additives were blended in the proportions shown in Table 1 and kneaded in a pressure kneader kneader to prepare a resin composition. Sheets having a thickness of 1 mm and 3 mm were produced by press molding, and tensile properties, flame retardancy (oxygen index, shell formation), and moldability were evaluated. The results are shown in Table 2.
[0030]
As is apparent from the results in Table 2, the flame retardant resin compositions of the present invention obtained by Examples are flame retardant (oxygen index, shell-forming property) that could not be achieved with conventional polyolefin resins. It was a highly practical composition having both mechanical strength and workability and good moldability.
[0031]
[Example 6]
In Example 3, the same operation was performed by further adding sodium stearate. The results are shown in Table 2. Even when aluminum stearate and a monovalent or divalent fatty acid salt were used in combination, the same effect was obtained and the processability was further improved.
[0032]
[Example 7]
In Example 3, the same operation was performed using aluminum hydroxide instead of magnesium hydroxide. The results are shown in Table 2. Even when other flame retardant inorganic compounds such as aluminum hydroxide were used, a highly practical resin composition excellent in flame retardancy, mechanical strength and processability was obtained.
[0033]
[Example 8] (Reference Example)
In Example 3, the same operation was performed by replacing part of the ethylene / vinyl acetate copolymer with LLDPE. The results are shown in Table 2. The obtained resin composition was excellent in flame retardancy (oxygen index, shell formability), mechanical strength, and workability, and was extremely practical with good moldability.
[0034]
[Table 2]
Figure 0004953266
[0035]
[Comparative Example 1]
The same operation as in Example 3 was performed except that aluminum stearate was not used. The results are shown in Table 3. In the obtained resin composition, shell formation as in Example 3 was not observed. Moreover, since the shell formation was poor, the oxygen index, which is an index of flame retardancy, was also low.
[0036]
[Comparative Examples 2 to 4]
In Example 3, the same operation as in Example 3 was performed except that stearic acid or a monovalent or divalent salt of stearic acid was used instead of aluminum stearate.
The results are shown in Table 3. None of the flame retardant resin compositions formed shells and had a low oxygen index.
[0037]
[Comparative Example 5]
In Example 3, the same operation as in Example 3 was performed using aluminum hydroxide, which is an inorganic aluminum compound, instead of aluminum stearate. The results are shown in Table 3. Even when an inorganic aluminum compound was used in combination, shell formation was not observed, and the flame retardancy was low.
[0038]
[Table 3]
Figure 0004953266
[0039]
【Effect of the invention】
According to the present invention, it is possible to provide a flame retardant resin composition that is excellent in moldability, mechanical strength, and shell formation during combustion, and has a high oxygen index. Such a flame retardant resin composition is effectively used in fields where high flame retardancy is required, such as hoses, sheets, tapes, wallpaper, electric wire coating materials, building materials, and the like.
[0040]
Specific examples of such molded articles include, for example, artificial turf, mats, waterproof sheets, tunnel sheets, roofing and other civil engineering fields, hoses, pipes such as tubes, packing, and household appliances such as vibration damping sheets, carpets, etc. Lining materials, door panel tarpaulins, mudguards, automotive applications such as malls, wallpaper, furniture, flooring, foamed sheet building materials, wiring cables, communication cables, equipment cables, power cords, plugs, fireproof cables And those used in fields such as cable applications such as control / instrumentation cables and contraction tubes, and adhesive applications such as adhesive tape.

Claims (7)

エチレン・酢酸ビニル共重合体(A)100重量部に対して、金属水酸化物難燃剤(B)30〜250重量部及び高級脂肪酸の3価金属塩(C)0.05〜30重量部を配合することを特徴とする、エチレン・酢酸ビニル共重合体の燃焼時の酸素指数と殻形成性の改善方法30 to 250 parts by weight of metal hydroxide flame retardant (B) and 0.05 to 30 parts by weight of trivalent metal salt of higher fatty acid (C) with respect to 100 parts by weight of ethylene / vinyl acetate copolymer (A) A method for improving the oxygen index and shell-forming property of an ethylene / vinyl acetate copolymer during combustion, which comprises blending . 金属水酸化物難燃剤(B)が、水酸化マグネシウムである請求項1に記載の改善方法The improvement method according to claim 1, wherein the metal hydroxide flame retardant (B) is magnesium hydroxide. 高級脂肪酸の3価金属塩(C)が、高級脂肪酸のアルミニウム塩である請求項1または2に記載の改善方法The improvement method according to claim 1 or 2 , wherein the higher fatty acid trivalent metal salt (C) is an aluminum salt of a higher fatty acid. 高級脂肪酸のアルミニウム塩が、ステアリン酸アルミニウムである請求項3に記載の改善方法The improvement method according to claim 3, wherein the aluminum salt of the higher fatty acid is aluminum stearate. エチレン・酢酸ビニル共重合体(A)、金属水酸化物難燃剤(B)及び高級脂肪酸の3価金属塩(C)を同時にあるいは逐次的に混合してなる請求項1〜4のいずれか1項に記載の改善方法 Ethylene-vinyl acetate copolymer (A), any one of the claims 1-4 metal hydroxide flame retardant (B) and trivalent metal salts of higher fatty acids (C) obtained by mixing simultaneously or sequentially The improvement method according to item . 高級脂肪酸の3価金属塩(C)で表面処理した金属水酸化物難燃剤(B)とエチレン・酢酸ビニル共重合体(A)を混合してなる請求項1〜5のいずれか1項に記載の改善方法 To any one of claims 1 to 5 by mixing the surface-treated metal hydroxide flame retardant trivalent metal salt (C) and (B) an ethylene-vinyl acetate copolymer (A) of a higher fatty acid Improvement method of description. エチレン・酢酸ビニル共重合体(A)100重量部に対する高級脂肪酸の3価金属塩(C)の配合量が、0.1〜15重量部である請求項1〜6のいずれか1項に記載の改善方法Amount of ethylene-vinyl acetate copolymer (A) 3-valent metal salts of higher fatty acid to 100 parts by weight (C) is, according to any one of claims 1 to 6, which is a 0.1 to 15 parts by weight How to improve .
JP2001217870A 2001-07-18 2001-07-18 Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer Expired - Fee Related JP4953266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217870A JP4953266B2 (en) 2001-07-18 2001-07-18 Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217870A JP4953266B2 (en) 2001-07-18 2001-07-18 Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer

Publications (2)

Publication Number Publication Date
JP2003026936A JP2003026936A (en) 2003-01-29
JP4953266B2 true JP4953266B2 (en) 2012-06-13

Family

ID=19052131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217870A Expired - Fee Related JP4953266B2 (en) 2001-07-18 2001-07-18 Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer

Country Status (1)

Country Link
JP (1) JP4953266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072743A (en) * 2013-10-01 2015-04-16 日立金属株式会社 Wire and cable

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622464B2 (en) * 1974-03-07 1981-05-25
JPS5923345B2 (en) * 1976-07-23 1984-06-01 旭化成株式会社 Flame retardant polyolefin composition
JPS53142454A (en) * 1977-05-18 1978-12-12 Asahi Chem Ind Co Ltd Magnesium hydroxidefilled resin composition
JPS5966008A (en) * 1982-10-06 1984-04-14 日立電線株式会社 Flame resistant wire and cable
JPH03231947A (en) * 1989-12-05 1991-10-15 Sakai Chem Ind Co Ltd Polyolefinic resin composition and production thereof
JPH0741611A (en) * 1993-07-29 1995-02-10 Showa Electric Wire & Cable Co Ltd Flame-retardant resin composition
JP2001110236A (en) * 1999-08-02 2001-04-20 Fujikura Ltd Non-halogen flame retardant resin composition and flame retardant wire and cable
JP2002146124A (en) * 2000-11-16 2002-05-22 Du Pont Mitsui Polychem Co Ltd Flame retardant resin composition

Also Published As

Publication number Publication date
JP2003026936A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
CA2537130C (en) Flame retardant composition with excellent processability
KR101133303B1 (en) Flame Retardant, Halogen-Free Compositions
EP0212825B1 (en) Flame-retardant olefin polymer composition
KR100808892B1 (en) Flame retardant resin composition
WO1990002153A1 (en) Surface blush-resistant, fire-retardant polyolefin resin composition
JPWO2007026735A1 (en) Flame retardant resin composition
JP4663112B2 (en) Flame retardant polyolefin composition
JP2005298807A (en) Flame retardant resin composition
JP2004156026A (en) Flame-retardant resin composition
JP4943153B2 (en) Flame retardant composition
JP3779614B2 (en) Flame retardant resin composition
JPS6211745A (en) Flame-retardant olefin polymer composition having excellent heat-resistance
JP4953266B2 (en) Method for improving oxygen index and shell formation during combustion of ethylene / vinyl acetate copolymer
JP3883966B2 (en) Flame retardant resin composition
JPH01172440A (en) Flame-retarding ethylene polymer resin composition
JP2007112992A (en) Flame-retardant resin composition
JP2001031803A (en) Flame-retardant resin composition
JP2002348419A (en) High flame-resistant resin composition having superior roll-processing and calendering
JPH04132753A (en) Flame-retardant polymer composition
JP4749524B2 (en) Flame retardant resin composition
JP4700779B2 (en) Flame retardant resin composition
JP2002212351A (en) Flame-retardant resin composition
JPH0718131A (en) Highly flame-retardant olefinic resin composition
JP2006016536A (en) Flame-retardant resin composition
JP2000297185A (en) Flame-retardant polymer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4953266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees