JP4949085B2 - Apparatus and method for treating phosphorus-containing organic wastewater - Google Patents

Apparatus and method for treating phosphorus-containing organic wastewater Download PDF

Info

Publication number
JP4949085B2
JP4949085B2 JP2007062246A JP2007062246A JP4949085B2 JP 4949085 B2 JP4949085 B2 JP 4949085B2 JP 2007062246 A JP2007062246 A JP 2007062246A JP 2007062246 A JP2007062246 A JP 2007062246A JP 4949085 B2 JP4949085 B2 JP 4949085B2
Authority
JP
Japan
Prior art keywords
phosphorus
sludge
tank
organic wastewater
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007062246A
Other languages
Japanese (ja)
Other versions
JP2008221114A (en
Inventor
池  英昭
和也 平林
庸介 竹内
精一 石川
芳夫 江口
聖恵 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Yaskawa Electric Corp
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Yaskawa Electric Corp
Priority to JP2007062246A priority Critical patent/JP4949085B2/en
Publication of JP2008221114A publication Critical patent/JP2008221114A/en
Application granted granted Critical
Publication of JP4949085B2 publication Critical patent/JP4949085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、下水等の燐を含む有機性廃水を生物処理により浄化し、余剰汚泥の発生量を著しく削減できるとともに、汚泥の可溶化時処理時に水中に溶出する燐を効率的に資源として回収する技術に関するものである。   The present invention purifies organic wastewater containing phosphorus such as sewage by biological treatment, and can significantly reduce the amount of excess sludge generated, and efficiently recovers phosphorus eluted in water during the sludge solubilization treatment. It is related to the technology.

生物反応槽と、沈殿槽を備えた活性汚泥法は汚水の処理法として処理性能が高く、下水処理等の各分野で広く利用されている。この浄化原理は微生物が汚水中の有機物を餌として分解・除去する作用によるため、微生物が増殖し、処理の結果として余剰汚泥が発生していた。この汚泥の最終処分量は全産業廃棄物の最終処分量に対する割合が高く、国内においては最終処分場の残余容量が極めて少ないこともあり多大なコスト負担になっている。このような状況から余剰汚泥の発生量をできるだけ削減することが望まれており、オゾン等を利用した各種可溶化手法による汚泥減量法の導入が検討されつつある。
一方、汚泥減量法を導入した場合、余剰汚泥内にポリ燐酸として蓄積していた燐酸基は、可溶化処理により燐酸イオンとして脱着する。この結果、燐酸イオンは処理水中に濃縮されて水質が悪化するといった事態が懸念されている。また、燐は肥料として貴重な資源であるため回収できることが望ましい。
このようなことから、従来の汚泥減量化および燐回収処理工程を付加した燐含有有機性廃水の処理方法については、図4のような処理方法が提案されていた。
図4において、1は原水供給路、2はブロワ、3は生物反応槽、4は沈殿槽、5は処理水排出路、7は汚泥返送路、8は汚泥減量化装置、9は可溶化汚泥搬送路、10は固液分離設備、11は分離液搬送路、12’は燐回収装置である。
また、Wgは原水、Wpは処理水、Dvは活性汚泥、Dcは沈殿汚泥、Dhは返送汚泥、Dkは可溶化汚泥、Wbは分離液、Pkは回収燐である。
図において下水等の燐含有有機性廃水を原水Wgとして、ブロワ2により曝気された生物反応槽3に供給して生物処理する。生物反応槽3から流出する燐を含有した活性汚泥Dvに鉄やアルミニウム系の凝集剤を添加することにより、原水Wgの中の燐は吸着・凝集される。この後、沈殿槽4において固液分離することにより、燐、易生物分解性有機物(BOD)、浮遊固形物(SS)が除去された処理水Wpが得られ、処理水Wpは処理水排出路5を通して系外に排出される。燐を含有した活性汚泥Dvは、凝集剤と共存した沈殿汚泥Dcとなり、その大部分は返送汚泥Dhとして汚泥返送路7を介して生物反応槽3に返送される。
一方、余剰となる沈殿汚泥Dcの一部は汚泥減量化装置8に導入してアルカリ性条件下(pH10〜12)においてオゾン酸化により可溶化される。ここでは、汚泥中の生物細胞等の生物酸化され難いSSが可溶化によりBOD化される他、余剰汚泥内にポリ燐酸として蓄積し凝集剤に吸着していた燐酸基は燐酸イオンとして脱着する。
The activated sludge method equipped with a biological reaction tank and a sedimentation tank has a high treatment performance as a method for treating sewage, and is widely used in various fields such as sewage treatment. Since this purification principle is based on the action of microorganisms decomposing and removing organic matter in the sewage as a feed, the microorganisms grew and surplus sludge was generated as a result of the treatment. The final disposal amount of this sludge has a high ratio with respect to the final disposal amount of all industrial wastes. In Japan, the residual capacity of the final disposal site is extremely small, which is a great cost burden. Under such circumstances, it is desired to reduce the generation amount of surplus sludge as much as possible, and introduction of a sludge reduction method by various solubilization methods using ozone or the like is being studied.
On the other hand, when the sludge reduction method is introduced, phosphate groups accumulated as polyphosphoric acid in excess sludge are desorbed as phosphate ions by solubilization. As a result, there is a concern that phosphate ions are concentrated in the treated water and the water quality deteriorates. Moreover, since phosphorus is a valuable resource as a fertilizer, it is desirable that it can be recovered.
For this reason, a treatment method as shown in FIG. 4 has been proposed as a treatment method for phosphorus-containing organic wastewater to which conventional sludge reduction and phosphorus recovery treatment steps are added.
In FIG. 4, 1 is a raw water supply path, 2 is a blower, 3 is a biological reaction tank, 4 is a sedimentation tank, 5 is a treated water discharge path, 7 is a sludge return path, 8 is a sludge reduction device, and 9 is a solubilized sludge. A conveyance path, 10 is a solid-liquid separation facility, 11 is a separation liquid conveyance path, and 12 'is a phosphorus recovery apparatus.
Wg is raw water, Wp is treated water, Dv is activated sludge, Dc is sedimented sludge, Dh is returned sludge, Dk is solubilized sludge, Wb is a separated liquid, and Pk is recovered phosphorus.
In the figure, organic waste water containing phosphorus such as sewage is supplied as raw water Wg to the biological reaction tank 3 aerated by the blower 2 for biological treatment. By adding an iron or aluminum flocculant to the activated sludge Dv containing phosphorus flowing out from the biological reaction tank 3, the phosphorus in the raw water Wg is adsorbed and aggregated. Thereafter, by performing solid-liquid separation in the precipitation tank 4, treated water Wp from which phosphorus, readily biodegradable organic matter (BOD), and suspended solid matter (SS) are removed is obtained, and the treated water Wp is treated water discharge path. 5 is discharged out of the system. The activated sludge Dv containing phosphorus becomes the precipitated sludge Dc coexisting with the flocculant, and most of it is returned to the biological reaction tank 3 through the sludge return path 7 as the return sludge Dh.
On the other hand, a part of the excess precipitated sludge Dc is introduced into the sludge reduction device 8 and is solubilized by ozone oxidation under alkaline conditions (pH 10-12). Here, SS which is hardly biooxidized such as biological cells in sludge is converted into BOD by solubilization, and phosphate groups accumulated as polyphosphoric acid in the excess sludge and adsorbed on the flocculant are desorbed as phosphate ions.

次に、オゾン酸化された可溶化汚泥Dkは、沈殿、遠心分離または膜分離等を備えた固液分離設備10で固液分離を行う。分離された高濃度の燐を含む分離液wbは、燐回収装置12’においてカルシウム塩(またはマグネシウム塩)を添加することにより、燐酸カルシウム(または燐酸マグネシウム塩)を析出させる。これら析出物を固液分離すると、固体成分は肥料として価値の高い燐酸化合物を回収燐Pkとして得るとともに、処理水Wpから燐を除去することができる。
このように燐含有有機性廃水は、先ず生物処理系でBOD成分が分解され、沈殿汚泥を汚泥減量化装置8においてアルカリ性条件下でオゾン酸化することで、燐が脱着するとともに生物細胞等の生物酸化され難いSSが可溶化される。この可溶化汚泥を固液分離すると、分離液には燐がイオンとして存在し、前述のように燐酸カルシウム等の有用な肥料資源として回収することができる。
また、可溶化汚泥Dkは生物分解性が向上しているので、生物処理系に返送されることでさらに生物酸化され、余剰汚泥の発生量を削減することができるようになる(例えば、特許文献1参照)。
特許第3442205号公報
Next, the ozone-oxidized solubilized sludge Dk is subjected to solid-liquid separation in a solid-liquid separation facility 10 equipped with precipitation, centrifugation, membrane separation, or the like. The separated liquid wb containing the high-concentration phosphorus is precipitated by adding calcium salt (or magnesium salt) in the phosphorus recovery apparatus 12 'to precipitate calcium phosphate (or magnesium phosphate salt). When these precipitates are subjected to solid-liquid separation, the solid component can obtain a phosphate compound having high value as a fertilizer as recovered phosphorus Pk, and phosphorus can be removed from the treated water Wp.
As described above, in the organic wastewater containing phosphorus, first, the BOD component is decomposed in the biological treatment system, and the precipitated sludge is ozone-oxidized under alkaline conditions in the sludge reduction device 8 so that phosphorus is desorbed and biological organisms such as biological cells. SS which is not easily oxidized is solubilized. When this solubilized sludge is subjected to solid-liquid separation, phosphorus is present as ions in the separated liquid and can be recovered as a useful fertilizer resource such as calcium phosphate as described above.
Also, since the solubilized sludge Dk has improved biodegradability, it is further biooxidized by being returned to the biological treatment system, and the amount of surplus sludge generated can be reduced (for example, patent document). 1).
Japanese Patent No. 3442205

オゾンは強力な酸化力を有するため汚泥の可溶化処理には有効な手段である。しかしながら、オゾンの反応はpHの影響を受けやすく、特にアルカリ性条件下では自己分解速度が大きくなり反応効率が低下する。また、通常の汚泥減量化のために行うオゾン処理条件ではSSを完全に分解して溶解することは困難である。このため、生物細胞を細かく分解して溶解するためには多量のオゾン消費が必要となる。しかしながら、オゾン酸化装置は高価で消費電力が大きいため、無駄な消費を抑えることが望ましい。
また、燐回収処理時には、燐回収装置内部での閉塞や不具合を防止するため、可溶化汚泥は、沈殿、遠心分離または膜分離等を備えた固液分離設備で固液分離を行った後、SSを除去した分離液のみを導入するといった方策がとられている。このように、燐回収処理時には複雑な前処理設備や操作が必要であった。
本発明はこのような問題点に鑑みてなされたものであり、少量のオゾンにより活性汚泥を細かく分解して液化し流動性を向上させるとともに、活性汚泥細胞中に取込まれていたポリ燐酸を燐酸イオンとして溶出させる。このように燐回収時の前処理としての固液分離設備や操作が省略され、小型、操作性が容易、かつ安価な燐含有有機性廃水の処理方法を提供することを目的とする。
Since ozone has a strong oxidizing power, it is an effective means for solubilizing sludge. However, the reaction of ozone is easily affected by pH, and particularly under alkaline conditions, the rate of self-decomposition increases and the reaction efficiency decreases. In addition, it is difficult to completely decompose and dissolve SS under the ozone treatment conditions performed for normal sludge reduction. For this reason, in order to decompose | disassemble and dissolve a biological cell finely, a large amount of ozone consumption is needed. However, since an ozone oxidation apparatus is expensive and consumes a large amount of power, it is desirable to suppress wasteful consumption.
In addition, at the time of phosphorus recovery treatment, solubilized sludge is subjected to solid-liquid separation in a solid-liquid separation facility equipped with precipitation, centrifugal separation or membrane separation, etc., in order to prevent clogging and malfunction inside the phosphorus recovery device, Measures are taken to introduce only the separated liquid from which SS has been removed. As described above, complicated pretreatment facilities and operations are required for the phosphorus recovery treatment.
The present invention has been made in view of such problems. The activated sludge is finely decomposed with a small amount of ozone to liquefy and improve the fluidity, and the polyphosphoric acid incorporated into the activated sludge cells is reduced. Elute as phosphate ions. Thus, an object of the present invention is to provide a method for treating phosphorus-containing organic wastewater that is small in size, easy in operability, and inexpensive in that solid-liquid separation equipment and operation as pretreatment at the time of phosphorus recovery are omitted.

上記問題を解決するため、本発明は、次のようにしたのである。
請求項1記載の燐含有有機性廃水の処理装置の発明は、上下に気相部と液相部が設けられた滞留槽と前記滞留槽を中心に循環する循環ラインと前記循環ラインに設けられたオゾン酸化装置とを有して前記循環ラインにおいて汚泥を循環処理することにより可溶化して燐を溶出させる燐分離装置と、前記燐分離装置の後段に接続されて前記可溶化された可溶化汚泥中に溶出した燐を回収する燐回収装置と、を備えた燐含有有機性廃水の処理装置において、前記滞留槽において、オゾン化ガスの注入によって発泡する汚泥を浮上分離し、前記浮上分離後の残液を前記燐回収装置に導入することにより燐を回収し、前記燐分離装置において、前記循環ラインの前記オゾン酸化装置の前段にキャビテーション発生ノズルを備え、物理的作用により汚泥を可溶化する汚泥破砕装置を設けたことを特徴としている。
請求項記載の発明は、請求項1記載燐含有有機性廃水の処理装置において、前記オゾン酸化装置が、オゾン発生装置とオゾンエジェクターで構成したものであり、前記滞留槽は複数の隔壁により上下迂回流による押出し流れを形成するものであることを特徴としている。
請求項記載の発明は、請求項記載の燐含有有機性廃水の処理装置において、前記滞留槽が消泡機器を接続されていることを特徴としている。
請求項記載の発明は、請求項記載の燐含有有機性廃水の処理装置において、前記消泡機器が、回転羽の高速回転により、泡を機械的に破泡して液状とするものであることを特徴としている。
請求項記載の発明は、請求項記載の含有有機性廃水の処装置において、前記滞留槽が排出オゾンを分解する排オゾン分解器を接続されていることを特徴としている。
請求項記載の発明は、請求項1〜のいずれか1項記載の燐含有有機性廃水の処理装置の発明は、生物反応槽と沈殿槽と該沈殿槽に溜った沈殿汚泥を前記生物反応槽に返送する返送路を備えて成る有機性廃水浄化生物処理装置の前記返送路から前記沈殿汚泥を前記燐分離装置の前記滞留槽に導入する導入路を備え、前記燐回収装置で燐回収後の可溶化汚泥を前記生物反応槽に返送する返送路を備えたことを特徴としている。
In order to solve the above problem, the present invention is as follows.
The invention of the treatment apparatus for phosphorus-containing organic wastewater according to claim 1 is provided in a retention tank provided with a gas phase part and a liquid phase part above and below, a circulation line circulating around the retention tank, and the circulation line. A phosphorus separation device that solubilizes and elutes phosphorus by circulating sludge in the circulation line, and is connected to a subsequent stage of the phosphorus separation device and solubilized solubilized A phosphorus recovery device for recovering phosphorus eluted in the sludge, and in the phosphorus- containing organic wastewater treatment device, the sludge foamed by injection of ozonized gas is levitated and separated in the retention tank, and after the levitating separation phosphorus was recovered by introducing the residual liquid to the phosphorus recovery device, in the phosphorus separator includes a cavitation generating nozzle upstream of the ozone oxidation apparatus of the circulation line, the sludge by physical action It is characterized in that a sludge crusher to solubilize.
A second aspect of the present invention is the treatment apparatus for phosphorus-containing organic wastewater according to the first aspect, wherein the ozone oxidizer is composed of an ozone generator and an ozone ejector, and the residence tank is vertically separated by a plurality of partition walls. It is characterized by forming an extrusion flow by a detour flow.
According to a third aspect of the invention, the processor of phosphorus-containing organic wastewater according to claim 2, wherein the retention tank is characterized in that it is connected to defoaming device.
According to a fourth aspect of the present invention, in the phosphorus-containing organic wastewater treatment apparatus according to the third aspect , the defoaming device mechanically breaks the bubbles into a liquid state by high-speed rotation of the rotating blades. It is characterized by being.
According to a fifth aspect of the invention, the processing device of phosphorus-containing organic wastewater according to claim 2 is characterized in that the residence tank are connected to exhaust ozone decomposer decomposes discharge ozone.
The invention described in claim 6 is the treatment apparatus for phosphorus-containing organic wastewater according to any one of claims 1 to 5 , wherein the biological reaction tank, the sedimentation tank, and the sedimented sludge accumulated in the sedimentation tank are used as the organism. An organic wastewater purification biological treatment apparatus comprising a return path for returning to the reaction tank has an introduction path for introducing the precipitated sludge from the return path to the residence tank of the phosphorus separator, and the phosphorus recovery apparatus recovers phosphorus. A return path for returning the later solubilized sludge to the biological reaction tank is provided.

請求項記載の燐含有有機性廃水の処理方法の発明は、生物反応槽と沈殿槽と該沈殿槽に溜った沈殿汚泥を前記生物反応槽に返送する返送路を備えて成る有機性廃水浄化生物処理装置と、前記沈殿汚泥の一部を可溶化し燐を分離する燐分離装置と、前記燐分離装置で可溶化された可溶化汚泥から燐を回収する燐回収装置と、燐回収後の可溶化汚泥を前記生物反応槽に返送する工程を備えた燐含有有機性廃水の処理方法において、上下に気相部と液相部が設けられた滞留槽と前記滞留槽を中心に循環する循環ラインと前記循環ラインに設けられた汚泥破砕装置と前記循環ラインの前記汚泥破砕装置の後段に設けられたオゾン酸化装置とで構成され、前記循環ラインにおいて汚泥を循環処理することにより可溶化して燐を溶出させる燐分離装置と、溶存性の燐をアルカリ条件下で晶析させてヒドロキシアパタイトとして回収させる燐回収装置を備えるとともに、前記燐分離装置の前記滞留槽においてオゾン化ガスの注入によって発泡する汚泥を浮上分離し、前記浮上分離後の残液を直接前記燐回収装置に導入する工程を備えることを特徴としている。 The invention of the method for treating phosphorus-containing organic wastewater according to claim 7 is an organic wastewater purification comprising a biological reaction tank, a sedimentation tank, and a return path for returning sedimented sludge accumulated in the sedimentation tank to the biological reaction tank. A biological treatment device, a phosphorus separation device that solubilizes a part of the precipitated sludge and separates phosphorus, a phosphorus recovery device that recovers phosphorus from the solubilized sludge solubilized by the phosphorus separation device, In a method for treating phosphorus-containing organic wastewater comprising a step of returning solubilized sludge to the biological reaction tank, a circulation tank that circulates around the residence tank and a residence tank in which a gas phase part and a liquid phase part are provided above and below. Line and a sludge crushing device provided in the circulation line, and an ozone oxidation device provided in a subsequent stage of the sludge crushing device in the circulation line, and solubilized by circulating sludge in the circulation line. A phosphorus separator for eluting phosphorus; A phosphorus recovery device that crystallizes dissolved phosphorus under alkaline conditions and recovers it as hydroxyapatite, floats and separates sludge foamed by injection of ozonized gas in the residence tank of the phosphorus separator, and It is characterized by comprising a step of directly introducing the residual liquid after separation into the phosphorus recovery apparatus.

上記構成の発明によると、物理的作用による汚泥破砕装置とオゾン酸化装置を併用して汚泥を可溶化処理することにより、オゾン単独での処理に対し、少量のオゾン消費により、活性汚泥を細かく分解して流動性を向上させるとともに、活性汚泥細胞中に取込まれていたポリ燐酸を燐酸イオンとして液中に溶解させることができる。
したがって、アルカリ条件下で晶析させてヒドロキシアパタイトとして回収させる燐回収装置に直接導入した場合にも、閉塞や不具合が生じることなく長期間安定して稼動することが可能となる。
さらには、pH10未満での処理により燐を高効率に回収することができるため、アルカリ性下におけるオゾンの自己分解の影響を防止し、オゾンの無駄な消費を抑えることができるとともに、アルカリ性添加剤の消費量を低減し、生物処理系への悪影響を防止する効果も得られる。また、キャビテーション発生器を通過する汚泥は、管路抵抗により温度が上昇する傾向にあるため、低水温時の燐回収効率が低下するのを防止する効果も期待できる。
また、滞留槽内において、オゾン酸化処理時に発生した泡に付着して液中から分離されるSS成分は、消泡機器により再度液中に戻されて可溶化処理されることにより、更なる分解及び溶解が促進されることとなる。このため、沈殿、遠心分離または膜分離等を備えた固液分離設備は不要である。
また、キャビテーション発生器とエジェクターを直列に配することにより、汚泥はオゾン酸化の前段においてキャビテーションの強力な物理的作用により汚泥細胞が破砕されて細かく分解される。この後オゾンの強力な化学的酸化作用により効果的に活性汚泥が効果的に分解されて流動性が高まるとともに、燐酸イオンが液中に溶解する。また、本構造により小型の装置が得られる。
また、滞留槽を隔壁により上下迂回流による押出し流れを形成することにより、オゾンの反応効率を向上させることができ、滞留槽の小型化が実現できる。
また、滞留槽では一部の汚泥が発泡性となり、液相から浮上分離し、消泡機器に移送して除泡した後、消泡汚泥返送部を介して液相に返流される。これが繰り返されることにより、活性汚泥等のSS成分は効果的に可溶化が促進され、細かく分解されて液中に溶解する。
さらに、消泡機器は回転羽の高速回転により泡を機械的に破泡して液状とする方式を採用することにより、消泡水をシャワーで除泡する場合と比較すると、汚泥が希釈されることがないため可溶化の効率が向上するとともに、設備がシンプルでコンパクトになる。
According to the invention of the above configuration, the sludge is solubilized by using the sludge crushing device and the ozone oxidizer by physical action, so that the activated sludge is finely decomposed by the consumption of a small amount of ozone compared to the treatment with ozone alone. Thus, the fluidity can be improved and the polyphosphoric acid taken up in the activated sludge cells can be dissolved in the solution as phosphate ions.
Therefore, even when directly introduced into a phosphorus recovery apparatus that is crystallized under alkaline conditions and recovered as hydroxyapatite, it becomes possible to operate stably for a long period of time without causing clogging or malfunction.
Furthermore, since it is possible to recover phosphorus with high efficiency by treatment at a pH of less than 10, it is possible to prevent the influence of ozone self-decomposition under alkalinity, suppress wasteful consumption of ozone, The effect of reducing consumption and preventing adverse effects on biological treatment systems can also be obtained. In addition, since the sludge passing through the cavitation generator tends to increase in temperature due to pipe resistance, it can be expected to prevent the phosphorus recovery efficiency from being lowered at low water temperature.
In the residence tank, the SS component that adheres to the foam generated during the ozone oxidation treatment and is separated from the liquid is returned to the liquid again by the defoaming device and further solubilized to further decompose. And dissolution will be promoted. For this reason, the solid-liquid separation equipment provided with precipitation, centrifugation, membrane separation, etc. is unnecessary.
Moreover, by arranging the cavitation generator and the ejector in series, the sludge is broken down into fine sludge cells by the powerful physical action of cavitation before the ozone oxidation. After this, activated sludge is effectively decomposed by the strong chemical oxidation action of ozone to increase fluidity, and phosphate ions are dissolved in the liquid. Moreover, a small apparatus can be obtained by this structure.
In addition, by forming an extruding flow by a vertical detour flow through the partition wall, the ozone reaction efficiency can be improved, and the residence tank can be downsized.
Moreover, some sludge becomes foaming in the retention tank, floats and separates from the liquid phase, is transferred to a defoaming device to remove bubbles, and then returned to the liquid phase via the defoamed sludge return section. By repeating this, solubilization of SS components such as activated sludge is effectively promoted, and finely decomposed and dissolved in the liquid.
In addition, the defoaming equipment employs a method that mechanically breaks the foam by high-speed rotation of the rotating blades to make it liquid, so that the sludge is diluted as compared with the case where the defoamed water is removed by a shower. Therefore, the efficiency of solubilization is improved and the equipment is simple and compact.

以下、本発明の実施の形態について図を参照して説明する。
〈本発明の実施の形態〉
図1は本発明の実施の形態に係る燐回収処理工程を付加した燐含有有機性廃水の処理方法の概略構成図である。図において、1は原水供給路、2はブロワ、3は生物反応槽、4は沈殿槽、5は処理水排出路、7は汚泥返送路、9は可溶化汚泥搬送路、12は燐回収装置、そして14は本発明に係る燐分離装置である。また、Wgは原水、Wpは処理水、Dvは活性汚泥、Dcは沈殿汚泥、Dhは返送汚泥、Dkは可溶化汚泥、Pkは回収燐である。
以下、図4に示したブロックと同じ機能のものは同じ符号を付しているため、前出のものは重複説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Embodiment of the present invention>
FIG. 1 is a schematic configuration diagram of a method for treating phosphorus-containing organic wastewater to which a phosphorus recovery treatment step according to an embodiment of the present invention is added. In the figure, 1 is a raw water supply path, 2 is a blower, 3 is a biological reaction tank, 4 is a sedimentation tank, 5 is a treated water discharge path, 7 is a sludge return path, 9 is a solubilized sludge transport path, and 12 is a phosphorus recovery device. , And 14 are phosphorus separators according to the present invention. Wg is raw water, Wp is treated water, Dv is activated sludge, Dc is sedimented sludge, Dh is returned sludge, Dk is solubilized sludge, and Pk is recovered phosphorus.
In the following, since the same function as the block shown in FIG.

図2は図1に示した燐分離装置の内部構成を詳しく説明するブロック図である。図1において、15は滞留槽、16は循環ライン、17は汚泥破砕装置、18はオゾン酸化装置である。オゾン酸化装置18は、181のオゾン発生装置と182のオゾンエジェクターとから成る。20は消泡機器、21は排オゾン分解器である。
滞留槽15は上下で気相部15aと液相部15bとに分かれ、また槽内の天井部から液相部15bの内部まで延びる天井隔壁15kによって図で左右に発泡性汚泥分離部151と消泡汚泥返送部152に分かれる。さらに各発泡性汚泥分離部151と消泡汚泥返送部152はそれぞれ槽内の底部から液相部15bの途中まで上方に延びる底部隔壁15tによってラビリンス構造による迂回路が形成されている。
本発明が特許文献1記載の発明と異なる部分は、本発明では特許文献1記載の固液分離設備10(図4)を備えておらず、その代わりに本発明の燐分離装置14において、汚泥の可溶化により、燐酸イオンを汚泥から分離するとともに、活性汚泥等のSS成分を細かく分解して溶解性を高めることにより、流動性を高め直接、燐回収できるようにしたことである。そのための可溶化処理方法としては、特許文献1のような強アルカリ性条件下(pH10〜12)ではオゾン酸化を行わず、本発明では高々pH10未満の弱アルカリ〜中性条件下において、(イ)物理的作用による汚泥破砕と(ロ)オゾン酸化を併用して可溶化処理を行うものである。さらに、このとき排オゾンと同時に泡に付着して液中から分離されるSS成分は、回転羽の高速回転による機械的な消泡機器20により除泡し、再度液中に戻して可溶化処理を行うようにした点である。
FIG. 2 is a block diagram for explaining in detail the internal configuration of the phosphorus separator shown in FIG. In FIG. 1, 15 is a residence tank, 16 is a circulation line, 17 is a sludge crushing apparatus, 18 is an ozone oxidation apparatus. The ozone oxidizer 18 includes an ozone generator 181 and an ozone ejector 182. 20 is a defoaming device and 21 is an exhaust ozone decomposing device.
The retention tank 15 is divided into a gas phase part 15a and a liquid phase part 15b at the upper and lower sides, and a foaming sludge separation part 151 and a left and right side in the figure by a ceiling partition wall 15k extending from the ceiling part in the tank to the inside of the liquid phase part 15b. Divided into a foam sludge return section 152. Furthermore, each foamable sludge separation part 151 and the defoaming sludge return part 152 are each formed with the detour by the labyrinth structure by the bottom partition 15t extended upwards from the bottom part in a tank to the middle of the liquid phase part 15b.
The present invention is different from the invention described in Patent Document 1 in that the present invention does not include the solid-liquid separation facility 10 (FIG. 4) described in Patent Document 1, and instead, in the phosphorus separator 14 of the present invention, sludge is used. By solubilizing, the phosphate ions are separated from the sludge, and the SS component such as activated sludge is finely decomposed to increase the solubility, thereby improving the fluidity and enabling the direct phosphorus recovery. As a solubilization treatment method for that purpose, ozone oxidation is not performed under strong alkaline conditions (pH 10 to 12) as in Patent Document 1, and in the present invention, under weak alkaline to neutral conditions at pH less than 10 (i) Solubilization is performed by using sludge crushing by physical action and (b) ozone oxidation. Further, at this time, the SS component adhering to the foam simultaneously with the exhausted ozone and separated from the liquid is removed by the mechanical defoaming device 20 by the high-speed rotation of the rotating blades, and returned to the liquid again to be solubilized. It is a point that I tried to do.

次に、本発明の実施の形態の動作について説明する。
処理系における有機性廃水の浄化の工程については特許文献1と同様なので、異なる点以外の説明を省略する。
余剰となる沈殿汚泥Dcの一部は、燐分離装置14に導入される。燐分離装置14は滞留槽15を中心として、循環ライン16が設けられており、その循環ライン16に(イ)物理的作用による汚泥破砕を行なう汚泥破砕装置17と(ロ)オゾン化ガスを沈殿汚泥中に注入するオゾン酸化装置18(オゾン発生器181とオゾンエジェクター182から成る。)を直列に配した構造となっている。
(イ)物理的作用による汚泥破砕:
汚泥破砕を行なう汚泥破砕装置14は、0.5〜2MPa程度に圧縮した沈殿汚泥Dcをキャビテーション発生ノズル(図示なし)に通過させることにより液中にキャビテーション気泡を生成させ、キャビテーション気泡の消滅時に発生する衝撃力を利用して汚泥を物理的に破砕する作用を有するものである。
(ロ)オゾン酸化:
オゾン酸化を行なうオゾン酸化装置18は沈殿汚泥中のSSの2.5〜5重量%を必要量とし、オゾン発生装置181で生成されたオゾン化ガスはオゾンエジェクター182を介して、沈殿汚泥中に注入されて、酸化により可溶化を促進させるものである。
本発明によって設けられた汚泥破砕装置17とオゾン酸化装置18とを通過することで可溶化が促進された汚泥は滞留槽15に戻り、再び滞留槽15を中心に循環する(循環量は沈殿汚泥の導入される量に対し、2〜8倍程度)。
滞留槽15は上下に気相部15aと液相部15bで構成されており、液相部15bは天井隔壁15kと底部隔壁15tとにより上下迂回流路を形成し、押出し流れにより効率良くオゾン反応が行われる。
一方、気相部15aは発泡性汚泥分離部151と消泡汚泥返送部152に図で左右に分割した構造としている。発泡性汚泥分離部151では、排オゾンとともに一部の汚泥が発泡性となり、液相15bから浮上分離する。この汚泥中にはSS成分が濃縮されており、消泡機器20に移送して機械的に除泡した後、消泡汚泥返送部21を介して液相15bに返流される。
これが繰り返されることにより、活性汚泥等のSS成分は効果的に可溶化が促進され、細かく分解されて液中に溶解し、流動性が高まる。
また、沈殿汚泥Dcの生物細胞に蓄積する燐酸基は、可溶化されることにより生物細胞から脱着し、燐酸イオンとして水中に溶解する。
Next, the operation of the embodiment of the present invention will be described.
Since the process of purifying the organic wastewater in the treatment system is the same as that of Patent Document 1, the description other than the differences will be omitted.
A part of the surplus precipitated sludge Dc is introduced into the phosphorus separator 14. The phosphorus separation device 14 is provided with a circulation line 16 centering on the residence tank 15, (b) sludge crushing device 17 for crushing sludge by physical action, and (b) precipitation of ozonized gas. It has a structure in which an ozone oxidizer 18 (consisting of an ozone generator 181 and an ozone ejector 182) injected into sludge is arranged in series.
(B) Sludge crushing by physical action:
The sludge crushing device 14 that performs sludge crushing generates cavitation bubbles in the liquid by passing the precipitated sludge Dc compressed to about 0.5 to 2 MPa through a cavitation generating nozzle (not shown), and is generated when the cavitation bubbles disappear. It has the effect | action which crushes sludge physically using the impact force which carries out.
(B) Ozone oxidation:
The ozone oxidizer 18 that performs ozone oxidation requires 2.5-5% by weight of SS in the precipitated sludge, and the ozonized gas generated by the ozone generator 181 passes through the ozone ejector 182 into the precipitated sludge. It is injected and promotes solubilization by oxidation.
The sludge whose solubilization has been promoted by passing through the sludge crusher 17 and the ozone oxidizer 18 provided by the present invention returns to the retention tank 15 and circulates around the retention tank 15 again (the circulation amount is the precipitated sludge). 2 to 8 times the amount introduced).
The residence tank 15 is composed of a gas phase part 15a and a liquid phase part 15b in the vertical direction, and the liquid phase part 15b forms a vertical detour channel by the ceiling partition wall 15k and the bottom partition wall 15t, and the ozone reaction is efficiently performed by the extrusion flow. Is done.
On the other hand, the gas phase part 15a is divided into a foamable sludge separation part 151 and a defoamed sludge return part 152 on the left and right in the figure. In the foamable sludge separation unit 151, part of the sludge becomes foamable together with the exhausted ozone, and floats and separates from the liquid phase 15b. The SS component is concentrated in the sludge, transferred to the defoaming device 20 and mechanically defoamed, and then returned to the liquid phase 15b via the defoamed sludge return section 21.
By repeating this, the SS components such as activated sludge are effectively solubilized, finely decomposed and dissolved in the liquid, and the fluidity is increased.
In addition, the phosphate groups accumulated in the biological cells of the precipitated sludge Dc are desorbed from the biological cells by being solubilized and dissolved in water as phosphate ions.

図3に沈殿汚泥の可溶化前後の顕微鏡画像を示す。
図3(a)は沈殿汚泥(初期)、(b)はオゾン酸化だけによる可溶化処理後、(c)はキャビテーションによる汚泥破砕とオゾン酸化の併用による可溶化処理後の画像をそれぞれ示している。
図3(a)において、中央部から下方にかけての大きな固まり(Ka)は沈殿汚泥である。この図3(a)の大きな固まりKaがオゾン酸化だけによる可溶化処理された後は図3(b)のように小さなバラバラの固まりKbに細分化される。
一方、図3(a)の大きな固まりKaがキャビテーションとオゾン酸化の併用処理をされた後は図3(c)のように微細片Kcまでに細分化されることが判る。
すなわち、画像からは(c)のキャビテーションによる汚泥破砕とオゾン酸化の併用により、沈殿汚泥が細かく分解し可溶化が促進されていることが確認できる。なお、オゾンは殆どが消費されるが、低濃度のオゾンが残留することがあるので、熱分解等の排オゾン分解器21(図1)により無害化される。
次に、可溶化汚泥は、滞留槽の(A)または(B)点から引き抜き、常温でアルカリ剤を添加してpHを9程度に調整した後、燐回収装置12に導入する。特に、可溶化汚泥中のSS濃度が高い場合には、SSが発泡により分離されて低濃度化した(A)点から引き抜くことにより、安定した処理が可能である。燐回収装置は、晶析材(例えば、粒径が1.0〜2.0mm程度のケイ酸カルシウム結晶)を充填した充填塔に上向流で導入し、充填塔を中心に、上向流方式で循環通水するような方式が有効である。ここで、ヒドロキシアパタイト結晶が生じ、装置に導入された溶存燐の80%以上が回収される。回収リン13はそのまま肥料として農地等に有効に還元することができる。
FIG. 3 shows microscopic images before and after solubilization of the precipitated sludge.
Fig. 3 (a) shows the precipitated sludge (initial stage), Fig. 3 (b) shows the image after the solubilization treatment only by ozone oxidation, and Fig. 3 (c) shows the image after the solubilization treatment by combined use of sludge crushing by cavitation and ozone oxidation. .
In Fig.3 (a), the big lump (Ka) from a center part to a downward direction is sedimentation sludge. After the large block Ka in FIG. 3A is solubilized only by ozone oxidation, it is divided into small pieces Kb as shown in FIG. 3B.
On the other hand, it can be seen that the large mass Ka in FIG. 3A is subdivided into fine pieces Kc as shown in FIG. 3C after the combined treatment of cavitation and ozone oxidation.
That is, it can be confirmed from the image that the precipitated sludge is finely decomposed and solubilized by the combined use of sludge crushing by cavitation (c) and ozone oxidation. Although most of the ozone is consumed, low-concentration ozone may remain, so that it is rendered harmless by the exhaust ozone decomposing unit 21 (FIG. 1) such as thermal decomposition.
Next, the solubilized sludge is drawn out from the (A) or (B) point of the retention tank, added with an alkali agent at room temperature to adjust the pH to about 9, and then introduced into the phosphorus recovery apparatus 12. In particular, when the SS concentration in the solubilized sludge is high, stable treatment is possible by pulling out from the point (A) where the SS is separated by foaming to reduce the concentration. The phosphorus recovery apparatus introduces an upward flow into a packed tower packed with a crystallization material (for example, a calcium silicate crystal having a particle size of about 1.0 to 2.0 mm), and the upward flow with the packed tower as the center. A system that circulates water in this way is effective. Here, hydroxyapatite crystals are formed, and 80% or more of the dissolved phosphorus introduced into the apparatus is recovered. The recovered phosphorus 13 can be effectively reduced to farmland or the like as a fertilizer.

本発明の実験例を以下に記す。
下水沈殿汚泥を前述の構成により、キャビテーション発生ノズル1次圧を0.95MPa、オゾン注入率を0.025g−O3/g−SSとして可溶化させた。可溶化汚泥(PO4−P 24.9[mg/L]、pH 5.87、水温24℃)に水酸化ナトリウムを添加してpHを調整(調整後のpH7、8、9、9.5)した後、ケイ酸カルシウム結晶(粒径:1.2〜1.4mm)を充填したカラムで構成した燐回収装置に注入して、通過後の液のリン酸イオン濃度を測定した。
その結果、表1が得られた。
Experimental examples of the present invention will be described below.
The sewage sedimentation sludge was solubilized by the above-described configuration with a cavitation generation nozzle primary pressure of 0.95 MPa and an ozone injection rate of 0.025 g-O 3 / g-SS. Sodium hydroxide was added to solubilized sludge (PO 4 -P 24.9 [mg / L], pH 5.87, water temperature 24 ° C.) to adjust the pH (pH 7, 8, 9, 9.5 after adjustment). ), And then injected into a phosphorus recovery apparatus composed of a column packed with calcium silicate crystals (particle size: 1.2 to 1.4 mm), and the phosphate ion concentration of the liquid after passing was measured.
As a result, Table 1 was obtained.

表1から判ることは、pHをpH7→pH8→pH9→pH9.5と高めていくだけで、可溶化汚泥中に流出する燐酸イオン(PO4−P)の24.9[mg/L]が、pH7の15.1から→11.5(pH8)→5.6(pH9)→3.8(pH9.5)と減ってくる。したがって、燐回収率はpH7の39%から→54%(pH8)→78%(pH9)→85%(pH9.5)と増え、カラムに確実に吸着されることが判る。
このように可溶化汚泥について従来のような固液分離をしなくても、pHを10近傍に調整したあと燐回収装置に直接導入するだけで、カラム内での可溶化汚泥の通水状態は良好となった。したがって可溶化汚泥による閉塞等の不具合が生じることなく長期間の稼動が可能であり、効率良く燐を回収することができた。ヒドロキシアパタイトとして昌析し、回収された燐は、そのまま農業用の肥料として再利用可能となる。
燐回収装置を経由した可溶化汚泥は、その後生物処理系に返送されてさらに生物酸化され、二酸化炭素や水にまで分解されることにより、余剰汚泥の発生量が大幅に削減される。
このように、余剰汚泥の発生量を著しく削減するとともに、汚泥の可溶化時処理時に水中に溶出する燐を効率的に資源として回収することが、小型、操作性が容易、かつ安価な設備で実現できるようになる。
It can be seen from Table 1 that the phosphate ion (PO4-P) 24.9 [mg / L] flowing out into the solubilized sludge is pH 7 only by increasing the pH to pH 7 → pH 8 → pH 9 → pH 9.5. From 15.1 to 11.5 (pH 8) → 5.6 (pH 9) → 3.8 (pH 9.5). Therefore, the phosphorus recovery rate increases from 39% of pH 7 to 54% (pH 8) → 78% (pH 9) → 85% (pH 9.5), and it can be seen that the phosphorus is reliably adsorbed on the column.
Thus, even if the solubilized sludge is not subjected to conventional solid-liquid separation, the water flow state of the solubilized sludge in the column can be obtained simply by directly introducing the phosphorus recovery device after adjusting the pH to around 10. It became good. Therefore, it was possible to operate for a long time without causing problems such as clogging by solubilized sludge, and phosphorus could be recovered efficiently. Phosphorus collected and recovered as hydroxyapatite can be reused as it is as an agricultural fertilizer.
The solubilized sludge that has passed through the phosphorus recovery device is then returned to the biological treatment system where it is further biooxidized and decomposed into carbon dioxide and water, so that the amount of surplus sludge generated is greatly reduced.
In this way, the amount of excess sludge generated can be significantly reduced, and phosphorus that elutes into the water during the sludge solubilization process can be efficiently recovered as a resource. Can be realized.

本発明では効率的に有機汚泥を可溶化して易生物分解化するとともに、シンプルで安価な燐回収工程を有しているため、公共下水の他、化学工場や食品工場等の燐を含有する有機性廃水処理全般において、汚泥の嫌気性消化プロセスを経てメタンガスを生成し、これをバイオマス資源として有効に利用することやそれに伴う汚泥の減量化を目的とした設備への導入も適用できる。   In the present invention, organic sludge is efficiently solubilized and easily biodegraded, and since it has a simple and inexpensive phosphorus recovery process, it contains phosphorus from chemical factories and food factories in addition to public sewage. In organic wastewater treatment in general, methane gas is produced through an anaerobic digestion process of sludge, and it can be applied to facilities for the purpose of effectively using it as biomass resources and reducing the amount of sludge associated therewith.

本発明の燐含有有機性廃水の処理方法を示す構成図である。It is a block diagram which shows the processing method of the phosphorus containing organic wastewater of this invention. 図1の燐分離装置の構成を詳しく示す構成図である。It is a block diagram which shows in detail the structure of the phosphorus separation apparatus of FIG. 沈殿汚泥の可溶化前後の顕微鏡画像である。It is a microscope image before and after solubilization of sedimentation sludge. 従来の燐含有有機性廃水の処理方法を示す構成図である。It is a block diagram which shows the processing method of the conventional phosphorus containing organic wastewater.

符号の説明Explanation of symbols

1 原水供給路
2 ブロワ
3 生物反応槽
4 沈殿槽
5 処理水排出路
7 汚泥返送路
8 汚泥減量化装置
9 可溶化汚泥搬送路
12 燐回収装置
14 燐分離装置
15 滞留槽
15a 気相部
15b 液相部
15k 天井隔壁
15t 底部隔壁
151 発泡性汚泥分離部
152 消泡汚泥返送部
16 循環ライン
17 汚泥破砕装置
18 オゾン酸化装置
181 オゾン発生装置
182 オゾンエジェクター
20 消泡機器
21 排オゾン分解器
Wg 原水
Wp 処理水
Dv 活性汚泥
Dc 沈殿汚泥
Dh 返送汚泥
Dk 可溶化汚泥
Pk 回収燐
DESCRIPTION OF SYMBOLS 1 Raw water supply path 2 Blower 3 Biological reaction tank 4 Sedimentation tank 5 Treated water discharge path 7 Sludge return path 8 Sludge reduction apparatus 9 Solubilization sludge conveyance path 12 Phosphorus collection apparatus 14 Phosphorus separation apparatus 15 Retention tank 15a Gas phase part 15b Liquid Phase part 15k Ceiling partition 15t Bottom partition 151 Foaming sludge separation part 152 Defoamed sludge return part 16 Circulation line 17 Sludge crusher 18 Ozone oxidizer 181 Ozone generator 182 Ozone ejector 20 Defoamer 21 Exhaust ozone decomposer Wg Raw water Wp Treated water Dv Activated sludge Dc Precipitated sludge Dh Return sludge Dk Solubilized sludge Pk Recovery phosphorus

Claims (7)

上下に気相部と液相部が設けられた滞留槽と前記滞留槽を中心に循環する循環ラインと前記循環ラインに設けられたオゾン酸化装置とを有して前記循環ラインにおいて汚泥を循環処理することにより可溶化して燐を溶出させる燐分離装置と、
前記燐分離装置の後段に接続されて前記可溶化された可溶化汚泥中に溶出した燐を回収する燐回収装置と、を備えた燐含有有機性廃水の処理装置において、
前記滞留槽において、オゾン化ガスの注入によって発泡する汚泥を浮上分離し、前記浮上分離後の残液を前記燐回収装置に導入することにより燐を回収し、
前記燐分離装置において、前記循環ラインの前記オゾン酸化装置の前段にキャビテーション発生ノズルを備え、物理的作用により汚泥を可溶化する汚泥破砕装置を設けたことを特徴とする燐含有有機性廃水の処理装置
The sludge is circulated in the circulation line having a staying tank provided with a gas phase part and a liquid phase part above and below, a circulation line circulating around the staying tank, and an ozone oxidation device provided in the circulation line. A phosphorus separator for solubilizing and eluting phosphorus by
A phosphorus recovery apparatus connected to a subsequent stage of the phosphorus separation apparatus and recovering phosphorus eluted in the solubilized solubilized sludge, and a phosphorus-containing organic wastewater treatment apparatus comprising:
In the residence tank, the sludge foamed by the ozonization gas injection is floated and separated, and the residual liquid after the floatation and separation is introduced into the phosphorus recovery device to recover phosphorus,
In the phosphorus separation apparatus, the treatment of phosphorus-containing organic wastewater is characterized in that a cavitation generating nozzle is provided in front of the ozone oxidation apparatus in the circulation line, and a sludge crushing apparatus for solubilizing sludge by physical action is provided. Equipment .
前記オゾン酸化装置は、オゾン発生装置とオゾンエジェクターで構成したものであり、前記滞留槽は複数の隔壁により上下迂回流による押出し流れを形成するものであることを特徴とする請求項1記載の燐含有有機性廃水の処理装置。 The phosphorus oxidizer according to claim 1, wherein the ozone oxidizer comprises an ozone generator and an ozone ejector, and the retention tank forms an extruding flow by a vertical detour flow by a plurality of partition walls. Treatment equipment for organic wastewater. 前記滞留槽は消泡機器を接続されていることを特徴とする請求項記載の燐含有有機性廃水の処理装置。 The treatment apparatus for phosphorus-containing organic wastewater according to claim 2, wherein the staying tank is connected to a defoaming device. 前記消泡機器は、回転羽の高速回転により、泡を機械的に破泡して液状とするものであることを特徴とする請求項3記載の燐含有有機性廃水の処理装置。 4. The apparatus for treating phosphorus-containing organic wastewater according to claim 3 , wherein the defoaming device is a device that mechanically breaks bubbles into a liquid state by high-speed rotation of rotating blades . 前記滞留槽は排出オゾンを分解する排オゾン分解器を接続されていることを特徴とする請求項記載の燐含有有機性廃水の処理装置。 The apparatus for treating phosphorus-containing organic wastewater according to claim 2, wherein the retention tank is connected to an exhaust ozone decomposer that decomposes exhaust ozone . 生物反応槽と沈殿槽と該沈殿槽に溜った沈殿汚泥を前記生物反応槽に返送する返送路を備えて成る有機性廃水浄化生物処理装置の前記返送路から前記沈殿汚泥を前記燐分離装置の前記滞留槽に導入する導入路を備え、前記燐回収装置で燐回収後の可溶化汚泥を前記生物反応槽に返送する返送路を備えたことを特徴とする請求項1〜5のいずれか1項記載の燐含有有機性廃水の処理装置。 A biological reaction tank, a sedimentation tank, and a return path for returning the sedimented sludge accumulated in the sedimentation tank to the biological reaction tank, the precipitated sludge from the return path of the organic wastewater purification biological treatment apparatus. comprises a introduction path for introducing to the residence tank, claim 1, the solubilized sludge after phosphorus recovery in the phosphorus recovery device characterized by comprising a return passage for returning to the bioreactor 1 The processing apparatus of a phosphorus containing organic wastewater as described in a term . 生物反応槽と沈殿槽と該沈殿槽に溜った沈殿汚泥を前記生物反応槽に返送する返送路を備えて成る有機性廃水浄化生物処理装置と、前記沈殿汚泥の一部を可溶化し燐を分離する燐分離装置と、前記燐分離装置で可溶化された可溶化汚泥から燐を回収する燐回収装置と、燐回収後の可溶化汚泥を前記生物反応槽に返送する工程を備えた燐含有有機性廃水の処理方法において、
上下に気相部と液相部が設けられた滞留槽と前記滞留槽を中心に循環する循環ラインと前記循環ラインに設けられた汚泥破砕装置と前記循環ラインの前記汚泥破砕装置の後段に設けられたオゾン酸化装置とで構成され、前記循環ラインにおいて汚泥を循環処理することにより可溶化して燐を溶出させる燐分離装置と、
溶存性の燐をアルカリ条件下で晶析させてヒドロキシアパタイトとして回収させる燐回収装置を備えるとともに、前記燐分離装置の前記滞留槽においてオゾン化ガスの注入によって発泡する汚泥を浮上分離し、前記浮上分離後の残液を直接前記燐回収装置に導入する工程を備えることを特徴とする燐含有有機性廃水の処理方法。
An organic wastewater purification biological treatment apparatus comprising a biological reaction tank, a sedimentation tank, and a return path for returning the sedimentation sludge accumulated in the sedimentation tank to the biological reaction tank; A phosphorus-containing apparatus comprising: a phosphorus separation device for separation; a phosphorus recovery device for recovering phosphorus from the solubilized sludge solubilized by the phosphorus separator; and a step of returning the solubilized sludge after phosphorus recovery to the biological reaction tank In the treatment method of organic wastewater,
A stagnation tank provided with a gas phase part and a liquid phase part above and below, a circulation line that circulates around the stagnation tank, a sludge crusher provided in the circulation line, and a stage subsequent to the sludge crusher in the circulation line A phosphorus separation device configured to solubilize and elute phosphorus by circulating sludge in the circulation line.
A phosphorus recovery device that crystallizes dissolved phosphorus under alkaline conditions and recovers it as hydroxyapatite, floats and separates sludge foamed by injection of ozonized gas in the residence tank of the phosphorus separator, and A method for treating phosphorus-containing organic wastewater, comprising a step of directly introducing the separated residual liquid into the phosphorus recovery apparatus .
JP2007062246A 2007-03-12 2007-03-12 Apparatus and method for treating phosphorus-containing organic wastewater Expired - Fee Related JP4949085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062246A JP4949085B2 (en) 2007-03-12 2007-03-12 Apparatus and method for treating phosphorus-containing organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062246A JP4949085B2 (en) 2007-03-12 2007-03-12 Apparatus and method for treating phosphorus-containing organic wastewater

Publications (2)

Publication Number Publication Date
JP2008221114A JP2008221114A (en) 2008-09-25
JP4949085B2 true JP4949085B2 (en) 2012-06-06

Family

ID=39840321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062246A Expired - Fee Related JP4949085B2 (en) 2007-03-12 2007-03-12 Apparatus and method for treating phosphorus-containing organic wastewater

Country Status (1)

Country Link
JP (1) JP4949085B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183538B2 (en) * 2009-03-19 2013-04-17 日成プラント株式会社 Surplus sludge reduction device
JP2016209800A (en) * 2015-05-01 2016-12-15 株式会社安川電機 Excess sludge weight loss device
KR20160139596A (en) 2015-05-28 2016-12-07 가부시키가이샤 야스카와덴키 Apparatus for reducing excess sludge
JP6594591B1 (en) * 2019-01-31 2019-10-23 三菱電機株式会社 Sewage treatment apparatus and sewage treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320992A (en) * 2001-04-25 2002-11-05 Ebara Corp Method for treating organic waste water and equipment therefor
JP3731806B2 (en) * 2001-05-18 2006-01-05 株式会社荏原製作所 Organic wastewater treatment method and apparatus
JP3724572B2 (en) * 2002-03-15 2005-12-07 日立プラント建設株式会社 Sludge treatment apparatus and waste water treatment apparatus equipped with the same
JP4365617B2 (en) * 2003-05-22 2009-11-18 三菱電機株式会社 Organic waste liquid processing method and processing apparatus
JP4632397B2 (en) * 2003-08-26 2011-02-16 アタカ大機株式会社 Sewage treatment method and apparatus
JP4593175B2 (en) * 2004-01-07 2010-12-08 三菱電機株式会社 Sludge treatment method and sludge treatment apparatus
JP4840563B2 (en) * 2005-03-29 2011-12-21 株式会社安川電機 Sewage treatment equipment
JP2006314863A (en) * 2005-05-10 2006-11-24 Maezawa Ind Inc Phosphorus removal apparatus

Also Published As

Publication number Publication date
JP2008221114A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5950790B2 (en) Wastewater treatment method and system
JP5752608B2 (en) Method and apparatus for cleaning waste liquid
JP5916971B2 (en) Sludge treatment apparatus and sludge treatment method
JP2007136276A (en) Sewage treatment system
JP2007061710A (en) Organic sludge treatment method and apparatus
JP4949085B2 (en) Apparatus and method for treating phosphorus-containing organic wastewater
JP4542764B2 (en) Organic wastewater treatment equipment
JP4667890B2 (en) Organic waste treatment methods
KR100859594B1 (en) Advanced wastewater treatment method with the biosolids reduction and the recovery of rbdcod
JP2004000941A (en) Treatment method for organic wastewater or sludge and treatment apparatus therefor
JP6334833B2 (en) Sludge treatment apparatus and sludge treatment method
JP2006026542A (en) Anaerobic digestion treatment method and apparatus for organic sludge
JP2006239625A (en) Method and equipment for treating organic waste
JP2008018309A (en) Apparatus for treating sludge
JP2018130656A (en) Waste treatment method and waste treatment system
JP2006272198A (en) Apparatus and method for treating sludge
JP4365617B2 (en) Organic waste liquid processing method and processing apparatus
JP2008155075A (en) Sewage treatment method and apparatus
JP2006075730A (en) Anaerobic treatment device
JP2005254199A (en) Method and apparatus for wastewater treatment
JP2004148136A (en) Sewage treatment method and treatment equipment therefor
JP2005246347A (en) Method and apparatus for treating sewage
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2006167545A (en) Apparatus and method for treating sewage
JP3853922B2 (en) Method for removing phosphorus from organic sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees