JP2009099387A - Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same - Google Patents

Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same Download PDF

Info

Publication number
JP2009099387A
JP2009099387A JP2007270074A JP2007270074A JP2009099387A JP 2009099387 A JP2009099387 A JP 2009099387A JP 2007270074 A JP2007270074 A JP 2007270074A JP 2007270074 A JP2007270074 A JP 2007270074A JP 2009099387 A JP2009099387 A JP 2009099387A
Authority
JP
Japan
Prior art keywords
resin composition
parts
weight
silicon dioxide
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007270074A
Other languages
Japanese (ja)
Inventor
Yasuhiro Obata
康裕 小幡
Isao Umagami
伊三雄 馬上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007270074A priority Critical patent/JP2009099387A/en
Publication of JP2009099387A publication Critical patent/JP2009099387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for electric insulation, which can soften a varnish coat, can impart low dielectric constant and high thermal conductivity, and can demonstrate curing object characteristics such as electric insulation as good as or better than a conventional fluid type resin composition and excellent stability; and to provide a method of manufacturing an electric apparatus insulator using the composition. <P>SOLUTION: A resin mixture for electric insulation contains as essential materials (A) unsaturated polyester using alcohol having α,β-unsaturated dibasic acid and one or more hydroxyl groups as an essential ingredient, (B) a reactant diluent having an unsaturated group, (C) alkylbenzene formaldehyde resin, (D) silicon dioxide with a mean particle size of 0.5 to 5 μm, (E) hydrophobic silicon dioxide with a mean particle size of a primary particle of ≤500 nm, and (F) a titanate system coupling agent. The method of manufacturing the electric apparatus insulator uses this composition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気絶縁用樹脂組成物及びこの組成物を用いた電気機器絶縁物の製造方法に関し、さらに詳しくは不飽和ポリエステル樹脂とキシレン・ホルムアルデヒド樹脂及び二酸化ケイ素を主成分とする電気絶縁用樹脂組成物及びこの電気絶縁用樹脂組成物を用いて、含浸、浸漬処理し絶縁処理されてなる電気機器絶縁物の製造方法に関する。
さらに、詳しくは、モータ−、トランス、アーマチュア(回転子)、ステ−タ(固定子)などの電気機器用コイルの含浸性を低下することなく、柔軟な硬化皮膜を持ち、短時間で硬化可能であり、誘電率の低下が可能でかつ、通電時の熱上昇を抑えることが可能な電気機器絶縁処理用樹脂組成物及びこの組成物を用いた電気機器絶縁物の製造方法に関する。
The present invention relates to a resin composition for electrical insulation and a method for producing an electrical equipment insulator using the composition, and more particularly, an electrical insulation resin mainly composed of unsaturated polyester resin, xylene / formaldehyde resin and silicon dioxide. The present invention relates to a composition and a method for producing an electrical equipment insulator, which is impregnated and dipped using the resin composition for electrical insulation.
More specifically, it has a flexible cured film and can be cured in a short time without reducing the impregnation of coils for electrical equipment such as motors, transformers, armatures (rotors), and stators (stators). In addition, the present invention relates to a resin composition for electrical equipment insulation treatment that can lower the dielectric constant and can suppress a rise in heat during energization, and a method for producing an electrical equipment insulation using the composition.

不飽和ポリエステルと架橋性単量体からなる不飽和ポリエステル組成物は、機械的、電気的及び熱的特性、作業性、経済性などの点で調和がとれているため、FRP積層板をはじめ多くの用途に用いられている。   Unsaturated polyester compositions consisting of unsaturated polyester and crosslinkable monomers are harmonized in terms of mechanical, electrical and thermal properties, workability, economy, etc. It is used for

この樹脂組成物は、電気絶縁用としても特性、作業性に優れているため、モータ、トランスなどの含浸用ワニスとして広く用いられている。
トランス用の含浸ワニスの要望事項としては、低温短時間硬化及びワニスからの溶剤揮発量の減少(無溶剤化)があげられる。
This resin composition is widely used as an impregnation varnish for motors, transformers and the like because of its excellent characteristics and workability even for electrical insulation.
The requirements for the impregnating varnish for transformer include low-temperature and short-time curing and reduction of solvent volatilization from the varnish (no solvent).

この電源トランスなどの低周波トランスにおいては、通電時に磁歪や磁気力により、鉄心の振動や電磁力によるコイルの振動等によって、騒音(ノイズ)が発生する。
この騒音を防止するために、機器の構造によっても異なるが、絶縁処理用の不飽和ポリエステル樹脂の固着力を大きくして振動の発生そのものを防止することが公知となっている。
In a low-frequency transformer such as a power transformer, noise is generated by magnetostriction or magnetic force when energized due to iron core vibration or coil vibration due to electromagnetic force.
In order to prevent this noise, it is known that the occurrence of vibration itself is prevented by increasing the fixing force of the unsaturated polyester resin for insulation treatment, depending on the structure of the device.

また、鉄芯を使用しているため、防錆性や高耐熱性の付与も要求されている。
また、近年のデジタル家電化に伴い、家電用電気機器には、大型の鉄芯を使用した低
周波トランスから、小型化が可能な高周波トランスを使用する傾向がある。この高周波トランスには、コア部分に鉄ではなくフェライトを使用している。このため、ワニスの固着力が大きくなると、硬化物が硬くなり、フェライトコアへの応力が増し、コアずれを誘発し、コア部分のクラックを発生させ電気特性を悪化させる不具合が発生している。
Moreover, since the iron core is used, the provision of rust prevention and high heat resistance is also required.
In addition, with the recent shift to digital home appliances, there is a tendency for electrical appliances for home appliances to use high-frequency transformers that can be reduced in size from low-frequency transformers that use large iron cores. This high-frequency transformer uses ferrite instead of iron for the core portion. For this reason, when the fixing force of the varnish is increased, the cured product becomes harder, the stress on the ferrite core is increased, the core shift is induced, the core portion is cracked, and the electrical characteristics are deteriorated.

さらに、家電用電気機器には、小型化が可能な高周波トランスを使用する傾向がある。
これらに対応すべく、各絶縁部材には高周波化に対応した電気特性として低誘電率化が
求められている。
Furthermore, high-frequency transformers that can be miniaturized tend to be used in electrical appliances for home appliances.
In order to cope with these, each insulating member is required to have a low dielectric constant as electrical characteristics corresponding to high frequency.

上記のような樹脂組成物としては、特許文献1の記載によれば、エポキシ樹脂(誘電率4.0程度)、フェノール樹脂(誘電率4.5程度)、ポリイミド樹脂(誘電率3.8程度)、熱硬化型ポリフェニレンエーテル樹脂(誘電率2.5程度)、ポリテトラフルオロエチレン樹脂(誘電率2.3程度)等の熱硬化性樹脂を主成分として使用している。中でも、エポキシ樹脂が一般的に使用されている。   As the resin composition as described above, according to the description in Patent Document 1, epoxy resin (dielectric constant of about 4.0), phenol resin (dielectric constant of about 4.5), polyimide resin (dielectric constant of about 3.8) ), Thermosetting polyphenylene ether resin (dielectric constant of about 2.5), polytetrafluoroethylene resin (dielectric constant of about 2.3) and the like are used as the main component. Among these, epoxy resins are generally used.

しかし、現在、高周波・低周波トランス等の電気機器の含浸用途として汎用的に使用されている不飽和ポリエステル樹脂はあまり使用されていない。
また、小型・軽量化、高出力化が進んだため、蓄熱温度がより高くなり、特に、電子レンジ、インバータエアコン等の電気機器に用いられる変圧器やリアクトルコイルは、運転時に過大な負荷により発生した熱が放散されずに蓄熱され電気機器の温度が上昇する傾向があるため、使用される各材料は、より耐熱性及び熱放散性が高いものが求められるようになってきた。
However, at present, unsaturated polyester resins that are widely used for impregnation of electrical equipment such as high-frequency and low-frequency transformers are not so often used.
In addition, as the size, weight, and output have increased, the heat storage temperature has increased, and in particular, transformers and reactor coils used in electrical equipment such as microwave ovens and inverter air conditioners are generated by excessive loads during operation. However, since the heat is stored without being dissipated and the temperature of the electrical equipment tends to rise, materials to be used are required to have higher heat resistance and higher heat dissipation.

そこで、樹脂組成物の熱伝導率を上げると共に、コイルへの樹脂組成物の含浸性を向上させ、更に、耐クラック性が優れた樹脂組成物が求められる。
その結果、稼動する事によって発生した電気機器の熱が、大気雰囲気中へ放散し易くなり、電気機器の温度上昇を低減する事が出来る為、電気機器の小型・軽量化、高出力化が可能となる。
また、電気機器の構成部材が同じ場合、電気機器の信頼性向上に寄与できる。
Therefore, there is a need for a resin composition that increases the thermal conductivity of the resin composition, improves the impregnation property of the resin composition into the coil, and is excellent in crack resistance.
As a result, the heat of the electrical equipment generated during operation can be easily dissipated into the atmosphere, and the temperature rise of the electrical equipment can be reduced, making it possible to reduce the size, weight, and output of the electrical equipment. It becomes.
Moreover, when the structural member of an electric equipment is the same, it can contribute to the reliability improvement of an electric equipment.

さらに、屋外などで使用される電気機器は、屋内で用いられる電気機器と比べ、加水分解などの環境負荷が厳しく、電気絶縁用樹脂組成物として、従来の不飽和ポリエステル樹脂を用いた場合、加水分解により、電気絶縁性が急激に低下してしまう場合が有った。このため、耐環境負荷を向上させた電気絶縁用樹脂組成物が求められるようになってきた。   Furthermore, compared with electrical equipment used indoors, electrical equipment used outdoors has a severe environmental impact such as hydrolysis. When a conventional unsaturated polyester resin is used as a resin composition for electrical insulation, Due to the decomposition, the electrical insulating properties sometimes deteriorated rapidly. For this reason, a resin composition for electrical insulation having improved environmental resistance has been demanded.

以上より、不飽和ポリエステル樹脂に無機充填剤を添加させて熱伝導率を高めると共に、電気機器への含浸性が良好な無機充填剤混合不飽和ポリエステル樹脂が用いられてきたが、不飽和ポリエステル樹脂に無機充填剤を混合すると、経日放置により、混合していた無機充填剤が沈降してハードケーキとなり、再分散が困難となり、電気絶縁組成物中に占める無機充填剤の含有量が変化し、熱伝導率が変わってしまい、期待した電気機器の熱放散性が得られない場合があった。   From the above, inorganic filler mixed unsaturated polyester resin has been used to increase the thermal conductivity by adding an inorganic filler to the unsaturated polyester resin, and has good impregnation into electrical equipment. When the inorganic filler is mixed with the mixture, the mixed inorganic filler settles down to form a hard cake due to standing over time, making it difficult to redisperse, and the content of the inorganic filler in the electrical insulating composition changes. In some cases, the thermal conductivity changes, and the expected heat dissipation of the electrical equipment cannot be obtained.

電気絶縁用樹脂組成物中の無機充填剤の量が多くなると、粘度及び揺変度が高くなり電気機器への含浸性が低下し熱放散性が低下すると共に、硬化物皮膜が厚くなり、クラックが発生し易くなる傾向がある。
また、電気絶縁用樹脂組成物中の無機充填剤の量が少なくなると、含浸性は向上するが、樹脂の熱伝導率が低下するため、電気機器の放熱性が低下する傾向がある。
When the amount of the inorganic filler in the resin composition for electrical insulation is increased, the viscosity and the fluctuation are increased, the impregnation property to the electrical equipment is lowered and the heat dissipation is lowered, and the cured film is thickened and cracks are generated. Tends to occur.
Moreover, when the amount of the inorganic filler in the resin composition for electrical insulation is reduced, the impregnation property is improved, but the thermal conductivity of the resin is lowered, so that the heat dissipation property of the electric device tends to be lowered.

特開2004−083718号公報JP 2004-083718 A

本発明は、かかる問題に鑑み、今後トランスの主流となっていくと考える高周波トランス用含浸ワニスの含浸を目的に、電気絶縁用樹脂組成物及びこれを用いた電気機器絶縁物の製造法において、ワニス皮膜を柔軟化でき、かつ低誘電率化且つ高熱伝導性付与が可能であり、さらに従来の液状タイプの樹脂組成物と同等以上の良好な電気絶縁性などの硬化物特性及び良好な安定性を示すことができる電気絶縁用樹脂組成物を提供するものであり、さらに、本発明は、この電気絶縁用樹脂混合物を用いた電気機器絶縁物の製造法を提供することを目的とするものである。   In view of such problems, the present invention aims to impregnate an impregnating varnish for a high-frequency transformer that is considered to become the mainstream of transformers in the future, and in a method for producing an electrical insulating resin composition and an electrical equipment insulator using the same, The varnish film can be softened, low dielectric constant and high thermal conductivity can be imparted, and cured product characteristics such as good electrical insulation and good stability equivalent to or better than conventional liquid resin compositions It is another object of the present invention to provide a method for producing an electrical equipment insulator using the electrical insulation resin mixture. is there.

本発明は、α,β−不飽和二塩基酸と1以上の水酸基を持つアルコ−ルを必須成分として使用する不飽和ポリエステル(A)、不飽和基を有する反応性希釈剤(B)、アルキルベンゼン・ホルムアルデヒド樹脂(C)、平均粒径0.5〜5μmの二酸化ケイ素(D)、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素(E)及びチタネート系カップリング剤(F)を必須材料として含む電気絶縁用樹脂混合物に関する。   The present invention relates to an unsaturated polyester (A) using an α, β-unsaturated dibasic acid and an alcohol having one or more hydroxyl groups as essential components, a reactive diluent (B) having an unsaturated group, and an alkylbenzene. -Formaldehyde resin (C), silicon dioxide (D) with an average particle size of 0.5-5 μm, hydrophobic silicon dioxide (E) with an average primary particle size of 500 nm or less, and titanate coupling agent (F) are essential The present invention relates to a resin mixture for electrical insulation contained as a material.

また、本発明は、不飽和ポリエステル(A)の分子量が、1000〜10000の範囲である上記の電気絶縁用樹脂混合物に関する。
また、本発明は、分子内に不飽和基を有する反応性モノマ(B)が、不飽和ポリエステル(A)100重量部に対して、50〜200重量部含有してなる上記の電気絶縁用樹脂組成物に関する。
また、本発明は、上記の電気絶縁用樹脂組成物100重量部に対して、アルキルベンゼン・ホルムアルデヒド樹脂(C)を0.1〜20重量部含有してなる上記の電気絶縁用樹脂組成物に関する。
Moreover, this invention relates to said resin mixture for electrical insulation whose molecular weight of unsaturated polyester (A) is the range of 1000-10000.
The present invention also provides the resin for electrical insulation as described above, wherein the reactive monomer (B) having an unsaturated group in the molecule is contained in an amount of 50 to 200 parts by weight with respect to 100 parts by weight of the unsaturated polyester (A). Relates to the composition.
Moreover, this invention relates to said resin composition for electrical insulation formed by containing 0.1-20 weight part of alkylbenzene formaldehyde resin (C) with respect to 100 weight part of said resin composition for electrical insulation.

また、本発明は、上記の電気絶縁用樹脂組成物100重量部に対して、平均粒径が0.5〜5μmの二酸化ケイ素(D)を10〜100重量部、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素(E)を0.001〜10重量部及びチタネート系カップリング剤(F)を0.01〜1重量部を含有してなる上記の電気絶縁用樹脂組成物に関する。
さらに、本発明は、電気機器を、上記の電気絶縁用樹脂組成物に重合開始剤及び安定剤を含有した電気絶縁用樹脂組成物で被覆し、硬化することを特徴とする電気機器絶縁物の製造方法に関する。
Further, in the present invention, 10 to 100 parts by weight of silicon dioxide (D) having an average particle diameter of 0.5 to 5 μm and an average particle diameter of primary particles is 100 parts by weight of the resin composition for electrical insulation. The present invention relates to the above resin composition for electrical insulation, comprising 0.001 to 10 parts by weight of hydrophobic silicon dioxide (E) of 500 nm or less and 0.01 to 1 part by weight of a titanate coupling agent (F).
Furthermore, the present invention provides an electrical equipment insulating material characterized in that the electrical equipment is coated with an electrical insulation resin composition containing a polymerization initiator and a stabilizer on the electrical insulation resin composition and cured. It relates to a manufacturing method.

本発明になる電気機器絶縁用樹脂組成物は、ワニス硬化物の柔軟性にすぐれるため、応力が加わっても、クラック等が起こりにくい皮膜を提供できる。
また、樹脂組成物の粘度、表面乾燥性は従来品と同等であるため、含浸作業方法に幅広く対応可能である。
さらに、従来の液状タイプの樹脂組成物と同等以上の電気絶縁性、固着性等の硬化物特性及び低誘電率化・高熱伝導性が可能で、良好な安定性を示すため、信頼性の高い電気機器を提供することができる。
The resin composition for insulating electrical equipment according to the present invention is excellent in the flexibility of the varnish cured product, and therefore can provide a film in which cracks and the like are unlikely to occur even when stress is applied.
Moreover, since the viscosity and surface drying property of the resin composition are the same as those of conventional products, the resin composition can be widely applied to the impregnation method.
Furthermore, it is highly reliable because it has a cured product characteristic such as electrical insulation and adhesion that is equal to or better than conventional liquid type resin compositions, low dielectric constant and high thermal conductivity, and exhibits good stability. Electrical equipment can be provided.

本発明におけるα,β−不飽和二塩基酸と1以上の水酸基を持つアルコールを必須成分として使用する不飽和ポリエステル(A)としては、不飽和ポリエステルは、不飽和二塩基酸を必須成分とする酸成分及びアルコール成分、さらに必要に応じて変性成分を反応させて得られる。   As the unsaturated polyester (A) using an α, β-unsaturated dibasic acid and an alcohol having one or more hydroxyl groups as essential components in the present invention, the unsaturated polyester has an unsaturated dibasic acid as an essential component. It can be obtained by reacting an acid component and an alcohol component, and if necessary, a modifying component.

不飽和二塩基酸としては、無水マレイン酸、マレイン酸、フマル酸等が用いられ、これらは単独で用いても併用してもよい。
酸成分としては、上記記載の不飽和二塩基酸のほか飽和酸及びこの飽和酸低級アルキルのジエステル等併用することも出来る。
As the unsaturated dibasic acid, maleic anhydride, maleic acid, fumaric acid and the like are used, and these may be used alone or in combination.
As the acid component, in addition to the unsaturated dibasic acid described above, a saturated acid and a diester of this saturated acid lower alkyl may be used in combination.

例えば、テレフタル酸モノメチル、テレフタル酸の低級アルキルのジエステル等のテレフタル酸ジエステル、例えば、テレフタル酸ジメチルなどが用いられる。
また、イソフタル酸、アジピン酸、フタル酸、セバシン酸などを用いることもできる。
For example, terephthalic acid diesters such as monomethyl terephthalate and lower alkyl diesters of terephthalic acid such as dimethyl terephthalate are used.
Further, isophthalic acid, adipic acid, phthalic acid, sebacic acid and the like can also be used.

飽和酸としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ無水フタル酸、テトラヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロフタル酸、アジピン酸、セバチン酸等の飽和二塩基酸等が挙げられる。飽和酸低級アルキルのジエステルとしては、例えば、テレフタル酸ジメチルなどが用いられる。これらは単独で用いても併用してもよい。   Saturated acids include saturated dibasic acids such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, tetrahydrophthalic acid, hexahydrophthalic anhydride, hexahydrophthalic acid, adipic acid, and sebacic acid. Can be mentioned. As a diester of a saturated acid lower alkyl, for example, dimethyl terephthalate is used. These may be used alone or in combination.

さらに、大豆油脂肪酸、アマニ油脂肪酸、トール油脂肪酸等の食用油脂肪酸などを併用することもできる。不飽和酸の量は、全酸成分中50〜90当量%の範囲で選択されることが好ましい。   Furthermore, edible oil fatty acids such as soybean oil fatty acid, linseed oil fatty acid and tall oil fatty acid can be used in combination. The amount of the unsaturated acid is preferably selected in the range of 50 to 90 equivalent% in the total acid component.

アルコール成分としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3−ブタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が用いられ、これらは単独で用いても併用してもよい。必要に応じて用いられる変性成分としては、例えば、アマニ油、大豆油、トール油、脱水ヒマシ油、ヤシ油、ジシクロペンタジエン、シクロペンタジエン等が挙げられる。   As the alcohol component, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol and the like are used, and these may be used alone or in combination. May be. Examples of the modifying component used as necessary include linseed oil, soybean oil, tall oil, dehydrated castor oil, coconut oil, dicyclopentadiene, and cyclopentadiene.

本発明の不飽和ポリエステル(A)の数平均分子量(ゲルパーミッションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて換算した値、以下も同じ)は、1000〜10000が好ましく、1500〜5000がより好ましい。1000未満では、樹脂組成物の硬化性および樹脂硬化物特性が極端に劣り、10000を超えると粘度が高すぎ含浸作業性が悪化する傾向がある。   The number average molecular weight of the unsaturated polyester (A) of the present invention (measured by gel permeation chromatography method and converted using a standard polystyrene calibration curve, the same applies hereinafter) is preferably 1000 to 10,000, preferably 1500 to 5000. More preferred. If it is less than 1000, the curability and resin cured product properties of the resin composition are extremely inferior, and if it exceeds 10,000, the viscosity is too high and impregnation workability tends to deteriorate.

本発明に使用される不飽和ポリエステル(A)の製造方法としては、従来から公知の方法によることができる。例えば、必須成分であるα,β−不飽和二塩基酸と1以上の水酸基を持つアルコールのみ又は多塩基酸成分、多価アルコール成分を併用し、縮合反応させ、両成分が反応するときに生じる縮合水を系外に除きながら進められる。全酸成分1当量に対して全アルコール成分は1〜2当量の範囲で使用することが好ましい。   As a manufacturing method of unsaturated polyester (A) used for this invention, it can be based on a conventionally well-known method. For example, it occurs when an α, β-unsaturated dibasic acid, which is an essential component, and only an alcohol having one or more hydroxyl groups, or a polybasic acid component or a polyhydric alcohol component are used in combination and subjected to a condensation reaction, and both components react. The process proceeds while removing condensed water out of the system. The total alcohol component is preferably used in the range of 1 to 2 equivalents relative to 1 equivalent of the total acid component.

縮合水を系外に除去することは、好ましくは不活性気体を通じることによる自然留出又は減圧留出によって行われる。縮合水の留出を促進するため、トルエン、キシレン等の溶剤を共沸成分として系中に添加することもできる。反応の進行は、一般に反応により生成する留出分量の測定、末端の官能基の定量、反応系の粘度の測定などにより知ることができる。   Removal of the condensed water out of the system is preferably carried out by natural distillation or reduced pressure distillation through an inert gas. In order to promote the distillation of the condensed water, a solvent such as toluene or xylene can be added to the system as an azeotropic component. The progress of the reaction can be generally known by measuring the amount of distillate produced by the reaction, quantifying the functional group at the end, and measuring the viscosity of the reaction system.

合成反応を行うための反応温度は150〜250℃とすることが好ましい。このことから、反応装置としては、ガラス、ステンレス製等のものが選ばれ、撹拌装置、水とアルコール成分の共沸によるアルコール成分の留出を防ぐための分留装置、反応系の温度を高める加熱装置、この加熱装置の温度制御装置等を備えた反応装置を用いるのが好ましい。   The reaction temperature for carrying out the synthesis reaction is preferably 150 to 250 ° C. For this reason, a glass, stainless steel or the like is selected as the reaction apparatus, and a stirring apparatus, a fractionation apparatus for preventing distillation of alcohol components due to azeotropy of water and alcohol components, and raising the temperature of the reaction system. It is preferable to use a reactor equipped with a heating device, a temperature control device for the heating device, and the like.

合成における重縮合反応を行うために調整する反応装置内圧力は、常圧でも全く問題なく反応を進めることができるが、加圧し、多価アルコ−ルの沸点をあげることにより、反応を促進することができる。この場合、常圧〜0.1MPaの範囲で行うことが好ましい。   The pressure inside the reactor adjusted to carry out the polycondensation reaction in the synthesis can proceed without any problem even at normal pressure, but the reaction is accelerated by increasing the boiling point of the polyhydric alcohol by pressurization. be able to. In this case, it is preferable to carry out in the range of normal pressure to 0.1 MPa.

本発明で使用する不飽和基を有する反応性希釈剤(B)としては、スチレン、ビニルトルエン、α−メチルスチレン、ターシャリブチルスチレン、ジビニルベンゼン、各種アクリル酸エステル、各種メタクリル酸エステル、各種アリルエステル、各種アリルエーテルなどが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。   Examples of the reactive diluent (B) having an unsaturated group used in the present invention include styrene, vinyl toluene, α-methyl styrene, tertiary butyl styrene, divinyl benzene, various acrylic esters, various methacrylic esters, and various allyls. Examples include esters and various allyl ethers. These can be used alone or in combination of two or more.

不飽和ポリエステル(A)と不飽和基を有する反応性希釈剤(B)の使用量は、不飽和ポリエステル(A)を100重量部に対して、不飽和基を有する反応性希釈剤(B)50〜100重量部の範囲とするのが好ましい。50重量部未満の場合、得られる樹脂組成物の粘度が高すぎてしまい、トランス表面に厚く付着するばかりでなく、内部浸透性も悪くなる傾向があり、不飽和基を有する反応性希釈剤(B)を100重量部を超えると、ワニス粘度が低すぎて、内部に浸透した樹脂付着物が過熱硬化時に流れ出してしまう不具合が発生する傾向がある。   The use amount of the unsaturated polyester (A) and the reactive diluent (B) having an unsaturated group is 100 parts by weight of the unsaturated polyester (A) and the reactive diluent (B) having an unsaturated group. A range of 50 to 100 parts by weight is preferred. When the amount is less than 50 parts by weight, the viscosity of the resulting resin composition is too high and not only thickly adheres to the surface of the transformer, but also tends to deteriorate the internal permeability, and a reactive diluent having an unsaturated group ( If the amount of B) exceeds 100 parts by weight, the varnish viscosity is too low, and there is a tendency for the resin deposits that have penetrated into the interior to flow out during overheat curing.

本発明に用いられる(C)成分のアルキルベンゼン・ホルムアルデヒド樹脂は、トルエン・キシレン等のアルキルベンゼンとホルムアルデヒドをアルカリ触媒、例えば、水酸化ナトリウム、アンモニア、トリエルアミン等の存在下で反応させて得られるレゾールタイプの樹脂である。キシレン・ホルムアルデヒド樹脂の市販品としては、ゼネラル石油化学工業(株)製、商品名ゼネライト30、ゼネライト50、ゼネライト100、三菱瓦斯化学(株)製、商品名ニカノールL、ニカノールLL、ニカノールLLL等がある。   The component (C) alkylbenzene / formaldehyde resin used in the present invention is a resol type obtained by reacting alkylbenzene such as toluene / xylene and formaldehyde in the presence of an alkali catalyst such as sodium hydroxide, ammonia, trieramine and the like. Resin. Examples of commercially available xylene / formaldehyde resins include General Petrochemical Industry Co., Ltd., trade names Generalite 30, Generalite 50, Generalite 100, Mitsubishi Gas Chemical Co., Ltd., trade names Nikanol L, Nikanol LL, Nikanol LLL, etc. is there.

本発明に用いられる(C)成分のアルキルベンゼン・ホルムアルデヒド樹脂の使用量は、(A)成分の不飽和ポリエステルと(B)成分の不飽和基を有する反応性希釈剤の総量100重量部に対し、アルキルベンゼン・ホルムアルデヒド樹脂(C)0.1〜50重量部であるのが好ましく、1〜15重量部であるのがより好ましく、5〜10重量部であるのがさらに好ましい。アルキルベンゼン・ホルムアルデヒド樹脂が50重量部を超えて配合してしまうと、表面乾燥時間及び樹脂組成物の硬化時間が延長し、硬化しづらくなる。また配合量を0.1重量部未満にすると、樹脂組成物の硬化皮膜が柔軟にならずまた、誘電率が低下しない不具合が発生する傾向がある。   The amount of the alkylbenzene-formaldehyde resin used as the component (C) used in the present invention is 100 parts by weight based on the total amount of the reactive diluent having an unsaturated polyester as the component (A) and an unsaturated group as the component (B). The alkylbenzene / formaldehyde resin (C) is preferably 0.1 to 50 parts by weight, more preferably 1 to 15 parts by weight, and still more preferably 5 to 10 parts by weight. If the alkylbenzene / formaldehyde resin exceeds 50 parts by weight, the surface drying time and the curing time of the resin composition will be extended, making it difficult to cure. On the other hand, when the blending amount is less than 0.1 parts by weight, the cured film of the resin composition does not become flexible, and there is a tendency that a problem that the dielectric constant does not decrease occurs.

本発明に用いられる(C)成分の平均粒径20μm以下の二酸化ケイ素は、電気機器を運転するときの放熱性を向上させることを主な目的として配合される。放熱性の観点からは配合量が多い程よいが、この配合量が多くなると電気絶縁用樹脂組成物の粘度及び揺変度が高くなり、含浸性が低下する。   The silicon dioxide having an average particle size of 20 μm or less of the component (C) used in the present invention is blended mainly for the purpose of improving the heat dissipation when operating an electric device. From the viewpoint of heat dissipation, it is better that the blending amount is large. However, when the blending amount is large, the viscosity and the degree of fluctuation of the resin composition for electrical insulation are increased, and the impregnation property is lowered.

このことから、不飽和ポリエステル樹脂組成物を100重量部とするとき、(C)成分の平均粒径20μm以下の二酸化ケイ素は100重量部を超えない範囲であるのが好ましく、70重量部を超えない範囲であるのがより好ましい。   From this, when the unsaturated polyester resin composition is 100 parts by weight, silicon dioxide having an average particle size of 20 μm or less of the component (C) is preferably in a range not exceeding 100 parts by weight, and exceeds 70 parts by weight. More preferably, it is in the range.

また、放熱性を向上させるためには、平均粒径20μm以下の二酸化ケイ素を10重量部以上配合するのが好ましい。平均粒径20μm以下の二酸化ケイ素の配合量が10重量部未満であると熱伝導性が低くなり放熱性が低下する傾向がある。なお、上記の平均粒径は、レーザー回折方式による粒度分布等から算出することができる。   Moreover, in order to improve heat dissipation, it is preferable to mix 10 parts by weight or more of silicon dioxide having an average particle size of 20 μm or less. When the blending amount of silicon dioxide having an average particle size of 20 μm or less is less than 10 parts by weight, the thermal conductivity tends to be low and the heat dissipation tends to be low. The average particle size can be calculated from a particle size distribution by a laser diffraction method.

本発明に用いられる(D)成分の一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素は、長期保管後に沈降した(C)成分の二酸化ケイ素が固化せずに再分散が容易に出来る事を主な目的として配合される。   Hydrophobic silicon dioxide having an average primary particle diameter of component (D) used in the present invention of 500 nm or less can be easily redispersed without solidification of component (C) silicon dioxide precipitated after long-term storage. Is formulated for the main purpose.

長期保管後に沈降した二酸化ケイ素の再分散性の容易化の観点からは配合量が多い程よいが、この配合量が多くなると電気絶縁用樹脂組成物の粘度及び揺変度が高くなり、含浸性が低下する。このことから、不飽和ポリエステル樹脂組成物を100重量部とするとき、(D)成分の一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素は10重量部を超えない範囲であるのが好ましく、5重量部を超えない範囲であるのがより好ましい。   From the viewpoint of facilitating the redispersibility of silicon dioxide that has settled after long-term storage, the larger the amount, the better. However, if this amount is increased, the viscosity and variability of the resin composition for electrical insulation increase, and the impregnation property is increased. descend. From this, when the unsaturated polyester resin composition is 100 parts by weight, the average particle diameter of the primary particles of component (D) is preferably in the range not exceeding 10 parts by weight of hydrophobic silicon dioxide. It is more preferable that the amount not exceed 5 parts by weight.

また、長期保管後に沈降した二酸化ケイ素の再分散性の容易化の観点からは、(D)成分である一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素は0.001重量部以上配合するのが好ましい。   Further, from the viewpoint of facilitating redispersibility of silicon dioxide precipitated after long-term storage, 0.001 part by weight or more of hydrophobic silicon dioxide having an average primary particle size of component (D) of 500 nm or less is blended. Is preferred.

一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素の配合量が0.001重量部未満であると、長期保管後に沈降した二酸化ケイ素が固化し、再分散が困難となる傾向がある。   When the blending amount of the hydrophobic silicon dioxide having an average primary particle size of 500 nm or less is less than 0.001 part by weight, silicon dioxide that has precipitated after long-term storage tends to solidify and redispersion becomes difficult.

一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素(D)としては、表面処理を行っていない二酸化ケイ素の表面をオクチルシラン、ジメチルジクロロシラン、ジメチルシリコーンオイル又はヘキサメチルジシラザンなどを用いて化学処理を行い、表面を疎水性にしたものを用いる事が出来る。なお、上記の平均粒径についても、レーザー回折方式による粒度分布等から算出することができる。   As hydrophobic silicon dioxide (D) having an average primary particle size of 500 nm or less, the surface of silicon dioxide not subjected to surface treatment is octylsilane, dimethyldichlorosilane, dimethylsilicone oil, hexamethyldisilazane, or the like. Chemical treatment can be used to make the surface hydrophobic. The average particle diameter can also be calculated from a particle size distribution by a laser diffraction method.

本発明に用いられる(E)成分のチタン系カップリング剤は、二酸化ケイ素の添加により高くなった粘度及び揺変度の低下を目的に配合される。粘度及び揺変度の低下の観点からは配合量が多いほど粘度及び揺変度は低下するが、この配合量が多くなると粘度が低くなりすぎて、(C)成分の平均粒径20μm以下の二酸化ケイ素の沈降速度が速くなり、長期保管後に沈降した二酸化ケイ素が固化してしまい、再分散が困難となる傾向がある。また、配合量が少なすぎると粘度及び揺変度の低下に効果がなく、コイルへの含浸性が低下する傾向がある。   The (E) component titanium coupling agent used in the present invention is blended for the purpose of lowering the viscosity and the degree of fluctuation which have been increased by the addition of silicon dioxide. From the viewpoint of lowering the viscosity and the degree of variation, the viscosity and the degree of variation decrease as the blending amount increases. However, when the blending amount increases, the viscosity becomes too low, and the average particle size of the component (C) is 20 μm or less. The sedimentation rate of silicon dioxide increases, and the precipitated silicon dioxide solidifies after long-term storage, which tends to make redispersion difficult. Moreover, when there are too few compounding quantities, there exists an effect in the fall of a viscosity and fluctuation, and there exists a tendency for the impregnation property to a coil to fall.

このことから、チタン系カップリング剤の配合量としては、0.01〜10重量部の範囲で、特に、0.05〜0.5重量部の範囲が好ましい。
チタン系カップリング剤としては、チタニウムステアレート、ジ−i−プロキシチタン ジイソステアレート、(2−n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタン、2−エチルヘキサノイルオキシトリ(2−プロポキシ)チタン(いずれも日本曹達株式会社製)等を用いることができる。
From this, as a compounding quantity of a titanium coupling agent, the range of 0.01-10 weight part is preferable, and the range of 0.05-0.5 weight part is especially preferable.
Titanium coupling agents include titanium stearate, di-i-proxy titanium diisostearate, (2-n-butoxycarbonylbenzoyloxy) tributoxytitanium, 2-ethylhexanoyloxytri (2-propoxy) titanium. (Both manufactured by Nippon Soda Co., Ltd.) can be used.

本発明で必要に応じて使用する重合禁止剤としては、p−ベンゾキノン、ハイドロキノン、ナフトキノン、p−トルキノン、2,5−ジフェニル−p−ベンゾキノン、2,5ジアセトキシ−p−ベンゾキノン、p−tert−ブチルカテコール、2,5−ジ−tert−ブチルハイドロキノン、ジ−tert−ブチル−p−クレゾール、ハイドロキノンモノメチルエーテル、2,6−ジ−tert−ブチル−4−メチルフェノール等が挙げられる。その配合量は、得られる不飽和ポリエステル樹脂組成物の硬化性により便宜決定されるが、その配合量は、不飽和ポリエステル樹脂組成物100重量部に対して0.01〜5.0重量部が好ましく、より好ましくは0.5〜3重量部である。   As the polymerization inhibitor used as necessary in the present invention, p-benzoquinone, hydroquinone, naphthoquinone, p-toluquinone, 2,5-diphenyl-p-benzoquinone, 2,5 diacetoxy-p-benzoquinone, p-tert- Examples include butyl catechol, 2,5-di-tert-butylhydroquinone, di-tert-butyl-p-cresol, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol. The blending amount is conveniently determined by the curability of the unsaturated polyester resin composition to be obtained, but the blending amount is 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the unsaturated polyester resin composition. Preferably, it is 0.5 to 3 parts by weight.

また、本発明で用いられる硬化剤としては、ケトンパーオキサイド類、パーオキシジカーボネート類、ハイドロパーオキサイド類、ジアシルパーオキサイド類、パーオキシケタール類、ジアルキルパーオキサイド類、パーオキシエステル類、アルキルパーエステル類などが挙げられる。硬化剤の量は、硬化条件や樹脂硬化物の外観、特性等の面に影響があるため、それぞれに応じて決定される。材料の保存性、成形サイクルの面から前記不飽和ポリエステル樹脂及び重合性単量体の総量に対して0.5〜10重量%が好ましく、より好ましくは1〜5重量%である。   Examples of the curing agent used in the present invention include ketone peroxides, peroxydicarbonates, hydroperoxides, diacyl peroxides, peroxyketals, dialkyl peroxides, peroxyesters, alkyl peroxides. Examples include esters. The amount of the curing agent is determined in accordance with the curing conditions and the appearance, characteristics, etc. of the cured resin product. In view of storage stability of the material and molding cycle, the content is preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight, based on the total amount of the unsaturated polyester resin and the polymerizable monomer.

本発明で必要に応じて用いられる安定剤としては、 p−ベンゾキノン、ハイドロキノン、ナフトキノン、p−トルキノン、2,5−ジフェニル−p−ベンゾキノン、2,5ジアセトキシ−p−ベンゾキノン、p−tert−ブチルカテコール、2,5−ジ−tert−ブチルハイドロキノン、ジ−tert−ブチル−p−クレゾール、ハイドロキノンモノメチルエーテル、2,6−ジ−tert−ブチル−4−メチルフェノール等が挙げられる。その配合量は、樹脂組成物の貯蔵安定性、実機処理時の硬化温度及び硬化時間により便宜に決定されるが、その配合量は、通常、樹脂組成物の総量100重量部に対して0.5重量部以下が好ましく、より好ましくは0.01〜0.1重量部である。   Stabilizers used as necessary in the present invention include p-benzoquinone, hydroquinone, naphthoquinone, p-toluquinone, 2,5-diphenyl-p-benzoquinone, 2,5 diacetoxy-p-benzoquinone, p-tert-butyl. Catechol, 2,5-di-tert-butylhydroquinone, di-tert-butyl-p-cresol, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol and the like can be mentioned. The blending amount is conveniently determined depending on the storage stability of the resin composition, the curing temperature and the curing time during actual machine processing, and the blending amount is usually 0.00 with respect to 100 parts by weight of the total amount of the resin composition. The amount is preferably 5 parts by weight or less, more preferably 0.01 to 0.1 part by weight.

本発明の樹脂組成物を用いた絶縁処理は、公知の方法で処理されるが、本発明の樹脂組成物中に電気機器を2〜20分間浸漬した後、引き上げ、100〜130℃で1〜3時間加熱して樹脂組成物を硬化させる方法で行われることが望ましい。   The insulation treatment using the resin composition of the present invention is performed by a known method. After dipping the electric device in the resin composition of the present invention for 2 to 20 minutes, it is pulled up and 1 to 100 to 130 ° C. It is desirable to carry out by a method of curing the resin composition by heating for 3 hours.

本発明になる樹脂組成物は、得られるワニス皮膜が柔軟性を有し、低誘電率化が可能でかつ熱伝導性に優れるため、高電圧で使用するフェライトを使用した高周波トランス・スイッチングトランスなどの電気機器の絶縁処理に好適である。   The resin composition according to the present invention is a high-frequency transformer / switching transformer using a ferrite that is used at a high voltage because the resulting varnish film has flexibility, can have a low dielectric constant, and is excellent in thermal conductivity. It is suitable for insulation processing of electrical equipment.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらに制限するものではない。なお、例中の「部」は特に断らない限り「重量部」を意味する。
〈不飽和ポリエステル(A−1)の合成〉
温度計、チッ素吹き込み管、精留塔及び撹拌装置を備えた3リットルのフラスコに、ジプロピレングリコール1474部(11モル)、イソフタル酸498部(3モル)、無水マレイン酸392部(4モル)、テトラヒドロ無水フタル酸456部(3モル)及びハイドロキノン0.22部をいれ、210℃で10時間加熱縮合し、酸価21.5の不飽和ポリエステル(A−1)を合成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited to these. In the examples, “parts” means “parts by weight” unless otherwise specified.
<Synthesis of unsaturated polyester (A-1)>
In a 3 liter flask equipped with a thermometer, a nitrogen blowing tube, a rectifying column and a stirrer, 1474 parts (11 moles) of dipropylene glycol, 498 parts (3 moles) of isophthalic acid, 392 parts (4 moles) of maleic anhydride ), Tetrahydrophthalic anhydride (456 parts, 3 moles) and hydroquinone (0.22 parts) were added and heat condensed at 210 ° C. for 10 hours to synthesize an unsaturated polyester (A-1) having an acid value of 21.5.

〈不飽和ポリエステル樹脂組成物(a−1)の作製〉
不飽和ポリエステル(A−1)100部に、スチレン150部及び8%ナフテン酸マンガン1.25部を攪拌溶解し、さらに、不飽和ポリエステル組成物(a−1)にアルキルベンゼン・ホルムアルデヒド樹脂として、キシレン・ホルムアルデヒド樹脂(三菱瓦斯化学(株)製、商品名ニカノ−ルLL)10部及び1,1−ジ(タ−シャリ−ブチルパ−オキシ)シクロヘキサン(化薬アクゾ製、製品名トリゴノックス22E−70)を1.5部配合し、不飽和ポリエステル組成物(a−1)を得た。
<Preparation of unsaturated polyester resin composition (a-1)>
In 100 parts of unsaturated polyester (A-1), 150 parts of styrene and 1.25 parts of 8% manganese naphthenate are stirred and dissolved. Further, xylene as an alkylbenzene / formaldehyde resin is added to the unsaturated polyester composition (a-1). 10 parts of formaldehyde resin (Mitsubishi Gas Chemical Co., Ltd., trade name Nicanol LL) and 1,1-di (tert-butylperoxy) cyclohexane (manufactured by Kayaku Akzo, product name Trigonox 22E-70) Was blended to obtain an unsaturated polyester composition (a-1).

実施例1
不飽和ポリエステル樹脂組成物(a−1)100部、平均粒径2μmの二酸化ケイ素50部、オクチルシランで表面処理を行った一次粒子の平均粒径が20nmの二酸化ケイ素1部及びチタニウムステアレート0.10部を撹拌混合して電気絶縁用樹脂組成物を調製した。
Example 1
100 parts of unsaturated polyester resin composition (a-1), 50 parts of silicon dioxide having an average particle diameter of 2 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of surface treated with octylsilane, and titanium stearate 0 10 parts were stirred and mixed to prepare a resin composition for electrical insulation.

実施例2
不飽和ポリエステル樹脂組成物(a−1)100部、平均粒径10μmの二酸化ケイ素50部、オクチルシランで表面処理を行った一次粒子の平均粒径が20nmの二酸化ケイ素1部及びチタニウムステアレート0.10部を撹拌混合して電気絶縁用樹脂組成物を調製した。
Example 2
100 parts of an unsaturated polyester resin composition (a-1), 50 parts of silicon dioxide having an average particle diameter of 10 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of primary particles subjected to surface treatment with octylsilane, and titanium stearate 0 10 parts were stirred and mixed to prepare a resin composition for electrical insulation.

比較例1
不飽和ポリエステル樹脂組成物(a−1)100部、平均粒径2μmの二酸化ケイ素50部及びチタニウムステアレート0.10部を撹拌混合して電気絶縁用樹脂組成物を調製した。
Comparative Example 1
A resin composition for electrical insulation was prepared by stirring and mixing 100 parts of an unsaturated polyester resin composition (a-1), 50 parts of silicon dioxide having an average particle diameter of 2 μm and 0.10 parts of titanium stearate.

比較例2
不飽和ポリエステル樹脂組成物(a−1)100部及び平均粒径2μmの二酸化ケイ素50部を撹拌混合して電気絶縁用樹脂組成物を調製した。
Comparative Example 2
A resin composition for electrical insulation was prepared by stirring and mixing 100 parts of the unsaturated polyester resin composition (a-1) and 50 parts of silicon dioxide having an average particle diameter of 2 μm.

比較例3
不飽和ポリエステル樹脂組成物(a−1)100部、平均粒径2μmの二酸化ケイ素50部、表面処理を行わない一次粒子の平均粒径が20nmの二酸化ケイ素1部及びチタニウムステアレート0.10部を撹拌混合して電気絶縁用樹脂組成物を調製した。
Comparative Example 3
100 parts of unsaturated polyester resin composition (a-1), 50 parts of silicon dioxide having an average particle diameter of 2 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of primary particles not subjected to surface treatment and 0.10 parts of titanium stearate Were mixed by stirring to prepare a resin composition for electrical insulation.

比較例4
不飽和ポリエステル樹脂組成物(a−1)100部、平均粒径10μmの二酸化ケイ素50部、表面処理を行わない一次粒子の平均粒径が20nmの二酸化ケイ素1部及びチタニウムステアレート0.10部を撹拌混合して電気絶縁用樹脂組成物を調製した。
Comparative Example 4
100 parts of unsaturated polyester resin composition (a-1), 50 parts of silicon dioxide having an average particle diameter of 10 μm, 1 part of silicon dioxide having an average particle diameter of 20 nm of primary particles not subjected to surface treatment and 0.10 parts of titanium stearate Were mixed by stirring to prepare a resin composition for electrical insulation.

比較例5
不飽和ポリエステル樹脂組成物(a−1)100部のみを使用して電気絶縁用樹脂組成物を調製した。
Comparative Example 5
A resin composition for electrical insulation was prepared using only 100 parts of the unsaturated polyester resin composition (a-1).

次に、得られた各電気絶縁用樹脂組成物について、電気絶縁用樹脂組成物の粘度、揺変度、二酸化ケイ素の沈降性、熱伝導率と誘電率を調べた。その結果を表1に示す。なお、試験方法は、下記の通りである。   Next, with respect to each of the obtained resin compositions for electrical insulation, the viscosity, variation, silicon dioxide sedimentation, thermal conductivity and dielectric constant of the electrical insulation resin composition were investigated. The results are shown in Table 1. The test method is as follows.

(1) 樹脂組成物粘度・揺変度
JIS C 2105の試験方法に準じて測定した。
(2) 二酸化ケイ素の沈降性
直径18mmの試験管中にワニスを100mmの高さに入れ、常温で所定期間保管後、ワニス全体の高さに対する二酸化ケイ素の高さを測定した。
(1) Resin Composition Viscosity / Thickness Deflection Measured according to the test method of JIS C 2105.
(2) Precipitation property of silicon dioxide The varnish was put into a test tube having a diameter of 18 mm at a height of 100 mm, stored at room temperature for a predetermined period, and then the height of silicon dioxide relative to the height of the entire varnish was measured.

・ 沈降した二酸化ケイ素の常態
直径60mmのマヨネーズ瓶にワニスを100mmの高さに入れ、常温で所定期間保管後、直径3mm、高さ200mmのガラス棒を落下させ、ガラス棒がマヨネーズ瓶の底まで到達するか否かを試験した。ガラス棒がマヨネーズ瓶の底まで到達した場合をハードケーキ無し、ガラス棒がマヨネーズ瓶の底まで到達しなかった場合をハードケーキ有りと判断した。
・ Normal state of precipitated silicon dioxide Place varnish in a mayonnaise bottle with a diameter of 60 mm at a height of 100 mm, store it at room temperature for a predetermined period, drop a glass rod with a diameter of 3 mm and a height of 200 mm, and the glass rod reaches the bottom of the mayonnaise bottle It was tested whether it reached. When the glass rod reached the bottom of the mayonnaise bottle, it was judged that there was no hard cake, and when the glass rod did not reach the bottom of the mayonnaise bottle, it was judged that there was a hard cake.

・ 沈降した二酸化ケイ素の再分散性
直径300mmのぺール缶にワニスを200mmの高さに入れ、常温で所定期間保管後、直径20mmの十字型4枚羽根をぺール缶の中心に、高さは底から100mmにセットし、回転数1000回転/分の速度で1時間攪拌させ、目視により、沈降した二酸化ケイ素が分散出来た場合を再分散可能、沈降した二酸化ケイ素が分散出来ない場合を再分散
不可能と判断した。
・ Redispersibility of settled silicon dioxide Place the varnish in a pail can with a diameter of 300 mm at a height of 200 mm, store it at room temperature for a specified period of time, and then use the four blades with a diameter of 20 mm at the center of the pail. Is set to 100 mm from the bottom, stirred for 1 hour at a speed of 1000 rpm, and can be redispersed when the precipitated silicon dioxide can be dispersed. Judgment was impossible.

・ 熱伝導率
直径50mm、厚さ10mmの円盤状の金型内に電気絶縁用樹脂組成物を注型し、温度150℃で3時間硬化させて試験片を作製し、熱伝導率測定装置(ダイナテック株式会社製、シーマテック(商品名))を用いて測定した。
-Thermal conductivity: A resin composition for electrical insulation is cast in a disk-shaped mold having a diameter of 50 mm and a thickness of 10 mm, and cured at a temperature of 150 ° C. for 3 hours to produce a test piece. It was measured using Dynatech Co., Ltd., Cimatec (trade name).

・ 誘電率測定
90mm×90mm×0.25mm(t)のブリキ板に、樹脂組成物を塗布し、110℃で1.5時間する。この作業を4回行い、樹脂硬化物塗膜を作製する。この硬化物を23℃に保ち、JIS C 2105に準拠し誘電率を測定した。
・ 測定条件
周波数:50Hz,1kHz,1MHz、主電極:φ=37mmアルミ箔
-Dielectric constant measurement A resin composition is apply | coated to a tin plate of 90 mm x 90 mm x 0.25 mm (t), and it carries out at 110 degreeC for 1.5 hours. This operation is performed four times to produce a cured resin coating film. This hardened | cured material was kept at 23 degreeC and the dielectric constant was measured based on JISC2105.
・ Measurement conditions Frequency: 50Hz, 1kHz, 1MHz, Main electrode: φ = 37mm aluminum foil

Figure 2009099387
Figure 2009099387

Claims (6)

α,β−不飽和二塩基酸と1以上の水酸基を持つアルコールを必須成分として使用する不飽和ポリエステル(A)、分子内に不飽和基を有する反応性希釈剤(B)、アルキルベンゼン・ホルムアルデヒド樹脂(C)、平均粒径0.5〜5μmの二酸化ケイ素(D)、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素(E)及びチタネート系カップリング剤(F)を必須材料として含む電気絶縁用樹脂混合物。   Unsaturated polyester (A) using α, β-unsaturated dibasic acid and alcohol having one or more hydroxyl groups as essential components, reactive diluent (B) having an unsaturated group in the molecule, alkylbenzene / formaldehyde resin (C), silicon dioxide (D) having an average particle diameter of 0.5 to 5 μm, hydrophobic silicon dioxide (E) having an average primary particle diameter of 500 nm or less, and a titanate coupling agent (F) are included as essential materials. Resin mixture for electrical insulation. 不飽和ポリエステル(A)の分子量が、1000〜10000の範囲である請求項1記載の電気絶縁用樹脂混合物。   The resin mixture for electrical insulation according to claim 1, wherein the unsaturated polyester (A) has a molecular weight in the range of 1000 to 10,000. 分子内に不飽和基を有する反応性モノマ(B)が、不飽和ポリエステル(A)100重量部に対して、50〜200重量部含有してなる請求項1又は2記載の電気絶縁用樹脂組成物。   The resin composition for electrical insulation according to claim 1 or 2, wherein the reactive monomer (B) having an unsaturated group in the molecule is contained in an amount of 50 to 200 parts by weight based on 100 parts by weight of the unsaturated polyester (A). object. 請求項3記載の電気絶縁用樹脂組成物100重量部に対して、アルキルベンゼン・ホルムアルデヒド樹脂(C)を0.1〜20重量部含有してなる請求項1、2又は3記載の電気絶縁用樹脂組成物。   The resin for electrical insulation according to claim 1, 2 or 3, comprising 0.1 to 20 parts by weight of alkylbenzene / formaldehyde resin (C) with respect to 100 parts by weight of the resin composition for electrical insulation according to claim 3. Composition. 請求項4記載の電気絶縁用樹脂組成物100重量部に対して、平均粒径が0.5〜5μmの二酸化ケイ素(D)を10〜100重量部、一次粒子の平均粒径が500nm以下の疎水性二酸化ケイ素(E)を0.001〜10重量部及びチタネート系カップリング剤(F)を0.01〜1重量部を含有してなる請求項1、2、3又は4記載の電気絶縁用樹脂組成物。   5 to 100 parts by weight of silicon dioxide (D) having an average particle diameter of 0.5 to 5 μm and an average particle diameter of primary particles of 500 nm or less with respect to 100 parts by weight of the resin composition for electrical insulation according to claim 4 The electrical insulation according to claim 1, 2, 3 or 4, comprising 0.001 to 10 parts by weight of hydrophobic silicon dioxide (E) and 0.01 to 1 part by weight of a titanate coupling agent (F). Resin composition. 電気機器を、請求項1、2、3、4又は5記載の電気絶縁用樹脂組成物に重合開始剤及び安定剤を含有した電気絶縁用樹脂組成物で被覆し、硬化することを特徴とする電気機器絶縁物の製造方法。   An electrical device is coated with an electrical insulating resin composition containing a polymerization initiator and a stabilizer on the electrical insulating resin composition according to claim 1, 2, 3, 4 or 5, and cured. Manufacturing method of electrical equipment insulation.
JP2007270074A 2007-10-17 2007-10-17 Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same Pending JP2009099387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270074A JP2009099387A (en) 2007-10-17 2007-10-17 Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270074A JP2009099387A (en) 2007-10-17 2007-10-17 Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same

Publications (1)

Publication Number Publication Date
JP2009099387A true JP2009099387A (en) 2009-05-07

Family

ID=40702206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270074A Pending JP2009099387A (en) 2007-10-17 2007-10-17 Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same

Country Status (1)

Country Link
JP (1) JP2009099387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014875A1 (en) * 2010-07-30 2012-02-02 京セラ株式会社 Insulating sheet, process for producing same, and process for producing structure using the insulating sheet
WO2013121571A1 (en) 2012-02-17 2013-08-22 株式会社日立製作所 Resin composition for electric insulation, cured product thereof, methods for manufacturing same, and high-voltage devices and electric power transmission and distribution devices using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014875A1 (en) * 2010-07-30 2012-02-02 京セラ株式会社 Insulating sheet, process for producing same, and process for producing structure using the insulating sheet
CN103052501A (en) * 2010-07-30 2013-04-17 京瓷株式会社 Insulating sheet, process for producing same, and process for producing structure using the insulating sheet
KR101456088B1 (en) * 2010-07-30 2014-11-03 쿄세라 코포레이션 Insulating sheet, process for producing same, and process for producing structure using the insulating sheet
JP2015027801A (en) * 2010-07-30 2015-02-12 京セラ株式会社 Insulating sheet, method of manufacturing the same, and method of manufacturing structure using the insulating sheet
WO2013121571A1 (en) 2012-02-17 2013-08-22 株式会社日立製作所 Resin composition for electric insulation, cured product thereof, methods for manufacturing same, and high-voltage devices and electric power transmission and distribution devices using same
US20140377539A1 (en) * 2012-02-17 2014-12-25 Hitachi,Ltd. Electrical Insulation Resin Composition, Cured Product Thereof, Methods of Preparing the Composition and the Product, and High Voltage Apparatuses and Power Transmission and Distribution Apparatuses Using the Composition and the Product

Similar Documents

Publication Publication Date Title
JP2009099387A (en) Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same
JP5753033B2 (en) Resin composition and coil
JP4947329B2 (en) Resin composition for electrical insulation and electrical equipment
JP5686234B2 (en) Resin composition for electrical insulation and electrical equipment using the composition
JP2015147918A (en) Unsaturated polyester resin composition, and resin composition for electric insulation using the same, and method for manufacturing electric equipment
JP3376490B2 (en) Resin composition for electrical insulation and method for producing electrical-insulated transformer
JP4590675B2 (en) Resin composition for electrical insulation and electrical equipment
JP2004152607A (en) Resin composition for electrical insulation and electric apparatus
JP4947333B2 (en) Resin composition for electrical insulation and method for producing electrical equipment insulator using the same
JP4697511B2 (en) Resin composition, resin composition for electrical insulation, and method for producing electrical equipment insulator
JP2015002095A (en) Resin composition for electric insulation and manufacturing method of insulated electric appliance using the same
JP2008266383A (en) Resin mixture, resin composition for electric insulation and method for producing insulator of electric equipment by using the composition
JP2010116461A (en) Electrically insulating resin composition and method for manufacturing insulating material for electrical equipment using the same
JP5390235B2 (en) Insulation varnish
JP2008103105A (en) Resin composition for electrical insulation, and manufacturing method of electric equipment insulator
JP2007297479A (en) Resin composition and method for producing electric equipment insulator
JP2011116879A (en) Unsaturated polyester resin composition
JP5500358B2 (en) Resin composition for electrical insulation and electrical equipment using the composition
JP2002348452A (en) Resin composition for electrical insulation
JPS5812290B2 (en) Casting resin composition
TWI544028B (en) Impregnating resin formulation for electrical windings
JP2010244965A (en) Electrical insulation resin composition, and method of manufacturing electric equipment insulating material using the same
JP2011108476A (en) Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same
JP2004091515A (en) Highly heat dissipating unsaturated polyester resin composition
JP2001172490A (en) Resin composition for electrical insulation and electrical equipment