JP4949493B2 - N-type semiconductor diamond and method for producing the same - Google Patents

N-type semiconductor diamond and method for producing the same Download PDF

Info

Publication number
JP4949493B2
JP4949493B2 JP2010033482A JP2010033482A JP4949493B2 JP 4949493 B2 JP4949493 B2 JP 4949493B2 JP 2010033482 A JP2010033482 A JP 2010033482A JP 2010033482 A JP2010033482 A JP 2010033482A JP 4949493 B2 JP4949493 B2 JP 4949493B2
Authority
JP
Japan
Prior art keywords
diamond
range
dopant
gas
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010033482A
Other languages
Japanese (ja)
Other versions
JP2011168441A (en
Inventor
誠 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010033482A priority Critical patent/JP4949493B2/en
Publication of JP2011168441A publication Critical patent/JP2011168441A/en
Application granted granted Critical
Publication of JP4949493B2 publication Critical patent/JP4949493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

ダイヤモンドは、バンドギャップが5.5eVを有する半導体である。もしダイヤモンドのn型半導体を実現できれば、MES型電界効果トランジスタ(FET)、MIS型電界効果トランジスタ、PNP型バイポーラトランジスタ、NPN型バイポーラトランジスタなどの半導体素子を実用化できる。ダイヤモンドを用いたFET、バイポーラートランジスタが実現されれば、従来の半導体をはるかに越えた高周波領域および大電力領域で動作可能な電子素子になることが予測されている。(非特許文献1を参照)   Diamond is a semiconductor having a band gap of 5.5 eV. If a diamond n-type semiconductor can be realized, a semiconductor element such as a MES field effect transistor (FET), a MIS field effect transistor, a PNP bipolar transistor, or an NPN bipolar transistor can be put into practical use. If FETs and bipolar transistors using diamond are realized, it is expected to be an electronic device that can operate in a high-frequency region and a high-power region far exceeding conventional semiconductors. (See Non-Patent Document 1)

嘉数 他、応用物理、第73巻、第3号、2004年、363〜367ページKaji et al., Applied Physics, Vol. 73, No. 3, 2004, pages 363-367

しかしながら、ダイヤモンドに対してドナーになるV族元素をドーピングするのは技術的に困難であり、実用上利用可能なダイヤモンドのn型半導体は未だ得られていなかった。従来、P(燐)がドナー不純物として知られていた。しかし、原料ガスにPを含むドーピングガスを混入させても、Pはほとんど結晶中に取り込まれなかった。ドーピング効率は極めて低く、従来技術で作製されたダイヤモンド半導体は電子素子の実用に供するものではなかった。   However, it is technically difficult to dope a diamond with a group V element that serves as a donor, and a diamond n-type semiconductor that can be used practically has not yet been obtained. Conventionally, P (phosphorus) has been known as a donor impurity. However, even when a doping gas containing P was mixed into the source gas, P was hardly taken into the crystal. The doping efficiency is extremely low, and the diamond semiconductor produced by the prior art has not been put to practical use for electronic devices.

本発明はこのような課題に鑑みてなされたものであって、その目的とするところは、ドーピング効率が高く、実用的なn型半導体ダイヤモンドを実現することにある。   The present invention has been made in view of such problems, and an object thereof is to realize a practical n-type semiconductor diamond having high doping efficiency.

本発明は、このような課題を達成するためなされたものであって、請求項1に記載の発
明は、気体におけるAsと炭素Cとの比率(As/(As+C))が2ppm〜500000ppm(50%)の範囲になるように炭素を含む原料ガスとAsドーパントガスを用い、マイクロ波パワーが350Wから750Wの範囲にあり、基板表面温度が700℃から900℃の範囲にあり、As流量が1マイクロモル毎分から750マイクロモル毎分までの範囲にあるマイクロ波プラズマ化学気相堆積(CVD)法によりn型ダイヤモンドを得ることを特徴とする半導体ダイヤモンドの製造方法の発明である。
The present invention has been made in order to achieve such a problem, and the invention according to claim 1 is provided.
Ming uses a source gas containing carbon and an As dopant gas so that the ratio of As to carbon C in the gas (As / (As + C)) is in the range of 2 ppm to 500,000 ppm (50%), and the microwave power is 350 W. Microwave plasma chemical vapor deposition (CVD) method in which the substrate surface temperature is in the range of 700 ° C. to 900 ° C. and the As flow rate is in the range of 1 micromole per minute to 750 micromole per minute. Thus, an n-type diamond is obtained by the invention.

請求項に記載の発明は、請求項の方法であって、前記Asのドーパントガスとして、トリメチル砒素((CHAs,TMAs)、トリエチル砒素((CAs,TEAs)、ターシャリーブチルアルシン(t−CAsH)、アルシン(AsH)のいずれかまたはこれらの組み合わせを用いることを特徴とする。 Invention according to claim 2, The method of claim 1, as a dopant gas of the As, trimethyl arsenic ((CH 3) 3 As, TMAs), triethyl arsenic ((C 2 H 5) 3 As, TEAs), tertiary butylarsine (tC 4 H 9 AsH 2 ), arsine (AsH 3 ), or a combination thereof is used.

請求項に記載の発明は、気体におけるSbと炭素Cとの比率(Sb/(Sb+C))が2ppm〜500000ppm(50%)の範囲になるように炭素を含む原料ガスとSbドーパントガスを用い、マイクロ波パワーが350Wから750Wの範囲にあり、基板表面温度が700℃から900℃の範囲にあり、Sb流量が1マイクロモル毎分から750マイクロモル毎分までの範囲にあるマイクロ波プラズマ化学気相堆積(CVD)法によりn型ダイヤモンドを得ることを特徴とする半導体ダイヤモンドの製造方法の発明である。 The invention according to claim 3 uses the source gas containing carbon and the Sb dopant gas so that the ratio of Sb to carbon C in the gas (Sb / (Sb + C)) is in the range of 2 ppm to 500,000 ppm (50%). Microwave plasma chemistries in which the microwave power is in the range of 350 W to 750 W, the substrate surface temperature is in the range of 700 ° C. to 900 ° C., and the Sb flow rate is in the range of 1 micromole per minute to 750 micromole per minute. It is an invention of a method for producing semiconductor diamond characterized in that n-type diamond is obtained by a phase deposition (CVD) method.

請求項に記載の発明は、請求項の方法であって、前記Sbのドーパントガスとして、トリメチルアンチモン((CHSb,TMSb)、トリエチルアンチモン((CSb,TESb)、ジメチルターシャリーブチルアンチモン((CH(t−C)Sb)、トリプロピルアンチモン(i−CSb)のいずれかまたはこれらの組み合わせを用いることを特徴とする。 Invention of claim 4, The method of claim 3, as a dopant gas of the Sb, trimethyl antimony ((CH 3) 3 Sb, TMSb), triethyl antimony ((C 2 H 5) 3 Sb, TESb), dimethyl tertiary butyl antimony ((CH 3) 2 (t -C 4 H 9) Sb), one of tripropyl antimony (i-C 3 H 7) 3 Sb) , or using a combination thereof Features.

以上説明したように、本発明によって、ダイヤモンドのn型ドーパント元素として、AsまたはSbを用いることで、電子素子へ実用的に適用できるダイヤモンドのn型半導体を実現することができる。   As described above, according to the present invention, by using As or Sb as an n-type dopant element of diamond, an n-type semiconductor of diamond that can be practically applied to an electronic device can be realized.

実施例1のダイヤモンド薄膜における室温電子移動度の、成長時のマイクロ波パワー依存性を示す図である。It is a figure which shows the microwave power dependence at the time of the growth of the room temperature electron mobility in the diamond thin film of Example 1. FIG. 実施例1のダイヤモンド薄膜における室温電子移動度の、成長中の基板表面温度依存性を示す図である。It is a figure which shows the substrate surface temperature dependence during the growth of the room temperature electron mobility in the diamond thin film of Example 1. FIG. 実施例1において成長したダイヤモンド内のAs原子濃度の成長中のAs流量依存性を示す図である。It is a figure which shows the As flow rate dependence during the growth of the As atom density | concentration in the diamond grown in Example 1. FIG. 実施例1において成長したダイヤモンド内のAs原子濃度の成長時の気相中のAs濃度依存性を示す図である。It is a figure which shows the As concentration dependence in the gaseous phase at the time of the growth of As atom concentration in the diamond grown in Example 1. FIG. 実施例2において、成長したダイヤモンド内のSb原子濃度の成長中のSb流量依存性を示す図である。In Example 2, it is a figure which shows the Sb flow rate dependence during the growth of the Sb atom density | concentration in the grown diamond. 実施例2において、成長したダイヤモンド内のSb原子濃度の成長時の気相中のSb濃度依存性を示す図である。In Example 2, it is a figure which shows the Sb density | concentration dependence in the gaseous phase at the time of the growth of the Sb atom density | concentration in the grown diamond. (a)は実施例1における各ドーパント原料に対する電子移動度を示し、(b)は実施例2における各ドーパント原料に対する電子移動度を示した表である。(A) is the table | surface which showed the electron mobility with respect to each dopant raw material in Example 1, and (b) showed the electron mobility with respect to each dopant raw material in Example 2. FIG.

本発明によって、ダイヤモンドのn型ドーパント元素として、AsまたはSbを用いることで、実用的なダイヤモンドのn型半導体を実現することができる。これによって、n型ダイヤモンドを構造の一部に用いる、MES型FET、MIS型電界効果FET、PNP型バイポーラトランジスタ、NPN型バイポーラトランジスタなどの半導体素子が実用可能となる。ダイヤモンドを用いたFET、バイポーラトランジスタの実現により、従来の半導体をはるかに越えた高周波領域および大電力領域で動作する電子素子の実現が期待される。以下、本発明の詳細な実施例について述べる。   According to the present invention, a practical diamond n-type semiconductor can be realized by using As or Sb as an n-type dopant element of diamond. As a result, semiconductor devices such as MES type FET, MIS type field effect FET, PNP type bipolar transistor, and NPN type bipolar transistor using n type diamond as a part of the structure can be put into practical use. With the realization of FETs and bipolar transistors using diamond, it is expected to realize electronic devices that operate in a high-frequency region and a high-power region that far exceed conventional semiconductors. Hereinafter, detailed examples of the present invention will be described.

本実施例においては、マイクロ波プラズマ化学気相堆積法にて、流量比メタンガス(CH4):1%、ドーパントガス、残部H2なる反応ガスを全流量300ccmを原料として、ダイヤモンド単結晶(111)面方位上に、1.0μmの厚さの本発明のダイヤモンド半導体膜を成長させた。ここで、反応管中圧力は50Torrで、マイクロ波源は、周波数2.45GHzであった。 In this embodiment, a diamond single crystal (111) is produced by a microwave plasma chemical vapor deposition method using a reaction gas consisting of a flow rate ratio of methane gas (CH 4 ): 1%, a dopant gas, and the balance H 2 with a total flow rate of 300 ccm. ) A diamond semiconductor film of the present invention having a thickness of 1.0 μm was grown on the plane orientation. Here, the pressure in the reaction tube was 50 Torr, and the microwave source had a frequency of 2.45 GHz.

ドーパントガスとしては、Asを含む有機金属原料である、トリメチル砒素((CH33As,TMAs)、トリエチル砒素((C253As,TEAs)、ターシャリーブチルアルシン(t−C49AsH2)、アルシン(AsH3)を用いた。 As dopant gases, trimethylarsenic ((CH 3 ) 3 As, TMAs), triethylarsenic ((C 2 H 5 ) 3 As, TEAs), tertiary butylarsine (t-C), which are organometallic raw materials containing As, are used. 4 H 9 AsH 2 ) and arsine (AsH 3 ).

得られたダイヤモンド半導体膜のホール測定を行ったところ、ホール係数の判定によって、得られたダイヤモンド半導体膜は全てn型半導体であることが確認された。さらにSIMS測定よって、得られたダイヤンド半導体膜中のAs原子濃度を測定した。   When the hole measurement of the obtained diamond semiconductor film was performed, it was confirmed by the determination of the Hall coefficient that all the obtained diamond semiconductor films were n-type semiconductors. Furthermore, the As atom concentration in the obtained diamond semiconductor film was measured by SIMS measurement.

図1は、実施例1のダイヤモンド薄膜における室温電子移動度の、成長時のマイクロ波パワー依存性を示す図である。横軸にマイクロ波パワー(W)を、縦軸に室温電子移動度(cm2/(Vs))を示した。マイクロ波パワーが350Wから750Wの範囲で、移動度は200cm2/(Vs)程度になり、n型伝導が実現されていることを示した。 FIG. 1 is a graph showing the dependence of room temperature electron mobility in the diamond thin film of Example 1 on the microwave power during growth. The horizontal axis represents microwave power (W), and the vertical axis represents room temperature electron mobility (cm 2 / (Vs)). When the microwave power was in the range of 350 W to 750 W, the mobility was about 200 cm 2 / (Vs), indicating that n-type conduction was realized.

図2は、実施例1のダイヤモンド薄膜における室温電子移動度の、成長中の基板表面温度依存性を示す図である。横軸に基板表面温度(℃)を、縦軸に室温電子移動度(cm2/(Vs))を示した。基板表面温度は、パイロメータによって測定された。700℃から900℃までの温度範囲で、移動度が200cm2/(Vs)程度になり、n型伝導が実現されていることを示した。 FIG. 2 is a diagram showing the substrate surface temperature dependence of the room temperature electron mobility in the diamond thin film of Example 1 during growth. The horizontal axis represents the substrate surface temperature (° C.), and the vertical axis represents room temperature electron mobility (cm 2 / (Vs)). The substrate surface temperature was measured with a pyrometer. In the temperature range from 700 ° C. to 900 ° C., the mobility was about 200 cm 2 / (Vs), indicating that n-type conduction was realized.

図3は、成長したダイヤモンド内のAs原子濃度の成長中のAs流量依存性を示す図である。横軸にAs流量(μmol/min)を、縦軸にAs原子濃度(cm-3)を示した。1μmol/minの流量で1×1015cm-3のAs原子濃度が得られ、750μmol/minの流量で2×1021cm-3のAs原子濃度が得られた。いずれの流量においても、n型伝導を得られたことが示されている。従来技術と比べて、格段にドーピング効率が高く、実用的なn型半導体ダイヤモンドを実現できる。 FIG. 3 is a diagram showing the As flow rate dependence during growth of the As atom concentration in the grown diamond. The horizontal axis represents the As flow rate (μmol / min), and the vertical axis represents the As atom concentration (cm −3 ). An As atom concentration of 1 × 10 15 cm −3 was obtained at a flow rate of 1 μmol / min, and an As atom concentration of 2 × 10 21 cm −3 was obtained at a flow rate of 750 μmol / min. It is shown that n-type conduction was obtained at any flow rate. Compared with the prior art, the doping efficiency is much higher, and a practical n-type semiconductor diamond can be realized.

図4は、成長したダイヤモンド内のAs原子濃度の成長時の気相中のAs濃度(As/(As+C))依存性を示す図である。横軸に式(As/(As+C))で表されるAs濃度を、縦軸にAs原子濃度(cm-3)を示した。As/(As+C)が2ppmでは1015cm-3のAs濃度が得られ、As/(As+C)が500000ppm(50%)では1×1022cm-3のAs濃度が得られた、いずれのAs濃度においても、n型伝導を得られたことが示されている。 FIG. 4 is a diagram showing the As concentration (As / (As + C)) dependence in the gas phase during the growth of the As atom concentration in the grown diamond. The horizontal axis represents the As concentration represented by the formula (As / (As + C)), and the vertical axis represents the As atom concentration (cm −3 ). An As concentration of 10 15 cm −3 was obtained when As / (As + C) was 2 ppm, and an As concentration of 1 × 10 22 cm −3 was obtained when As / (As + C) was 500,000 ppm (50%). It is shown that n-type conduction was also obtained in the concentration.

図7の(a)の表に実施例1で用いたAsドーパント原料の各場合の室温電子移動度を示した。ここで電子移動度の値を、各ドーパント原料でAs原子濃度が1×1019cm-3の条件の場合で、比較して示した。室温電子移動度は、TMAsが最も高くAsH3が最も低かったが、表に示したいずれのAsドーパント原料においても、n型伝導を示した。 The room temperature electron mobility in each case of the As dopant raw material used in Example 1 is shown in the table of FIG. Here, the value of the electron mobility is shown in comparison with each dopant raw material under the condition that the As atom concentration is 1 × 10 19 cm −3 . The room temperature electron mobility was highest in TMAs and lowest in AsH 3, but showed n-type conduction in any As dopant raw material shown in the table.

本実施例においては、マイクロ波プラズマ化学気相堆積法にて、流量比メタンガス(CH4):1%、ドーパントガス、残部H2なる反応ガスを全流量300ccmを原料として、(111)面方位のダイヤモンド単結晶基板上に、1.0μmの厚さの本発明のダイヤモンド半導体膜を成長させた。ここで、反応管中圧力は50Torrで、マイクロ波源は周波数2.45GHzであった。 In this example, a microwave plasma chemical vapor deposition method is used, and a flow rate ratio of methane gas (CH 4 ): 1%, a dopant gas, and a residual gas of H 2 is used as a raw material with a total flow rate of 300 ccm as a (111) plane orientation. A diamond semiconductor film of the present invention having a thickness of 1.0 μm was grown on the diamond single crystal substrate. Here, the pressure in the reaction tube was 50 Torr, and the microwave source had a frequency of 2.45 GHz.

ドーパントガスとしては、Sbを含むトリメチルアンチモン((CH33Sb,TMSb)、トリエチルアンチモン((C253Sb,TESb)、ジメチルターシャリーブチルアンチモン((CH32(t−C49)Sb)、トリプロピルアンチモン(i−C373Sb)を用いた。 As dopant gases, trimethylantimony ((CH 3 ) 3 Sb, TMSb) containing Sb, triethylantimony ((C 2 H 5 ) 3 Sb, TESb), dimethyl tertiary butyl antimony ((CH 3 ) 2 (t- C 4 H 9) Sb), tripropyl antimony (i-C 3 H 7) 3 Sb) was used.

得られたダイヤモンド半導体膜のホール測定を行ったところ、ホール係数の判定によって、得られたダイヤモンド半導体膜は全てn型半導体であることが確認された。さらにSIMS測定よって、得られたダイヤンド半導体膜中のSb原子濃度を測定した。   When the hole measurement of the obtained diamond semiconductor film was performed, it was confirmed by the determination of the Hall coefficient that all the obtained diamond semiconductor films were n-type semiconductors. Further, the Sb atom concentration in the obtained diamond semiconductor film was measured by SIMS measurement.

本実施例2においても、室温電子移動度の成長時のマイクロ波パワー依存性は、図1に示した実施例1と同様の結果であった。マイクロ波パワーが350Wから750Wの範囲で、移動度は200cm2/(Vs)程度に増加し、n型伝導が実現されていることを示した。 Also in the present Example 2, the microwave power dependence at the time of growth of the room temperature electron mobility was the same result as that of Example 1 shown in FIG. In the microwave power range from 350 W to 750 W, the mobility increased to about 200 cm 2 / (Vs), indicating that n-type conduction was realized.

室温電子移動度の成長中の基板表面温度依存性も、図2に示した実施例1の結果と同様であった。すなわち、700℃から900℃までの温度範囲で、移動度は200cm2/(Vs)程度に増加し、n型伝導が実現されていることを示した。 The dependence of the room temperature electron mobility on the substrate surface temperature during growth was similar to the result of Example 1 shown in FIG. That is, in the temperature range from 700 ° C. to 900 ° C., the mobility increased to about 200 cm 2 / (Vs), indicating that n-type conduction was realized.

図5は、成長したダイヤモンド内のSb原子濃度の成長中のSb流量依存性を示す図である。横軸にSb流量(μmol/min)を、縦軸にSb原子濃度(cm-3)を示した。1μmol/minの流量で1×1015cm-3のSb原子濃度が得られ、750μmol/minの流量で2×1021cm-3のSb原子濃度が得られた。いずれの流量においても、n型伝導が実現されていることを示した。従来技術と比べて、格段にドーピング効率が高く、実用的なn型半導体ダイヤモンドを実現できる。 FIG. 5 is a diagram showing the dependence of the Sb atom concentration in the grown diamond on the Sb flow rate during growth. The horizontal axis represents the Sb flow rate (μmol / min), and the vertical axis represents the Sb atom concentration (cm −3 ). An Sb atom concentration of 1 × 10 15 cm −3 was obtained at a flow rate of 1 μmol / min, and an Sb atom concentration of 2 × 10 21 cm −3 was obtained at a flow rate of 750 μmol / min. It was shown that n-type conduction was realized at any flow rate. Compared with the prior art, the doping efficiency is much higher, and a practical n-type semiconductor diamond can be realized.

図6は、成長したダイヤモンド内のSb原子濃度の成長時の気相中のSb濃度(Sb/(Sb+C))依存性を示す図である。横軸に式Sb/(Sb+C)で表されるSb濃度を、縦軸にSb原子濃度(cm-3)を示した。Sb/(Sb+C)が2ppmでは1015cm-3のSb濃度が得られ、Sb/(Sb+C)が500000ppm(50%)では1×1022cm-3のSb濃度が得らた。いずれのSb濃度においても、n型伝導が実現されていることを示した。 FIG. 6 is a graph showing the dependence of the Sb atom concentration in the grown diamond on the Sb concentration (Sb / (Sb + C)) in the gas phase during growth. The horizontal axis represents the Sb concentration represented by the formula Sb / (Sb + C), and the vertical axis represents the Sb atom concentration (cm −3 ). When Sb / (Sb + C) was 2 ppm, an Sb concentration of 10 15 cm −3 was obtained, and when Sb / (Sb + C) was 500,000 ppm (50%), an Sb concentration of 1 × 10 22 cm −3 was obtained. It was shown that n-type conduction was realized at any Sb concentration.

図7の(b)は、実施例2において用いたSbドーパントガスの各場合について、得られたn型半導体膜の室温移動度の比較結果を示した表である。ここでは、各ドーパント原料でSb原子濃度が1×1019cm-3の条件の場合で、電子移動度の値を比較して示した。電子移動度は、TMSbが最も高く、トリプロピルアンチモンが最も低かったが、表に示したいずれのSbドーパント原料においても、n型伝導を示した。 FIG. 7B is a table showing a comparison result of room temperature mobility of the obtained n-type semiconductor film in each case of the Sb dopant gas used in Example 2. Here, the values of electron mobility are shown in comparison with each dopant raw material under the condition that the Sb atom concentration is 1 × 10 19 cm −3 . The electron mobility was highest for TMSb and lowest for tripropylantimony, but showed n-type conduction in any of the Sb dopant raw materials shown in the table.

本実施例では、ドーパントをAsとし、イオン注入法によってダイヤモンド薄膜を作製した。イオン注入は、加速電圧150kV、イオン注入量1015ion/cm2の条件で行なわれ、ダイヤモンド単結晶にAsドーパントを注入してAs不純物ドープダイヤモンドを製造した。その後、得られたダイヤモンド薄膜にアニール処理を施した。 In this example, a diamond thin film was produced by ion implantation using As as the dopant. Ion implantation was performed under the conditions of an acceleration voltage of 150 kV and an ion implantation amount of 10 15 ion / cm 2. As dopant was implanted into the diamond single crystal to produce As impurity-doped diamond. Thereafter, the obtained diamond thin film was annealed.

得られた本実施例のAsドープダイヤモンド半導体膜のホール測定を行ったところ、ホール係数の判定によって、得られたAsドープダイヤモンド半導体膜は全てn型半導体であることが確認された。さらに、SIMS測定よりダイヤンド半導体膜中のAsドーパント原子濃度を測定した。イオン注入法により作製された本半導体薄膜においても、1×1015cm-3〜1×1022cm-3の各Asドーパント原子濃度が得られた。いずれのAs原子濃度においても、n型伝導を示した。従来技術と比べて、格段にドーピング効率が高く、実用的なn型半導体ダイヤモンドを実現できた。 When the hole measurement of the obtained As-doped diamond semiconductor film of this example was performed, it was confirmed by determination of the Hall coefficient that the obtained As-doped diamond semiconductor film was an n-type semiconductor. Furthermore, the As dopant atom concentration in the diamond semiconductor film was measured by SIMS measurement. Also in this semiconductor thin film produced by the ion implantation method, each As dopant atom concentration of 1 × 10 15 cm −3 to 1 × 10 22 cm −3 was obtained. N-type conduction was exhibited at any As atom concentration. Compared with the prior art, the doping efficiency was much higher, and a practical n-type semiconductor diamond could be realized.

ドーパントとしてSbを用いたイオン注入法による薄膜作製の場合でも、上述の実施例3のAsと同様な結果が得られた。   Even in the case of forming a thin film by an ion implantation method using Sb as a dopant, the same results as those of As in Example 3 were obtained.

本実施例においては、ダイヤモンド粉末に、ドーパントとして、Asを混入したものをFe−Ni溶媒に溶かし込んでダイヤモンド半導体膜を作製した。   In this example, a diamond semiconductor film was prepared by dissolving diamond powder mixed with As as a dopant in an Fe—Ni solvent.

本実施例では、上述の材料を5GPa、約1400℃の条件下に7時間置くことで超高温高圧法によりn型ダイヤモンドが得られた。得られたn型ダイヤモンド半導体膜のホール測定を行ったところ、ホール係数の判定により、得られたダイヤモンド半導体膜は全てn型半導体であることが確認された。   In this example, n-type diamond was obtained by the ultra-high temperature and high pressure method by placing the above-mentioned material under conditions of 5 GPa and about 1400 ° C. for 7 hours. When the hole measurement of the obtained n-type diamond semiconductor film was performed, it was confirmed by determination of the Hall coefficient that all the obtained diamond semiconductor films were n-type semiconductors.

さらにSIMS測定よって、ダイヤンド半導体膜中のドーパント原子濃度を測定した。原子濃度比率(ドーパント原子/C)を0.01%に一定にした時のAsの室温正孔濃度は、従来の技術であるPをドーパントとしたの場合(6.2×1012cm-3)に比べて、700〜108000倍も高い。従来技術のPをドーパントとした場合と比べ、Asをドーパントとするとドーパントの取り込みが非常に優れている。 Further, the dopant atom concentration in the diamond semiconductor film was measured by SIMS measurement. The room temperature hole concentration of As when the atomic concentration ratio (dopant atom / C) is kept constant at 0.01% is the case where P, which is a conventional technique, is used as a dopant (6.2 × 10 12 cm −3). ) Is 700 to 108000 times higher. Compared to the case of using P as a dopant in the prior art, when As is a dopant, incorporation of the dopant is very excellent.

また、Asの室温正孔移動度に関しては、従来の技術のBをドーパントとした場合(200cm2/(Vs))と比べて、4.7〜5.7倍もある。室温正孔移動度についても、従来技術のBをドーパントとした場合と比べ、Asをドーパントとするとドーパントの取り込みが非常に優れていることがわかった。ドーパントをSbとした場合でも、Asと同様な結果が得られた。 Further, the room temperature hole mobility of As is 4.7 to 5.7 times as compared with the case of using B as a dopant in the conventional technique (200 cm 2 / (Vs)). Regarding room temperature hole mobility, it was found that incorporation of dopant was very excellent when As was used as a dopant, compared to the case where B in the prior art was used as a dopant. Even when the dopant was Sb, the same result as that of As was obtained.

以上詳細に説明したように、本発明によって、ダイヤモンドのn型ドーパント元素として、AsまたはSbを用いることで、非常にドーピング効率が高く、電子素子へ実用的に適用可能なダイヤモンドのn型半導体を実現することができる。   As described above in detail, according to the present invention, by using As or Sb as an n-type dopant element of diamond, an n-type semiconductor of diamond that has a very high doping efficiency and is practically applicable to an electronic device can be obtained. Can be realized.

本発明は、半導体材料に関する。詳細には、本発明はより高周波領域および大電力領域で動作する電子素子に利用することができる。   The present invention relates to a semiconductor material. Specifically, the present invention can be used for electronic devices that operate in higher frequency regions and higher power regions.

Claims (4)

気体におけるAsと炭素Cとの比率(As/(As+C))が2ppm〜500000ppmの範囲になるように炭素を含む原料ガスとAsドーパントガスを用い、マイクロ波パワーが350Wから750Wの範囲にあり、基板表面温度が700℃から900℃の範囲にあり、As流量が1マイクロモル毎分から750マイクロモル毎分までの範囲にあるマイクロ波プラズマ化学気相堆積(CVD)法によりn型ダイヤモンドを得ることを特徴とする半導体ダイヤモンドの製造方法。   Using a source gas containing carbon and an As dopant gas so that the ratio of As to carbon C in the gas (As / (As + C)) is in the range of 2 ppm to 500,000 ppm, the microwave power is in the range of 350 W to 750 W, Obtaining n-type diamond by microwave plasma chemical vapor deposition (CVD) method in which the substrate surface temperature is in the range of 700 ° C. to 900 ° C. and the As flow rate is in the range of 1 micromole per minute to 750 micromole per minute. A method for producing a semiconductor diamond. 前記Asのドーパントガスとして、トリメチル砒素((CHAs,TMAs)、トリエチル砒素((CAs,TEAs)、ターシャリーブチルアルシン(t−CAsH)、アルシン(AsH)のいずれかまたはこれらの組み合わせを用いることを特徴とする請求項に記載のn型ダイヤモンドの製造方法。 Examples of the dopant gas for As include trimethyl arsenic ((CH 3 ) 3 As, TMAs), triethyl arsenic ((C 2 H 5 ) 3 As, TEAs), tertiary butylarsine (tC 4 H 9 AsH 2 ), The method for producing n-type diamond according to claim 1 , wherein any one of arsine (AsH 3 ) or a combination thereof is used. 気体におけるSbと炭素Cとの比率(Sb/(Sb+C))が2ppm〜500000ppmの範囲になるように炭素を含む原料ガスとSbドーパントガスを用い、マイクロ波パワーが350Wから750Wの範囲にあり、基板表面温度が700℃から900℃の範囲にあり、Sb流量が1マイクロモル毎分から750マイクロモル毎分までの範囲にあるマイクロ波プラズマ化学気相堆積(CVD)法によりn型ダイヤモンドを得ることを特徴とする半導体ダイヤモンドの製造方法。   Using a source gas containing carbon and an Sb dopant gas so that the ratio of Sb to carbon C in the gas (Sb / (Sb + C)) is in the range of 2 ppm to 500,000 ppm, the microwave power is in the range of 350 W to 750 W, Obtaining n-type diamond by microwave plasma chemical vapor deposition (CVD) method in which the substrate surface temperature is in the range of 700 ° C. to 900 ° C. and the Sb flow rate is in the range of 1 micromole per minute to 750 micromole per minute. A method for producing a semiconductor diamond. 前記Sbのドーパントガスとして、トリメチルアンチモン((CHSb,TMSb)、トリエチルアンチモン((CSb,TESb)、ジメチルターシャリーブチルアンチモン((CH(t−C)Sb)、トリプロピルアンチモン(i−CSb)のいずれかまたはこれらの組み合わせを用いることを特徴とする請求項に記載のn型ダイヤモンドの製造方法。 As the dopant gas of Sb, trimethylantimony ((CH 3 ) 3 Sb, TMSb), triethylantimony ((C 2 H 5 ) 3 Sb, TESb), dimethyl tertiary butyl antimony ((CH 3 ) 2 (t-C) 4. The method for producing n-type diamond according to claim 3 , wherein any one of 4 H 9 ) Sb), tripropylantimony (i-C 3 H 7 ) 3 Sb), or a combination thereof is used.
JP2010033482A 2010-02-18 2010-02-18 N-type semiconductor diamond and method for producing the same Active JP4949493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033482A JP4949493B2 (en) 2010-02-18 2010-02-18 N-type semiconductor diamond and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033482A JP4949493B2 (en) 2010-02-18 2010-02-18 N-type semiconductor diamond and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011168441A JP2011168441A (en) 2011-09-01
JP4949493B2 true JP4949493B2 (en) 2012-06-06

Family

ID=44682962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033482A Active JP4949493B2 (en) 2010-02-18 2010-02-18 N-type semiconductor diamond and method for producing the same

Country Status (1)

Country Link
JP (1) JP4949493B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213126A (en) * 1983-05-19 1984-12-03 Sumitomo Electric Ind Ltd Manufacture of diamond semiconductor element
JPS6270295A (en) * 1985-09-24 1987-03-31 Sumitomo Electric Ind Ltd Production of n-type semiconductive diamond film
JPH02217397A (en) * 1989-02-15 1990-08-30 Kobe Steel Ltd Vapor-phase synthesis of thin film of n-type semiconductor diamond

Also Published As

Publication number Publication date
JP2011168441A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
TWI692545B (en) Methods of forming highly p-type doped germanium tin films and structures and devices including the films
Katagiri et al. Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition
JP4844330B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
US9368345B2 (en) Method of manufacturing silicon carbide semiconductor substrate and method of manufacturing silicon carbide semiconductor device
US20180053649A1 (en) Method to grow a semi-conducting sic layer
KR20150129485A (en) Method for manufacturing doped metal chalcogenide film and the film manufactured by the same
US9418840B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
US10388751B2 (en) Semiconductor device and method for forming n-type conductive channel in diamond using heterojunction
JP6019938B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4949493B2 (en) N-type semiconductor diamond and method for producing the same
US10748763B2 (en) Silicon carbide semiconductor substrate, method of manufacturing a silicon carbide semiconductor device, and silicon carbide semiconductor device
CN104264219A (en) Epitaxial preparation method for base region gradually doped silicon carbide film
US10804104B2 (en) Semiconductor device and method for forming p-type conductive channel in diamond using abrupt heterojunction
US7892915B1 (en) High performance SiGe:C HBT with phosphorous atomic layer doping
JP2004343133A (en) Manufacturing method of silicon carbide, silicon carbide, and semiconductor device
JP2014103363A (en) Silicon carbide semiconductor substrate manufacturing method
WO2023100540A1 (en) Nitride semiconductor substrate and method for producing same
CN115074825A (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
JP2017011264A (en) Semiconductor substrate, method of producing semiconductor substrate, and heterojunction bipolar transistor
CN107644813B (en) Passivation method of gallium nitride epitaxial wafer
JP5543302B2 (en) Compound semiconductor wafer manufacturing method and compound semiconductor device
KR102163490B1 (en) METHOD FOR MANUFATURING SiC SUBSTRATE
WO2012099209A1 (en) Silicon carbide single crystal substrate and method for producing semiconductor element
JP2014154587A (en) Silicon carbide semiconductor substrate manufacturing method and silicon carbide semiconductor device manufacturing method
Lee Growth and Nb-doping of MoS2 towards novel 2D/3D heterojunction bipolar transistors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4949493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350