JP4951948B2 - Conductor formation method - Google Patents

Conductor formation method Download PDF

Info

Publication number
JP4951948B2
JP4951948B2 JP2005349347A JP2005349347A JP4951948B2 JP 4951948 B2 JP4951948 B2 JP 4951948B2 JP 2005349347 A JP2005349347 A JP 2005349347A JP 2005349347 A JP2005349347 A JP 2005349347A JP 4951948 B2 JP4951948 B2 JP 4951948B2
Authority
JP
Japan
Prior art keywords
resin
conductor
heating
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005349347A
Other languages
Japanese (ja)
Other versions
JP2007157434A (en
Inventor
隆 遠藤
実 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2005349347A priority Critical patent/JP4951948B2/en
Publication of JP2007157434A publication Critical patent/JP2007157434A/en
Application granted granted Critical
Publication of JP4951948B2 publication Critical patent/JP4951948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも導電性粉末とポリマー樹脂を含む導体の形成方法に係り、特に、回路基板上の配線や電子部品の電極として用いられる導体形成方法に関する。   The present invention relates to a method of forming a conductor containing at least conductive powder and a polymer resin, and more particularly to a method of forming a conductor used as a wiring on a circuit board or an electrode of an electronic component.

従来、回路基板の配線や電子部品の電極の導体形成方法の一つとして、熱硬化型導電性ペーストを用いたものが知られている。この場合、熱硬化型導電性ペーストはスクリーン印刷等の手段で基体に塗布され、100〜300℃程度の温度で熱処理されることにより、樹脂を硬化させ、導電性の被膜が形成される。   2. Description of the Related Art Conventionally, a method using a thermosetting conductive paste is known as one of methods for forming a conductor for wiring of a circuit board or an electrode of an electronic component. In this case, the thermosetting conductive paste is applied to the substrate by means of screen printing or the like, and heat-treated at a temperature of about 100 to 300 ° C., thereby curing the resin and forming a conductive film.

熱硬化型導電性ペーストとは、貴金属粉末、卑金属粉末又はカーボン粉末等の導電性粉末を、バインダ樹脂、硬化剤及び溶剤や触媒その他の添加剤を含む樹脂組成物中に分散させてなるものである。バインダ樹脂としては、通常、エポキシ樹脂、フェノール樹脂、メラミン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、エポキシ変性アクリル樹脂などが使用されている。   The thermosetting conductive paste is obtained by dispersing conductive powder such as noble metal powder, base metal powder or carbon powder in a resin composition containing a binder resin, a curing agent, a solvent, a catalyst, and other additives. is there. As the binder resin, an epoxy resin, a phenol resin, a melamine resin, an alkyd resin, an unsaturated polyester resin, an acrylic resin, an epoxy-modified acrylic resin, or the like is usually used.

このような熱硬化型導電性ペーストは、一般に、プリント回路基板のジャンパー回路やスルーホール導体を含む導体回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成などに用いられるほか、半導体素子や電子部品を基板に実装するための導電性接着剤としても用いられている。また近年は、太陽電池の電極、特にアモルファスシリコン半導体を用いた高温処理のできない太陽電池の電極を形成する場合や、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極を形成する場合にも、熱硬化型導電性ペーストが使用される。   Such thermosetting conductive pastes are generally used to form printed circuit board jumper circuits and conductor circuits including through-hole conductors, various electronic components such as resistors and capacitors, and electrodes of various display elements, and electromagnetic wave shields. In addition to being used for the formation of conductive coatings for semiconductors, it is also used as a conductive adhesive for mounting semiconductor elements and electronic components on a substrate. Also, in recent years, when forming electrodes for solar cells, particularly those for solar cells that cannot be processed at high temperatures using amorphous silicon semiconductors, or outside chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, multilayer ceramic actuators, etc. Also when forming an electrode, a thermosetting conductive paste is used.

従来、熱硬化型導電性ペーストにおける導電性は、導電性粉末同士の接触のみで実現されるものであったため、導電性粉末として比較的高い導電性を示す銀粉末を用いた場合でも、例えば150℃、30分程度の加熱条件で硬化させた場合、その比抵抗はせいぜい5×10−5Ω・cm前後にとどまっていた。 Conventionally, the conductivity in the thermosetting conductive paste has been realized only by contact between the conductive powders. Therefore, even when silver powder showing relatively high conductivity is used as the conductive powder, for example, 150 When cured under the heating condition of about 30 minutes at a temperature of 30 ° C., the specific resistance remained at most around 5 × 10 −5 Ω · cm.

また、従来、熱硬化型導電性ペーストを用いて回路や電極等を形成する場合、生産効率を上げる観点からは、熱硬化型導電性ペーストをできるだけ短時間で加熱硬化させることが望まれる。それ故、一般的には高温での加熱が行われる。一方、熱硬化型導電性ペーストと同時に加熱される半導体素子や電子部品等の耐熱性の観点からは、できるだけ低い温度での加熱が望まれる。つまり、これら2つの要請を同時に満たすこと自体が難しい上に、加熱処理が不十分であった場合には、回路や電極等に求められる高導電性の確保も困難となる。   Conventionally, when a circuit, an electrode, or the like is formed using a thermosetting conductive paste, it is desired to heat and cure the thermosetting conductive paste as quickly as possible from the viewpoint of increasing production efficiency. Therefore, heating at a high temperature is generally performed. On the other hand, heating at the lowest possible temperature is desired from the viewpoint of heat resistance of semiconductor elements and electronic components that are heated simultaneously with the thermosetting conductive paste. That is, it is difficult to satisfy these two requirements at the same time, and in addition, when the heat treatment is insufficient, it is difficult to ensure high conductivity required for circuits, electrodes, and the like.

以上のように、熱硬化型導電性ペーストに関しては、一般的に、生産効率から要請される加熱時間の短縮、半導体素子や電子部品等への用途から要請される加熱温度の低温化、電気的特性から要請される高導電性といった事柄はトレードオフの関係にあり、全てを同時に満たした熱硬化型導電性ペーストは未だ開発されていない。   As described above, regarding the thermosetting conductive paste, generally, the heating time required from the production efficiency is shortened, the heating temperature required from the application to the semiconductor element or the electronic component is lowered, and the electric paste is electrically used. Matters such as high conductivity required from the characteristics are in a trade-off relationship, and a thermosetting conductive paste that satisfies all of the requirements has not been developed yet.

例えば、特許文献1には、貴金属粉末、特に銀粉末を導電性粉末として用い、これと熱硬化性樹脂成分とを100:5〜100:45の重量比で配合した熱硬化型導電性ペーストが開示されている。この文献の熱硬化型導電性ペーストにより得られる比抵抗値は不明であるが、少なくとも実施例においては、200〜250℃で60分間という比較的高温での加熱処理が行われている。   For example, Patent Document 1 discloses a thermosetting conductive paste in which noble metal powder, particularly silver powder is used as a conductive powder, and this and a thermosetting resin component are blended in a weight ratio of 100: 5 to 100: 45. It is disclosed. Although the specific resistance value obtained from the thermosetting conductive paste of this document is unknown, at least in the examples, heat treatment at a relatively high temperature of 200 to 250 ° C. for 60 minutes is performed.

また、特許文献2には、熱硬化性樹脂としてフタル酸系グリシジルエステル型エポキシ樹脂を用いた熱硬化型導電性ペーストが開示されている。この熱硬化型導電性ペーストによれば、100〜300℃での加熱硬化によって2×10−5Ω・cm以下の比抵抗値が得られるとあるが、その実施例においては、やはり180℃で30分間という比較的高温での加熱処理が行われている。
特開平6−267784号公報 特開2005−19398号公報
Patent Document 2 discloses a thermosetting conductive paste using a phthalic acid glycidyl ester type epoxy resin as a thermosetting resin. According to this thermosetting conductive paste, a specific resistance value of 2 × 10 −5 Ω · cm or less can be obtained by heat curing at 100 to 300 ° C. Heat treatment is performed at a relatively high temperature of 30 minutes.
JP-A-6-267784 Japanese Patent Laid-Open No. 2005-19398

これらの文献のように、従来例においては、加熱時間の短縮、加熱温度の低温化、高導電性のバランスを見ながら最終的な加熱条件が決められており、例えば、生産効率を重視する場合は、耐熱限界温度に近い温度で加熱することにより、できるだけ加熱時間を短縮し、その結果として得られる抵抗値で妥協するといったことが行われていた。   As in these documents, in the conventional example, the final heating conditions are determined while looking at the balance between shortening the heating time, lowering the heating temperature, and high conductivity. For example, when production efficiency is important However, heating at a temperature close to the heat-resistant limit temperature shortens the heating time as much as possible and compromises with the resistance value obtained as a result.

本発明はこのような点に鑑みてなされたものであり、特に、熱硬化性樹脂を含む導電性ペーストを用いた導体形成方法において、低温且つ短時間での熱硬化処理を行う場合であっても、抵抗が十分低い導体を得ることのできる導体形成方法を提供することを目的とする。   The present invention has been made in view of such a point, and in particular, in a conductor forming method using a conductive paste containing a thermosetting resin, a thermosetting process is performed at a low temperature in a short time. Another object of the present invention is to provide a conductor forming method capable of obtaining a conductor having sufficiently low resistance.

前記課題を解決するために、本発明は、少なくとも導電性粉末と樹脂を含む導電性ペーストを用いる導体形成方法において、
導体を形成する基体の耐熱限界温度より10℃以上低い第1加熱温度で加熱して前記導電性ペーストを少なくとも半硬化させてから、前記樹脂のガラス転移点以上でありかつ前記第1加熱温度より低い第2加熱温度で加熱することを特徴とする。
In order to solve the above problems, the present invention provides a conductor forming method using a conductive paste containing at least a conductive powder and a resin.
The conductive paste is at least semi-cured by heating at a first heating temperature that is 10 ° C. or more lower than the heat-resistant limit temperature of the substrate on which the conductor is formed , and is above the glass transition point of the resin and above the first heating temperature. Heating is performed at a low second heating temperature.

また、前記樹脂は、熱硬化性樹脂であることを特徴とする。   Further, the resin is a thermosetting resin.

また、前記熱硬化性樹脂は、シリコーン変性エポキシ樹脂であることを特徴とする。   The thermosetting resin is a silicone-modified epoxy resin.

また、前記第2加熱温度による加熱は、加熱による導体の抵抗の低下率が鈍化するまでは継続されることを特徴とする。   The heating at the second heating temperature is continued until the rate of decrease in the resistance of the conductor due to the heating is reduced.

さらに、前記導電性粉末は、銀を主成分とする銀系粉末であることを特徴とする。   Furthermore, the conductive powder is a silver-based powder containing silver as a main component.

本発明によれば、熱硬化型導電性ペーストを用いた導体形成方法において、低温での熱硬化処理で、抵抗を十分に低下させることが可能である。従って、様々な基板や電子部品の導体を形成することが可能である。   According to the present invention, in a conductor forming method using a thermosetting conductive paste, it is possible to sufficiently reduce resistance by a thermosetting treatment at a low temperature. Therefore, it is possible to form conductors for various substrates and electronic components.

本実施形態に係る導体形成方法において用いられる導電性ペーストは、以下に説明する導電性粉末と樹脂を少なくとも含むものである。
<導電性粉末>
The conductive paste used in the conductor forming method according to this embodiment includes at least a conductive powder and a resin described below.
<Conductive powder>

導電性粉末としては、銀、金、白金、パラジウム等の金属の粉末や、これらの金属を含む合金、例えば、銀−銅合金、銀−パラジウム−銅合金の粉末が使用される。また、金属、金属化合物、ガラス、セラミック、カーボン等の無機質粉末、樹脂等の有機質粉末の表面に、上述の金属又は合金を被覆したものを用いることもできる。特に、比抵抗が低いことから銀系の導電性粉末が好ましく、その一例として、銀粉末、銀を主成分とする合金粉末や銀被覆粉末等が挙げられる。   As the conductive powder, metal powders such as silver, gold, platinum, and palladium, and alloys containing these metals, for example, silver-copper alloys and silver-palladium-copper alloy powders are used. Moreover, what coated the above-mentioned metal or alloy on the surface of inorganic powders, such as a metal, a metal compound, glass, a ceramic, carbon, and organic powders, such as resin, can also be used. In particular, silver-based conductive powder is preferable because of its low specific resistance. Examples thereof include silver powder, alloy powder containing silver as a main component, and silver-coated powder.

また、導電性粉末は、2種以上を混合して使用しても良く、従来法により種々の脂肪酸類やカップリング剤などで表面処理して使用しても良い。   In addition, the conductive powder may be used in a mixture of two or more kinds, and may be used after being surface-treated with various fatty acids or a coupling agent by a conventional method.

導電性粉末の形状としては、球状、フレーク状、樹枝上、繊維状など特に制限はないが、
粉末粒子同士が接触しやすく、導電性の点で有利なことから、平均粒径0.1〜20μm程度のフレーク状粉末が好ましい。
<樹脂>
The shape of the conductive powder is not particularly limited, such as spherical, flake, dendritic, and fibrous,
Since the powder particles are easily in contact with each other and advantageous in terms of conductivity, a flaky powder having an average particle size of about 0.1 to 20 μm is preferable.
<Resin>

樹脂としては、特に制限は無いが、本実施形態においては熱硬化性樹脂をバインダ樹脂として用いることが好ましい。   Although there is no restriction | limiting in particular as resin, In this embodiment, it is preferable to use a thermosetting resin as binder resin.

従来は、導電性ペーストにおいて用いられる熱硬化性樹脂は、加熱硬化後における導体の耐熱性を上げるため、一般に加熱処理の際の温度より高いガラス転移点を示すものが選択されていた。例えば、150℃で熱硬化処理が行われる場合、ガラス転移点が160℃以上のエポキシ樹脂が用いられていた。   Conventionally, as the thermosetting resin used in the conductive paste, a resin that exhibits a glass transition point higher than the temperature during the heat treatment has been generally selected in order to increase the heat resistance of the conductor after heat curing. For example, when the thermosetting treatment is performed at 150 ° C., an epoxy resin having a glass transition point of 160 ° C. or more has been used.

本発明に係る導体形成方法においては、第1の加熱処理の温度は、従来と同様に導体を形成する基体の耐熱限界温度に基づいて設定され、例えば導電性ペーストに熱硬化性樹脂を用いる場合には、設定された第1の加熱処理の温度より低いガラス転移点を示す熱硬化性樹脂を使用することを特徴とする。また、設定される第1の加熱処理の温度より10℃以上低いガラス転移点を示す熱硬化性樹脂を使用することが好ましい。例えば、第1の加熱処理を150℃で行うように設定する場合、140℃以下のガラス転移点を示す熱硬化性樹脂を使用することが好ましい。   In the conductor formation method according to the present invention, the temperature of the first heat treatment is set based on the heat-resistant limit temperature of the substrate on which the conductor is formed as in the conventional case, for example, when a thermosetting resin is used for the conductive paste Is characterized in that a thermosetting resin exhibiting a glass transition point lower than the set temperature of the first heat treatment is used. Further, it is preferable to use a thermosetting resin exhibiting a glass transition point that is 10 ° C. or more lower than the temperature of the first heat treatment to be set. For example, when the first heat treatment is set to be performed at 150 ° C., it is preferable to use a thermosetting resin exhibiting a glass transition point of 140 ° C. or lower.

ここで、熱硬化性樹脂のガラス転移点は、公知の方法、例えば、示差走査熱量測定(DSC)等で測定することが可能であるが、粘弾性特性測定装置(オリエンテック(株)Rheovibron DDV−01FP)で測定した損失曲線(tanδ)から求めることもでき、一例として図1のような損失曲線が得られた場合、その値が急激に変化する温度をガラス転移点とすることができる。   Here, the glass transition point of the thermosetting resin can be measured by a known method, for example, differential scanning calorimetry (DSC) or the like, but a viscoelastic property measuring apparatus (Orientec Co., Ltd. Rheobibron DDV). It can also be obtained from a loss curve (tan δ) measured at −01 FP). As an example, when a loss curve as shown in FIG. 1 is obtained, the temperature at which the value rapidly changes can be used as the glass transition point.

このような熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、アルキド樹脂等を用いることができる。特に、エポキシ樹脂の場合、耐熱性が良好であることから、ノボラック型エポキシ樹脂、多官能基エポキシ樹脂が好ましく用いられる。また、ガラス転移点を低くした場合でも、加熱処理後における導体の耐熱性を維持又は向上させることができるように、シリコーン変性エポキシ樹脂を用いることがより好ましい。   As such a thermosetting resin, for example, an epoxy resin, a phenol resin, a melamine resin, an alkyd resin, or the like can be used. In particular, in the case of an epoxy resin, a novolac type epoxy resin and a polyfunctional group epoxy resin are preferably used because of good heat resistance. Moreover, even when the glass transition point is lowered, it is more preferable to use a silicone-modified epoxy resin so that the heat resistance of the conductor after the heat treatment can be maintained or improved.

本実施形態においては、導電性ペーストの用途及び要求される特性に応じて、熱硬化性樹脂に他の樹脂成分を配合したものをバインダ樹脂としてもよい。他の樹脂成分としては、異なる種の熱硬化性樹脂や熱可塑性樹脂等を用いることもでき、例えば、ブチラール樹脂、アクリル樹脂、メタクリル樹脂、アクリルスチレン樹脂、変性アクリル樹脂、グリシジルメタクリレート、メラミン樹脂、アルキッド樹脂、ポリエステル樹脂、フェノキシ樹脂、ウレタン樹脂、フェノール樹脂、ビニル樹脂、セルロース誘導体等が挙げられる。   In the present embodiment, a binder resin obtained by blending another resin component with a thermosetting resin may be used in accordance with the use of the conductive paste and the required characteristics. As other resin components, different types of thermosetting resins and thermoplastic resins can also be used, for example, butyral resin, acrylic resin, methacrylic resin, acrylic styrene resin, modified acrylic resin, glycidyl methacrylate, melamine resin, Examples include alkyd resins, polyester resins, phenoxy resins, urethane resins, phenol resins, vinyl resins, and cellulose derivatives.

熱硬化性樹脂と他の樹脂成分との混合比率は、重量比で100:0〜40:60程度が好ましい。熱硬化性樹脂の重量比が40以下の場合、加熱によって流動性が高まり塗布形状を保つことが難しくなる。   The mixing ratio of the thermosetting resin and other resin components is preferably about 100: 0 to 40:60 by weight. When the weight ratio of the thermosetting resin is 40 or less, the fluidity is increased by heating, and it is difficult to maintain the coating shape.

バインダ樹脂の配合割合は、導電性粉末100重量部に対して2〜30重量部である。30重量部を越えると抵抗が高くなり、また2重量部より少ないと硬化膜強度が低下することに起因して抵抗が増大する。
<その他の成分>
The blending ratio of the binder resin is 2 to 30 parts by weight with respect to 100 parts by weight of the conductive powder. When the amount exceeds 30 parts by weight, the resistance increases. When the amount is less than 2 parts by weight, the resistance increases because the strength of the cured film decreases.
<Other ingredients>

本発明に係る導体形成方法で用いられる導電性ペーストには、基体への塗布性等を調節するために、必要に応じて溶剤を配合することとしても良い。溶剤としては、例えばアルコール系溶剤、エステル系溶剤、エーテル系溶剤、ケトン系溶剤、炭化水素系溶剤、脂肪酸系溶剤、反応性希釈剤など、公知のものが使用される。   The conductive paste used in the conductor forming method according to the present invention may be mixed with a solvent as necessary in order to adjust the coating property to the substrate. As the solvent, for example, known solvents such as alcohol solvents, ester solvents, ether solvents, ketone solvents, hydrocarbon solvents, fatty acid solvents, reactive diluents and the like are used.

また、導電性ペーストには、硬化剤を配合することとしてもよい。熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化剤としては、例えば、イミダゾール硬化剤、酸無水物系硬化剤、アミン系硬化剤、フェノール樹脂系硬化剤等が適用可能であり、特に、イミダゾール硬化剤が好ましい。また、硬化剤としては、必要に応じて2種以上のものを混合して使用しても良い。硬化剤の配合量は、バインダ樹脂のエポキシ当量に応じて調整することが好ましい。また、このような硬化剤に加えて、硬化促進剤や硬化触媒を添加しても良い。   Moreover, it is good also as mix | blending a hardening | curing agent with an electrically conductive paste. When an epoxy resin is used as the thermosetting resin, as the curing agent, for example, an imidazole curing agent, an acid anhydride curing agent, an amine curing agent, a phenol resin curing agent, and the like can be applied. Agents are preferred. Moreover, as a hardening | curing agent, you may mix and use 2 or more types as needed. The blending amount of the curing agent is preferably adjusted according to the epoxy equivalent of the binder resin. In addition to such a curing agent, a curing accelerator or a curing catalyst may be added.

さらに、導電性ペーストには、通常必要に応じて配合される添加剤、例えば界面活性剤、還元剤、キレート剤、消泡剤、可塑剤、揺変剤、分散剤、無機フィラーなどを適宜添加してもよい。これらにより、塗布性や形成される導体膜の耐熱性、耐水性、耐環境性、可撓性、はんだ付け性、はんだ耐熱性等の特性を適切に調整することができ、種々の用途に適用することが可能となる。   Furthermore, additives that are usually blended as necessary, such as surfactants, reducing agents, chelating agents, antifoaming agents, plasticizers, thixotropic agents, dispersants, inorganic fillers, etc., are added to the conductive paste as appropriate. May be. With these, the properties such as heat resistance, water resistance, environment resistance, flexibility, solderability, solder heat resistance, etc. of the coating property and the formed conductor film can be adjusted appropriately and applied to various applications. It becomes possible to do.

このようにして調整された導電性ペーストは、スクリーン印刷、転写印刷、ディッピング、刷毛塗り、ディスペンサーを用いた塗布等、種々の手段で基体に塗布される。基体とは基板や電子部品などであり、具体的には、プリント配線板等の樹脂、PETフィルム、セラミック、ガラス、シリコン半導体、化合物半導体など種々のものが使用できる。またこれらの基体上に形成された導体回路、誘電体、抵抗体の上に導電性ペーストを塗布することにより、電極、接着剤、回路保護等の目的で用いることもできる。
<導体形成方法>
The conductive paste thus adjusted is applied to the substrate by various means such as screen printing, transfer printing, dipping, brush coating, and application using a dispenser. The substrate is a substrate, an electronic component, or the like, and specifically, various materials such as a resin such as a printed wiring board, PET film, ceramic, glass, silicon semiconductor, and compound semiconductor can be used. Further, by applying a conductive paste on the conductor circuit, dielectric, and resistor formed on these substrates, it can also be used for the purpose of protecting electrodes, adhesives, and circuits.
<Conductor formation method>

次に、本発明に係る導体形成方法について説明する。
本発明に係る導体形成方法においては、まず、上述のようにして調整した導電性ペーストを基体に塗布する。そして、少なくとも導電性ペーストを半硬化させるために第1加熱温度で加熱する第1加熱処理を行ってから、樹脂のガラス転移点以上でありかつ第1加熱温度より低い第2加熱温度で加熱する第2加熱処理を行って導体を形成することを特徴とする。
Next, the conductor forming method according to the present invention will be described.
In the conductor forming method according to the present invention, first, the conductive paste prepared as described above is applied to a substrate. And after performing the 1st heat processing which heats at a 1st heating temperature in order to semi-harden an electrically conductive paste at least, it heats at the 2nd heating temperature which is more than the glass transition point of resin and is lower than a 1st heating temperature. A conductor is formed by performing the second heat treatment.

第1加熱処理においては、少なくとも導電性ペーストを半硬化することができれば良く、それ以上、例えば完全に硬化されても良い。本発明において、導電性ペーストの半硬化とは、塗布後の導電性ペーストの表面は硬化されているがその内部までは完全に硬化されていない状態である。樹脂として熱硬化性樹脂を用いた場合、熱硬化性樹脂が硬化することにより導電性ペーストが硬化するので、導電性ペーストの硬化と熱硬化性樹脂の硬化とは略同義である。   In the first heat treatment, it is sufficient that at least the conductive paste can be semi-cured, and more than that, for example, it may be completely cured. In the present invention, the semi-curing of the conductive paste is a state in which the surface of the conductive paste after application is cured but not completely cured. When a thermosetting resin is used as the resin, the conductive paste is cured by curing the thermosetting resin. Therefore, the curing of the conductive paste and the curing of the thermosetting resin are substantially synonymous.

最適な第1加熱温度は、基体や半導体素子、電子部品等(以下、「基体等」)の耐熱限界温度や樹脂と硬化剤等の組合せによって異なるが、基体等に熱的なストレスをかけないように、基体等の耐熱限界温度より10〜100℃以上低い温度で加熱することが好ましい。加熱手段については特に限定はなく、公知の方法で行うことができる。   The optimal first heating temperature varies depending on the heat-resistant limit temperature of the substrate, semiconductor element, electronic component, etc. (hereinafter referred to as “substrate”) and the combination of resin and curing agent, but does not apply thermal stress to the substrate, etc. Thus, it is preferable to heat at a temperature that is 10 to 100 ° C. lower than the heat resistant limit temperature of the substrate or the like. There is no limitation in particular about a heating means, It can carry out by a well-known method.

熱硬化型導電性ペーストを加熱処理する際、短時間で低抵抗の導体を得るためには、できるだけ高温で加熱することが一般的である。それ故、従来は基体等の耐熱限界温度を超えない程度の高温で加熱が行われていたが、この場合でも温度が高ければ高いほど、基体等に或る程度の熱的ストレスがかかってしまう。これを避けるためには、比較的低温(例えば100℃)で加熱すれば良いが、生産効率が落ちる上に、高導電性の導体が得られなくなる。   When heat-treating a thermosetting conductive paste, in order to obtain a low-resistance conductor in a short time, it is common to heat at as high a temperature as possible. Therefore, conventionally, heating has been performed at a high temperature that does not exceed the heat-resistant limit temperature of the substrate or the like, but even in this case, the higher the temperature, the more certain thermal stress is applied to the substrate or the like. . In order to avoid this, heating should be performed at a relatively low temperature (for example, 100 ° C.), but the production efficiency is lowered and a highly conductive conductor cannot be obtained.

本発明の導体形成方法において、熱硬化型導電性ペーストに対する加熱処理は、導電性ペーストが少なくとも半硬化する程度に加熱する第1の加熱処理と、導体の抵抗値を下げるために加熱する第2の加熱処理の2段階に分かれている。   In the conductor forming method of the present invention, the heat treatment for the thermosetting conductive paste includes a first heat treatment for heating the conductive paste to at least a semi-cured state, and a second heat treatment for lowering the resistance value of the conductor. The heat treatment is divided into two stages.

第1加熱処理においては、導電性ペーストが少なくとも半硬化する程度の加熱処理で良いため、従来のように、基体等の耐熱限界温度にできるだけ近い温度で加熱していた場合に比べ、それより低い温度で加熱処理することも可能であり、また、加熱処理時間も短縮することが可能である。それ故、基体等に対する熱的ストレスを減らすことができる。   In the first heat treatment, since the heat treatment at which the conductive paste is at least semi-cured is sufficient, it is lower than the case where the heat treatment is performed at a temperature as close as possible to the heat-resistant limit temperature of the substrate or the like as in the prior art. Heat treatment can be performed at a temperature, and the heat treatment time can be shortened. Therefore, the thermal stress on the substrate or the like can be reduced.

この第1加熱処理が終了した段階で、導電性ペーストは少なくとも半硬化状態になるため、塗布形状を保ったまま、第2加熱処理を行うことが可能である。   Since the conductive paste is at least semi-cured when the first heat treatment is completed, the second heat treatment can be performed while maintaining the applied shape.

第2加熱処理においては、熱硬化型導電性ペーストに対する加熱処理は、樹脂のガラス転移点以上であり且つ第1加熱温度よりも低い温度で加熱するため、基体等に与える熱的ストレスは大幅に低減される。この第2加熱処理は、比較的低温で加熱するため、第1加熱処理に比べて大規模な生産設備を必要としない。それ故、第2加熱処理は、第1加熱処理後の次工程までの空き時間、例えば、生産物を検査するための検査工程に回すまでに倉庫等に一時保管されている時間等といった、生産工程上のデットタイムを利用して行うことができる。それ故、全体としての生産効率を低下させることなく、電気的特性の優れた導体を得ることができる。   In the second heat treatment, the heat treatment for the thermosetting conductive paste is performed at a temperature not lower than the glass transition point of the resin and lower than the first heating temperature. Reduced. Since the second heat treatment is performed at a relatively low temperature, a large-scale production facility is not required as compared with the first heat treatment. Therefore, the second heat treatment is a production time such as a free time until the next process after the first heat treatment, for example, a time temporarily stored in a warehouse or the like before turning to an inspection process for inspecting a product. It can be performed using the dead time on the process. Therefore, a conductor having excellent electrical characteristics can be obtained without reducing the overall production efficiency.

本発明において、第2加熱温度は、ペースト中に使用される樹脂のガラス転移点以上であり、かつ第1加熱温度より低い温度に設定される。そのため、熱硬化性樹脂を用いる場合には、そのガラス転移点が第1加熱温度よりも低い熱硬化性樹脂が用いられる。基体等に熱的ストレスをかけないためには、第2加熱温度は第1加熱温度よりも10〜50℃程度低い温度であることが好ましい。また、第2加熱処理により効率的に抵抗値を下げるために、第2加熱温度は樹脂のガラス転移点よりも10℃以上高いことが望ましい。   In the present invention, the second heating temperature is set to a temperature that is equal to or higher than the glass transition point of the resin used in the paste and lower than the first heating temperature. Therefore, when using a thermosetting resin, a thermosetting resin whose glass transition point is lower than the first heating temperature is used. In order not to apply thermal stress to the substrate or the like, the second heating temperature is preferably lower by about 10 to 50 ° C. than the first heating temperature. Further, in order to efficiently reduce the resistance value by the second heat treatment, the second heating temperature is desirably higher by 10 ° C. or more than the glass transition point of the resin.

第2加熱処理においては、加熱処理を開始した後、しばらくの間は、導体の抵抗値は急激に低下するが、やがてその低下率は小さくなり鈍化する。そのため、効率的に導体の導電性を上げるためには、第2加熱処理は少なくとも導体抵抗値の低下率が鈍化するまでの間は継続しておくことが望ましい。導体抵抗値の低下率が鈍化した後も、第2加熱処理により抵抗値が多少低下するため、その後も所定時間続けても良く、また生産効率の観点から、その時点で終了しても良い。   In the second heat treatment, the resistance value of the conductor rapidly decreases for a while after the heat treatment is started, but the rate of decrease gradually decreases and becomes dull. Therefore, in order to efficiently increase the conductivity of the conductor, it is desirable that the second heat treatment is continued at least until the rate of decrease in the conductor resistance value slows down. Even after the rate of decrease in the conductor resistance value has slowed down, the resistance value slightly decreases due to the second heat treatment, and thereafter, the resistance value may continue for a predetermined time, or may end at that point in terms of production efficiency.

なお、樹脂のガラス転移点より低温で第2加熱処理を行った場合でも、導体の抵抗が低下する現象は見られるが、その場合の低下率は顕著なものではない。そのため、導体の抵抗を低下させるためには長時間の加熱が必要となり、生産効率が低下してしまう。   Even when the second heat treatment is performed at a temperature lower than the glass transition point of the resin, a phenomenon that the resistance of the conductor is reduced is observed, but the reduction rate in that case is not significant. Therefore, in order to reduce the resistance of the conductor, heating for a long time is required, and the production efficiency is lowered.

第2加熱処理により導体の抵抗が抵下する現象が見られるメカニズムは明確ではないが、導電性ペーストの硬化物及び樹脂単体の硬化物それぞれについて、熱粘弾性特性を調べてみたところ、第2加熱処理を行うことにより、導体の弾性の上昇が見られることから、樹脂のガラス転移点より高温での加熱により、導電性粉末同士の接合・融着が進み、導電性ペーストにおけるネットワーク構造の形成がより進行しているためではないかと推察される。
<導体の用途>
The mechanism by which the phenomenon in which the resistance of the conductor is reduced by the second heat treatment is not clear, but when the thermoviscoelastic properties of the cured product of the conductive paste and the cured product of the single resin were examined, the second Heat treatment increases the elasticity of the conductor, so heating and heating at temperatures higher than the glass transition point of the resin promotes bonding and fusion between the conductive powders, forming a network structure in the conductive paste. It is presumed that this is because of the progress.
<Use of conductor>

本実施形態における導電性ペースト及び硬化膜は、様々な用途に使用することができる。代表的な用途例としては、プリント回路基板のジャンパー回路やスルーホール導体、PETフィルムなどのフレキシブル基板の導体材料、アディティブ回路等への使用、タッチパネルの導体回路への使用、抵抗端子への使用、電磁波シールドとしての使用、電子部品同士の接着や、半導体素子や電子部品を基板に実装するための導電性接着剤としての使用などが挙げられる。   The conductive paste and the cured film in the present embodiment can be used for various applications. Typical applications include jumper circuits and through-hole conductors for printed circuit boards, conductor materials for flexible substrates such as PET film, use for additive circuits, etc., use for conductor circuits for touch panels, use for resistance terminals, Examples thereof include use as an electromagnetic wave shield, adhesion between electronic components, use as a conductive adhesive for mounting a semiconductor element or electronic component on a substrate, and the like.

また、本実施形態に係る導電性ペーストは、上述した導体形成方法で加熱処理して硬化されることにより、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極として使用することもできる。例えば、従来のチップ型セラミック電子部品の外部電極は、部品素体に高温焼成型電極を焼き付け、その上に熱硬化型導電性ペーストを被覆する方法や、直接素体に熱硬化型導電性ペーストを塗布し加熱硬化させる方法によって形成され、必要により、はんだめっきが施されている。本実施形態に係る導電性ペーストは、従来の熱硬化型導電性ペーストの代替として使用することができる。
なお、上述の用途は例示であり、本実施形態に係る導電性ペーストは、係る用途に限定されるものではなく、導電性や接着性が要求される様々な用途に使用可能である。
In addition, the conductive paste according to the present embodiment is heat-treated and cured by the above-described conductor formation method, thereby serving as an external electrode of a chip-type ceramic electronic component such as a multilayer ceramic capacitor, a multilayer ceramic inductor, or a multilayer ceramic actuator. It can also be used. For example, external electrodes of conventional chip-type ceramic electronic components can be obtained by baking a high-temperature firing type electrode on a component body and coating a thermosetting conductive paste on the component body, or a thermosetting conductive paste directly on the body. Is formed by a method of applying and heat-curing, and solder plating is applied if necessary. The conductive paste according to the present embodiment can be used as an alternative to a conventional thermosetting conductive paste.
In addition, the above-mentioned use is an illustration, The electroconductive paste which concerns on this embodiment is not limited to the use which concerns, It can be used for various uses in which electroconductivity and adhesiveness are requested | required.

銀粉末(昭栄化学工業(株)Ag−026)をボールミルでフレーク化した銀粉末(D50=2μm)100重量部に対し、ビスフェノールA型エポキシ樹脂(ジャパン・エポキシ・レジン(株)エピコート1001)をシリコーン変性したガラス転移点110℃の樹脂10重量部、イミダゾール硬化剤1重量部、エチルカルビトールアセテート8重量部、をそれぞれ加えて3本ロールミルで混練し、熱硬化性銀ペーストを調製した。   Bisphenol A type epoxy resin (Japan Epoxy Resin Co., Ltd. Epicoat 1001) is added to 100 parts by weight of silver powder (D50 = 2 μm) obtained by flaking silver powder (Ashei Chemical Industry Co., Ltd. Ag-026) with a ball mill. A silicone-modified glass transition point 110 ° C. resin 10 parts by weight, an imidazole curing agent 1 part by weight, and ethyl carbitol acetate 8 parts by weight were added and kneaded in a three-roll mill to prepare a thermosetting silver paste.

予備実験として、得られた熱硬化性銀ペーストを、ガラス基板上に、硬化膜の膜厚が20μmとなるように0.5mm×5mmのラインパターンに塗布し、125℃、150℃、175℃、200℃、225℃とそれぞれの温度条件で加熱硬化処理を行った。その際、デジタルマルチメーター(ケースレーインスツルメンツ(株)製 2002モデル)を用いて抵抗値を、表面粗さ計((株)東京精密製 Surfcom)を用いて電極厚さを測定し、これらから比抵抗の値を求めた。
得られた結果を図2に示す。
図2において、×は熱硬化性銀ペーストが未硬化であることを示し、○は硬化完了、△はその中間を示す。詳細には、加熱処理後の塗布膜に対してメチルエチルケトン(MEK)の溶媒を用いラビングテスト(往復50回)を行った後、塗布膜外観を目視で評価し、塗膜に異常がない場合は塗布膜が少なくとも半硬化されているので硬化完了として○、塗膜が溶解した場合は未硬化であるとして×、一部溶解した場合は硬化完了と未硬化との中間であるとして△、で示している。
図2に示されるように、加熱処理温度が高い程、短時間でも高い導電性が得られ、例えば、225℃で加熱を行った場合には60分の加熱でも低い抵抗値が得られるが、125〜150℃という比較的低い温度で加熱処理を行った場合には120分以上の加熱によっても十分な導電性が得られていない。しかしながら、225℃で加熱を行った場合には、基体等に熱的ストレスを与えることになる。
As a preliminary experiment, the obtained thermosetting silver paste was applied to a 0.5 mm × 5 mm line pattern on a glass substrate so that the thickness of the cured film was 20 μm, and 125 ° C., 150 ° C., 175 ° C. , 200 ° C., 225 ° C., and heat curing treatment was performed under the respective temperature conditions. At that time, the resistance value was measured using a digital multimeter (2002 model manufactured by Keithley Instruments Co., Ltd.), and the electrode thickness was measured using a surface roughness meter (Surfcom manufactured by Tokyo Seimitsu Co., Ltd.). The value of was obtained.
The obtained results are shown in FIG.
In FIG. 2, “x” indicates that the thermosetting silver paste is uncured, “◯” indicates the completion of curing, and “Δ” indicates the middle. Specifically, after performing a rubbing test (50 reciprocations) using a solvent of methyl ethyl ketone (MEK) on the coating film after the heat treatment, the appearance of the coating film is visually evaluated, and when there is no abnormality in the coating film Since the coating film is at least semi-cured, it is indicated as ◯ when the curing is completed, x when the coating film is dissolved and x when it is uncured, and when it is partially dissolved, it is indicated as △ between the completion of curing and uncured ing.
As shown in FIG. 2, the higher the heat treatment temperature is, the higher the conductivity is obtained even in a short time. For example, when heating is performed at 225 ° C., a low resistance value is obtained even by heating for 60 minutes. When heat treatment is performed at a relatively low temperature of 125 to 150 ° C., sufficient conductivity is not obtained even by heating for 120 minutes or more. However, when heating is performed at 225 ° C., thermal stress is applied to the substrate and the like.

そこで、本実施例では、150℃で60分加熱して第1加熱処理を行い、完全硬化させたものに対して、第1加熱温度よりも低く、かつ、熱硬化性樹脂のガラス転移点よりも高い125℃で第2加熱処理を行い、同様に比抵抗の変化を測定した。その結果を図3に示す。
図3に示されるように、125℃という比較的低い温度で第2加熱処理を行った場合でも、十分に比抵抗を下げることができる。比抵抗は第2加熱処理を開始してからしばらくの間は急激に低下するが、その低下率はやがて鈍化する。そこで本発明においては、第2加熱処理は、少なくとも第2加熱処理の開始から比抵抗の低下率が鈍化するまでの間、行うことが望ましい。なお、本発明において、「第2加熱処理の開始から比抵抗の低下率が鈍化するまでの間」とは、第2加熱処理を開始してから、図3に示すように、鈍化前の比抵抗の低下率を示す接線と、鈍化後の比抵抗の低下率を示す接線とが交差するまでの時間(図中矢印)を示すものとする。
比抵抗の低下率が鈍化した以降も、加熱により比抵抗は低下するため、第2加熱処理を継続して行っても良い。しかしながら、生産効率の観点からは、比抵抗の低下率が鈍化した以降は所定の時間(例えば100時間)が経過した後に第2加熱処理を終了すると良い。
Therefore, in this example, the first heat treatment was performed by heating at 150 ° C. for 60 minutes, and the cured product was lower than the first heating temperature and from the glass transition point of the thermosetting resin. The second heat treatment was performed at a high temperature of 125 ° C., and the change in specific resistance was measured in the same manner. The result is shown in FIG.
As shown in FIG. 3, even when the second heat treatment is performed at a relatively low temperature of 125 ° C., the specific resistance can be sufficiently reduced. The specific resistance rapidly decreases for a while after the second heat treatment is started, but the rate of decrease gradually decreases. Therefore, in the present invention, it is desirable to perform the second heat treatment at least from the start of the second heat treatment until the decrease rate of the specific resistance slows down. In the present invention, “from the start of the second heat treatment until the rate of decrease in specific resistance slows down” refers to the ratio before the blunting from the start of the second heat treatment, as shown in FIG. The time (arrow in the figure) until the tangent which shows the decreasing rate of resistance and the tangent which shows the decreasing rate of the specific resistance after blunting shall be shown.
Even after the decrease rate of the specific resistance has slowed down, the specific resistance decreases due to heating, so the second heat treatment may be continued. However, from the viewpoint of production efficiency, the second heat treatment may be terminated after a predetermined time (for example, 100 hours) has elapsed after the decrease rate of the specific resistance has slowed down.

図3から明らかなように、第2加熱処理において、使用した樹脂のガラス転移点(100℃)を超えた温度(125℃)で加熱を行うと、比較的低温であっても比抵抗を下げることができるとともに、基体等に対して熱的なストレスが加わることを回避できる。具体的には最終的に約20μΩ・cm程度にまで比抵抗値を下げることができ、結果としては、225℃で60分間加熱した場合(図2参照)と同等の抵抗値を得ることができる。   As is apparent from FIG. 3, in the second heat treatment, when heating is performed at a temperature (125 ° C.) exceeding the glass transition point (100 ° C.) of the resin used, the specific resistance is lowered even at a relatively low temperature. In addition, it is possible to avoid applying thermal stress to the substrate or the like. Specifically, the specific resistance value can be finally lowered to about 20 μΩ · cm, and as a result, a resistance value equivalent to that when heated at 225 ° C. for 60 minutes (see FIG. 2) can be obtained. .

比較のため、同様に150℃で60分加熱して第1加熱処理を行ったものに対して、熱硬化性樹脂のガラス転移点よりも低い65℃で加熱処理を行った結果を図4に示す。
図4に示すように、熱硬化性樹脂のガラス転移点よりも低い温度であっても、加熱処理を行うことにより、抵抗値は徐々に低下する傾向が見られ、この比較例においては、500時間の加熱処理により抵抗値は約20μΩ・cm低くなった。更に、長時間の加熱処理を行うことにより、比抵抗が下がる可能性はあるが、加熱時間に対する比抵抗値の低下が十分でなく、生産効率上の観点からは望ましくない。
For comparison, FIG. 4 shows the result of heat treatment at 65 ° C. lower than the glass transition point of the thermosetting resin for the same heat treatment performed at 150 ° C. for 60 minutes. Show.
As shown in FIG. 4, even when the temperature is lower than the glass transition point of the thermosetting resin, the resistance value tends to gradually decrease by performing the heat treatment. The resistance value decreased by about 20 μΩ · cm by the heat treatment for a period of time. Furthermore, although the specific resistance may decrease by performing the heat treatment for a long time, the specific resistance value with respect to the heating time is not sufficiently lowered, which is not desirable from the viewpoint of production efficiency.

粘弾性特性測定装置で測定した損失曲線(tanδ)から、シリコーン変性エポキシ樹脂のガラス転移点を求めたグラフである。It is the graph which calculated | required the glass transition point of a silicone modified epoxy resin from the loss curve (tan-delta) measured with the viscoelastic property measuring apparatus. 加熱温度と加熱時間と比抵抗の関係を示すグラフである。It is a graph which shows the relationship between heating temperature, heating time, and specific resistance. 樹脂のガラス転移点よりも高い温度で第2加熱処理を行った場合の抵抗変化を示すグラフである。It is a graph which shows resistance change at the time of performing a 2nd heat processing at temperature higher than the glass transition point of resin. 樹脂のガラス転移点よりも低い温度で加熱処理を行った場合の抵抗変化を示すグラフである。It is a graph which shows resistance change at the time of heat-processing at temperature lower than the glass transition point of resin.

Claims (5)

少なくとも導電性粉末と樹脂を含む導電性ペーストを用いる導体形成方法において、
導体を形成する基体の耐熱限界温度より10℃以上低い第1加熱温度で加熱して前記導電性ペーストを少なくとも半硬化させてから、前記樹脂のガラス転移点以上でありかつ前記第1加熱温度より低い第2加熱温度で加熱することを特徴とする導体形成方法。
In a conductor forming method using a conductive paste containing at least conductive powder and resin,
The conductive paste is at least semi-cured by heating at a first heating temperature that is 10 ° C. or more lower than the heat-resistant limit temperature of the substrate on which the conductor is formed , and is above the glass transition point of the resin and above the first heating temperature. A method for forming a conductor, comprising heating at a low second heating temperature.
前記樹脂は、熱硬化性樹脂であることを特徴とする請求項1に記載の導体形成方法。   The conductor forming method according to claim 1, wherein the resin is a thermosetting resin. 前記熱硬化性樹脂は、シリコーン変性エポキシ樹脂であることを特徴とする請求項2に記載の導体形成方法。   The conductor forming method according to claim 2, wherein the thermosetting resin is a silicone-modified epoxy resin. 前記第2加熱温度による加熱は、加熱による導体の抵抗の低下率が鈍化するまでは継続されることを特徴とする請求項1〜3のいずれか一項に記載の導体形成方法。   The method for forming a conductor according to any one of claims 1 to 3, wherein the heating at the second heating temperature is continued until the rate of decrease in the resistance of the conductor due to the heating is reduced. 前記導電性粉末は、銀を主成分とする銀系粉末であることを特徴とする請求項1〜4のいずれか一項に記載の導体形成方法。   The conductor forming method according to any one of claims 1 to 4, wherein the conductive powder is a silver-based powder containing silver as a main component.
JP2005349347A 2005-12-02 2005-12-02 Conductor formation method Active JP4951948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005349347A JP4951948B2 (en) 2005-12-02 2005-12-02 Conductor formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005349347A JP4951948B2 (en) 2005-12-02 2005-12-02 Conductor formation method

Publications (2)

Publication Number Publication Date
JP2007157434A JP2007157434A (en) 2007-06-21
JP4951948B2 true JP4951948B2 (en) 2012-06-13

Family

ID=38241548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349347A Active JP4951948B2 (en) 2005-12-02 2005-12-02 Conductor formation method

Country Status (1)

Country Link
JP (1) JP4951948B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935592B2 (en) * 2007-09-13 2012-05-23 昭栄化学工業株式会社 Thermosetting conductive paste
TWI509630B (en) * 2009-07-21 2015-11-21 Nichia Corp A method of manufacturing a conductive material, a conductive material obtained by the method, an electronic device containing the conductive material, and a light-emitting device
JP6018733B2 (en) * 2010-04-14 2016-11-02 Dowaエレクトロニクス株式会社 Thermosetting conductive paste and method for producing the same
JP6049606B2 (en) * 2013-12-25 2016-12-21 株式会社ノリタケカンパニーリミテド Heat-curing conductive paste
TWI695657B (en) * 2015-03-30 2020-06-01 日商則武股份有限公司 Flexible wiring board and its utilization
US20230170105A1 (en) * 2020-05-01 2023-06-01 Shoei Chemical Inc. Conductive resin composition and method for manufacturing electronic component
JP7078195B2 (en) * 2020-05-01 2022-05-31 昭栄化学工業株式会社 Manufacturing method of electronic parts

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114840A (en) * 1993-10-18 1995-05-02 Mitsui Toatsu Chem Inc Manufacture of conductive film
JPH11102423A (en) * 1997-09-25 1999-04-13 Hitachi Chem Co Ltd Production of printed antenna circuit for contactless ic card using conductive paste and the contactless ic card
JP3415756B2 (en) * 1997-11-11 2003-06-09 日本特殊陶業株式会社 Paste for filling through hole and printed wiring board using the same
JP2000127282A (en) * 1998-10-23 2000-05-09 Kanegafuchi Chem Ind Co Ltd Transparent polymer film with transparent conductive film
JP2002049047A (en) * 2000-08-02 2002-02-15 Toray Ind Inc Device for depositing transparent conductive film
JP2003045228A (en) * 2001-08-01 2003-02-14 Hitachi Chem Co Ltd Conductive paste
JP3858902B2 (en) * 2004-03-03 2006-12-20 住友電気工業株式会社 Conductive silver paste and method for producing the same

Also Published As

Publication number Publication date
JP2007157434A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
TWI284328B (en) Conductive paste
JP4951948B2 (en) Conductor formation method
JP4935592B2 (en) Thermosetting conductive paste
JP4212035B2 (en) Conductive paste mainly composed of silver powder and method for producing the same
JP2006049147A (en) Conductive paste
JP4507750B2 (en) Conductive paste
JP5488059B2 (en) Conductive paste
JP4235887B2 (en) Conductive paste
JPWO2013161966A1 (en) Conductive composition
JP5979237B2 (en) Conductive adhesive
JP3837858B2 (en) Conductive adhesive and method of using the same
JP4235888B2 (en) Conductive paste
JP2009146584A (en) Conductive paste composition
JP2007277384A (en) Electroconductive adhesive
JP2011129335A (en) Heating curing type silver paste and conductive film formed using the same
JP4273399B2 (en) Conductive paste and method for producing the same
JP4441817B2 (en) Circuit board
JP4482873B2 (en) Conductive paste, circuit board, solar cell, and chip-type ceramic electronic component
JP6197504B2 (en) Conductive paste and substrate with conductive film
JP4224772B2 (en) Conductive paste
JP2004047423A (en) Conductive paste
JP2006028213A (en) Functional electroconductive coating, electronic circuit using the same and its formation method
JPH01276601A (en) Resin-based resistance paste
JP4224774B2 (en) Conductive paste
JP2004186630A (en) Conductive coating composition, conductor for electronic circuit, forming method thereof, and component for electronic circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4951948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250