JP4948466B2 - Assembly method of inner formwork - Google Patents

Assembly method of inner formwork Download PDF

Info

Publication number
JP4948466B2
JP4948466B2 JP2008091281A JP2008091281A JP4948466B2 JP 4948466 B2 JP4948466 B2 JP 4948466B2 JP 2008091281 A JP2008091281 A JP 2008091281A JP 2008091281 A JP2008091281 A JP 2008091281A JP 4948466 B2 JP4948466 B2 JP 4948466B2
Authority
JP
Japan
Prior art keywords
ring
mold
inner mold
joint surface
ring joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008091281A
Other languages
Japanese (ja)
Other versions
JP2009243155A (en
Inventor
晃 木村
良吉 丸居
啓三 千代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2008091281A priority Critical patent/JP4948466B2/en
Publication of JP2009243155A publication Critical patent/JP2009243155A/en
Application granted granted Critical
Publication of JP4948466B2 publication Critical patent/JP4948466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

この発明は、先頭のリング継手面が掘削進行方向と直交する平面でなくなった場合に、先頭のリング継手面を補正可能な内型枠の組立方法に関する。   The present invention relates to an inner frame assembling method capable of correcting a leading ring joint surface when the leading ring joint surface is no longer a plane orthogonal to the excavation progress direction.

従来、シールド掘削機で地山を掘削して掘進するとともに、シールド掘削機の後部(坑口側)において掘削孔により形成されたトンネル空洞部の内周面とトンネル空洞部の内周面に沿って設置される内型枠との間に生コンクリートと呼ばれる流動状のコンクリートを流し込んで覆工部としての覆工コンクリートを構築するECL工法と呼ばれるトンネル施工方法が知られている(例えば、特許文献1参照)。
内型枠は複数個の型枠ピースにより形成される。図5;6に示すように、内型枠30を形成する複数の型枠ピース40は、地山20を掘削した掘削孔により形成されたトンネル空洞部21の内周面33に沿って内周面33と間隔を隔てて対向するように設置される型枠面34と、トンネル空洞部21の内周面33の周方向において隣接するように設置される型枠ピース40;40同士を繋ぐためのピース継手面47aが形成されたピース継手板45を備えるとともに、トンネル空洞部21の内周面33の掘削進行方向において隣接するように設置される型枠ピース40;40同士を繋ぐためのリング継手面47bが形成されたリング継手板46を備える。
ピース継手板45には、トンネル空洞部21の内周面33の周方向において互いに隣接するピース継手面47a同士が図外のボルト及びナットによる締結によって密接状態に結合されるように、ピース継手板45を貫通してボルトを通すためのボルト孔43aが形成される。同様に、リング継手板46には、トンネル空洞部21の内周面33の掘削進行方向において隣接するリング継手面47b同士がボルト及びナットによる締結によって密接状態に結合されるように、リング継手板46を貫通してボルトを通すためのボルト孔43bが形成される。
従って、トンネル空洞部21の内周面33の周方向において互いに隣接して設置される型枠ピース40のピース継手面47a同士を接触させた状態でボルト孔43aに図外のボルトを挿入し、ボルトの先端からナットを締結していくことで、ピース継手面47a同士が密接状態に結合される。また、トンネル空洞部21の内周面33のトンネル掘削進行方向において互いに隣接して設置される型枠ピース40のリング継手面47b同士を接触させた状態でボルト孔43bに図外のボルトを挿入し、ボルトの先端からナットを締結していくことで、リング継手面47b同士が密接状態に結合される。
図6に示すように、複数個の型枠ピース40がトンネル空洞部21の内周面33に沿って1周するように設置されて形成される内型枠30を1リングと呼ぶ。つまり、1リングを形成するには、複数個の型枠ピース40を、トンネル空洞部21の内周面33との間に覆工部の厚さ分の間隔dを隔ててトンネル空洞部21の内周面33に沿って内周面33を1周するように設置していく。この場合、ピース継手面47a同士が密接状態に結合されるように、図外の内型枠組立装置によって1リング分の内型枠30を組み立てていく。そして、掘削が進んだ後、掘削進行方向に向けてさらに1リング分の内型枠30を組み立てていく。この場合、型枠ピース40が、トンネル空洞部21の内周面33の周方向においてピース継手面47a同士が密接状態に結合されるように、かつ、トンネル空洞部21の内周面33の掘削進行方向において1つ前に組み立てた1リングのリング継手面47bと今回組み立てる1リングを形成する型枠ピース40のリング継手面47bとが密接状態に結合されるように、内型枠組立装置によって1リング分の内型枠30を組み立てていく。
型枠ピース40は、所定数のリング分の内型枠30を形成できる数分だけ用いられ、所定数のリング分の内型枠30を設置した後は、坑口側に組み立てられた内型枠30の掘削進行方向後部に位置する1リング分の型枠ピース40を図外の内型枠脱型装置を用いて解体して取り外した後に、シールド掘削機を進行させ、取り外した1リング分の型枠ピース40を内型枠30の掘削進行方向先頭位置に盛り替えて使う。即ち、所定数のリング分の内型枠30を設置した後は、掘削が進む毎に、型枠ピース40を後方(坑口側)から前方(切羽側)に盛り替えて繰り返して使用して内型枠30の掘削進行方向先頭位置に1リングを組み立てていく。つまり、掘削進行方向に向けて次々と1リングづつ組み立てていって内型枠30を形成する。
尚、図6に示すように、1リング分の内型枠30を形成する複数個の型枠ピース40のうちの少なくとも1つの型枠ピースは、脱型用の型枠ピース39に形成される。K型枠ピースと呼ばれる脱型用の型枠ピース39は、トンネル空洞部21の内周面33に近い方に位置して型枠面34となる当該型枠面34側のトンネル空洞部21の周方向の幅寸法bが、型枠面34の反対側の面39b(トンネル空洞部21の中心2Cに近い方に位置した面)のトンネル空洞部21の周方向の幅寸法aよりも小さい。また、脱型用の型枠ピース39の周方向の両隣に設置される型枠ピースも専用の型枠ピース38が用いられる。1リング分の内型枠30を形成する脱型用の型枠ピース39及び型枠ピース38以外のA型枠ピースと呼ばれる型枠ピース40は、トンネル空洞部21の内周面33に近い方に位置して型枠面34となる当該型枠面34側のトンネル空洞部21の周方向の幅寸法bが、型枠面34の反対側の面39bのトンネル空洞部21の周方向の幅寸法aよりも大きい。そして、1リングを組み立てるときは、脱型用の型枠ピース39を最後に取付け、1リングを解体する場合は、脱型用の型枠ピース39から取り外す。つまり、A型枠ピースと呼ばれる型枠ピース40だけを用いて1リングを組み立てようとしても、最後の型枠ピース40をトンネル空洞部21の中心2C側からトンネル空洞部21の内周面33の方向に向けて(つまり、トンネル空洞部21の断面円の径方向に向けて)組み付けることは不可能であるので、最後に組み付けて最初に取り外す型枠ピースとしてK型枠ピースと呼ばれる脱型用の型枠ピース39を用いる。
特開2005−188099号公報
Conventionally, excavated by excavating natural ground with a shield excavator, along the inner peripheral surface of the tunnel cavity portion and the inner peripheral surface of the tunnel cavity portion formed by the excavation hole in the rear portion (wellhead side) of the shield excavator A tunnel construction method called an ECL method is known in which fluid concrete called ready-mixed concrete is poured into an installed inner form to construct lining concrete as a lining part (for example, Patent Document 1). reference).
The inner mold is formed by a plurality of mold pieces. As shown in FIGS. 5 and 6, the plurality of mold pieces 40 forming the inner mold frame 30 are arranged along the inner circumferential surface 33 of the tunnel cavity portion 21 formed by the excavation hole excavating the natural ground 20. In order to connect the mold surface 34 installed so as to be opposed to the surface 33 with an interval, and the mold pieces 40; 40 installed adjacent to each other in the circumferential direction of the inner peripheral surface 33 of the tunnel cavity 21. A ring for connecting the formwork pieces 40; 40 that are provided so as to be adjacent to each other in the direction of excavation of the inner peripheral surface 33 of the tunnel cavity 21. A ring joint plate 46 having a joint surface 47b is provided.
The piece joint plate 45 is connected to the piece joint plate 45 so that the piece joint surfaces 47a adjacent to each other in the circumferential direction of the inner peripheral surface 33 of the tunnel cavity 21 are closely coupled by fastening with bolts and nuts not shown. Bolt holes 43a for passing bolts through 45 are formed. Similarly, the ring joint plate 46 is connected so that the ring joint surfaces 47b adjacent to each other in the direction of excavation of the inner peripheral surface 33 of the tunnel cavity portion 21 are in close contact with each other by fastening with bolts and nuts. Bolt holes 43b are formed through which the bolts pass through 46.
Accordingly, a bolt (not shown) is inserted into the bolt hole 43a in a state where the piece joint surfaces 47a of the mold pieces 40 installed adjacent to each other in the circumferential direction of the inner peripheral surface 33 of the tunnel cavity portion 21 are in contact with each other. By fastening the nut from the tip of the bolt, the piece joint surfaces 47a are coupled in a close state. Further, a bolt (not shown) is inserted into the bolt hole 43b in a state where the ring joint surfaces 47b of the formwork pieces 40 installed adjacent to each other in the tunnel excavation traveling direction of the inner peripheral surface 33 of the tunnel cavity portion 21 are in contact with each other. Then, by tightening the nut from the tip of the bolt, the ring joint surfaces 47b are coupled in close contact.
As shown in FIG. 6, the inner mold 30 formed by installing a plurality of mold pieces 40 so as to make one round along the inner circumferential surface 33 of the tunnel cavity 21 is called one ring. That is, in order to form one ring, the plurality of mold pieces 40 are separated from the inner peripheral surface 33 of the tunnel cavity portion 21 by an interval d corresponding to the thickness of the lining portion. The inner circumferential surface 33 is installed so as to make one round along the inner circumferential surface 33. In this case, the inner mold 30 for one ring is assembled by an inner mold assembling apparatus (not shown) so that the piece joint surfaces 47a are closely coupled to each other. Then, after the excavation progresses, the inner mold 30 for one ring is further assembled in the excavation progress direction. In this case, the mold piece 40 is excavated so that the piece joint surfaces 47a are in close contact with each other in the circumferential direction of the inner peripheral surface 33 of the tunnel cavity 21 and the inner peripheral surface 33 of the tunnel cavity 21 is excavated. By the inner mold assembly apparatus, the ring joint surface 47b of the first ring assembled in the advancing direction and the ring joint surface 47b of the mold piece 40 forming the one ring to be assembled this time are closely coupled. The inner mold 30 for one ring is assembled.
The mold piece 40 is used as many as the number of inner molds 30 corresponding to a predetermined number of rings, and after the inner molds 30 corresponding to the predetermined number of rings are installed, the inner mold frame assembled on the wellhead side is used. After the mold piece 40 for one ring located at the rear of the excavation direction 30 is disassembled and removed using an inner mold removal device (not shown), the shield excavator is advanced to remove one ring. The formwork piece 40 is used after being changed to the top position of the inner formwork 30 in the direction of excavation. That is, after installing a predetermined number of inner molds 30 corresponding to the number of rings, each time excavation progresses, the mold piece 40 is repeatedly used from the rear (wellhead side) to the front (face side). One ring is assembled at the head position of the mold 30 in the direction of excavation. That is, the inner mold 30 is formed by assembling one ring at a time in the direction of excavation progress.
As shown in FIG. 6, at least one of the plurality of mold pieces 40 forming the inner mold 30 for one ring is formed on the mold piece 39 for demolding. . A demolding mold piece 39 called a K mold piece is positioned nearer to the inner peripheral surface 33 of the tunnel cavity 21 and forms a mold surface 34 on the side of the tunnel cavity 21 on the mold surface 34 side. The width dimension b in the circumferential direction is smaller than the width dimension a in the circumferential direction of the tunnel cavity portion 21 on the surface 39b on the opposite side of the mold surface 34 (the surface located closer to the center 2C of the tunnel cavity portion 21). In addition, a dedicated formwork piece 38 is also used as the formwork piece installed on both sides in the circumferential direction of the formwork piece 39 for demolding. The mold piece 40 called A mold piece other than the mold piece 39 and the mold piece 38 for forming the inner mold 30 for one ring is closer to the inner peripheral surface 33 of the tunnel cavity 21. The width dimension b in the circumferential direction of the tunnel cavity 21 on the mold surface 34 side which is located at the mold surface 34 is the width in the circumferential direction of the tunnel cavity 21 on the surface 39 b on the opposite side of the mold surface 34. It is larger than the dimension a. And when assembling one ring, the mold piece 39 for mold removal is attached lastly, and when disassembling one ring, it removes from the mold piece 39 for mold removal. That is, even if one ring is assembled using only the formwork piece 40 called A formwork piece, the last formwork piece 40 is moved from the center 2C side of the tunnel cavity 21 to the inner peripheral surface 33 of the tunnel cavity 21. Since it is impossible to assemble it toward the direction (that is, toward the radial direction of the cross-sectional circle of the tunnel cavity 21), the mold piece that is assembled last and removed first is called a K-shaped frame piece. The formwork piece 39 is used.
JP 2005-188099 A

上述したように、掘削が進む毎に、型枠ピース40を後方(坑口側)から前方(切羽側)に盛り替えて繰り返して使用して内型枠30の掘削進行方向先頭位置に1リングを組み立てていく。つまり、リングの組立と脱型とを繰り返すために、地山20からの圧力のかかり方、推進ジャッキの配置、内型枠30のひずみ等が原因となって、内型枠30の組立位置の誤差が蓄積されて内型枠30の組立姿勢にずれが生じて、切羽側に位置するリング状の内型枠30の先頭のリング継手面47bが掘削進行方向と直交する平面でなくなる場合がある。先頭のリング継手面47bが掘削進行方向と直交する平面でなくなった場合には、先頭のリング継手面47bとこの先頭のリング継手面47bに継がれる次の内型枠30のリング継手面47bとの間に生じる隙間が大きくなるので、ボルトとナットとによる締結摩擦力を得ることができず、ナットが緩みやすくなる。また、内型枠30の型枠面34とトンネル空洞部21の内周面33との間の間隔が、内型枠30の上下側と内型枠30の左右側とで異なってくる。つまり、内型枠30の上下側の型枠面34とトンネル空洞部21の内周面33との間の間隔と内型枠30の左右側の型枠面34とトンネル空洞部21の内周面33との間の間隔とに偏りが生じ、当該間隔(覆工形成空間)に形成される一次覆工コンクリートの周方向において厚さに偏りが生じてしまうという問題があった。
そこで、本発明は、先頭のリング継手面が掘削進行方向と直交する平面でなくなった場合に、先頭のリング継手面を補正する方法を提供する。
As described above, each time excavation proceeds, the mold piece 40 is rearranged from the rear side (wellhead side) to the front side (face side) and repeatedly used, and one ring is placed at the head position in the excavation progress direction of the inner mold frame 30. Assemble. In other words, in order to repeat the assembly and demolding of the ring, the assembly position of the inner mold 30 is affected by the pressure applied from the natural ground 20, the arrangement of the propulsion jack, the distortion of the inner mold 30 and the like. There are cases where errors accumulate and the assembly posture of the inner mold 30 is shifted, and the leading ring joint surface 47b of the ring-shaped inner mold 30 located on the face side is not a plane orthogonal to the excavation progress direction. . When the leading ring joint surface 47b is no longer a plane orthogonal to the excavation progress direction, the leading ring joint surface 47b and the ring joint surface 47b of the next inner mold frame 30 joined to the leading ring joint surface 47b Since the gap generated between the bolts and the nut becomes large, it is impossible to obtain the fastening frictional force between the bolt and the nut, and the nut is easily loosened. Further, the distance between the mold surface 34 of the inner mold 30 and the inner peripheral surface 33 of the tunnel cavity 21 is different between the upper and lower sides of the inner mold 30 and the left and right sides of the inner mold 30. That is, the distance between the upper and lower mold surfaces 34 of the inner mold 30 and the inner peripheral surface 33 of the tunnel cavity 21 and the inner periphery of the left and right mold surfaces 34 of the inner mold 30 and the tunnel cavity 21. There is a problem in that the gap between the surface 33 and the surface 33 is uneven, and the thickness is uneven in the circumferential direction of the primary lining concrete formed in the space (lining forming space).
Therefore, the present invention provides a method of correcting the leading ring joint surface when the leading ring joint surface is no longer a plane orthogonal to the excavation progress direction.

本発明に係る内型枠の組立方法は、地山を掘削した掘削孔により形成されたトンネル空洞部の内周面に沿って設置されてトンネル空洞部の内周面との間に覆工部を形成するための内型枠の型枠ピースがトンネル空洞部の内周面に沿って内周面を1周するように複数設置されてリング状の内型枠を形成し、このリング状の内型枠を掘削進行方向に向けて順次組み立てていく内型枠の組立方法において、切羽側に位置するリング状の内型枠の先頭のリング継手面が掘削進行方向と直交する平面でなくなった場合に、当該先頭のリング継手面を掘削進行方向と直交する平面となるように又は当該平面に近づくように所定の厚みを有した補正部品を用いて補正した補正リング継手面を形成したことを特徴とする。
切羽側に位置するリング状の内型枠の先頭のリング継手面で反力を取るシールド掘削機の上下の推進ジャッキのストロークの平均値と左右のシールドジャッキのストロークの平均値との差が所定値以上となった場合に、先頭のリング継手面の補正を行うことも特徴とする。
The method of assembling the inner mold according to the present invention includes a lining portion that is installed along an inner peripheral surface of a tunnel cavity formed by an excavation hole excavated from a natural ground and between the inner peripheral surface of the tunnel cavity. A plurality of the mold pieces of the inner mold for forming the inner mold form are installed so as to make one round of the inner circumference along the inner circumference of the tunnel cavity, thereby forming a ring-shaped inner mold, In the method of assembling the inner mold that sequentially assembles the inner mold toward the direction of excavation, the top ring joint surface of the ring-shaped inner mold located on the face side is no longer a plane that is orthogonal to the direction of excavation In this case, the correction ring joint surface is corrected by using a correction part having a predetermined thickness so that the leading ring joint surface becomes a plane orthogonal to the excavation progress direction or approaches the plane. Features.
The difference between the average value of the strokes of the upper and lower propulsion jacks of the shield excavator and the average value of the strokes of the left and right shield jacks, which takes a reaction force at the top ring joint surface of the ring-shaped inner mold located on the face side, is predetermined It is also characterized by correcting the leading ring joint surface when the value exceeds the value.

本発明に係る内型枠の組立方法によれば、先頭のリング継手面が掘削進行方向と直交する平面でなくなった場合には、補正部品を用いて先頭のリング継手面を掘削進行方向と直交する平面となるように又は当該平面に近づくように補正した補正リング継手面を形成できるので、補正リング継手面とこの補正リング継手面に継がれる次の内型枠のリング継手面とを密接状態に接合でき、これらリング継手面同士を結合するボルト及びナットによる締結摩擦力を十分に得ることができ、これらリング継手面同士を強固に結合できる。また、覆工形成空間に形成される一次覆工コンクリートの周方向において厚さの偏りを少なくでき、一次覆工コンクリートの品質を向上できる。さらに、補正部品を用いるだけなので、補正作業が簡単である。
切羽側に位置するリング状の内型枠の先頭のリング継手面で反力を取るシールド掘削機の上下の推進ジャッキのストロークの平均値と左右のシールドジャッキのストロークの平均値との差が所定値以上となった場合に、先頭のリング継手面の補正を行うので、補正作業の必要性を的確に判断できるようになる。
According to the method for assembling the inner mold according to the present invention, when the leading ring joint surface is not a plane orthogonal to the excavation progress direction, the leading ring joint surface is orthogonal to the excavation progress direction using the correction part. Since the correction ring joint surface corrected so as to become a flat surface or close to the plane can be formed, the correction ring joint surface and the ring joint surface of the next inner form frame joined to the correction ring joint surface are in close contact with each other. The ring joint surfaces can be sufficiently joined to each other, and the fastening frictional force by the bolts and nuts for joining the ring joint surfaces can be sufficiently obtained. Moreover, the thickness deviation can be reduced in the circumferential direction of the primary lining concrete formed in the lining forming space, and the quality of the primary lining concrete can be improved. Furthermore, the correction work is simple because only correction parts are used.
The difference between the average value of the strokes of the upper and lower propulsion jacks of the shield excavator and the average value of the strokes of the left and right shield jacks, which takes a reaction force at the top ring joint surface of the ring-shaped inner mold located on the face side, is predetermined When the value exceeds the value, the leading ring joint surface is corrected, so that the necessity of the correction work can be accurately determined.

図1乃至図4は最良の形態を示し、図1は内型枠の組立方法の概略を示し、図2の(a)は内型枠の組立方法における先頭の内型枠のリング継手面と補正部品との関係を分解して示し、(b)は補正部品を示し、図3は密閉型のシールド掘削機によるトンネル施工方法を示し、図4はコンクリート供給管と妻型枠に形成されたコンクリート打設孔との関係を示す。   1 to 4 show the best mode, FIG. 1 shows an outline of an inner mold assembly method, and FIG. 2 (a) shows a ring joint surface of the leading inner mold frame in the inner mold assembly method. FIG. 3 shows a tunnel construction method using a sealed shield excavator, and FIG. 4 is formed on a concrete supply pipe and a wife formwork. The relationship with the concrete placement hole is shown.

最良の形態においては、図1に示すように、例えば金属製の型枠ピース40がトンネル空洞部21の内周面33に沿って内周面33を1周するように複数設置されて形成されるリング状の内型枠30を掘削進行方向に向けて順次組み立てていく場合において、例えば、複数リング(例えば16リング)分の内型枠30の組立が終了する毎に、その先頭のリング継手面47bで推進反力を取って推進するシールド掘削機1の後端部1aの上下に設けられた推進ジャッキ4のストローク(推進ジャッキ4のピストン4aの伸び量)の平均値とシールド掘削機1の後端部1aの左右に設けられた推進ジャッキ4のストロークの平均値との差を測定する。そして、当該差が所定値以上であれば、その先頭のリング継手面47bが掘削進行方向Aと直交する平面でなくなったとして、図1(b)に示すように、補正部品としての例えば金属製のストローク調整ライナー50を先頭のリング継手面47bに取付けることによって、掘削進行方向Aと直交する平面又は当該平面に近づくように補正した補正リング継手面52を形成し、この補正リング継手面52に次のリング状の内型枠30を形成する型枠ピース40のリング継手面47bを継いでいく。   In the best mode, as shown in FIG. 1, for example, a plurality of metal mold pieces 40 are installed along the inner peripheral surface 33 of the tunnel cavity 21 so as to make one round of the inner peripheral surface 33. In the case of sequentially assembling the ring-shaped inner mold 30 in the direction of excavation, for example, each time the assembly of the inner mold 30 for a plurality of rings (for example, 16 rings) is completed, the leading ring joint The average value of the stroke of the propulsion jack 4 (the amount of extension of the piston 4a of the propulsion jack 4) and the shield excavator 1 provided above and below the rear end 1a of the shield excavator 1 propelled by taking the propulsion reaction force on the surface 47b. The difference with the average value of the stroke of the propulsion jack 4 provided in the right and left of the rear end part 1a is measured. If the difference is equal to or greater than a predetermined value, the leading ring joint surface 47b is no longer a plane orthogonal to the excavation traveling direction A. As shown in FIG. Is attached to the leading ring joint surface 47b to form a correction ring joint surface 52 that is corrected so as to be close to the plane orthogonal to the excavation traveling direction A or to the correction ring joint surface 52. The ring joint surface 47b of the mold piece 40 forming the next ring-shaped inner mold 30 is continued.

推進ジャッキ4は、トンネル空洞部21の内周面33に沿った方向において所定間隔を隔てて例えば30個設置される。このうち、上下に設けられた2個の推進ジャッキ4のストロークの平均値と左右に設けられた2個の推進ジャッキ4のストロークの平均値との差を測定する。当該差を測定することにより、補正作業の必要性を的確に判断できるようになる。   For example, 30 propulsion jacks 4 are installed at a predetermined interval in the direction along the inner peripheral surface 33 of the tunnel cavity 21. Among these, the difference between the average value of the strokes of the two propulsion jacks 4 provided above and below and the average value of the strokes of the two propulsion jacks 4 provided on the left and right are measured. By measuring the difference, it is possible to accurately determine the necessity of the correction work.

掘削進行方向Aが直進方向の場合、上記所定値を例えば30mm以上とすればよい。上記差が30mm以上となるということは、先頭のリング継手面47bと次のリング状の内型枠30のリング継手面47bとの隙間が大きくなり、また、覆工形成空間100に形成される一次覆工コンクリート90の周方向において厚さの偏りも大きくなるからである。上記所定値を30mm以上とすれば、ストローク調整ライナー50を用いた補正作業を行うことによって、先頭のリング継手面47bを掘削進行方向Aと直交する平面となるように又は当該平面に近づくように補正した補正リング継手面52を形成できる。   When the excavation traveling direction A is a straight traveling direction, the predetermined value may be set to 30 mm or more, for example. The difference of 30 mm or more means that the gap between the leading ring joint surface 47b and the ring joint surface 47b of the next ring-shaped inner mold frame 30 becomes large, and is formed in the lining forming space 100. This is because the thickness deviation also increases in the circumferential direction of the primary lining concrete 90. If the predetermined value is 30 mm or more, by performing the correction work using the stroke adjustment liner 50, the leading ring joint surface 47b becomes a plane orthogonal to the excavation traveling direction A or approaches the plane. The corrected correction ring joint surface 52 can be formed.

図2に示すように、ストローク調整ライナー50は、坑口側面53と切羽側面54と、坑口側面53と切羽側面54とに貫通するボルト孔55とを備える。例えば、坑口側面53の面積、切羽側面54の面積は、先頭のリング継手面51を形成する型枠ピース40のリング継手面47bの面積と同じに形成される。坑口側面53は、掘削進行方向Aと直交する平面でなくなった先頭のリング継手面51と合致する面に形成される。切羽側面54は、先頭のリング継手面47bと坑口側面53とが密接に合致した状態に接合された場合に上記補正リング継手面52を形成する。つまり、ストローク調整ライナー50は、先頭のリング継手面47bと坑口側面53とが密接に合致した状態に接合された場合に切羽側面54が上記補正リング継手面51を形成できるように、坑口側面53と切羽側面54との間の距離(厚さ)eが調整された補正部品である。具体的には、図2(b)に示すように、ストローク調整ライナー50は、距離e(厚さ)が、径方向の一方60から他方61にかけて異なるように形成されるとともに、周方向の一方62から他方65にかけて異なるように形成された補正部品である。   As shown in FIG. 2, the stroke adjustment liner 50 includes a wellhead side surface 53, a face side surface 54, and a bolt hole 55 that penetrates the wellhead side surface 53 and the face side surface 54. For example, the area of the wellhead side surface 53 and the area of the face side surface 54 are formed to be the same as the area of the ring joint surface 47 b of the mold piece 40 that forms the leading ring joint surface 51. The wellhead side surface 53 is formed on a surface that matches the leading ring joint surface 51 that is no longer a plane orthogonal to the excavation traveling direction A. The face side surface 54 forms the correction ring joint surface 52 when the leading ring joint surface 47b and the wellhead side surface 53 are joined in a closely matched state. That is, the stroke adjusting liner 50 is formed so that the face side surface 54 can form the correction ring joint surface 51 when the leading ring joint surface 47b and the well side surface 53 are joined in a closely matched state. This is a correction component in which the distance (thickness) e between the face and the face side 54 is adjusted. Specifically, as shown in FIG. 2B, the stroke adjustment liner 50 is formed such that the distance e (thickness) is different from one side 60 to the other side 61 in the radial direction, and one side in the circumferential direction. The correction parts are formed differently from 62 to the other 65.

ストローク調整ライナー50の取付けは、例えば、先頭のリング継手面47bと次のリング状の内型枠30を形成する型枠ピース40のリング継手面47bとの間にストローク調整ライナー50を挟み付けるようにして、これら三者を図外のボルト及びナットで固定すればよい。このように、先頭のリング継手面47bに、補正部品としてのストローク調整ライナー50を取付けるだけで、補正作業を簡単に行える。   The stroke adjusting liner 50 is attached, for example, by sandwiching the stroke adjusting liner 50 between the leading ring joint surface 47b and the ring joint surface 47b of the mold piece 40 that forms the next ring-shaped inner mold frame 30. Then, these three members may be fixed with bolts and nuts not shown. As described above, the correction work can be easily performed only by attaching the stroke adjusting liner 50 as the correction part to the leading ring joint surface 47b.

次に、図3;図4を参照し、型枠ピース40を用いた密閉型のシールド掘削機によるトンネル施工方法、及び、シールド掘削機の構造を説明する。
まず、シールド掘削機1の構造を説明する。シールド掘削機1は、前端に回転切削部2を有し、回転切削部2の後部には後方に延長する円筒状のテールプレート3を備える。テールプレート3の内側には複数の推進ジャッキ4とプレスジャッキ5と妻型枠7とが設けられる。妻型枠7は、プレスジャッキ5の後端5aに取付けられてテールプレート3の内周面3aに沿って前後に移動可能なようにリング筒状に形成されたプレス型枠である。つまり、妻型枠7は、テールプレート3の内周面3aと内型枠30の型枠面34との間を塞いだ状態でプレスジャッキ5の伸縮で前後に移動可能な型枠であり、後述する覆工形成空間100を形成するとともに覆工形成空間100に流入した高流動性生コンクリート80を加圧するものである。8はシールド掘削機1の推進に伴って図外の牽引手段で牽引されるコンクリート供給装置である。このコンクリート供給装置8は例えば高流動性生コンクリート80を生成する1台のレミキサー81とこのレミキサー81に接続管82で繋がれた6台のコンクリートポンプ83とで構成される。
Next, a tunnel construction method using a sealed shield excavator using the formwork piece 40 and the structure of the shield excavator will be described with reference to FIGS.
First, the structure of the shield excavator 1 will be described. The shield excavator 1 has a rotary cutting part 2 at a front end, and a rear end of the rotary cutting part 2 includes a cylindrical tail plate 3 extending rearward. A plurality of propulsion jacks 4, a press jack 5, and a wife formwork 7 are provided inside the tail plate 3. The end form frame 7 is a press form frame that is attached to the rear end 5a of the press jack 5 and formed in a ring tube shape so as to be movable back and forth along the inner peripheral surface 3a of the tail plate 3. That is, the wife mold 7 is a mold that can be moved back and forth by expansion and contraction of the press jack 5 in a state where the space between the inner peripheral surface 3a of the tail plate 3 and the mold surface 34 of the inner mold 30 is closed. While forming the lining formation space 100 mentioned later, the highly fluid ready-mixed concrete 80 which flowed into the lining formation space 100 is pressurized. A concrete supply device 8 is pulled by a pulling means (not shown) as the shield excavator 1 is propelled. The concrete supply device 8 includes, for example, one remixer 81 that generates high-fluidity ready-mixed concrete 80 and six concrete pumps 83 connected to the remixer 81 by connection pipes 82.

妻型枠7は、内型枠30の切羽側に設置されてトンネル空洞部21の内周面33に沿ったリング形状に形成され、リングの坑口22側の一端面により形成された型枠面7aと、リングの切羽側の他端面により形成されてプレスジャッキ5により押圧される受圧面7bと、型枠面7aと受圧面7bとに貫通して妻型枠7のリングの周方向に間隔を隔てて設けられた複数個のコンクリート打設孔9とを備える。   The form frame 7 is installed on the face side of the inner form 30 and is formed in a ring shape along the inner peripheral surface 33 of the tunnel cavity 21. The form form surface is formed by one end face of the ring at the wellhead 22 side. 7a and a pressure receiving surface 7b formed by the other end surface on the face side of the ring and pressed by the press jack 5, and penetrated through the mold frame surface 7a and the pressure receiving surface 7b, and spaced in the circumferential direction of the ring of the wife mold frame 7 And a plurality of concrete placement holes 9 provided with a gap therebetween.

図4に示すように、妻型枠7には、型枠面7aと受圧面7bとに貫通するコンクリート打設孔9が周方向に等間隔で例えば12個形成される。各コンクリートポンプ83のコンクリート排出口10には第1コンクリート供給ホース11が接続され、このホース11の終端には二方切替弁12が接続され、この二方切替弁12の2つの排出口13;13とそれぞれ1つのコンクリート打設孔9とが第2コンクリート供給ホース14;14で接続される。第2コンクリート供給ホース14における終端側には油圧シリンダピストン等による塞止弁装置15が設けられる。塞止弁装置15の塞止弁15aが第2コンクリート供給ホース14と打設孔9とを繋ぐ接続配管14a内に進退移動して接続配管14aを開閉する。接続配管14aに近い第2コンクリート供給ホース14の終端側にはこの第2コンクリート供給ホース14内の管内圧力を計測する管内圧力計16が設けられる。また、妻型枠7の型枠面7aにおける12箇所のそれぞれ打設孔9の近傍、あるいは12箇所のうちの少なくとも1つの打設孔9の近傍には、覆工形成空間100に充填された生コンクリートの圧力を計測するためのコンクリート圧力計17が設けられる。   As shown in FIG. 4, for example, twelve concrete placement holes 9 penetrating the mold surface 7 a and the pressure receiving surface 7 b are formed in the end frame 7 at equal intervals in the circumferential direction. A first concrete supply hose 11 is connected to the concrete discharge port 10 of each concrete pump 83, and a two-way switching valve 12 is connected to the end of the hose 11, and the two discharge ports 13 of the two-way switching valve 12; 13 and one concrete placing hole 9 are connected by a second concrete supply hose 14; 14. A closing valve device 15 such as a hydraulic cylinder piston is provided on the end side of the second concrete supply hose 14. The blocking valve 15a of the blocking valve device 15 moves back and forth in the connection pipe 14a that connects the second concrete supply hose 14 and the placement hole 9 to open and close the connection pipe 14a. An in-pipe pressure gauge 16 for measuring the in-pipe pressure in the second concrete supply hose 14 is provided on the end side of the second concrete supply hose 14 near the connection pipe 14a. In addition, the lining forming space 100 was filled in the vicinity of each of the twelve placement holes 9 in the formwork surface 7a of the wife formwork 7 or in the vicinity of at least one of the twelve placement holes 9. A concrete pressure gauge 17 is provided for measuring the pressure of the ready-mixed concrete.

次に、型枠ピース40を用いたトンネル施工方法を説明する。まず、図外の反力受けで推進ジャッキ4の反力を取って推進ジャッキ4のピストン4aを伸ばしながら回転切削部2を回転させてシールド掘削機1を一定距離だけ掘進させて地山(地盤/岩盤)20にトンネル空洞部21を掘る。一定距離は例えば内型枠30の1リング分の筒長31(例えば1m〜2m程度)の長さ+シールド掘削機1の前後長さ32である。シールド掘削機1を一定距離だけ掘進させた後にシールド掘削機1の推進ジャッキ4のピストン4aを縮めて、推進ジャッキ4の後端4bに、図外の内型枠組立装置によって1リング分の内型枠30を組み立てる。1リング分の内型枠30は、1リング分の内型枠30の円筒の円弧の一部分を形成する複数個の型枠ピース40を用いて円筒形状に組み立てられる。型枠ピース40の型枠面34がトンネル空洞部21の円形の内周面33との間に空間を隔てて内周面33に沿うように図外の内型枠組立装置により保持されて、トンネル空洞部21の内側にトンネル空洞部21の中心軸と同軸の円筒形状の内型枠30が形成されるように、円筒形の円周上で互いに隣り合う型枠ピース40同士が図外のボルト及びナットにより締結される。この隣り合う型枠ピース40同士を連結するボルト63をピース間継手ボルトと呼ぶ。具体的には、型枠ピース40のピース継手面47a同士が接触するように、型枠ピース40同士を互いに隣接させて設置し、互いに隣接する型枠ピース40のピース継手面47aのボルト孔43aにボルト63が通されてボルト63の先端部にナット72が締結されることによって、ピース継手面47a同士が密接状態となるように型枠ピース40同士が繋がれる。以上により、トンネル空洞部21の内側に円筒形状の1リング分の内型枠30が形成されるととともに、トンネル空洞部21の円形の内周面33と1リング分の内型枠30の円形の型枠面34との間の円筒形状の覆工形成空間100が形成される。この覆工形成空間100の坑口22側を図外の塞板などで閉塞して、妻型枠7の型枠面7aを覆工形成空間100の先端側に移動させ、妻型枠7の型枠面7aの周囲の例えば12箇所の打設孔9を介してコンクリートポンプ83で加圧された高流動性生コンクリート80を流し込みながらプレスジャッキ5で妻型枠7を押圧して高流動性生コンクリート80を加圧する。そして、人がコンクリート圧力計17から送信されてくる圧力値をモニタ等で監視しながら覆工形成空間100に流し込まれた高流動性生コンクリート80の圧力が予め決められた所定値になったら人が塞止弁15aの操作部を操作して塞止弁15aで接続配管14aを塞いで、覆工形成空間100内の高流動性生コンクリート80を固化させる。したがって、6個のコンクリートポンプ83を用い、妻型枠7の後面7aの周囲の12箇所の打設孔9から覆工形成空間100に高流動性生コンクリート80を充填するので、複数のコンクリートポンプ83での圧力付加と複数の打設孔9からの高流動性生コンクリート80の流し込みと高流動性生コンクリート80の高流動性とにより、覆工形成空間100内に短時間で均等に高密度に高流動性生コンクリート80を充填でき、トンネル空洞部21の内周面33(地山20)と密接して一体化した高密度構造の覆工部としての覆工コンクリート90を構築できる。また、打設孔9の数と同数のコンクリートポンプ83を設け、1つのコンクリートポンプ83で1つの打設孔9から高流動性生コンクリート80を打設してもよいが、実施形態のように打設孔9の数の1/2の数のコンクリートポンプ83を用いて1つのコンクリートポンプ83に2つの打設孔9を繋ぐことにより、コンクリートポンプ83の数を減らして多くの打設孔9から打設できるので経済的である。また、コンクリート圧力計17を備えたので、覆工形成空間100内に流し込まれた高流動性生コンクリート80の圧力監視制御を容易に行える。また、コンクリート圧力計17からの信号を判読して塞止弁15aを開閉する図外の制御装置を設ければ、塞止弁15aの開閉を自動化できる。   Next, a tunnel construction method using the mold piece 40 will be described. First, the reaction force of the propulsion jack 4 is taken by a reaction force receiver (not shown) and the rotary cutting portion 2 is rotated while the piston 4a of the propulsion jack 4 is extended to cause the shield excavator 1 to excavate by a certain distance, and the ground (the ground) / Band) Tunnel tunnel 21 is dug. The fixed distance is, for example, the length of the tube length 31 (for example, about 1 m to 2 m) of one ring of the inner mold 30 + the front-rear length 32 of the shield excavator 1. After the shield excavator 1 has been excavated by a certain distance, the piston 4a of the propulsion jack 4 of the shield excavator 1 is shrunk, and the inner end of the propulsion jack 4 is connected to the rear end 4b of the propulsion jack 4 by an internal mold assembly device (not shown). Assemble the formwork 30. The inner mold 30 for one ring is assembled into a cylindrical shape by using a plurality of mold pieces 40 that form a part of a circular arc of the cylinder of the inner mold 30 for one ring. The formwork surface 34 of the formwork piece 40 is held by an inner formwork assembly device (not shown) so as to be along the inner peripheral surface 33 with a space between it and the circular inner peripheral surface 33 of the tunnel cavity 21. Formwork pieces 40 adjacent to each other on the circumference of the cylindrical shape are not shown in the figure so that a cylindrical inner mold 30 coaxial with the central axis of the tunnel cavity 21 is formed inside the tunnel cavity 21. Fastened with bolts and nuts. The bolt 63 that connects the adjacent mold pieces 40 is referred to as an inter-piece joint bolt. Specifically, the mold piece pieces 40 are installed adjacent to each other so that the piece joint surfaces 47a of the mold piece pieces 40 are in contact with each other, and the bolt holes 43a of the piece joint surfaces 47a of the adjacent mold frame pieces 40 are provided. When the bolt 63 is passed through and the nut 72 is fastened to the tip of the bolt 63, the mold piece 40 is connected to each other so that the piece joint surfaces 47 a are in close contact with each other. As described above, the inner mold frame 30 for one ring having a cylindrical shape is formed inside the tunnel cavity portion 21, and the circular inner peripheral surface 33 of the tunnel cavity portion 21 and the circular inner mold frame 30 for one ring are formed. A cylindrical lining forming space 100 between the mold surface 34 and the mold surface 34 is formed. The wellhead 22 side of the lining forming space 100 is closed with a block plate or the like (not shown), and the formwork surface 7a of the wife formwork 7 is moved to the front end side of the lining forming space 100, so While pouring high-fluidity ready-mixed concrete 80 pressurized by the concrete pump 83 through, for example, twelve placement holes 9 around the frame surface 7a, the press mold 5 is pressed against the end frame 7 to provide high-fluidity freshness. The concrete 80 is pressurized. Then, when the pressure of the high-fluidity ready-mixed concrete 80 poured into the lining forming space 100 becomes a predetermined value while monitoring the pressure value transmitted from the concrete pressure gauge 17 by a monitor or the like. Operates the operating portion of the blocking valve 15a to block the connection pipe 14a with the blocking valve 15a, and solidifies the high-fluidity ready-mixed concrete 80 in the lining forming space 100. Accordingly, since the six concrete pumps 83 are used and the superfluid ready-mixed concrete 80 is filled into the lining forming space 100 from the twelve placement holes 9 around the rear surface 7a of the end form frame 7, a plurality of concrete pumps are filled. Due to the pressure applied at 83, the flow of the high-fluidity ready-mixed concrete 80 from the plurality of placement holes 9 and the high-fluidity of the high-flowable ready-mixed concrete 80, the lining forming space 100 is evenly dense in a short time The lining concrete 90 can be constructed as a lining portion having a high-density structure that can be filled with the highly fluid ready-mixed concrete 80 and closely integrated with the inner peripheral surface 33 (the ground 20) of the tunnel cavity portion 21. Further, the same number of concrete pumps 83 as the number of placement holes 9 may be provided, and the high-fluidity ready-mixed concrete 80 may be placed from one placement hole 9 with one concrete pump 83, as in the embodiment. By connecting two casting holes 9 to one concrete pump 83 using the number of concrete pumps 83 that is ½ of the number of casting holes 9, the number of concrete pumps 83 can be reduced and a large number of casting holes 9. It is economical because it can be placed from Moreover, since the concrete pressure gauge 17 is provided, the pressure monitoring control of the highly fluid ready-mixed concrete 80 poured into the lining forming space 100 can be easily performed. Further, if a control device (not shown) that opens and closes the closing valve 15a by reading a signal from the concrete pressure gauge 17 is provided, the opening and closing of the closing valve 15a can be automated.

次に、覆工コンクリート90の内側に残された内型枠30を反力受けとして利用して推進ジャッキ4の反力を取って推進ジャッキ4のピストン4aを伸ばしながら回転切削部2を回転させてシールド掘削機1を一定距離だけ掘進させる。そして、坑口22側に形成された内型枠30に連続するよう掘削進行方向A側に次の1リング分の内型枠30を形成し、このように掘削進行進方向Aに沿って前後に隣り合う内型枠30同士がボルト63及びナット72により締結される。そして、新しく形成した内型枠30の型枠面34とトンネル空洞部21の内周面33との間に覆工コンクリート90を形成する。   Next, the rotary mold 2 is rotated while the piston 4a of the propulsion jack 4 is extended by using the reaction force of the propulsion jack 4 using the inner mold frame 30 left inside the lining concrete 90 as a reaction force receiver. The shield excavator 1 is advanced by a certain distance. Then, the inner mold frame 30 for the next one ring is formed on the digging progress direction A side so as to be continuous with the inner mold form 30 formed on the wellhead 22 side, and thus the front and rear along the digging progress direction A. Adjacent inner molds 30 are fastened by bolts 63 and nuts 72. Then, lining concrete 90 is formed between the mold surface 34 of the newly formed inner mold 30 and the inner peripheral surface 33 of the tunnel cavity 21.

以後、上記と同様にしてシールド掘削機1を一定距離だけ掘進させて、1リング分の内型枠30を形成し、形成した内型枠30の1つ前に形成した内型枠30とを連結し、新しく形成した内型枠30の型枠面34とトンネル空洞部21の内周面33との間に覆工コンクリート90を形成していく。   Thereafter, in the same manner as described above, the shield excavator 1 is excavated by a certain distance to form the inner mold 30 for one ring, and the inner mold 30 formed immediately before the formed inner mold 30 The lining concrete 90 is formed between the formwork surface 34 of the newly formed inner formwork 30 and the inner peripheral surface 33 of the tunnel cavity 21 by being connected.

一般に、トンネル長さは長距離であるため、型枠ピース40は、所定数のリング分の内型枠30を形成できる数分だけ用いられ、所定数のリング分の内型枠30を設置した後は、坑口22側に組み立てられた内型枠30の掘削進行方向A後部に位置する1リング分の型枠ピース40を図外の内型枠脱型装置を用いて解体して取り外した後に、シールド掘削機1を進行させ、取り外した1リング分の型枠ピース40を内型枠30の掘削進行方向Aの先頭位置に盛り替えて使う。即ち、所定数のリング分の内型枠30を設置した後は、掘削が進む毎に、型枠ピース40を後方(坑口側)から前方(切羽側)に盛り替えて繰り返して使用する。   In general, since the tunnel length is a long distance, the mold piece 40 is used as many as the number of inner molds 30 for a predetermined number of rings, and the inner molds 30 for a predetermined number of rings are installed. After that, after disassembling and removing the mold piece 40 for one ring located at the rear of the excavation traveling direction A of the inner mold 30 assembled on the wellhead 22 side using an inner mold removing device not shown in the drawing. Then, the shield excavator 1 is advanced, and the removed mold piece 40 for one ring is used by changing it to the top position of the inner mold 30 in the excavation direction A. That is, after the inner molds 30 for a predetermined number of rings are installed, each time excavation progresses, the mold piece 40 is refilled from the rear side (wellhead side) to the front side (face side) and repeatedly used.

図1(a)に示すように、リングの組立と脱型とを繰り返すために、地山20からの圧力のかかり方、推進ジャッキ4の配置、内型枠30のひずみ等が原因となって、内型枠30の組立位置の誤差が蓄積されて内型枠30の組立姿勢にずれが生じて、切羽側に位置するリング状の内型枠30の先頭のリング継手面51が掘削進行方向Aと直交する平面でなくなる場合がある。   As shown in FIG. 1A, in order to repeat the assembly and demolding of the ring, it is caused by the pressure applied from the natural ground 20, the arrangement of the propulsion jack 4, the distortion of the inner mold 30 and the like. An error in the assembly position of the inner mold 30 is accumulated, and the assembly posture of the inner mold 30 is shifted, and the ring joint surface 51 at the head of the ring-shaped inner mold 30 located on the face side is in the direction of excavation. In some cases, the plane is not perpendicular to A.

そこで、最良の形態によれば、上述したように、例えば、16リング分の内型枠30の組立が終了する毎に、その先頭のリング継手面47bで推進反力を取って推進するシールド掘削機1の後端部1aの上下に設けられた複数の推進ジャッキ4のストロークの平均値とシールド掘削機1の後端部1aの左右に設けられた複数の推進ジャッキ4のストロークの平均値との差を測定し、当該差が所定値以上であれば、その先頭のリング継手面47bが掘削進行方向Aと直交する平面でなくなったとして、ストローク調整ライナー50をその先頭のリング継手面47bに取付けて補正リング継手面52を形成し、この補正リング継手面52に次のリング状の内型枠30のリング継手面47bを継いでいく。   Therefore, according to the best mode, as described above, for example, every time the assembly of the inner mold 30 for 16 rings is completed, the shield excavation is performed by propelling the thrust reaction force at the leading ring joint surface 47b. The average value of the strokes of the plurality of propulsion jacks 4 provided above and below the rear end 1a of the machine 1 and the average value of the strokes of the plurality of propulsion jacks 4 provided on the left and right of the rear end 1a of the shield excavator 1; If the difference is greater than or equal to a predetermined value, it is determined that the leading ring joint surface 47b is no longer a plane orthogonal to the excavation traveling direction A, and the stroke adjusting liner 50 is moved to the leading ring joint surface 47b. The correction ring joint surface 52 is formed by attaching, and the ring joint surface 47 b of the next ring-shaped inner mold frame 30 is joined to the correction ring joint surface 52.

従って、最良の形態によれば、先頭のリング継手面47bが掘削進行方向Aと直交する平面でなくなった場合には、次のリングのリング継手面47bが接合されるリング継手面を掘削進行方向Aと直交する平面となるように又は当該平面に近づくように補正した補正リング継手面52とできるので、この補正リング継手面52とこの補正リング継手面52に継がれる次の内型枠30のリング継手面47bとを密接状態に接合できて、これら補正リング継手面52とリング継手面47bとを結合するボルト及びナットによる締結摩擦力を十分に得ることができ、これら補正リング継手面52とリング継手面47bとを強固に結合できる。また、覆工形成空間100に形成される一次覆工コンクリート90の周方向において厚さの偏りを少なくでき、一次覆工コンクリート90の品質を向上できる。   Therefore, according to the best mode, when the leading ring joint surface 47b is not a plane orthogonal to the excavation progress direction A, the ring joint surface to which the ring joint surface 47b of the next ring is joined is moved to the excavation progress direction. Since the correction ring joint surface 52 is corrected so as to be a plane orthogonal to A or close to the plane, the correction ring joint surface 52 and the next inner mold 30 connected to the correction ring joint surface 52 can be used. The ring joint surface 47b can be joined in close contact with each other, and a sufficient fastening frictional force can be obtained by the bolts and nuts connecting the correction ring joint surface 52 and the ring joint surface 47b. The ring joint surface 47b can be firmly coupled. Further, the thickness deviation in the circumferential direction of the primary lining concrete 90 formed in the lining forming space 100 can be reduced, and the quality of the primary lining concrete 90 can be improved.

ストローク調整ライナー50の大きさは特に限定されないが、複数のストローク調整ライナー50によって、トンネル空洞部21の内周面33に沿って1周するリングを形成するものであればよい。   The size of the stroke adjustment liner 50 is not particularly limited as long as the stroke adjustment liner 50 forms a ring that makes one round along the inner peripheral surface 33 of the tunnel cavity 21 by the plurality of stroke adjustment liners 50.

内型枠の組立方法を示す概略断面図(最良の形態)。The schematic sectional drawing which shows the assembly method of an inner mold form (best form). (a)は内型枠の組立方法における先頭の内型枠のリング継手面と補正部品との関係を示す分解断面図、(b)は補正部品を示す斜視図(最良の形態1)。(A) is an exploded sectional view showing the relationship between the ring joint surface of the leading inner mold and the correction part in the inner mold assembly method, and (b) is a perspective view showing the correction part (best mode 1). 密閉型のシールド掘削機によるトンネル施工方法を示す断面図(最良の形態)。Sectional drawing which shows the tunnel construction method by a sealed shield excavator (best form). コンクリート供給管と妻型枠に形成されたコンクリート打設孔との関係を示す図(最良の形態)。The figure which shows the relationship between a concrete supply pipe and the concrete placement hole formed in the end form (the best form). 型枠ピースを示す斜視図(従来)。The perspective view which shows a formwork piece (conventional). トンネル空洞部と内型枠との関係を示す図(従来)。The figure which shows the relationship between a tunnel cavity part and an internal formwork (conventional).

符号の説明Explanation of symbols

21 トンネル空洞部、30 内型枠、33 内周面、40 型枠ピース、
47b リング継手面、52 補正リング継手面、53 坑口側面、
54 切羽側面、A 掘削進行方向。
21 tunnel cavity part, 30 inner formwork, 33 inner peripheral surface, 40 formwork piece,
47b Ring joint surface, 52 Correction ring joint surface, 53 Wellhead side surface,
54 Face side, A Drilling direction.

Claims (2)

地山を掘削した掘削孔により形成されたトンネル空洞部の内周面に沿って設置されてトンネル空洞部の内周面との間に覆工部を形成するための内型枠の型枠ピースがトンネル空洞部の内周面に沿って内周面を1周するように複数設置されてリング状の内型枠を形成し、このリング状の内型枠を掘削進行方向に向けて順次組み立てていく内型枠の組立方法において、切羽側に位置するリング状の内型枠の先頭のリング継手面が掘削進行方向と直交する平面でなくなった場合に、当該先頭のリング継手面を掘削進行方向と直交する平面となるように又は当該平面に近づくように所定の厚みを有した補正部品を用いて補正した補正リング継手面を形成したことを特徴とする内型枠の組立方法。   Formwork piece of an inner frame for forming a lining portion between the inner peripheral surface of the tunnel cavity portion and the inner peripheral surface of the tunnel cavity portion that is installed along the inner peripheral surface of the tunnel cavity portion formed by the excavation hole excavated from the natural ground Are installed so as to make one round of the inner peripheral surface along the inner peripheral surface of the tunnel cavity to form a ring-shaped inner mold frame, and the ring-shaped inner mold frame is sequentially assembled in the direction of excavation progress. In the method of assembling the inner mold, the front ring joint surface of the ring-shaped inner mold located on the face side is no longer a plane perpendicular to the direction of excavation, and the front ring joint surface is excavated. A method of assembling an inner mold frame, wherein a correction ring joint surface corrected by using a correction component having a predetermined thickness is formed so as to be a plane orthogonal to the direction or approach the plane. 切羽側に位置するリング状の内型枠の先頭のリング継手面で反力を取るシールド掘削機の上下の推進ジャッキのストロークの平均値と左右のシールドジャッキのストロークの平均値との差が所定値以上となった場合に、先頭のリング継手面の補正を行うことを特徴とする請求項1に記載の内型枠の組立方法。   The difference between the average value of the strokes of the upper and lower propulsion jacks of the shield excavator and the average value of the strokes of the left and right shield jacks, which takes a reaction force at the top ring joint surface of the ring-shaped inner mold located on the face side, is predetermined. 2. The method for assembling an inner mold according to claim 1, wherein when the value becomes equal to or greater than the value, the leading ring joint surface is corrected.
JP2008091281A 2008-03-31 2008-03-31 Assembly method of inner formwork Active JP4948466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091281A JP4948466B2 (en) 2008-03-31 2008-03-31 Assembly method of inner formwork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091281A JP4948466B2 (en) 2008-03-31 2008-03-31 Assembly method of inner formwork

Publications (2)

Publication Number Publication Date
JP2009243155A JP2009243155A (en) 2009-10-22
JP4948466B2 true JP4948466B2 (en) 2012-06-06

Family

ID=41305364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091281A Active JP4948466B2 (en) 2008-03-31 2008-03-31 Assembly method of inner formwork

Country Status (1)

Country Link
JP (1) JP4948466B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066875B2 (en) * 1986-10-09 1994-01-26 川崎重工業株式会社 Control method for on-site casting of lining material for shield machine
JPH068599B2 (en) * 1987-11-12 1994-02-02 戸田建設株式会社 Cast-in-place lining shield method
JPH0270898A (en) * 1988-09-06 1990-03-09 Mitsui Constr Co Ltd Formwork for constructing tunnel lining and constructing method of lining by using said formwork

Also Published As

Publication number Publication date
JP2009243155A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4537229B2 (en) Tunnel construction method
JP5653048B2 (en) Steel pipe for ground reinforcement and method for manufacturing steel pipe for ground reinforcement
JP4948466B2 (en) Assembly method of inner formwork
JP5965778B2 (en) Long mirror bolt method
JP4668667B2 (en) Concrete placing apparatus and tunnel excavator equipped with the apparatus
JP4948464B2 (en) Formwork piece of inner formwork
JP5479989B2 (en) Tunnel construction method and shield machine
JP5700401B2 (en) Rail system for inner formwork
JP5946089B2 (en) Tunnel inner winding reinforcement method
JP5224875B2 (en) Formwork piece for correcting rotational deviation of inner mold and method for correcting rotational deviation of inner mold
JP6261684B1 (en) Backfill material injection device
CN212508320U (en) Shield tail brush device capable of being replaced in shield tunneling process
JP2009243068A (en) Concrete placing method for tunnel construction
JP2012041750A (en) Method for assembling inner form
JP5725691B2 (en) Inner formwork and tunnel excavator provided with the inner formwork
JP4970331B2 (en) Formwork piece installation method and formwork piece used in this method
JP7208788B2 (en) natural ground drainage device
JP6236970B2 (en) Drilling casing, drilling machine, and method for extending drilling casing
JPH11270299A (en) Large-diametral tunnel and its construction method and shield machine used therefor
JP2009243060A (en) Concrete placing method for tunnel construction
JP4274891B2 (en) Partial widening method of shield tunnel
JP2009243064A (en) Concrete placing method for tunnel construction, and form piece of inner form
JP7273507B2 (en) Shield method
JP4011224B2 (en) Tunnel excavator
JP2021008725A (en) Construction method for soil retaining structure and pipe for soil retaining structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4948466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350