JP2007136276A - Sewage treatment system - Google Patents

Sewage treatment system Download PDF

Info

Publication number
JP2007136276A
JP2007136276A JP2005329956A JP2005329956A JP2007136276A JP 2007136276 A JP2007136276 A JP 2007136276A JP 2005329956 A JP2005329956 A JP 2005329956A JP 2005329956 A JP2005329956 A JP 2005329956A JP 2007136276 A JP2007136276 A JP 2007136276A
Authority
JP
Japan
Prior art keywords
sludge
separation
tank
liquid
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005329956A
Other languages
Japanese (ja)
Other versions
JP5023473B2 (en
Inventor
Hideaki Ike
池  英昭
Kazuya Hirabayashi
和也 平林
Yasusuke Takeuchi
庸介 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005329956A priority Critical patent/JP5023473B2/en
Publication of JP2007136276A publication Critical patent/JP2007136276A/en
Application granted granted Critical
Publication of JP5023473B2 publication Critical patent/JP5023473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sewage treatment system which has high methane recovery efficiency and high sludge reducing efficiency, which can reduce excess sludge and phosphorus component concentration in treated water. <P>SOLUTION: The sewage treatment system is provided with a 1st settling tank 13 for carrying out solid-liquid separation of the sewage, a biological reaction tank 15, a 2nd settling tank 5 for carrying out solid-liquid separation of activated sludge and a flotation thickening facility 14 including a flotation apparatus for thickening the excess sludge by separation into suspended matter and water. A sludge modifying and separating apparatus 17, which has a sludge modifying means for branching a part of the excess sludge introduced into the flotation thickening facility and changing the excess sludge into a substrate again, an aeration means for blowing microbubbles such as air into the sludge and a sludge separation tank for separating the sludge changed into the substrate into bubbles and liquid and which constitutes a circulatory system thereby, is provided. Thus separated sludge changed into the substrate again and the separated liquid are respectively and individually treated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水処理工程において発生する余剰汚泥を減量化するとともに、嫌気性消化におけるガス(メタン)発生効率を向上する。さらには余剰汚泥中に取り込んだリン成分を濃縮して処理系から分離して処理することにより、処理水の水質を良好に維持あるいは向上することのできる汚水処理システムに関する。   The present invention reduces the amount of excess sludge generated in the water treatment process and improves the gas (methane) generation efficiency in anaerobic digestion. Furthermore, the present invention relates to a sewage treatment system capable of maintaining or improving the quality of treated water satisfactorily by concentrating the phosphorus component taken into excess sludge and separating and treating it from the treatment system.

汚水の処理法として活性汚泥法は処理性能が高いため水処理分野において広く利用されている。この浄化原理は微生物が汚水中の有機物を餌として分解・除去する作用によるため微生物が増殖し、処理の結果として余剰汚泥が発生する。しかしながら、この汚泥の最終処分量は全産業廃棄物最終処分量に対する割合が高く、国内においては最終処分場の残余容量が極めて少ないこともあり多大なコスト負担になっている。このような状況から汚泥をできるだけ少なくすることが望まれており、各種手段を用いた汚泥の濃縮や汚泥減量法の導入が実施されている。
汚泥濃縮の果たす役割は、水処理施設で発生した低濃度の汚泥を濃縮し、その後に続く汚泥の嫌気性消化や汚泥脱水を効果的に機能させることである。濃縮する汚泥には、第1沈殿槽で発生する第1沈殿槽汚泥と第2沈殿槽で発生する余剰汚泥がある。重力濃縮しにくい余剰汚泥は浮上濃縮槽で濃縮するケースが増加しつつある(例えば、非特許文献1参照)。
従来の第1の汚水処理方法として、浮上濃縮設備を含むものがある。その構成例を図3に示す。図において、1は起泡装置、2は起泡助剤、3は空気、4は起泡用水、5は第2沈殿槽、6は余剰汚泥、7は混合装置、8は高分子凝集剤、9は浮上装置、10は分離汚泥、11は嫌気性消化槽、12は分離液、13は第1沈殿槽、14は浮上濃縮設備である。浮上濃縮設備(常圧浮上方式)14は、起泡装置1と混合装置7および浮上装置9等から構成される。
流入水は、第1沈殿槽13において固形物を沈澱させ、つぎに生物反応槽15で処理され、処理液が第2沈殿槽において固液分離される。分離液は処理水16として系外に放流される。一方、沈降した汚泥は一部が生物反応槽15の前段に返送される。残部が余剰汚泥6として引き抜かれ浮上濃縮設備14で処理された後、嫌気性消化槽11に送られ処理される。
浮上濃縮設備14ではつぎのように処理される。
(1)先ず、起泡装置1により起泡助剤2及び空気3を混合した起泡用水4を機械攪拌し、常圧下で微細気泡を生成させる。(2)つぎに混合装置7により、微細気泡を余剰汚泥6中に混合させるとともに、高分子凝集剤8を添加して固形物を吸着させ、結合力の強いフロックと気泡の固形物を形成させる。(3)浮上装置9により、フロックと気泡の汚泥固形分は浮上分離されてかき取られた後、汚泥中の微細気泡が機械攪拌により脱気された分離汚泥10となる。
分離汚泥10は後段の嫌気性消化槽11に送られる。一方、分離液12は浮上装置下方から引き抜かれて第1沈殿槽13の前段に返流されている。
嫌気性消化槽11では、有機物を嫌気性微生物の働きで低分子化し、液化し、ガス化する。
この結果、汚泥量の減少と質の安定化、または衛生面の安全性を図ることができる。また、汚泥量が減少することにより、脱水、焼却等の後続における処理設備容量の縮小化が可能となる。さらには、嫌気性消化の副産物として生成するメタンを主成分とした消化ガスは、脱硫後、汚泥消化タンクの加温や焼却炉の補助燃料として利用されるほか、消化ガス発電への利用等も行われる。
従来の第2の汚水処理方法として、余剰汚泥を貯留した反応容器内にオゾンを吹き込んで汚泥を再基質化することにより生物分解性を高め、それを再び生物反応槽15に戻すことによって汚泥中の有機物を生物酸化し、余剰汚泥量を減量させる方法も提案されている(例えば、特許文献1参照)。このときの汚泥減量化システムフローは図4のようになっている。図4において、28はオゾン反応槽、20はオゾン発生装置、23は排オゾン分解器、29は散気装置である。
第2沈殿槽5から引き抜かれた余剰汚泥6がオゾン反応槽28に貯留され、オゾン発生装置20により生成したオゾン化ガスがオゾン反応槽の底部に設置された散気装置29により槽内に注入されて余剰汚泥を酸化分解する。水中に未溶解の有害な排オゾンガスは槽の上部で気液分離され、排オゾン分解器23で無害化されて大気中に放出される。オゾン処理により再基質化された汚泥は全て生物反応槽15に戻される。この折、活性汚泥中のMLSS成分は大部分が生物由来の有機物であることから、酸化力の強いオゾンにより生物体を構成する細胞壁や細胞膜が破壊され、細胞中から有機酸や糖などが放出される。こうした作用により汚泥は易生物分解性となり、生物反応槽15に戻ると無機物にまで分解され汚泥がなくなる。
下水道施設計画・設計指針と解説 後編 -2001年版- P361〜380 特許第2973761号
As a method for treating sewage, the activated sludge method is widely used in the water treatment field because of its high treatment performance. Since this purification principle is based on the action of microorganisms decomposing and removing organic matter in sewage as feed, the microorganisms grow and as a result of the treatment, excess sludge is generated. However, the final disposal amount of this sludge has a high ratio with respect to the final disposal amount of all industrial waste, and in Japan, the residual capacity of the final disposal site is extremely small, which is a great cost burden. Under such circumstances, it is desired to reduce sludge as much as possible, and sludge concentration and sludge reduction methods using various means have been implemented.
The role of sludge concentration is to concentrate the low-concentration sludge generated in the water treatment facility and to effectively function the subsequent anaerobic digestion and sludge dewatering of the sludge. The sludge to be concentrated includes a first settling tank sludge generated in the first settling tank and an excess sludge generated in the second settling tank. The number of cases where excess sludge that is difficult to concentrate by gravity is concentrated in a floating concentration tank is increasing (for example, see Non-Patent Document 1).
As a conventional first sewage treatment method, there is one including a floating concentration facility. An example of the configuration is shown in FIG. In the figure, 1 is a foaming device, 2 is a foaming aid, 3 is air, 4 is water for foaming, 5 is a second settling tank, 6 is excess sludge, 7 is a mixing device, 8 is a polymer flocculant, 9 is a levitation device, 10 is a separation sludge, 11 is an anaerobic digestion tank, 12 is a separation liquid, 13 is a first sedimentation tank, and 14 is a levitation concentration equipment. The levitation concentration facility (normal pressure levitation method) 14 includes a foaming device 1, a mixing device 7, a levitation device 9, and the like.
The inflowing water precipitates solids in the first sedimentation tank 13, and is then processed in the biological reaction tank 15, and the treatment liquid is solid-liquid separated in the second precipitation tank. The separated liquid is discharged out of the system as treated water 16. On the other hand, a part of the settled sludge is returned to the front stage of the biological reaction tank 15. The remaining portion is extracted as excess sludge 6 and processed by the floating concentration equipment 14, and then sent to the anaerobic digester 11 for processing.
In the floating concentration equipment 14, the following processing is performed.
(1) First, the foaming water 4 in which the foaming aid 2 and the air 3 are mixed is mechanically stirred by the foaming device 1 to generate fine bubbles under normal pressure. (2) Next, the mixing device 7 mixes the fine bubbles in the excess sludge 6 and adds the polymer flocculant 8 to adsorb the solid matter, thereby forming a floc having a strong binding force and a solid matter of the bubble. . (3) After the flotation device 9 floats and separates the sludge solid content of the flocks and bubbles by the flotation device 9, the fine bubbles in the sludge become the separated sludge 10 deaerated by mechanical stirring.
The separated sludge 10 is sent to the anaerobic digester 11 at the subsequent stage. On the other hand, the separation liquid 12 is drawn out from below the levitation device and returned to the previous stage of the first sedimentation tank 13.
In the anaerobic digestion tank 11, organic substances are reduced in molecular weight by the action of anaerobic microorganisms, liquefied, and gasified.
As a result, the amount of sludge can be reduced, the quality can be stabilized, or the hygiene safety can be achieved. In addition, by reducing the amount of sludge, it is possible to reduce the capacity of the processing equipment in subsequent processes such as dehydration and incineration. Furthermore, digestion gas mainly composed of methane produced as an by-product of anaerobic digestion is used for heating of sludge digestion tanks and auxiliary fuel for incinerators after desulfurization. Done.
As a conventional second sewage treatment method, biodegradability is improved by blowing ozone into a reaction vessel in which excess sludge is stored to convert the sludge into a re-substrate, and then returning it to the bioreactor 15 again. A method of biologically oxidizing the organic matter to reduce the amount of excess sludge has also been proposed (see, for example, Patent Document 1). The sludge reduction system flow at this time is as shown in FIG. In FIG. 4, 28 is an ozone reaction tank, 20 is an ozone generator, 23 is an exhaust ozone decomposer, and 29 is an air diffuser.
The surplus sludge 6 drawn out from the second sedimentation tank 5 is stored in the ozone reaction tank 28, and the ozonized gas generated by the ozone generator 20 is injected into the tank by the air diffuser 29 installed at the bottom of the ozone reaction tank. The excess sludge is oxidized and decomposed. The harmful exhaust ozone gas not dissolved in the water is gas-liquid separated at the upper part of the tank, detoxified by the exhaust ozone decomposer 23 and released into the atmosphere. All sludge that has been re-substrateed by ozone treatment is returned to the biological reaction tank 15. At this time, most of the MLSS components in activated sludge are biologically derived organic matter, so the cell walls and cell membranes that make up the organism are destroyed by ozone, which has strong oxidizing power, and organic acids and sugars are released from the cells. Is done. By such an action, the sludge becomes readily biodegradable, and when it returns to the biological reaction tank 15, it is decomposed into inorganic substances and the sludge disappears.
Sewerage facility planning and design guidelines and explanations Part 2 -2001 edition-P361 ~ 380 Japanese Patent No. 2973761

ところが、従来の余剰汚泥を浮上濃縮により分離する方法では、第1沈殿槽で発生した第1沈殿槽汚泥に比べて、嫌気性消化におけるガス(メタン)発生効率が低く、メタンガスの回収率および汚泥減量化効率が低い。また脱水工程においても有機物濃度が高いため脱水効率も悪い。このような状況から汚泥処理にかかるコストやそれに伴うエネルギが莫大なものになっている。したがって、ガス(メタン)発生効率を向上させるとともに、第2沈殿槽から引き抜かれる余剰汚泥量はできるだけ減量化することが望まれる。
また、分離液中に生物難分解性の有機物や高濃度のリン成分が含まれているため、一次処理設備等に返流した際、処理水水質に悪影響を与える場合がある。このため、分離液中の有機物を易生物分解化するとともにリン成分の濃度を低下させることが望ましい。
また、従来の余剰汚泥を改質処理し汚泥を減量化する方法では、再基質化された余剰汚泥の殆どを生物反応槽に戻すことにより、余剰汚泥中のリン成分が回収されないので、処理水中のリン成分の濃度が上昇する等の悪影響が生じる。
本発明はこのような問題点に鑑みてなされたものであり、汚泥固形分を含む分離汚泥の嫌気性消化におけるガス(メタン)発生効率を高めて、メタン回収効率を高めるとともに汚泥減量化効率を促進する。また、分離液中の有機物の易生物分解性を高めることにより余剰汚泥発生量を減量化する。さらには分離汚泥中にリン成分を吸着させて濃縮することにより分離液中のリン成分濃度を低下させて処理水水質の向上に寄与することを目的とする。
However, in the conventional method of separating surplus sludge by levitation concentration, gas (methane) generation efficiency in anaerobic digestion is lower than that of the first settling tank sludge generated in the first settling tank, and the methane gas recovery rate and sludge are reduced. Low weight loss efficiency. Also in the dehydration process, the organic matter concentration is high, so the dehydration efficiency is poor. Under such circumstances, the cost for sludge treatment and the accompanying energy are enormous. Therefore, it is desired to improve the gas (methane) generation efficiency and reduce the amount of excess sludge withdrawn from the second sedimentation tank as much as possible.
In addition, since the separation liquid contains biologically indegradable organic substances and high-concentration phosphorus components, the quality of the treated water may be adversely affected when returned to the primary treatment facility. For this reason, it is desirable to easily biodegrade the organic matter in the separation liquid and to reduce the concentration of the phosphorus component.
Further, in the conventional method of reforming surplus sludge and reducing sludge, the phosphorus component in the surplus sludge is not recovered by returning most of the surplus sludge that has been converted to a substrate to the biological reaction tank. Adverse effects such as an increase in the concentration of the phosphorus component.
The present invention has been made in view of such problems, and enhances gas (methane) generation efficiency in anaerobic digestion of separated sludge containing sludge solids, thereby improving methane recovery efficiency and reducing sludge reduction efficiency. Facilitate. In addition, the amount of excess sludge generated is reduced by increasing the biodegradability of the organic matter in the separation liquid. Furthermore, it aims at reducing the phosphorus component density | concentration in a separation liquid by adsorbing and concentrating a phosphorus component in separation sludge, and contributing to the improvement of treated water quality.

上記問題を解決するため、本発明は次のように構成したものである。
請求項1に記載の発明は、 流入した汚水を物理的操作により固液分離する第1沈殿槽等の一次処理設備と、活性汚泥による生物処理により溶解性有機物を生物分解する生物反応槽および生物処理後の処理水と活性汚泥を固液分離する第2沈殿槽を備えた二次処理設備と、前記第2沈殿槽から排出される余剰汚泥を浮遊物と水分とに分離する浮上装置を含む浮上濃縮設備とを備えた汚水処理システムにおいて、前記浮上濃縮設備に導入される余剰汚泥の一部を分岐し、前記余剰汚泥を物理的あるいは化学的操作により再基質化させる汚泥改質手段と、前記余剰汚泥中に空気等の微細気泡を吹き込む曝気手段と、前記再基質化された汚泥を泡と液に分離する汚泥分離槽とを有した汚泥改質・分離装置を用い、
前記汚泥分離槽の上部に分離した再気質化分離汚泥を、前記浮上装置の上部分離汚泥層、脱水設備、嫌気性消化設備、またはリン回収設備のいずれかに移送し、前記汚泥分離槽の下部に分離した再基質化分離液を前記浮上装置の下部分離液層または返流水として前記一次処理設備の前段もしくは前記二次処理設備の前段に移送し、汚泥と液を個別に処理するものである。
請求項2に記載の発明は、流入した汚水を物理的操作により固液分離する第1沈殿槽等の一次処理設備と、活性汚泥による生物処理により溶解性有機物を生物分解する生物反応槽および生物処理後の処理水と活性汚泥を固液分離する第2沈殿槽を備えた二次処理設備と、前記第2沈殿槽から排出される余剰汚泥を物理的あるいは化学的操作により再基質化する汚泥改質手段とを備えた汚水処理システムにおいて、前記汚泥改質手段に汚泥中に空気等の微細気泡を吹き込む曝気手段と、再基質化された汚泥を泡と液に分離する汚泥分離槽とを加えた汚泥改質・分離装置を用い、前記汚泥分離槽の上部に分離した再基質化分離汚泥を、脱水設備、嫌気性消化設備、またはリン回収設備のいずれかに移送し、前記汚泥分離槽の下部に分離した再基質化分離液を前記返流水として前記一次処理設備の前段もしくは前記二次処理設備の前段に移送し、汚泥と液を個別に処理するものである。
請求項3に記載の発明は、前記汚泥改質手段は、ミル破砕方式、超音波方式、キャビテーション方式、回転ディスク方式による物理的汚泥改質手段、オゾン方式、過酸化水素等の酸化剤による化学的汚泥改質手段、電解方式、超臨界方式による物理化学的汚泥改質手段、あるいは高温微生物による生物的汚泥改質手段の少なくとも1つからなるものである。
請求項4に記載の発明は、前記生物反応槽での微生物反応を表す活性汚泥数学モデルを用いて処理水質を計算する水質シミュレータソフトを搭載した計算・制御装置と、前記一次処理設備および前記二次処理設備の少なくとも一方から汚水処理の制御パラメータを設定する上で必要な情報となる水質データをサンプリングして蓄積するデータ蓄積装置とを備え、前記水質シミュレータの水質計算結果に基づいて前記汚泥改質手段の運転操作量あるいは余剰汚泥量を制御するものである。
請求項5に記載の発明は、前記曝気手段の空気供給源は、オゾンを発生させる原料となる高濃度酸素を生成するPSA酸素富化装置のパージ排気ガスとするものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 includes a primary treatment facility such as a first sedimentation tank for solid-liquid separation of inflowed sewage by physical operation, a bioreactor and a bioreactor for biodegrading soluble organic matter by biological treatment with activated sludge. A secondary treatment facility having a second settling tank for solid-liquid separation of treated water and activated sludge after treatment, and a levitation device for separating excess sludge discharged from the second settling tank into suspended matter and moisture In a sewage treatment system comprising a flotation concentration facility, sludge reforming means for branching a part of excess sludge introduced into the flotation concentration facility and re-substrateing the surplus sludge by physical or chemical operation, Using an aeration means for blowing fine bubbles such as air into the surplus sludge, and a sludge reforming / separating device having a sludge separation tank for separating the re-substrate sludge into foam and liquid,
The re-vaporized separated sludge separated at the upper part of the sludge separation tank is transferred to any of the upper separated sludge layer, dehydration equipment, anaerobic digestion equipment, or phosphorus recovery equipment of the flotation device, and the lower part of the sludge separation tank The re-substrate separation liquid separated into the above is transferred to the front stage of the primary treatment equipment or the front stage of the secondary treatment equipment as a lower separation liquid layer or return water of the flotation device, and sludge and liquid are individually treated. .
The invention described in claim 2 includes a primary treatment facility such as a first sedimentation tank for solid-liquid separation of inflowed sewage by physical operation, a bioreactor and a bioreactor for biodegrading soluble organic matter by biological treatment with activated sludge. Secondary treatment equipment equipped with a second sedimentation tank for solid-liquid separation of treated water and activated sludge after treatment, and sludge for re-substrateing surplus sludge discharged from the second sedimentation tank by physical or chemical operation In the sewage treatment system comprising the reforming means, an aeration means for blowing fine bubbles such as air into the sludge in the sludge reforming means, and a sludge separation tank for separating the re-substrate sludge into foam and liquid. Using the added sludge reforming / separation device, re-substrate separation sludge separated at the top of the sludge separation tank is transferred to one of the dehydration equipment, anaerobic digestion equipment, or phosphorus recovery equipment, and the sludge separation tank Resubstrate separated at the bottom of The separated liquid is transferred in front of the primary processing facility of the front or the secondary treatment facility as the return running water, in which process the sludge and liquid separately.
According to a third aspect of the present invention, the sludge reforming means includes a mill crushing method, an ultrasonic method, a cavitation method, a physical sludge reforming method by a rotating disk method, an ozone method, a chemical by an oxidizing agent such as hydrogen peroxide. Sludge reforming means, electrolytic system, physicochemical sludge reforming means by supercritical system, or biological sludge reforming means by high-temperature microorganisms.
The invention according to claim 4 is a calculation / control device equipped with water quality simulator software for calculating treated water quality using an activated sludge mathematical model representing a microbial reaction in the biological reaction tank, the primary treatment facility, and the second A data storage device that samples and stores water quality data that is necessary information for setting control parameters for sewage treatment from at least one of the next treatment facilities, and the sludge modification based on the water quality calculation results of the water quality simulator. This controls the amount of operation of the quality means or the amount of excess sludge.
According to a fifth aspect of the present invention, the air supply source of the aeration means is a purge exhaust gas of a PSA oxygen enricher that generates high-concentration oxygen as a raw material for generating ozone.

請求項1、2に記載の発明によると、汚泥固形分を含む分離汚泥の嫌気性消化におけるガス(メタン)発生効率を高めて、メタン回収効率を高めるとともに汚泥減量化効率を促進する。また、分離液中の有機物の易生物分解性を高めることにより一次処理設備あるいは二次処理設備に返流した際に、生物反応槽において有機物の無機化を促進し、余剰汚泥発生量を減量化する。さらには汚泥を再基質化させて発砲させた分離汚泥中にリン成分を吸着させて濃縮することにより、分離液へのリンの溶出を防止して処理水水質の向上に寄与することができる。
また、浮上濃縮設備などの汚泥濃縮設備を省略することも可能であるため、システムをシンプルかつ低コスト化できるとともに汚泥処理性能を大幅に改善することが可能となる。
請求項3に記載の発明によると、汚泥改質手段を汚泥の性状に応じて選択あるいは複合化させることにより、効率の高い汚泥改質手段を得ることが可能となる。
請求項4に記載の発明によると、実際の水質データを計算・制御装置に入力し、生物反応槽での微生物反応を表す活性汚泥数学モデルを用いて処理水質を予測あるいは制御を行うことにより、処理水水質を向上し、あるいは低下させることなく余剰汚泥の引抜き量や汚泥改質手段の運転操作量の最適な運用を実施することができる。さらには最小運転コストの運転操作条件を導き出し制御することも可能となる。
請求項5に記載の発明によると、排ガスを再利用することにより、新たな曝気手段を新設する必要がないので、導入・運転コストを縮減できるとともにコンパクトなシステムを提供することができる。
According to invention of Claim 1, 2, the gas (methane) generation | occurrence | production efficiency in the anaerobic digestion of the separation sludge containing sludge solid content is raised, methane collection | recovery efficiency is improved and sludge reduction efficiency is accelerated | stimulated. In addition, by increasing the biodegradability of organic matter in the separated liquid, it promotes mineralization of organic matter in the biological reaction tank when it is returned to the primary treatment facility or secondary treatment facility, reducing the amount of excess sludge generated. To do. Furthermore, by adsorbing and concentrating the phosphorus component in the separated sludge that has been fired by converting the sludge into a re-substrate, elution of phosphorus into the separation liquid can be prevented and the quality of the treated water can be improved.
Further, since it is possible to omit sludge concentrating equipment such as levitation concentrating equipment, the system can be simplified and reduced in cost and sludge treatment performance can be greatly improved.
According to the third aspect of the present invention, it is possible to obtain a highly efficient sludge reforming means by selecting or combining the sludge reforming means according to the properties of the sludge.
According to the invention described in claim 4, actual water quality data is input to a calculation / control device, and the treated water quality is predicted or controlled using an activated sludge mathematical model representing a microbial reaction in a biological reaction tank, The optimal operation of the amount of excess sludge withdrawn and the operation amount of the sludge reforming means can be carried out without improving or reducing the quality of treated water. Furthermore, it is possible to derive and control the operation condition with the minimum operation cost.
According to the invention described in claim 5, since it is not necessary to newly install a new aeration means by reusing the exhaust gas, the introduction / operation cost can be reduced and a compact system can be provided.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1を示す汚水処理システムの概略構成図である。図において、17は汚泥改質・分離装置、24は循環ライン、25はデータ蓄積装置、26は水質シミュレータ、27は計算・制御装置である。以下、同じ機能のものは、同じ符号を付しているため、前出のものは説明を省略する。
汚泥・改質分離装置17は加圧ポンプ18、エジェクター19、オゾン発生装置20、曝気手段21、汚泥分離槽22、排オゾン分解器23で構成されている。このようなオゾン処理を汚泥改質手段として採用する場合、汚泥分離槽22はオゾン反応槽や排オゾン分離槽を兼ねるとともに、汚泥の性状や運転条件によっては曝気手段21を省略することができる。水質シミュレータ26は計算・制御装置27の計算プログラムに予め搭載されている。
本発明が非特許文献1と異なる部分は、浮上濃縮設備と併設または代替として、汚泥改質手段と、汚泥中に空気等の微細気泡を吹き込む曝気手段と、再基質化された汚泥を泡と液に分離しやすいように分離板や分離壁等を内部に有する汚泥分離槽を有し、これらで循環系を構成した汚泥改質・分離装置を設置するとともに、汚泥分離槽内において汚泥改質手段により再基質化されたものから順次曝気手段により泡化させて上部に分離した分離汚泥を浮上濃縮設備の分離汚泥層、嫌気性消化設備、脱水装置等の汚泥処理設備あるいはリン回収設備に移送するとともに、別途泡化せずに残った分離液を浮上濃縮設備の分離液層または返流水として前記一次処理設備の前段もしくは前記二次処理設備の前段に移送することにより、それぞれ再気質化した分離汚泥と分離液とを別々に処理するようにした点である。
また、データ蓄積装置の取得データを基に水質シミュレータで生物反応槽内微生物の挙動に基づく反応速度を計算し、制御装置を介して引抜き汚泥量あるいは汚泥改質手段の運転操作量に反映させた点である。
FIG. 1 is a schematic configuration diagram of a sewage treatment system showing Embodiment 1 of the present invention. In the figure, 17 is a sludge reforming / separating device, 24 is a circulation line, 25 is a data storage device, 26 is a water quality simulator, and 27 is a calculation / control device. Hereinafter, the same functions are denoted by the same reference numerals, and thus the description of the above functions is omitted.
The sludge / reformer separation device 17 includes a pressurizing pump 18, an ejector 19, an ozone generator 20, an aeration means 21, a sludge separation tank 22, and an exhaust ozone decomposer 23. When such ozone treatment is adopted as the sludge reforming means, the sludge separation tank 22 serves also as an ozone reaction tank and a waste ozone separation tank, and the aeration means 21 can be omitted depending on the properties and operating conditions of the sludge. The water quality simulator 26 is preinstalled in the calculation program of the calculation / control device 27.
The present invention is different from Non-Patent Document 1 in that the sludge reforming means, the aeration means for blowing fine bubbles such as air into the sludge, and the re-substrateed sludge as the foam are provided as an alternative to the flotation concentration equipment or as an alternative. It has a sludge separation tank with a separation plate and separation wall inside so that it can be easily separated into liquid, and a sludge reforming / separation device that constitutes a circulation system with these is installed, and sludge reforming in the sludge separation tank The separated sludge that has been re-substratified by the means and then foamed by the aeration means and separated at the top is transferred to the separated sludge layer of the levitation and concentration equipment, the anaerobic digestion equipment, the sludge treatment equipment such as the dehydrator or the phosphorus recovery equipment In addition, the separated liquid remaining without being foamed separately is re-tempered by transferring it to the upstream stage of the primary processing equipment or the upstream stage of the secondary processing equipment as the separated liquid layer or return water of the floating concentration equipment. And a point in which the the separation sludge and separated liquid to be treated separately.
In addition, the reaction rate based on the behavior of microorganisms in the biological reaction tank was calculated by the water quality simulator based on the data stored in the data storage device, and reflected in the amount of extracted sludge or sludge reforming operation through the controller. Is a point.

つぎに、本実施例の動作について説明する。
(1)生物反応槽15の処理液は第2沈殿槽5において固液分離され、分離液は処理水16として系外に放流される。一方、沈降した汚泥は一部が生物反応槽15の前段に返送される。残部が余剰汚泥として引き抜かれ浮上濃縮設備14に送られる。さらに、この内の一部が汚泥改質・分離装置17に移送される。
(2) 浮上濃縮設備14では、前述の従来例で説明したものと同じく、起泡装置1、混合装置7、浮上装置9により、分離汚泥10と分離液12となる。そして、分離汚泥10は後段の嫌気性消化槽11に送られ、分離液12は第1沈殿槽13の前段に返流される。
(3)汚泥改質・分離装置17において、オゾンを利用した汚泥改質手段を採用するため、余剰汚泥は加圧ポンプ18によりエジェクター19に圧送される。エジェクター19ではノズルの前後に生じる差圧を利用してオゾン発生装置20で生成されるオゾン化ガスを引き込み余剰汚泥と効率良く混合されてオゾンの強力な酸化力により化学反応する。余剰汚泥は汚泥の細胞壁などの外殻が破壊され、内部物質が溶出して再基質化される。この中にはタンパク質等の高分子有機物等の成分が含まれており、一部発砲し易い成分も溶出する。このような発砲性物質は曝気手段21からでる微細気泡により泡となって上部空間に分離し汚泥分離槽22の上部から吐出する。このとき、細胞壁等に起因する固形分や、その他SS、リン成分の大部分は泡に吸着されて、泡と同時に浮上装置の上部に移し、分離汚泥と共に後段の嫌気性消化槽に移送されるか、または直接嫌気性消化槽やリン回収設備等に移送される。嫌気性消化槽に移送された分離汚泥は生物分解性が高まっているため、消化ガス(主にメタン)の発生効率が向上しており、同時に減量化率も向上する。また、分離汚泥中にはリン成分が濃縮されているため、リンの回収効率も改善することができる。なお、排オゾンガスは排オゾン分解器23により無害化される。
一方、分離液の一部は再度、加圧ポンプ18⇒エジェクター19⇒汚泥分離槽22⇒加圧ポンプ18を循環させる循環ライン24を設けることにより、より一層再基質化が促進され、再基質化されたものから発砲および泡に吸着して分離される。残部は浮上装置9の分離液と混合するか、もしくは、直接返流水として第1沈殿槽13の前段に移送されて再処理される。このとき、汚泥改質操作により再基質化されて生物分解性が高まっていることから、二次処理においては生物処理による無機化が促進され、結果として余剰汚泥量が減量化するといった効果が得られる。また、リン成分の大部分はすでに分離されているため、処理水質に悪影響をおよぼすことはない。
なお、汚泥の性状によっては、キャビテーション等の物理的汚泥改質手段やオゾン等の化学的改質手段を併用することなどにより、より一層の効果が得られる場合がある。
また、オゾン処理を採用する場合は、オゾンの生成原料となる酸素を濃縮するPSA酸素生成機から排出されるパージガスを曝気手段の空気供給源とすることもできる。
(4)さらに生物反応槽15のCOD、BOD、TOC、DO、MLSS、りん、窒素、水温、水量の中から状況に応じて必要な水質データをデータ蓄積装置25により取得して水質シミュレータ26に入力し、水質が低下せず余剰汚泥を最大限減量化するための最適な運転値を算出する。算出した結果は計算・制御装置27を介して引抜き汚泥量を操作する因子や、汚泥改質手段の運転操作因子とに必要な運転操作量が指令され、以上のようなフィードバック制御系が構築される。
このように、データ蓄積装置の取得データを基に水質シミュレータで生物反応槽15内微生物の挙動に基づく反応速度を計算し、制御装置を介して引抜き汚泥量あるいは汚泥改質手段の運転操作量に反映させることにより、処理水水質を向上し、あるいは低下させることなく、余剰汚泥の減量化の最適な運用を実現することができる。さらには最小運転コストの運転操作条件を導き出し制御することも可能である。
Next, the operation of this embodiment will be described.
(1) The treatment liquid in the biological reaction tank 15 is solid-liquid separated in the second precipitation tank 5, and the separated liquid is discharged out of the system as treated water 16. On the other hand, a part of the settled sludge is returned to the front stage of the biological reaction tank 15. The remainder is withdrawn as surplus sludge and sent to the floating concentration facility 14. Further, a part of this is transferred to the sludge reforming / separating device 17.
(2) In the levitation concentration facility 14, the separated sludge 10 and the separation liquid 12 are obtained by the foaming device 1, the mixing device 7, and the levitation device 9, as described in the conventional example. Then, the separated sludge 10 is sent to the anaerobic digestion tank 11 at the subsequent stage, and the separation liquid 12 is returned to the front stage of the first sedimentation tank 13.
(3) Since the sludge reforming / separation device 17 employs sludge reforming means using ozone, surplus sludge is pumped to the ejector 19 by the pressure pump 18. The ejector 19 draws in the ozonized gas generated by the ozone generator 20 using the differential pressure generated before and after the nozzle and efficiently mixes it with the excess sludge to cause a chemical reaction by the strong oxidizing power of ozone. The surplus sludge breaks down the outer shell, such as the sludge cell walls, and elutes the internal material to re-substrate. This contains components such as proteins, such as macromolecular organics, and some components that are easy to fire are also eluted. Such a foaming substance is formed into bubbles by fine bubbles generated from the aeration means 21, separated into the upper space, and discharged from the upper part of the sludge separation tank 22. At this time, most of the solid content and other SS and phosphorus components resulting from the cell wall and the like are adsorbed by the foam, transferred to the upper part of the levitation device simultaneously with the foam, and transferred to the subsequent anaerobic digester along with the separated sludge. Or directly transferred to an anaerobic digester or phosphorus recovery facility. Since the separated sludge transferred to the anaerobic digester has increased biodegradability, the generation efficiency of digestion gas (mainly methane) is improved, and at the same time the reduction rate is improved. Moreover, since the phosphorus component is concentrated in the separated sludge, the recovery efficiency of phosphorus can also be improved. The exhaust ozone gas is rendered harmless by the exhaust ozone decomposer 23.
On the other hand, a part of the separation liquid is re-substrateized by providing a circulation line 24 for circulating the pressure pump 18 ⇒ ejector 19 ⇒ sludge separation tank 22 ⇒ pressure pump 18 again. It is adsorbed and separated from the fired product by foaming and foam. The remaining part is mixed with the separated liquid of the levitation device 9, or transferred directly to the first stage of the first settling tank 13 as recirculated water for reprocessing. At this time, since biodegradability is increased by re-substrateing by sludge reforming operation, mineralization by biological treatment is promoted in the secondary treatment, and as a result, the amount of excess sludge is reduced. It is done. In addition, since most of the phosphorus component has already been separated, the quality of the treated water is not adversely affected.
Depending on the properties of the sludge, further effects may be obtained by using a combination of physical sludge reforming means such as cavitation and chemical reforming means such as ozone.
In addition, when ozone treatment is employed, purge gas discharged from a PSA oxygen generator that concentrates oxygen as a raw material for generating ozone can be used as an air supply source of the aeration means.
(4) Further, from the COD, BOD, TOC, DO, MLSS, phosphorus, nitrogen, water temperature, and water volume in the biological reaction tank 15, necessary water quality data is acquired by the data storage device 25 according to the situation and is sent to the water quality simulator 26. Input and calculate the optimum operating value to reduce excess sludge to the maximum without reducing water quality. Based on the calculated results, the operation / control amount required for the factor for manipulating the amount of extracted sludge and the operation factor for the sludge reforming means are instructed via the calculation / control device 27, and the feedback control system as described above is established. The
In this way, the reaction rate based on the behavior of the microorganisms in the biological reaction tank 15 is calculated by the water quality simulator based on the acquired data of the data storage device, and the operation amount of the extracted sludge or sludge reforming means is calculated via the control device. By reflecting it, it is possible to realize the optimum operation of reducing excess sludge without improving or reducing the quality of treated water. Furthermore, it is also possible to derive and control the operation condition with the minimum operation cost.

図2は、本発明の実施例2を示す汚水処理システムの概略構成図である。本実施例は、余剰汚泥を汚泥改質・分離装置17で処理するものであり、浮上濃縮設備を併用しない場合に用いられる。動作は、実施例1の汚泥改質・分離装置の項の説明と同じである。
本実施例によれば、汚泥の改質と同時に浮上による固形物の分離と減量ができるので、設備が簡単になり、運転コストも低減できる効果がある。
FIG. 2 is a schematic configuration diagram of a sewage treatment system showing Embodiment 2 of the present invention. In this embodiment, surplus sludge is processed by the sludge reforming / separating device 17, and is used when no floating concentration equipment is used in combination. The operation is the same as that described in the section of the sludge reforming / separating apparatus of the first embodiment.
According to the present embodiment, since solids can be separated and reduced by floating at the same time as sludge reforming, the facilities can be simplified and the operation cost can be reduced.

本発明の汚水処理システムは効率的に有機汚泥を改質し易生物分解化するため、公共下水や、化学工場や食品工場など産業排水等の有機物除去のための微生物を利用した汚水処理全般において、汚泥の嫌気性消化プロセスを経てメタンガスを生成し、これをバイオマス資源として有効に利用することやそれに伴う汚泥の減量化を目的とした設備に適用できる。   Since the sewage treatment system of the present invention efficiently reforms organic sludge and easily biodegrades it, in general sewage treatment using microorganisms for removing organic matter such as public sewage and industrial wastewater such as chemical factories and food factories. It can be applied to facilities for the purpose of producing methane gas through anaerobic digestion process of sludge and effectively using it as biomass resources and reducing the amount of sludge associated therewith.

本発明の実施例1を示す汚水処理システムの概略構成図Schematic block diagram of a sewage treatment system showing Embodiment 1 of the present invention 本発明の実施例2を示す汚水処理システムの概略構成図Schematic block diagram of a sewage treatment system showing Embodiment 2 of the present invention 従来の浮上濃縮設備を含む汚水処理システムの概略構成図Schematic configuration diagram of a sewage treatment system including conventional levitation concentration equipment 従来の汚泥改質装置を含む汚水処理システムの概略構成図Schematic configuration diagram of a sewage treatment system including a conventional sludge reformer

符号の説明Explanation of symbols

1 起泡装置
2 起泡助剤
3 空気
4 起泡用水
5 第2沈殿槽
6 余剰汚泥
7 混合装置
8 高分子凝集剤
9 浮上装置
10 分離汚泥
11 嫌気性消化槽
12 分離液(返流水)
13 第1沈殿槽
14 浮上濃縮設備
15 生物反応槽
16 処理水
17 汚泥改質・分離装置
18 加圧ポンプ
19 エジェクター
20 オゾン発生装置
21 曝気手段
22 汚泥分離槽
23 排オゾン分解器
24 循環ライン
25 データ蓄積装置
26 水質シミュレータ
27 計算・制御装置
DESCRIPTION OF SYMBOLS 1 Foaming device 2 Foaming aid 3 Air 4 Foaming water 5 Second sedimentation tank 6 Excess sludge 7 Mixing device 8 Polymer flocculant 9 Floating device
10 Separation sludge
11 Anaerobic digester
12 Separation liquid (returned water)
13 First settling tank
14 Levitation concentration equipment
15 Bioreactor
16 treated water
17 Sludge reforming / separation equipment
18 Pressurizing pump
19 Ejector
20 Ozone generator
21 Aeration means
22 Sludge separation tank
23 Exhaust ozone decomposer
24 Circulation line
25 Data storage device
26 Water quality simulator
27 Computer / control unit

Claims (5)

流入した汚水を物理的操作により固液分離する第1沈殿槽等の一次処理設備と、活性汚泥による生物処理により溶解性有機物を生物分解する生物反応槽および生物処理後の処理水と活性汚泥を固液分離する第2沈殿槽を備えた二次処理設備と、前記第2沈殿槽から排出される余剰汚泥を浮遊物と水分とに分離する浮上装置を含む浮上濃縮設備とを備えた汚水処理システムにおいて、
前記浮上濃縮設備に導入される余剰汚泥の一部を分岐し、前記余剰汚泥を物理的あるいは化学的操作により再基質化させる汚泥改質手段と、前記余剰汚泥中に空気等の微細気泡を吹き込む曝気手段と、前記再基質化された汚泥を泡と液に分離する汚泥分離槽とを有した汚泥改質・分離装置を用い、
前記汚泥分離槽の上部に分離した再気質化分離汚泥を、前記浮上装置の上部分離汚泥層、脱水設備、嫌気性消化設備、またはリン回収設備のいずれかに移送し、前記汚泥分離槽の下部に分離した再基質化分離液を前記浮上装置の下部分離液層または返流水として前記一次処理設備の前段もしくは前記二次処理設備の前段に移送し、汚泥と液を個別に処理することを特徴とする汚水処理システム。
A primary treatment facility such as a first sedimentation tank that separates inflowed sewage by solid-liquid separation by physical operation, a bioreaction tank that biodegrades soluble organic substances by biological treatment with activated sludge, and treated water and activated sludge after biological treatment. Sewage treatment provided with a secondary treatment facility having a second sedimentation tank for solid-liquid separation, and a flotation concentration facility including a flotation device for separating surplus sludge discharged from the second sedimentation tank into suspended matter and moisture In the system,
A part of surplus sludge introduced into the levitation concentration facility is branched, sludge reforming means for re-substrateing the surplus sludge by physical or chemical operation, and fine bubbles such as air are blown into the surplus sludge. Using a sludge reforming / separation device having aeration means and a sludge separation tank for separating the re-substrate sludge into foam and liquid,
The re-vaporized separated sludge separated at the upper part of the sludge separation tank is transferred to any of the upper separated sludge layer, dehydration equipment, anaerobic digestion equipment, or phosphorus recovery equipment of the flotation device, and the lower part of the sludge separation tank The re-substrateized separation liquid separated into (1) is transferred to the front stage of the primary treatment facility or the second stage of the secondary treatment facility as a lower separated liquid layer or return water of the levitation device, and sludge and liquid are individually treated. Sewage treatment system.
流入した汚水を物理的操作により固液分離する第1沈殿槽等の一次処理設備と、活性汚泥による生物処理により溶解性有機物を生物分解する生物反応槽および生物処理後の処理水と活性汚泥を固液分離する第2沈殿槽を備えた二次処理設備と、前記第2沈殿槽から排出される余剰汚泥を物理的あるいは化学的操作により再基質化する汚泥改質手段とを備えた汚水処理システムにおいて、
前記汚泥改質手段に汚泥中に空気等の微細気泡を吹き込む曝気手段と、再基質化された汚泥を泡と液に分離する汚泥分離槽とを加えた汚泥改質・分離装置を用い、
前記汚泥分離槽の上部に分離した再基質化分離汚泥を、脱水設備、嫌気性消化設備、またはリン回収設備のいずれかに移送し、前記汚泥分離槽の下部に分離した再基質化分離液を前記返流水として前記一次処理設備の前段もしくは前記二次処理設備の前段に移送し、汚泥と液を個別に処理することを特徴とする汚水処理システム。
A primary treatment facility such as a first sedimentation tank that separates inflowed sewage by solid-liquid separation by physical operation, a bioreaction tank that biodegrades soluble organic substances by biological treatment with activated sludge, and treated water and activated sludge after biological treatment. Sewage treatment provided with a secondary treatment facility having a second sedimentation tank for solid-liquid separation, and sludge reforming means for converting surplus sludge discharged from the second sedimentation tank into a substrate by physical or chemical operation In the system,
Using a sludge reforming / separation device in which aeration means for blowing fine bubbles such as air into the sludge and a sludge separation tank for separating the re-substrate sludge into foam and liquid are added to the sludge reforming means,
The resubstrateized separated sludge separated at the top of the sludge separation tank is transferred to either a dehydration facility, an anaerobic digestion facility, or a phosphorus recovery facility, and the resubstrateized separation liquid separated at the bottom of the sludge separation tank is A sewage treatment system, wherein the sludge and the liquid are individually treated by transferring the return water to the upstream of the primary treatment facility or the upstream of the secondary treatment facility.
前記汚泥改質手段は、ミル破砕方式、超音波方式、キャビテーション方式、回転ディスク方式による物理的汚泥改質手段、オゾン方式、過酸化水素等の酸化剤による化学的汚泥改質手段、電解方式、超臨界方式による物理化学的汚泥改質手段、あるいは高温微生物による生物的汚泥改質手段の少なくとも1つからなることを特徴とする請求項1または2記載の汚水処理システム。   The sludge reforming means is a mill crushing method, an ultrasonic method, a cavitation method, a physical sludge reforming means by a rotating disk method, an ozone method, a chemical sludge reforming means by an oxidizing agent such as hydrogen peroxide, an electrolysis method, The sewage treatment system according to claim 1 or 2, comprising at least one of a physicochemical sludge reforming means using a supercritical system or a biological sludge reforming means using high-temperature microorganisms. 前記生物反応槽での微生物反応を表す活性汚泥数学モデルを用いて処理水質を計算する水質シミュレータソフトを搭載した計算・制御装置と、前記一次処理設備および前記二次処理設備の少なくとも一方から汚水処理の制御パラメータを設定する上で必要な情報となる水質データをサンプリングして蓄積するデータ蓄積装置とを備え、前記水質シミュレータの水質計算結果に基づいて前記汚泥改質手段の運転操作量あるいは余剰汚泥量を制御することを特徴とする請求項1または2記載の汚水処理システム。   Sewage treatment from at least one of the primary treatment facility and the secondary treatment facility, and a calculation / control device equipped with water quality simulator software for calculating treated water quality using an activated sludge mathematical model representing a microbial reaction in the biological reaction tank A data accumulating device that samples and accumulates water quality data, which is necessary information for setting the control parameters, and based on the water quality calculation result of the water quality simulator, the operation amount of the sludge reforming means or surplus sludge The sewage treatment system according to claim 1 or 2, wherein the amount is controlled. 前記曝気手段の空気供給源は、オゾンを発生させる原料となる高濃度酸素を生成するPSA酸素富化装置のパージ排気ガスとすることを特徴とする請求項1または2記載の汚水処理システム。   The sewage treatment system according to claim 1 or 2, wherein the air supply source of the aeration means is a purge exhaust gas of a PSA oxygen enricher that generates high-concentration oxygen as a raw material for generating ozone.
JP2005329956A 2005-11-15 2005-11-15 Sewage treatment system Expired - Fee Related JP5023473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329956A JP5023473B2 (en) 2005-11-15 2005-11-15 Sewage treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329956A JP5023473B2 (en) 2005-11-15 2005-11-15 Sewage treatment system

Publications (2)

Publication Number Publication Date
JP2007136276A true JP2007136276A (en) 2007-06-07
JP5023473B2 JP5023473B2 (en) 2012-09-12

Family

ID=38199771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329956A Expired - Fee Related JP5023473B2 (en) 2005-11-15 2005-11-15 Sewage treatment system

Country Status (1)

Country Link
JP (1) JP5023473B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018309A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Apparatus for treating sludge
JP2010046624A (en) * 2008-08-22 2010-03-04 Takasago Thermal Eng Co Ltd Method and system for treating exhaust ozone
WO2011139758A3 (en) * 2010-04-27 2012-04-05 Bcr Environmental, Llc Wastewater treatment apparatus to achieve class b biosolids using chlorine dioxide
CN102884011A (en) * 2009-12-24 2013-01-16 Bcr环境公司 Improved digestion of biosolids in wastewater
CN103796962A (en) * 2011-06-30 2014-05-14 昆士兰大学 Pre-treatment of sludge
CN108083592A (en) * 2018-01-03 2018-05-29 辽宁宸远能源环保设备有限公司 Municipal sludge is innoxious, recycling pretreatment unit and sludge synthesis locate method in advance
KR101916120B1 (en) * 2018-05-31 2019-01-30 대구환경공단 Sludge treatment system and method before dehydration
JP2019025428A (en) * 2017-07-31 2019-02-21 東芝インフラシステムズ株式会社 Organic waste treatment system
KR102005213B1 (en) * 2019-01-29 2019-07-29 대구환경공단 Sludge treatment method before dehydration
JP6594591B1 (en) * 2019-01-31 2019-10-23 三菱電機株式会社 Sewage treatment apparatus and sewage treatment method
JP2020000991A (en) * 2018-06-28 2020-01-09 株式会社東芝 Organic waste disposal system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325982A (en) * 1999-05-18 2000-11-28 Shinko Pantec Co Ltd Treatment method and apparatus of organic waste water
JP2002113487A (en) * 2000-08-03 2002-04-16 Cosmo Oil Co Ltd Method for treating organic wastewater
JP2002361281A (en) * 2001-06-08 2002-12-17 Ebara Corp Method and apparatus for reducing quantity of excessive sludge in biological treatment of organic contaminated water
JP2004351354A (en) * 2003-05-30 2004-12-16 Hitachi Kiden Kogyo Ltd Sludge treatment method
JP2005125297A (en) * 2003-10-21 2005-05-19 Iwao Jiki Kogyo Kk Sludge reducing apparatus and sewage treating system equipped with the sludge reducing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325982A (en) * 1999-05-18 2000-11-28 Shinko Pantec Co Ltd Treatment method and apparatus of organic waste water
JP2002113487A (en) * 2000-08-03 2002-04-16 Cosmo Oil Co Ltd Method for treating organic wastewater
JP2002361281A (en) * 2001-06-08 2002-12-17 Ebara Corp Method and apparatus for reducing quantity of excessive sludge in biological treatment of organic contaminated water
JP2004351354A (en) * 2003-05-30 2004-12-16 Hitachi Kiden Kogyo Ltd Sludge treatment method
JP2005125297A (en) * 2003-10-21 2005-05-19 Iwao Jiki Kogyo Kk Sludge reducing apparatus and sewage treating system equipped with the sludge reducing apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666228B2 (en) * 2006-07-11 2011-04-06 株式会社安川電機 Sludge treatment equipment
JP2008018309A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Apparatus for treating sludge
JP2010046624A (en) * 2008-08-22 2010-03-04 Takasago Thermal Eng Co Ltd Method and system for treating exhaust ozone
CN102884011A (en) * 2009-12-24 2013-01-16 Bcr环境公司 Improved digestion of biosolids in wastewater
US9758401B2 (en) 2009-12-24 2017-09-12 Bcr Environmental Corporation Digestion of biosolids in wastewater
CN102869617A (en) * 2010-04-27 2013-01-09 Bcr环境公司 Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
US10689274B2 (en) 2010-04-27 2020-06-23 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
WO2011139758A3 (en) * 2010-04-27 2012-04-05 Bcr Environmental, Llc Wastewater treatment apparatus to achieve class b biosolids using chlorine dioxide
US20130134092A1 (en) * 2010-04-27 2013-05-30 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class b biosolids using chlorine dioxide
US11485659B2 (en) 2010-04-27 2022-11-01 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
CN103796962A (en) * 2011-06-30 2014-05-14 昆士兰大学 Pre-treatment of sludge
JP2019025428A (en) * 2017-07-31 2019-02-21 東芝インフラシステムズ株式会社 Organic waste treatment system
CN108083592A (en) * 2018-01-03 2018-05-29 辽宁宸远能源环保设备有限公司 Municipal sludge is innoxious, recycling pretreatment unit and sludge synthesis locate method in advance
KR101916120B1 (en) * 2018-05-31 2019-01-30 대구환경공단 Sludge treatment system and method before dehydration
JP2020000991A (en) * 2018-06-28 2020-01-09 株式会社東芝 Organic waste disposal system
JP7158918B2 (en) 2018-06-28 2022-10-24 株式会社東芝 Organic waste treatment system
KR102005213B1 (en) * 2019-01-29 2019-07-29 대구환경공단 Sludge treatment method before dehydration
JP6594591B1 (en) * 2019-01-31 2019-10-23 三菱電機株式会社 Sewage treatment apparatus and sewage treatment method
WO2020157914A1 (en) * 2019-01-31 2020-08-06 三菱電機株式会社 Sewage treatment device and sewage treatment method

Also Published As

Publication number Publication date
JP5023473B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5023473B2 (en) Sewage treatment system
US5015384A (en) Anaerobic digestion process
NO324040B1 (en) Process for purifying wastewater, including a sludge treatment with ozonization
JP2007061710A (en) Organic sludge treatment method and apparatus
JP3775654B2 (en) Method and apparatus for reducing excess sludge in biological treatment of organic sewage
JP2003033780A (en) Method for wastewater treatment
JP2008018378A (en) Organic sludge treatment method and equipment
JP4667890B2 (en) Organic waste treatment methods
CN110217881B (en) Digestion and decrement method of active sludge in biochemical tank
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP4949085B2 (en) Apparatus and method for treating phosphorus-containing organic wastewater
JP2006239625A (en) Method and equipment for treating organic waste
JP2005193146A (en) Method for treating organic waste and the treating system
JP3600566B2 (en) Method for treating organic waste and method for producing biogas
JP2008018309A (en) Apparatus for treating sludge
JP4655618B2 (en) Sewage treatment apparatus and method
JP2004089858A (en) Organic waste processing method and apparatus
JPH07112198A (en) Method for reducing weight of sludge by digestion and device therefor
JP2018130656A (en) Waste treatment method and waste treatment system
KR20020075635A (en) Process and apparatus for treating sewage or waste water without emitting excess sludge
WO1992020628A1 (en) Anaerobic digestion process
JP2006272198A (en) Apparatus and method for treating sludge
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2005246347A (en) Method and apparatus for treating sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees