JP4947329B2 - Resin composition for electrical insulation and electrical equipment - Google Patents

Resin composition for electrical insulation and electrical equipment Download PDF

Info

Publication number
JP4947329B2
JP4947329B2 JP2001175730A JP2001175730A JP4947329B2 JP 4947329 B2 JP4947329 B2 JP 4947329B2 JP 2001175730 A JP2001175730 A JP 2001175730A JP 2001175730 A JP2001175730 A JP 2001175730A JP 4947329 B2 JP4947329 B2 JP 4947329B2
Authority
JP
Japan
Prior art keywords
parts
silicon dioxide
resin composition
weight
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175730A
Other languages
Japanese (ja)
Other versions
JP2002367432A (en
Inventor
伊三雄 馬上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001175730A priority Critical patent/JP4947329B2/en
Publication of JP2002367432A publication Critical patent/JP2002367432A/en
Application granted granted Critical
Publication of JP4947329B2 publication Critical patent/JP4947329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、電気絶縁用樹脂組成物及び電気機器に関し、さらに詳しくは不飽和ポリエステル樹脂(不飽和ポリエステル及び架橋性単量体を含むものをいう。以下同様。)及び無機充填剤を主成分とする電気絶縁用樹脂組成物及びこの電気絶縁用樹脂組成物を用いて電気絶縁処理されてなる電気機器に関する。本発明は電気機器絶縁処理用樹脂組成物に関し、更に詳しくは、モートル、トランスなどの電気機器用コイルの熱放射性を向上させる電気機器絶縁処理用樹脂組成物に関する。
【0002】
【従来の技術】
モータ、トランス等の電気機器は、鉄コアの固着または防錆、コイルの絶縁または固着等を目的として、電気絶縁用樹脂組成物で処理されている。電気絶縁用樹脂組成物としては、硬化性、空乾性、固着性、電気絶縁性、経済性などのバランスに優れた不飽和ポリエステル樹脂の組成物が広く用いられている。
【0003】
近年の電気機器は、小型・軽量化、高出力化が進んだため、蓄熱温度がより高くなり、特に、電子レンジ、インバータエアコンなどの電気機器に用いられる変圧器やリアクトルコイルは、運転時に過大な負荷により発生した熱が放散されずに蓄熱され電気機器の温度が上昇する傾向があるため、使用される各材料は、より耐熱性及び熱放散性が高いものが求められるようになってきた。更に、小型化の要求に伴い、コイルの占積率が一段と上がった為、含浸性が優れたものが求められるようになってきた。特に、電気絶縁処理により、占積率が高いコイルを有する電気機器の熱放散性を向上させようとする場合、クラックが発生すると、熱伝導率が低い空気層が出来、コイルの外気への熱放散が著しく低下してしまい、稼動する電気機器の温度上昇を、期待通りに低減する事が出来ない。そこで、樹脂組成物の熱伝導率を上げると共に、コイルへの樹脂組成物の含浸性を向上させ、更に、耐クラック性が優れた樹脂組成物が求められる。
その結果、稼動する事によって発生した電気機器の熱が、大気雰囲気中へ放散し易くなり、電気機器の温度上昇を低減する事が出来る為、電気機器の小型・軽量化、高出力化が可能となる。また、電気機器の構成部材が同じ場合、電気機器の信頼性向上に寄与できる。
【0004】
以上より、不飽和ポリエステル樹脂に無機充填剤を添加させて熱伝導率を高めると共に、電気機器への含浸性が良好な無機充填剤混合不飽和ポリエステル樹脂が用いられてきたが、不飽和ポリエステル樹脂に無機充填剤を混合すると、経日放置により、混合していた無機充填剤が沈降してハードケーキとなり、再分散が困難となり、電気絶縁組成物中に占める無機充填剤の含有量が変化し、熱伝導率が変わってしまい、期待した電気機器の熱放散性が得られない場合があった。
電気絶縁用樹脂組成物中の無機充填剤の量が多くなると、粘度及び揺変度が高くなり電気機器への含浸性が低下し熱放散性が低下すると共に、硬化物皮膜が厚くなり、クラックが発生し易くなる傾向がある。
また、電気絶縁用樹脂組成物中の無機充填剤の量が少なくなると、含浸性は向上するが、樹脂の熱伝導率が低下するため、電気機器の放熱性が低下する傾向がある。
【0005】
【発明が解決しようとする課題】
電気絶縁用樹脂組成物において、近年の要求性能を満足すべく、低粘度、且つ、低揺変度で、熱伝導率が高く、更に無機充填剤の沈降速度をかなり遅くさせ、且つ、経日放置によって沈降した無機充填剤の再分散性が容易な電気絶縁用樹脂組成物が要求されるようになった。
本発明は、低粘度且つ低揺変度で電気機器への含浸性が良好で、熱伝導率が高く、電気機器の運転時に発生する熱を放散し易くする事ができ、更に経日放置による無機充填剤の沈降速度をかなり遅くさせ、且つ、経日放置によって沈降した無機充填剤の再分散性が容易な電気絶縁用樹脂組成物及びこの電気絶縁用樹脂組成物を用いて電気絶縁処理されてなる電気機器を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、不飽和ポリエステル樹脂に平均粒径20μm以下の二酸化ケイ素、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素及びチタネート系カップリング剤を混合することによって、従来の不飽和ポリエステル樹脂に平均粒径20μm以下の二酸化ケイ素及びチタネート系カップリング剤を混合した場合または不飽和ポリエステル樹脂に平均粒径20μm以下の二酸化ケイ素、一次粒子の平均粒径が500nm以下の親水性二酸化ケイ素及びチタネート系カップリング剤を混合した場合よりも、粘度を低く、且つ、揺変度を低くする事が出来ると共に、二酸化ケイ素の沈降速度を遅くする事ができ、且つ、長期保管後に沈降した二酸化ケイ素がハードケーキとはならずに再分散が容易に可能であり、電気機器への含浸性が良好のため、運転時の電気機器の熱放散性が良好であり、電気機器の温度上昇を低減できることを見出した。本発明は、次のものに関する。
(1) (A)不飽和ポリエステル25〜60重量部及び架橋性単量体75〜40重量部をこれらの総量が100重量部になるように含む不飽和ポリエステル樹脂100重量部、(B)平均粒径20μm以下の二酸化ケイ素10〜100重量部、(C)一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素0.001〜10重量部、(D)チタネート系カップリング剤0.01〜1重量部を含有してなる電気機器絶縁処理用樹脂組成物。
(2) (1)記載の電気絶縁用樹脂組成物を用いて電気絶縁処理されてなる電気機器。
【0007】
【発明の実施の形態】
本発明に用いられる(A)成分の不飽和ポリエステル樹脂は、不飽和ポリエステルおよび架橋性単量体を含有する。不飽和ポリエステルは、下記の酸成分及びアルコール成分、さらに必要に応じて変性成分を反応させて得られる。酸成分としては、例えばマレイン酸、無水マレイン酸、フマル酸等の不飽和酸、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、アジピン酸、セバチン酸等の飽和酸、大豆油脂肪酸、アマニ油脂肪酸、トール油脂肪酸等の植物油脂肪酸などが用いられる。アルコール成分としては、例えばプロピレングリコール、エチレングリコール、ジプロピレングリコール、ジエチレングリコール、1,3−ブタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が用いられる。変性成分としては、例えばアマニ油、大豆油、トール油、脱水ヒマシ油、ヤシ油、ジシクロペンタジエン、シクロペンタジエン等が用いられる。架橋性単量体としては、例えばスチレン、ビニルトルエン、α−メチルスチレン、ターシャリーブチルスチレン、ジビニルベンゼン、各種アクリル酸エステルおよび/またはメタクリル酸エステル、各種アリルエステル、各種アリルエーテル等が挙げられる。架橋性単量体の使用量は、不飽和ポリエステル25〜60重量部に対して75〜40重量部の範囲とされ、これらの総量は、100重量部とされる。
【0008】
本発明に用いられる(B)成分の平均粒径20μm以下の二酸化ケイ素は、電気機器を運転するときの放熱性を向上させることを主な目的として配合される。放熱性の観点からは配合量が多い程よいが、この配合量が多くなると電気絶縁用樹脂組成物の粘度及び揺変度が高くなり、含浸性が低下する。このことから、不飽和ポリエステル、架橋性モノマー及び平均粒径20μm以下の二酸化ケイ素の総量を100重量部とするとき、平均粒径20μm以下の二酸化ケイ素は60重量部を超えない範囲であるのが好ましく、45重量部を超えない範囲であるのがより好ましい。また、放熱性を向上させるためには、平均粒径20μm以下の二酸化ケイ素を10重量部以上配合するのが好ましい。平均粒径20μm以下の二酸化ケイ素の配合量が10重量部未満であると熱伝導性が低くなり放熱性が低下する傾向がある。本発明に用いられる(C)成分の一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素は、(B)成分の平均粒径20μm以下の二酸化ケイ素の沈降速度を遅くする事ができ、且つ、長期保管後に沈降した二酸化ケイ素がハードケーキとはならずに再分散が容易に出来る事を主な目的として配合される。(B)成分の平均粒径20μm以下の二酸化ケイ素の沈降速度の遅延化及び長期保管後に沈降した二酸化ケイ素の再分散性の容易化の観点からは配合量が多い程よいが、この配合量が多くなると電気絶縁用樹脂組成物の粘度及び揺変度が高くなり、含浸性が低下する。このことから、不飽和ポリエステル、架橋性モノマー及び平均粒径20μm以下の二酸化ケイ素及び一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素の総量を100重量部とするとき、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素は10重量部を超えない範囲であるのが好ましく、5重量部を超えない範囲であるのがより好ましい。また、(B)成分の平均粒径20μm以下の二酸化ケイ素の沈降速度の遅延化及び長期保管後に沈降した二酸化ケイ素の再分散性の容易化の観点からは、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素は0.001重量部以上配合するのが好ましい。一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素の配合量が0.001重量部未満であると、(B)成分の平均粒径20μm以下の二酸化ケイ素の沈降速度が速くなり、長期保管後に沈降した二酸化ケイ素がハードケーキとなり、再分散が困難となる傾向がある。一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素としては、表面をオクチルシラン、ジメチルジクロロシラン、ジメチルシリコーンオイルまたはヘキサメチルジシラザン等を用いて化学処理を行い、表面を疎水性にしたものを用いる事が出来る。
【0009】
本発明に用いられる(D)成分のチタン系カップリング剤は、二酸化ケイ素の添加により高くなった粘度及び揺変度の低下を目的に配合される。粘度及び揺変度の低下の観点からは配合量が多いほど粘度及び揺変度は低下するが、この配合量が多くなると粘度が低くなりすぎて、(B)成分の平均粒径20μm以下の二酸化ケイ素の沈降速度が速くなり、長期保管後に沈降した二酸化ケイ素がハードケーキとなり、再分散が困難となる傾向がある。また、配合量が少なすぎると粘度及び揺変度の低下に効果がなく、コイルへの含浸性が低下する傾向がある。
このことから、チタン系カップリング剤の配合量としては、0.01〜1重量部の範囲で、特に、0.05〜0.5重量部の範囲が好ましい。
チタン系カップリング剤としては、チタニウムステアレート、ジ−i−プロキシチタン ジイソステアレート、(2―n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタン、2−エチルヘキサノイルオキシトリ(2−プロポキシ)チタン(いずれも日本曹達株式会社製)等を用いることができる。
【0010】
本発明になる電気機器絶縁処理用樹脂組成物には、硬化剤として、例えばベンゾインパーオキサイド、アセチルパーオキサイド等のアシルパーオキサイド、ターシャリブチルパーオキサイド、キュメンヒドロパーオキサイド等のヒドロパーオキサイド、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド、ジターシャリブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド、ターシャリブチルパーオキシアセテート等のオキシパーオキサイドなどを用いる。硬化剤の添加量としては、(A)成分、(B)成分、(C)成分及び(D)成分の総量100重量部に対して0.1〜5重量部が好ましい。
【0011】
また、必要に応じて促進剤及び重合禁止剤を添加することもできる。促進剤としては、例えばナフテン酸マンガン、ナフテン酸鉛、ナフテン酸コバルト、オクテン酸コバルト等が用いられる。重合禁止剤としては、例えばハイドロキノン、ターシャリブチルカテコール、P−ベンゾキノン等のキノン類が用いられる。
【0012】
本発明の樹脂組成物はエアコン用ファン、扇風機、洗たく機等のコンデンサーモートル、テレビ、ステレオ、コンパクトディスクプレーヤー等の電源トランス等の電気機器の絶縁処理に適用される。
【0013】
【実施例】
以下実施例により本発明を説明する。下記例中の部は、重量部を意味する。
製造例1
不飽和ポリエステル(A−1)の合成
無水マレイン酸784部、テレフタル酸166部、イソフタル酸166部、ジエチレングリコール847部、エチレングリコール186部を反応釜に仕込み、窒素ガス気流中で200〜220℃に昇温させ、次に、ジシクロペンタジエン528部を添加し、以下、常法により脱水縮合反応させ、酸価が20となったところで冷却した。
【0014】
実施例1
不飽和ポリエステル(A−1)45部、スチレン35部、平均粒径2μmの二酸化ケイ素39部、オクチルシランで表面処理を行った一次粒子の平均粒径が20nmの二酸化ケイ素1部、チタニウムステアレート0.10部、及びベンゾイルパーオキサイド0.8部を撹拌混合して電気絶縁用樹脂組成物を調製した。
【0015】
実施例2
不飽和ポリエステル(A−1)45部、スチレン35部、平均粒径10μmの二酸化ケイ素39部、オクチルシランで表面処理を行った一次粒子の平均粒径が20nmの二酸化ケイ素1部、チタニウムステアレート0.10部、及びベンゾイルパーオキサイド0.8部を撹拌混合して電気絶縁用樹脂組成物を調製した。
【0016】
比較例1
不飽和ポリエステル(A−1)45部、スチレン35部、平均粒径2μmの二酸化ケイ素40部、チタニウムステアレート0.10部、及びベンゾイルパーオキサイド0.8部を撹拌混合して電気絶縁用樹脂組成物を調製した。
【0017】
比較例2
不飽和ポリエステル(A−1)45部、スチレン35部、平均粒径10μmの二酸化ケイ素40部、チタニウムステアレート0.10部、及びベンゾイルパーオキサイド0.8部を撹拌混合して電気絶縁用樹脂組成物を調製した。
【0018】
比較例3
不飽和ポリエステル(A−1)45部、スチレン35部、平均粒径2μmの二酸化ケイ素39部、表面処理を行わない一次粒子の平均粒径が20nmの二酸化ケイ素1部、チタニウムステアレート0.10部、及びベンゾイルパーオキサイド0.8部を撹拌混合して電気絶縁用樹脂組成物を調製した。
【0019】
比較例4
不飽和ポリエステル(A−1)45部、スチレン35部、平均粒径10μmの二酸化ケイ素39部、表面処理を行わない一次粒子の平均粒径が20nmの二酸化ケイ素1部、チタニウムステアレート0.10部、及びベンゾイルパーオキサイド0.8部を撹拌混合して電気絶縁用樹脂組成物を調製した。
【0020】
得られた電気絶縁用樹脂組成物について、電気絶縁用樹脂組成物の粘度、揺変度、二酸化ケイ素の沈降性、熱伝導率及びこの電気絶縁用樹脂組成物を用いて電気絶縁処理したトランスの運転時の温度上昇と含浸性を調べた。その結果を表1に示す。
【0021】
なお、これら特性の試験方法は、以下の通りである。
ワニス粘度、揺変度:JIS C 2105に準じて測定した。
二酸化ケイ素の沈降性:直径18mmの試験管中にワニスを100mmの高さに入れ、常温で所定期間保管後、ワニス全体の高さに対する二酸化ケイ素の高さを測定した。
沈降した二酸化ケイ素の常態:直径60mmのマヨネーズ瓶にワニスを100mmの高さに入れ、常温で所定期間保管後、直径3mm、高さ200mmのガラス棒を落下させ、ガラス棒がマヨネーズ瓶の底まで到達するか否かを試験した。ガラス棒がマヨネーズ瓶の底まで到達した場合をハードケーキ無し、ガラス棒がマヨネーズ瓶の底まで到達しなかった場合をハードケーキ有りと判断した。
沈降した二酸化ケイ素の再分散性:直径300mmのぺ−ル缶にワニスを200mmの高さに入れ、常温で所定期間保管後、直径20mmの十字型4枚羽根をぺ−ル缶の中心に、高さは底から100mmにセットし、回転数1000回転/分の速度で1時間攪拌させ、目視により、沈降した二酸化ケイ素が分散出来た場合を再分散可能、沈降した二酸化ケイ素が分散出来ない場合を再分散不可能と判断した。
【0022】
熱伝導率:直径50mm、厚さ10mmの円盤状の金型内に電気絶縁用樹脂組成物を注型し、温度150℃で3時間硬化させて試験片を作製し、熱伝導率測定装置(ダイナテック株式会社製、シーマテック(商品名))を用いて測定した。
運転時温度上昇:コア寸法が83mm×80mm×50mmのトランスのコア内部に温度センサーを付け、電気絶縁用樹脂組成物を、室温、133hPaの減圧下に注入し、温度160℃で3時間硬化させた。冷却後、トランスの温度を測定し、100Vの電圧を2時間印加した後の温度を再び測定し、電圧印加前後の温度差から、温度上昇を求めた。また、含浸性については、二次側コイルを切断し、コイル断面のエナメル線間を実体顕微鏡で観察し、樹脂組成物の含浸状態を評価した。
【0023】
粘度、揺変度、二酸化ケイ素の沈降性、沈降した二酸化ケイ素の常態、沈降した二酸化ケイ素の再分散性、熱伝導率及びこの電気絶縁用樹脂組成物を用いて電気絶縁処理したトランスの運転時の温度上昇と含浸性を調べた。その結果を表1に示す。
【0024】
【表1】

Figure 0004947329
【0025】
表1から本発明の実施例になる電気絶縁用樹脂組成物は、不飽和ポリエステル樹脂に、平均粒径20μm以下の二酸化ケイ素、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素及びチタネート系カップリング剤を混合することによって、二酸化ケイ素の沈降速度を遅くできるため、長期保管後の沈降した二酸化ケイ素がハードケーキにならず、再分散が可能となる樹脂組成物を見出した。更に、電気機器への含浸性が良好のため、運転時の電気機器の熱放散性が良好であり、電気機器の温度上昇を低減できることを見出した。
【0026】
【発明の効果】
本発明になる電気機器絶縁用樹脂組成物は、電気機器に含浸させて絶縁処理することによって、熱放散性に優れた電気機器の製造が可能となると共に、長期保管後に樹脂組成物中の二酸化ケイ素が沈降してもハードケーキにならず、再分散が可能であり、生産性を損なうことなく、電気絶縁処理ができる。更に、電気機器への含浸性が良好のため、運転時の電気機器の熱放散性が良好であり、電気機器の温度上昇を低減できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition for electrical insulation and an electrical device, and more specifically, an unsaturated polyester resin (which includes an unsaturated polyester and a crosslinkable monomer; the same shall apply hereinafter) and an inorganic filler as main components. The present invention relates to an electrical insulating resin composition and an electrical device that is electrically insulated using the electrical insulating resin composition. The present invention relates to a resin composition for electrical equipment insulation treatment, and more particularly to a resin composition for electrical equipment insulation treatment that improves the thermal radiation of coils for electrical equipment such as motors and transformers.
[0002]
[Prior art]
Electrical devices such as motors and transformers are treated with an electrical insulating resin composition for the purpose of fixing or rust prevention of iron cores, insulation or fixing of coils, and the like. As the resin composition for electrical insulation, a composition of an unsaturated polyester resin having an excellent balance of curability, air drying property, adhesiveness, electrical insulation property, economy and the like is widely used.
[0003]
In recent years, electrical equipment has become smaller, lighter, and higher in output, so the heat storage temperature becomes higher. In particular, transformers and reactor coils used in electrical equipment such as microwave ovens and inverter air conditioners are excessive during operation. Since the heat generated by various loads tends to be stored without being dissipated and the temperature of the electrical equipment rises, each material used has been required to have higher heat resistance and heat dissipation. . Furthermore, since the space factor of the coil has further increased with the demand for miniaturization, a coil with excellent impregnation properties has been demanded. In particular, when trying to improve the heat dissipation of an electric device having a coil with a high space factor by electrical insulation treatment, when a crack occurs, an air layer with low thermal conductivity is formed, and heat to the outside air of the coil is generated. Emissions are significantly reduced, and the temperature rise of operating electrical equipment cannot be reduced as expected. Therefore, there is a need for a resin composition that increases the thermal conductivity of the resin composition, improves the impregnation property of the resin composition into the coil, and is excellent in crack resistance.
As a result, the heat of the electrical equipment generated during operation can be easily dissipated into the atmosphere, and the temperature rise of the electrical equipment can be reduced, making it possible to reduce the size, weight, and output of the electrical equipment. It becomes. Moreover, when the structural member of an electric equipment is the same, it can contribute to the reliability improvement of an electric equipment.
[0004]
From the above, inorganic filler mixed unsaturated polyester resin has been used to increase the thermal conductivity by adding an inorganic filler to the unsaturated polyester resin, and has good impregnation into electrical equipment. When the inorganic filler is mixed with the mixture, the mixed inorganic filler settles down to form a hard cake due to standing over time, making it difficult to redisperse, and the content of the inorganic filler in the electrical insulating composition changes. In some cases, the thermal conductivity changes, and the expected heat dissipation of the electrical equipment cannot be obtained.
When the amount of the inorganic filler in the resin composition for electrical insulation is increased, the viscosity and the fluctuation are increased, the impregnation property to the electrical equipment is lowered and the heat dissipation is lowered, and the cured film is thickened and cracks are generated. Tends to occur.
Moreover, when the amount of the inorganic filler in the resin composition for electrical insulation is reduced, the impregnation property is improved, but the thermal conductivity of the resin is lowered, so that the heat dissipation property of the electric device tends to be lowered.
[0005]
[Problems to be solved by the invention]
In the resin composition for electrical insulation, in order to satisfy the recent required performance, low viscosity, low fluctuation, high thermal conductivity, further slow down the sedimentation rate of the inorganic filler, and There has been a demand for a resin composition for electrical insulation that allows easy redispersibility of inorganic fillers that have settled out of standing.
The present invention has a low viscosity, low fluctuation, good impregnation into electrical equipment, high thermal conductivity, can easily dissipate heat generated during operation of the electrical equipment, An electrically insulating resin composition in which the sedimentation rate of the inorganic filler is considerably slowed and the inorganic filler settled by standing for a long time is easily redispersible, and the electrically insulating resin composition is electrically insulated. The electrical equipment which becomes.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have mixed unsaturated polyester resin with silicon dioxide having an average particle diameter of 20 μm or less, hydrophobic silicon dioxide having an average particle diameter of primary particles of 500 nm or less, and a titanate coupling agent. When silicon dioxide and a titanate coupling agent having an average particle size of 20 μm or less are mixed with a conventional unsaturated polyester resin, or silicon dioxide having an average particle size of 20 μm or less and an average particle size of primary particles of 500 nm or less are added to the unsaturated polyester resin. Compared to the case where hydrophilic silicon dioxide and titanate coupling agent are mixed, the viscosity can be lowered and the degree of fluctuation can be lowered, and the sedimentation rate of silicon dioxide can be slowed, and long-term storage can be achieved. The silicon dioxide that settled later does not become a hard cake and can be easily redispersed. Because of good impregnation of, the heat dissipation of the electrical equipment during operation is good, it was found to be reduced the temperature rise of the electrical device. The present invention relates to the following.
(1) (A) 100 parts by weight of unsaturated polyester resin containing 25 to 60 parts by weight of unsaturated polyester and 75 to 40 parts by weight of crosslinkable monomer so that the total amount thereof is 100 parts by weight, (B) average 10 to 100 parts by weight of silicon dioxide having a particle size of 20 μm or less, (C) 0.001 to 10 parts by weight of hydrophobic silicon dioxide having an average primary particle size of 500 nm or less, and (D) 0.01 to titanate coupling agent A resin composition for electrical equipment insulation treatment comprising 1 part by weight.
(2) An electrical device obtained by electrical insulation treatment using the electrical insulation resin composition according to (1).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The unsaturated polyester resin of component (A) used in the present invention contains an unsaturated polyester and a crosslinkable monomer. The unsaturated polyester is obtained by reacting the following acid component and alcohol component, and if necessary, a modifying component. Examples of the acid component include unsaturated acids such as maleic acid, maleic anhydride, and fumaric acid, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydroanhydride Saturated acids such as phthalic acid, adipic acid and sebacic acid, vegetable oil fatty acids such as soybean oil fatty acid, linseed oil fatty acid and tall oil fatty acid are used. Examples of the alcohol component include propylene glycol, ethylene glycol, dipropylene glycol, diethylene glycol, 1,3-butanediol, neopentyl glycol, glycerin, trimethylolpropane, and pentaerythritol. Examples of the modifying component include linseed oil, soybean oil, tall oil, dehydrated castor oil, coconut oil, dicyclopentadiene, cyclopentadiene, and the like. Examples of the crosslinkable monomer include styrene, vinyl toluene, α-methyl styrene, tertiary butyl styrene, divinyl benzene, various acrylic esters and / or methacrylic esters, various allyl esters, and various allyl ethers. The amount of the crosslinkable monomer used is in the range of 75 to 40 parts by weight with respect to 25 to 60 parts by weight of the unsaturated polyester , and the total amount thereof is 100 parts by weight.
[0008]
The silicon dioxide having an average particle size of 20 μm or less of the component (B) used in the present invention is blended mainly for the purpose of improving the heat dissipation when operating an electric device. From the viewpoint of heat dissipation, it is better that the blending amount is large. However, when the blending amount is large, the viscosity and the degree of fluctuation of the resin composition for electrical insulation are increased and the impregnation property is lowered. From this, when the total amount of unsaturated polyester , crosslinkable monomer and silicon dioxide having an average particle size of 20 μm or less is 100 parts by weight, silicon dioxide having an average particle size of 20 μm or less is in a range not exceeding 60 parts by weight. Preferably, it is in a range not exceeding 45 parts by weight. Moreover, in order to improve heat dissipation, it is preferable to mix 10 parts by weight or more of silicon dioxide having an average particle size of 20 μm or less. When the blending amount of silicon dioxide having an average particle size of 20 μm or less is less than 10 parts by weight, the thermal conductivity tends to be low and the heat dissipation tends to be low. Hydrophobic silicon dioxide having an average primary particle diameter of component (C) used in the present invention of 500 nm or less can slow down the sedimentation rate of silicon dioxide having an average particle diameter of 20 μm or less of component (B), and The main purpose is that the silicon dioxide precipitated after long-term storage does not become a hard cake but can be easily redispersed. From the viewpoint of delaying the sedimentation rate of silicon dioxide having an average particle size of 20 μm or less of component (B) and facilitating the redispersibility of silicon dioxide precipitated after long-term storage, the larger the blending amount, the better. If it becomes, the viscosity and the variability of the resin composition for electrical insulation will become high, and impregnation property will fall. From this, when the total amount of unsaturated polyester , crosslinkable monomer, silicon dioxide having an average particle size of 20 μm or less and hydrophobic silicon dioxide having an average particle size of 500 nm or less is 100 parts by weight, the average particle size of primary particles The hydrophobic silicon dioxide having a diameter of 500 nm or less is preferably in a range not exceeding 10 parts by weight, and more preferably in a range not exceeding 5 parts by weight. In addition, from the viewpoint of delaying the sedimentation rate of silicon dioxide having an average particle size of 20 μm or less of the component (B) and facilitating redispersibility of silicon dioxide precipitated after long-term storage, the average particle size of primary particles is 500 nm or less. The hydrophobic silicon dioxide is preferably added in an amount of 0.001 part by weight or more. When the blending amount of the hydrophobic silicon dioxide having an average primary particle size of 500 nm or less is less than 0.001 part by weight, the sedimentation rate of the silicon dioxide having an average particle size of 20 μm or less of the component (B) is increased, and it is stored for a long time. Later precipitated silicon dioxide becomes a hard cake and tends to be difficult to redisperse. Hydrophobic silicon dioxide having an average primary particle size of 500 nm or less is obtained by subjecting the surface to chemical treatment using octylsilane, dimethyldichlorosilane, dimethylsilicone oil, hexamethyldisilazane, etc. to make the surface hydrophobic. Can be used.
[0009]
The (D) component titanium coupling agent used in the present invention is blended for the purpose of lowering the viscosity and the degree of fluctuation which have been increased by the addition of silicon dioxide. From the viewpoint of lowering the viscosity and the degree of variation, the viscosity and the degree of variation decrease as the blending amount increases. However, when the blending amount increases, the viscosity becomes too low, and the average particle size of the component (B) is 20 μm or less. The sedimentation rate of silicon dioxide increases, and the silicon dioxide that settles after long-term storage tends to be a hard cake, making redispersion difficult. Moreover, when there are too few compounding quantities, there exists an effect in the fall of a viscosity and fluctuation, and there exists a tendency for the impregnation property to a coil to fall.
From this, as a compounding quantity of a titanium type coupling agent, it is the range of 0.01-1 weight part, and the range of 0.05-0.5 weight part is especially preferable.
Titanium-based coupling agents include titanium stearate, di-i-proxy titanium diisostearate, (2-n-butoxycarbonylbenzoyloxy) tributoxytitanium, 2-ethylhexanoyloxytri (2-propoxy) titanium (Both manufactured by Nippon Soda Co., Ltd.) can be used.
[0010]
In the resin composition for electrical equipment insulation treatment according to the present invention, as a curing agent, for example, acyl peroxide such as benzoin peroxide and acetyl peroxide, hydroperoxide such as tertiary butyl peroxide and cumene hydroperoxide, methyl ethyl ketone Ketone peroxides such as peroxide and cyclohexanone peroxide, dialkyl peroxides such as ditertiary butyl peroxide and dicumyl peroxide, and oxyperoxides such as tertiary butyl peroxyacetate are used. As addition amount of a hardening | curing agent, 0.1-5 weight part is preferable with respect to 100 weight part of total amounts of (A) component, (B) component, (C) component, and (D) component.
[0011]
Moreover, an accelerator and a polymerization inhibitor can be added as necessary. As the accelerator, for example, manganese naphthenate, lead naphthenate, cobalt naphthenate, cobalt octenoate and the like are used. As the polymerization inhibitor, for example, quinones such as hydroquinone, tertiary butyl catechol, and P-benzoquinone are used.
[0012]
The resin composition of the present invention is applied to insulation treatment of electrical equipment such as condenser motors such as air conditioner fans, electric fans, and washing machines, power transformers such as televisions, stereos, and compact disc players.
[0013]
【Example】
The following examples illustrate the invention. The part in the following example means a weight part.
Production Example 1
Synthesis of Unsaturated Polyester (A-1) 784 parts of maleic anhydride, 166 parts of terephthalic acid, 166 parts of isophthalic acid, 847 parts of diethylene glycol and 186 parts of ethylene glycol are charged into a reaction kettle and heated to 200-220 ° C. in a nitrogen gas stream. The temperature was raised, and then 528 parts of dicyclopentadiene was added. Thereafter, a dehydration condensation reaction was carried out by a conventional method, and the mixture was cooled when the acid value reached 20.
[0014]
Example 1
45 parts of unsaturated polyester (A-1), 35 parts of styrene, 39 parts of silicon dioxide having an average particle diameter of 2 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of primary particles subjected to surface treatment with octylsilane, titanium stearate A resin composition for electrical insulation was prepared by stirring and mixing 0.10 parts and 0.8 parts of benzoyl peroxide.
[0015]
Example 2
45 parts of unsaturated polyester (A-1), 35 parts of styrene, 39 parts of silicon dioxide having an average particle diameter of 10 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of primary particles subjected to surface treatment with octylsilane, titanium stearate A resin composition for electrical insulation was prepared by stirring and mixing 0.10 parts and 0.8 parts of benzoyl peroxide.
[0016]
Comparative Example 1
Resin for electrical insulation by stirring and mixing 45 parts of unsaturated polyester (A-1), 35 parts of styrene, 40 parts of silicon dioxide having an average particle diameter of 2 μm, 0.10 parts of titanium stearate, and 0.8 parts of benzoyl peroxide A composition was prepared.
[0017]
Comparative Example 2
Resin for electrical insulation by stirring and mixing 45 parts of unsaturated polyester (A-1), 35 parts of styrene, 40 parts of silicon dioxide having an average particle size of 10 μm, 0.10 parts of titanium stearate, and 0.8 parts of benzoyl peroxide A composition was prepared.
[0018]
Comparative Example 3
45 parts of unsaturated polyester (A-1), 35 parts of styrene, 39 parts of silicon dioxide with an average particle diameter of 2 μm, 1 part of silicon dioxide with an average particle diameter of 20 nm of primary particles not subjected to surface treatment, titanium stearate 0.10 Part and 0.8 part of benzoyl peroxide were stirred and mixed to prepare a resin composition for electrical insulation.
[0019]
Comparative Example 4
45 parts of unsaturated polyester (A-1), 35 parts of styrene, 39 parts of silicon dioxide having an average particle diameter of 10 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of primary particles not subjected to surface treatment, titanium stearate 0.10 Part and 0.8 part of benzoyl peroxide were stirred and mixed to prepare a resin composition for electrical insulation.
[0020]
About the obtained resin composition for electrical insulation, the viscosity of the resin composition for electrical insulation, the degree of variation, the sedimentation property of silicon dioxide, the thermal conductivity, and the transformer of the electrical insulation treatment using this resin composition for electrical insulation. The temperature rise and impregnation during operation were investigated. The results are shown in Table 1.
[0021]
The test methods for these characteristics are as follows.
Varnish viscosity, degree of change: measured according to JIS C 2105.
Precipitation of silicon dioxide: The varnish was put in a test tube having a diameter of 18 mm at a height of 100 mm, stored at room temperature for a predetermined period, and then the height of silicon dioxide relative to the height of the entire varnish was measured.
Normal state of precipitated silicon dioxide: Put varnish in a mayonnaise bottle with a diameter of 60 mm at a height of 100 mm, store it at room temperature for a predetermined period, drop a glass rod with a diameter of 3 mm and a height of 200 mm, and the glass rod reaches the bottom of the mayonnaise bottle It was tested whether it reached. When the glass rod reached the bottom of the mayonnaise bottle, it was judged that there was no hard cake, and when the glass rod did not reach the bottom of the mayonnaise bottle, it was judged that there was a hard cake.
Redispersibility of settled silicon dioxide: Put varnish at a height of 200 mm in a 300 mm diameter pail can, store it at room temperature for a predetermined period, and then put a cruciform four blades with a diameter of 20 mm at the center of the pail can. When the height is set to 100 mm from the bottom and stirred for 1 hour at a rotational speed of 1000 rpm, it can be redispersed when the precipitated silicon dioxide can be dispersed, and the precipitated silicon dioxide cannot be dispersed. Was determined to be impossible to redistribute.
[0022]
Thermal conductivity: A resin composition for electrical insulation is cast in a disk-shaped mold having a diameter of 50 mm and a thickness of 10 mm, and cured at a temperature of 150 ° C. for 3 hours to produce a test piece. It was measured using Dynatech Co., Ltd., Cimatec (trade name).
Temperature rise during operation: A temperature sensor is attached inside the core of a transformer with a core size of 83 mm x 80 mm x 50 mm, and the resin composition for electrical insulation is injected under reduced pressure of room temperature and 133 hPa, and cured at a temperature of 160 ° C for 3 hours. It was. After cooling, the temperature of the transformer was measured, the temperature after applying a voltage of 100 V for 2 hours was measured again, and the temperature increase was obtained from the temperature difference before and after voltage application. Moreover, about the impregnation property, the secondary coil was cut | disconnected and the space between the enamel wires of the coil cross section was observed with the stereomicroscope, and the impregnation state of the resin composition was evaluated.
[0023]
Viscosity, variability, sedimentation of silicon dioxide, normal state of precipitated silicon dioxide, redispersibility of precipitated silicon dioxide, thermal conductivity, and operation of a transformer electrically insulated using this resin composition for electrical insulation The temperature rise and the impregnation property were investigated. The results are shown in Table 1.
[0024]
[Table 1]
Figure 0004947329
[0025]
From Table 1, the resin composition for electrical insulation according to the examples of the present invention includes an unsaturated polyester resin, silicon dioxide having an average particle size of 20 μm or less, hydrophobic silicon dioxide having an average particle size of primary particles of 500 nm or less, and a titanate series. By mixing a coupling agent, the sedimentation rate of silicon dioxide can be slowed down, so that a resin composition was found in which precipitated silicon dioxide after long-term storage does not become a hard cake and can be redispersed. Furthermore, since the impregnation property to the electric equipment is good, it was found that the heat dissipation of the electric equipment during operation is good and the temperature rise of the electric equipment can be reduced.
[0026]
【Effect of the invention】
The resin composition for insulating electrical equipment according to the present invention can be manufactured by impregnating and insulating the electrical equipment, thereby making it possible to produce an electrical equipment with excellent heat dissipation, and after the long-term storage, the dioxide dioxide contained in the resin composition. Even if silicon settles, it does not become a hard cake, can be redispersed, and can be electrically insulated without impairing productivity. Furthermore, since the impregnation property to the electric device is good, the heat dissipation property of the electric device during operation is good, and the temperature rise of the electric device can be reduced.

Claims (2)

(A)不飽和ポリエステル25〜60重量部及び架橋性単量体75〜40重量部をこれらの総量が100重量部になるように含む不飽和ポリエステル樹脂100重量部、(B)平均粒径20μm以下の二酸化ケイ素10〜100重量部、(C)一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素0.001〜10重量部、(D)チタネート系カップリング剤0.01〜1重量部を含有してなる電気機器絶縁処理用樹脂組成物。(A) 25 to 60 parts by weight of an unsaturated polyester and 75 to 40 parts by weight of a crosslinkable monomer so that the total amount thereof is 100 parts by weight, (B) an average particle diameter of 20 μm 10 to 100 parts by weight of the following silicon dioxide, (C) 0.001 to 10 parts by weight of hydrophobic silicon dioxide having an average primary particle size of 500 nm or less, and (D) 0.01 to 1 part by weight of a titanate coupling agent A resin composition for electrical equipment insulation treatment, comprising: 請求項1記載の電気絶縁用樹脂組成物を用いて電気絶縁処理されてなる電気機器。An electrical device obtained by electrical insulation treatment using the resin composition for electrical insulation according to claim 1.
JP2001175730A 2001-06-11 2001-06-11 Resin composition for electrical insulation and electrical equipment Expired - Fee Related JP4947329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175730A JP4947329B2 (en) 2001-06-11 2001-06-11 Resin composition for electrical insulation and electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175730A JP4947329B2 (en) 2001-06-11 2001-06-11 Resin composition for electrical insulation and electrical equipment

Publications (2)

Publication Number Publication Date
JP2002367432A JP2002367432A (en) 2002-12-20
JP4947329B2 true JP4947329B2 (en) 2012-06-06

Family

ID=19016809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175730A Expired - Fee Related JP4947329B2 (en) 2001-06-11 2001-06-11 Resin composition for electrical insulation and electrical equipment

Country Status (1)

Country Link
JP (1) JP4947329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166551A1 (en) * 2012-05-10 2013-11-14 Vero Industries Ip Pty Ltd A surface composition and method of application thereof
AU2014203799B2 (en) * 2012-05-10 2014-08-07 Vero Industries Ip Pty Ltd A Surface Composition and Method of Application Thereof
CN104072963B (en) * 2014-07-17 2015-11-18 应璐 A kind of nano silicon toughened unsaturated polyester material and preparation method thereof

Also Published As

Publication number Publication date
JP2002367432A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
CN106811023A (en) A kind of environment-friendly type wind-driven generator VPI impregnating resins and preparation method thereof
JP4947329B2 (en) Resin composition for electrical insulation and electrical equipment
JP4590675B2 (en) Resin composition for electrical insulation and electrical equipment
JP2009099387A (en) Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same
JP2004152607A (en) Resin composition for electrical insulation and electric apparatus
JP3376490B2 (en) Resin composition for electrical insulation and method for producing electrical-insulated transformer
JP5753033B2 (en) Resin composition and coil
JP2001152003A (en) Resin composition for electric insulation
JP2001172490A (en) Resin composition for electrical insulation and electrical equipment
JP2015147918A (en) Unsaturated polyester resin composition, and resin composition for electric insulation using the same, and method for manufacturing electric equipment
JPH11154420A (en) Resin composition for electrical insulation and electric appliance electrically insulated
JP2002348452A (en) Resin composition for electrical insulation
JP2000178324A (en) Electrical insulating resin composition and electrical machinery
JP2002097377A (en) Molding composition
JP2004091515A (en) Highly heat dissipating unsaturated polyester resin composition
JP2003157721A (en) Resin composition for electrical insulation and electrical apparatus
JPH11310628A (en) Resin composition for electric insulation and electric instrument
JPH1180526A (en) Resin composition for electrical insulation and electric instrument
JP2006134596A (en) Resin composition for electrical insulation and electrical device
JPH0699623B2 (en) Insulation treatment resin composition, insulation treatment method and stator coil
JPH0959500A (en) Resin composition for electrical insulation and electrically insulated electrical apparatus
JPH10237290A (en) Electrical insulating resin composition and electrical equipment
JP2006344406A (en) Resin composition for electric insulation and manufacturing method of electric insulator using the same
JPS5960816A (en) Electrically insulating resin composition
JP2014007238A (en) Resin composition for inductor casting use, and electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees